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Abstract. Recent improvements to garbled circuits are mainly focused
on reducing their size. The state-of-the-art construction of Rosulek and
Roy (Crypto 2021) requires 1.5κ bits for garbling AND gates in the
free-XOR setting. This is below the previously proven lower bound 2κ in
the linear garbling model of Zahur, Rosulek, and Evans (Eurocrypt 2015).
Whether their construction is optimal in a more inclusive model than the
linear garbling model still remains open.
This paper begins by providing a comprehensive model for a large class
of practical garbling schemes and proves the lower bound for the size of
the garbled AND gates in our model. We show that garbled AND gates
require at least 1.5κ bits in our new model with the free-XOR setting.
It is remarkable to see that the construction by Rosulek and Roy is
already optimal despite the fact that our model possibly captures any
potential extension of their construction.

1 Introduction

Garbled Circuits (GC) are one of major techniques for secure two-party compu-
tation, which allows two mistrusting parties to jointly compute functions on their
private inputs while revealing only the outputs of the functions and nothing else.
Since their concept was first introduced by Yao [15], one line of recent research [2,
12, 10, 13, 9, 6, 16, 14] has been dedicated to reducing the size of the garbled circuit
ciphertexts that should be sent from one party, the garbler, to the other party,
the evaluator.

The current state-of-the-art construction for garbled circuits is due to Rosulek
and Roy [14] (dubbed as RR21 throughout the paper), where they consider a
gate-by-gate garbling of Boolean circuits expressed using XOR and AND gates.
In their scheme, the size of the garbled AND gates is 1.5κ bits (κ is the security
parameter), while no communication is required for XOR gates. Their result
surpassed the previous lower bound (2κ bits for AND gates with free-XOR) for
the size of garbled circuits, which is obtained in a model called linear garbling
defined by Zahur, Rosulek, and Evans [16]. Their optimization was made possible
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by a new technique, called slicing-and-dicing, that is beyond the definition of the
linear garbling model.

Thus arises the following natural question whether the recent result is optimal.
As posed by [14]:

Is 1.5κ bits optimal for garbled AND gates in a more inclusive model
than the one in [16]? . . .Conversely, can one do better – say, 4κ/3 bits
per AND gate?

1.1 Our Contributions

In this paper, we answer the aforementioned question. We prove that 1.5κ bits is
optimal for garbled AND gates in our new model under the free-XOR setting.
It should be noted that our model successfully captures all existing techniques
not only the ones covered by the linear garbling model, but also the RR21
construction. Moreover, it captures any possible potential extension of RR21. To
be precise, we summarize our contributions as follows:

• Define a New Model for Linear Garbling Schemes. The original defini-
tion of linear garbling model assumes that parties can only use symmetric-key
primitives and linear operations. For practicality, we still use the same as-
sumption. However, the original model implicitly assumes that an output
wire label is computed by applying only one linear combination. Motivated
by RR21’s construction, we extend this assumption so that wire labels can
be derived from applying multiple linear combinations.

Based on this idea, we define a new model for garbling schemes. We believe
our model covers a broad class of garbling scheme that one can construct
using only symmetric-key primitives and linear operations.

• Prove a Lower Bound. We prove a lower bound of garbling schemes in
our model. Precisely, we show that any secure garbled AND gates should
have size of at least 1.5κ bits under the free-XOR setting [10]. Otherwise,
garbled circuits might leak some information on private inputs other than
the function’s output. It is interesting to see that RR21’s construction is
already optimal in our sense, although our model encompasses any possible
potential extension of their construction.

Our proof is purely based on algebraic techniques. The following items present
the technical flow of our proof.

• Formalize Garbling Equations. Our main idea is to write garbling schemes
as algebraic equations of two variables related to the evaluator’s view, which
we call garbling equations. This makes the representation of the garbling
scheme simpler. Indeed, the linear-algebraic representation of [14] can be
considered as a collection of linear equations each of which is obtained by
evaluating our garbling equations at the evaluator’s possible choices of inputs.
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• Find Coefficients. Having formalized the garbling equations, we observe
that the construction of a garbling scheme is simply reduced to finding
all coefficients in the garbling equations so that the equality holds for all
possible inputs of the evaluator. We provide several algebraic conditions for
those coefficients and find solutions satisfying such conditions. We note that
all existing constructions can be understood as particular solutions for the
garbling equations in the above sense.

• Check Privacy Leakage. Once we have found the solutions for the garbling
equations, it is necessary to check whether the corresponding garbling scheme
is secure. Interestingly, we observe that the evaluator can infer information
on the private inputs whenever the number of ciphertexts is smaller than 3

2s.
Here s is the number of slices and each of the ciphertexts is of length κ/s
bits. Thus, any garbled AND gates of size < 1.5κ bits violate the privacy
property.

Organizations. The remainder of the paper is organized as follows. In Section 2,
we review the formalism of garbling schemes and the definition of the linear
garbling model. We describe our algebraic perspective of garbling scheme and
interpret the existing garbling scheme from our perspective in Section 3. In
Section 4, we present a new model that extends the linear garbling model. We
then provide a notion of the garbling equation and prove a lower bound on garbled
circuits in our garbling model in Section 5. Finally, we conclude by suggesting
some open questions in Section 6.

2 Preliminaries

Throughout the paper, we will work over finite fields K of characteristic 2 and
the bivariate polynomial ring K[x, y]. We write x+ y / xy for Boolean operations
XOR/AND of x, y ∈ F2, respectively. We denote a vector and its entries as
−→v = (v1, . . . , vn). Matrices are written in the bold capital characters such as M.

2.1 Garbling Schemes

We use the garbling scheme abstraction introduced by Bellare, Hoang, and
Rogaway [3]. In particular, as in [16], we concentrate on garbling circuits rather
than garbling any form of computation. A garbling scheme consists of the following
algorithms:

• Gb: On input 1κ and a Boolean circuit f , outputs (F, e, d), where F is a
garbled circuit, e is encoding information, d is decoding information.

• En: On input (e, x), where e is as above and x is an input suitable for f ,
outputs a garbled input X.

• Ev: On input (F,X), outputs a garbled output Y .

• De: On input (d, Y ), returns an output y.
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Correctness. A garbling scheme defined as above is correct, if (F, e, d)← Gb(1κ, f),
De(d,Ev(F,En(e, x))) = f(x) holds all but negligible probability.

Privacy. Informally, we say a garbling scheme satisfies privacy, if (F,X, d) reveals
no information about x other than f(x). In our discussion, it is enough to consider
the privacy property. For further details on other security properties such as
obliviousness and authenticity, refer to Bellare, Hoang, and Rogaway [3].

2.2 Linear Garbling Schemes

Zahur, Rosulek, and Evans [16] defined a model of linear garbling to capture
all existing practical techniques for garbling a single AND gate at the time. A
garbling scheme for an AND gate is called linear if it satisfies the following form:

• Gb: Parameterized by integers m, n and r and (m+ n)-dimensional vectors
−→
A0,
−→
A1,
−→
B0,
−→
B1, {

−→
C 0

α,β : α, β ∈ {0, 1}}, {
−→
C 1

α,β : α, β ∈ {0, 1}} and {−→g α,β,i :
α, β ∈ {0, 1}, i ∈ {1, . . . , r}}.
1. (Choose random values) Choose Ri ← F2κ for i = 1, . . . ,m
2. (Random oracle queries) Make n distinct queries to a random oracle

(which can be chosen as a deterministic function of the Ri values).

Let H1, . . . ,Hn denote the responses to these queries. Define
−→
S :=

(R1, . . . , Rm, H1, . . . ,Hn)
t.

3. (Choose masking bits) Choose random masking bits α, β ← {0, 1}.
4. (Input wire labels) For i = 0, 1, compute Ai =

−→
Ai ·
−→
S and Bi =

−→
Bi ·
−→
S .

Then (A0 ∥ 0, A1 ∥ 1) and (B0 ∥ 0, B1 ∥ 1) are taken as the input wire
labels with Aα and Bβ corresponding to false. Here, the superscripts
denote the public color bits.

5. (Output wire labels) For i = 0, 1, compute Ci =
−→
C i

α,β ·
−→
S . Here, C0

corresponds to false.

6. (Ciphertexts) For i ∈ {1, . . . , r}, compute Gi = −→g α,β,i ·
−→
S . Then,

(G1, . . . , Gr) comprise the garbled circuit.
• En: On input a, b ∈ {0, 1}, set x = a+ α and y = b+ β, where α and β are

the masking bits chosen above. Output Ax ∥ x and By ∥ y.
• Ev: Parameterized by integer n and binary vectors {−→v x,y : x, y ∈ {0, 1}},
where each vector is of length n+ r + 2.
1. (Inputs) The input are wire labels Ax ∥ x and By ∥ y, tagged with their

corresponding color bits, and the garbled circuit G1, . . . , Gr.
2. (Random oracle queries) Make n distinct oracle queries to the ran-

dom oracle (chosen as a deterministic function of the input wire la-

bels). Denote the responses to the queries by H ′
1, . . . ,H

′
n. Define

−→
T :=

(Ax, By, H ′
1, . . . ,H

′
n, G1, . . . , Gr)

t.

3. Output the value −→v x,y ·
−→
T .

Zahur, Rosulek, and Evans proved the lower bound in the model of linear
garbling schemes.
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Theorem 1. [16, Theorem 3.] Every secure linear garbling scheme for AND
gates should have r ≥ 2. In other words, the garbled gate consists of at least 2κ
bits.

3 An Algebraic Perspective of Garbling Schemes

In this section, we present our algebraic perspective of garbling schemes. It sim-
plifies our understanding on how the previous garbling schemes were constructed
and have been improved over the years. Based on this idea, in the forthcoming
section, we investigate whether we can further improve the communication costs
for garbling schemes.

To begin with, in Section 3.1 we introduce the notion of a truth table of
a Boolean function. This notion will be useful to understand our algebraic
interpretation of garbling schemes in Section 3.2.

3.1 Truth Table and Boolean Functions

A truth table of a n-variable Boolean function f : Fn
2 → F2 is defined as follows.

Definition 1 (Truth Table). Let f : Fn
2 → F2 be a function. The truth table

for f , denoted by T (f), is a 2n-bit vector such that:

T (f) := (f(0, . . . , 0), f(0, . . . , 1), . . . , f(1, . . . , 1))⊤ ∈ F2n

2 .

In other words, the k-th entry of T (f) is f(k0, . . . , kn−1), where (k0k1 . . . kn−1)2
is a binary representation of an integer k =

∑n−1
i=0 ki2

n−1−i ∈ {0, . . . , 2n − 1}.

As an example, let us consider a bivariate Boolean function x : F2
2 →

F2 defined as x(x, y) = x, i.e. x is a projection function that maps to the
first coordinate. By the definition, T (x) is a vector in F4

2 given by T (x) =
(x(0, 0),x(0, 1),x(1, 0),x(1, 1)) = (0, 0, 1, 1).

To put it differently, the operator T maps a n-variate Boolean function f to
a unique 2n-dimensional binary vector. We also observe that T is homomorphic,
i.e. T (f + g) = T (f) + T (g) for Boolean functions f and g.

Conversely, given any 2n-bit vector −→v , one can find a unique n-variate Boolean
polynomial f such that whose truth table T (f) is the same as −→v .

Definition 2 (Sum-of-Product). Let −→v = (v0, . . . , v2n−1) be a vector in F2n

2 .
The sum-of-product (SoP) expression for −→v , denoted by F−→v : Fn

2 → F2, is a
n-variate Boolean function such that:

F−→v (x0, . . . , xn−1) :=

2n−1∑
k=0

vk

n−1∏
i=0

(xi + ki + 1),

where (k0k1 . . . kn−1)2 is a binary representation of an integer k =
∑n−1

i=0 ki2
n−1−i ∈

{0, . . . , 2n − 1}.
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By the definition, we can check that T (F−→v ) =
−→v . For instance, let us take an

example of −→v = (0, 0, 1, 1)⊤. Consider a bivariate Boolean function f(x, y) such
that T (f) = −→v . The sum-of-product expression of the truth table −→v provides the
Boolean function f such that f(x, y) = x(y+1)+ xy = x (note that the Boolean
function x(y + 1) outputs 1 iff (x, y) = (0, 1) and xy outputs 1 iff (x, y) = (1, 1)).
In other words, we have F−→v (x, y) = x(x, y) = x and T (F−→v ) = T (x) = −→v .

Throughout the paper, we are mainly interested in the case of n = 2, i.e.
bivariate Boolean polynomials. Denote F2[x, y] by the bivariate polynomial ring
over F2 with the variables x and y. There exists one-to-one correspondence
between the quotient ring F2[x, y]/⟨x2 + x, y2 + y⟩ and F4

2 by the operators T
and F .1 We provide a list of examples in Table 1 presenting this one-to-one
correspondence. Here, T (f) = −→v and F−→v = f for f ∈ F2[x, y] and

−→v ∈ F4
2.

We remark one more interesting property of the operator F . Let us consider
the Hadamard product −→v ◦ −→w , the element-wise product. We assume −→v and −→w
is of the same dimension. Then, interestingly, we observe that F−→v ◦−→w = F−→v · F−→w .
For instance, we see that (0, 0, 1, 1) ◦ (0, 1, 0, 1) = (0, 0, 0, 1) and F(0,0,0,1)⊤ =
F(0,0,1,1)⊤ · F(0,1,0,1)⊤ . It is not hard to verify this property, so we leave this to
the readers.

f −→v ⊤ f −→v ⊤ f −→v ⊤ f −→v ⊤

0 (0, 0, 0, 0) 1 (1, 1, 1, 1) xy (0, 0, 0, 1) xy + 1 (1, 1, 1, 0)
x (0, 0, 1, 1) x+ 1 (1, 1, 0, 0) x(y + 1) (0, 0, 1, 0) x(y + 1) + 1 (1, 1, 0, 1)
y (0, 1, 0, 1) y + 1 (1, 0, 1, 0) (x+ 1)y (0, 1, 0, 0) (x+ 1)y + 1 (1, 0, 1, 1)

x+ y (0, 1, 1, 0) x+ y + 1 (1, 0, 0, 1) (x+ 1)(y + 1) (1, 0, 0, 0) (x+ 1)(y + 1) + 1 (0, 1, 1, 1)

Table 1: Examples of Boolean functions and their truth table when n = 2. It satisfies
T (f) = −→v and F−→v = f .

3.2 From Linear-Algebraic View to Algebraic Perspective

In this section, we briefly review the construction of the existing garbling schemes
together with RR21’s linear algebraic representation. Then we re-interpret RR21’s
linear algebraic representation from our algebraic perspective using the truth
table and the SoP expression explained in Section 3.1. Once it has been done, we
will observe that constructing a garbling scheme reduces to find suitable algebraic
equations.

Throughout this paper, let κ be the security parameter. We consider garbling
an AND gate with input wires a and b. To garble the gate, the garbler chooses
two κ-bit strings as wire labels per each input wire, say, A0 and A1 (resp. B0

1 This choice of the quotient ring is natural, since we only consider the case that the
variables x and y take the values at F2. Throughout the paper, polynomials in F2[x, y]
are regarded as the elements in this quotient ring.
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and B1) are wire labels for the input wire a (resp. b). The garbler secretly knows
which wire label corresponds to false of each input wire. To be precise, the wire
labels Aα and Bβ correspond to false, where the values of the bits α and β are
only known to the garbler. We shall call these two bits the permute bits.

We also apply the point-and-permute technique [2]. In other words, when the
evaluator holds exactly one wire label for each wire, say Ax and By for some
x, y ∈ F2, we assume that the superscripts x and y are publicly known to her.
These bits are often referred to as color bits. Typically, the least significant bit of
the wire label is used as its color bit.

We often use both (x, y) and (i, j) to indicate the pair of the color bits. In
particular, (x, y) is mainly used to denote unspecified color bits and plays as
variables. On the other hand, (i, j) is especially used as a specific choice of the
color bits.

From now on, we will consider the free-XOR setting [10]. In this setting, the
garbler chooses a common global bit string ∆ and the wire labels are chosen so
that A0+A1 = B0+B1 = ∆ (recall that the addition is over F2, so it is the same
as the XOR operation). The value of ∆ should be kept secret by the garbler.

In the following, we assume that H is a random oracle of the output length κ
unless specified otherwise.

3.2.1 Yao’s Garbled Circuit

In Yao’s garbled circuit construction, the garbler generates 4 ciphertexts, say
G0,0, G0,1, G1,0, G1,1, corresponding to each of the evaluator’s color bits combi-
nations.

When the evaluator holds the wire labels Ax and By for some x, y ∈ F2,
she computes the output wire label by decrypting the (x, y)-th ciphertext as
Gx,y+H(Ax, By). In order for the evaluator to correctly compute the output wire
label for the AND gate, the garbler sets an output wire label C that corresponds
to false so that the evaluator can output C +∆ (that corresponds to true) if
and only if she has the wire labels Aα+1 and Bβ+1. In short, it should satisfy
the following:

C = Gx,y +H(Ax, By) if and only if (x, y) ̸= (α+ 1, β + 1);

and

C +∆ = Gx,y +H(Ax, By) if and only if (x, y) = (α+ 1, β + 1).

RR21’s Linear Algebraic Perspective. In RR21, they rearranged the above
equations into a linear-algebraic relation as follows.


1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1




C
G0,0

G0,1

G1,0

G1,1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



H(A0, B0)
H(A0, B1)
H(A1, B0)
H(A1, B1)

+
−→
t ∆. (1)
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Here,
−→
t = (t0,0, t0,1, t1,0, t1,1)

⊤ where tx,y = 1 if and only if (x, y) = (α+1, β+1)
and tx,y = 0 otherwise.

In the above equation, the values ∆ and H(Ax, By) on the right hand side
are predetermined by the input values. Depending on these values, the garbler
has to compute the values on the left hand side, the output wire label C and the
ciphertexts Gx,y’s, so that the above equation holds.

Our Algebraic Perspective. In this paragraph, we present our idea of rep-
resenting Yao’s construction from our algebraic perspective. From now on, we
consider the evaluator’s color bits x and y as the variables in F2.

Since the function (x+ α)(y + β) ∈ F2[x, y] parameterized by α and β ∈ F2

outputs 1 if and only if (x, y) = (α+ 1, β + 1), we can rewrite the equation of
Yao’s garbled circuit as

C + (x+ α)(y + β)∆ = Gx,y +H(Ax, By).

By the similar idea, we can rewrite Gx,y and H(Ax, By) as quadratic polynomials
over F2κ such that Gx,y = (x + 1)(y + 1)G0,0 + (x + 1)yG0,1 + x(y + 1)G1,0 +
xyG1,1 and H(Ax, By) = (x+ 1)(y + 1)H(A0, B0) + (x+ 1)yH(A0, B1) + x(y +
1)H(A1, B0) + xyH(A1, B1).

Let us set M =
[
(x+ 1)(y + 1) (x+ 1)y x(y + 1) xy

]
, an (1 × 4)-matrix

over F2[x, y]. Summarizing and rearranging all above, Yao’s construction can be
represented by a quadratic equation over F2κ as follows:

C +M
−→
G = M

−→
H + (x+ α)(y + β)∆, (2)

where the coefficient vectors are defined as
−→
G = (G0,0, G0,1, G1,0, G1,1)

⊤ and
−→
H = (H(A0, B0), H(A0, B1), H(A1, B0), H(A1, B1))⊤.

Then the garbler’s task now becomes equivalent to choosing the coefficients, C
and Gi,j ’s, in the left-hand side in a way that the identity holds in the equation (2)
for arbitrary choices of (x, y) ∈ F2 × F2, where the coefficients on the right-hand
side are already determined by the input values.

For instance, comparing the constant term in both sides yields C +G0,0 =
H(A0, B0)+αβ∆. Note that this relation is the same as the top row in (1). More-
over, comparing x-coefficient in both sides, we have G0,0 +G1,0 = H(A0, B0) +
H(A1, B0)+β∆. Summing this relation to the former (the one from the constant
term) provides the relation in the third row in (1). In a similar way, one can
check that Equation (1) and (2) are equivalent.

It is notable that there are 5 unknowns, C andGi,j ’s, to be determined whereas
there are 4 relations from each coefficients of 1, x, y and xy. This system of linear
equation is underdetermined, and hence there are infinitely many solutions and
it is easy to solve.

Relationships between the Two Representations. It is interesting to see
how our algebraic representation relates to RR21’s linear algebraic representation.
From its construction, it is obvious that the (2i+ j + 1)-th row of Equation (1)
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is obtained by evaluating Equation (2) at (x, y) = (i, j) for i, j ∈ {0, 1}. Here, be
aware that the integer 2i+ j + 1 ∈ {1, . . . , 4} is computed by viewing i and j as
integers.

On the other hand, applying the operator F (see Section 3.1) to each column of
the binary matrices in Equation (1), we can derive Equation (2) from Equation (1).
For instance, we have

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

 F−→
[
1 (x+ 1)(y + 1) (x+ 1)y x(y + 1) xy

]
= [1 |M].2

By the definition of
−→
t , one can also check that F−→

t
= (x+ α)(y + β). Plugging

them into Equation (1) leads us to have Equation (2).
In a nutshell, applying T to the linear-algebraic representation gives our

algebraic representation, and applying F to our algebraic representation translates
to the linear-algebraic representation.

This idea is seemingly very simple, but novel. As we shall see below, it shall
help us to understand other complicated constructions, such as RR21, more
easily.

3.2.2 Row Reduction Techniques

Row Reduction techniques reduce the number of ciphertexts from 4 to 3 by

forcing G0,0 =
−→
0κ (i.e. all κ bits are zero). It is equivalent to set the output wire

label as C = H(A0, B0) + αβ∆ in Yao’s construction.

RR21’s Linear Algebraic Perspective. From RR21’s perspective, the linear
relation can be written as follows,

1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1




C
G0,1

G1,0

G1,1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



H(A0, B0)
H(A0, B1)
H(A1, B0)
H(A1, B1)

+
−→
t ∆.

Our Algebraic Perspective. As before, applying F to the linear-algebraic
equation provides us

C + (x+ 1)yG0,1 + x(y + 1)G1,0 + xyG1,1 = M
−→
H + (x+ α)(y + β)∆,

where M and
−→
H are the same as in Yao’s construction.

If we explain the row reduction technique from our algebraic perspective, we
see that 4 unknowns C,G0,1, G1,0 and G1,1 are determined using 4 relations by
comparing the coefficients of 1, x, y and xy. Recall that in Yao’s construction we
had an underdetermined system of 4 relations in 5 unknowns, where one of five
unknowns could be chosen freely. The row reduction technique, however, reduces
the number of the ciphertexts by removing this redundancy.

2 Recall that we focus on bivariate case as mentioned in Section 3.1. So, we have
F(1,1,1,1)⊤ = 1, F(1,0,0,0)⊤ = (x+ 1)(y + 1), and so on (see Table 1).

9



3.2.3 Half-Gate Garbling Scheme

The half-gate garbling scheme [16] reduces the number of ciphertexts to 2.
Describing the scheme in short, on input Ai and Bj , the evaluator obtains the
output label by computing

C + (i+ α)(j + β)∆ = (iG0 + jG1) +H(Ai) +H(Bj) + jAi. (3)

As before, α and β are the permute bits and (i+ α)(j + β) is the actual value of
the output by the AND gate.

RR21’s Linear Algebraic Perspective. In [14], they represented this as
follows: 

1 0 0
1 0 1
1 1 0
1 1 1


 C
G0

G1

 =


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1



H(A0)
H(A1)
H(B0)
H(B1)

+


0 0
1 0
0 0
1 1

[
A0

∆

]
+
−→
t ∆, (4)

where
−→
t is the same as Equation (1).

Our Algebraic Perspective. Again, we apply F to Equation (4). From
Section 3.1, recall that F(1,1,1,1)⊤ = 1, F(0,0,1,1)⊤ = x, F(0,1,0,1)⊤ = y, and
F(0,0,0,1)⊤ = xy.

Plugging these into (4), we have

[
1 x y

]  C
G0

G1

 =
[
x+ 1 x y + 1 y

] 
H(A0)
H(A1)
H(B0)
H(B1)

+
[
y xy

] [A0

∆

]
+ F−→

t
∆.

Let us define M =
[
x+ 1 x y + 1 y

]
and
−→
H = (H(A0), H(A1), H(B0), H(B1))⊤.

Then the above equation can be rewritten as

C + xG0 + yG1 = M
−→
H + y(A0 + x∆) + (x+ α)(y + β)∆. (5)

It is remarkable to see that this is exactly the same representation as Equation (3).
Let us explain this equation from our algebraic perspective. As before, the

garbler should choose C,G0, and G1 by comparing the coefficients in both sides.
In addition, note that the only quadratic term, xy∆, in the right-hand side is
cancelled out, so both sides are linear polynomials in x and y over F2κ . This
is considerably crucial in reducing the number of ciphertexts: the equation is
only linear, so there are only 3 coefficients to consider (1, x, and y), whereas the
previous constructions should consider 4 coefficients including the quadratic term
xy.

We observe that the use of random oracle queries of the form H(Ai) and
H(Bj) instead of H(Ai, Bj) was at the core of this improvement. Due to this

change, one can observe that M
−→
H contains only linear polynomials. This reduces
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the number of coefficients to be determined by the garbler, thus reducing the
number of ciphertexts.

However, as one might observe, there always exists the quadratic polynomial
(x+ α)(y + β)∆ whenever we garble the AND gate. In order to only consider
linear terms, one might attempt to remove the quadratic term xy∆. Indeed,
in the half-gate scheme, this term was cancelled out by introducing a term
yAx = yA0 + xy∆. Note that this term depends only on the color bits x and y
so that it is computable by the evaluator.

3.2.4 RR21’s Garbling Scheme

In this subsection, we review the RR21’s construction which reduces the size of
the ciphertexts to 1.5κ+O(1) bits. Roughly speaking, they constructed a scheme
with 3 ciphertexts each of which is of κ/2 bits.

Their idea is based on a technique called slicing-and-dicing. The slicing
technique refers to an idea that slices wire labels into halves and use them to
compute each half of the output label. For instance, in their scheme, the input
labels are written as Ai =

(
Ai

L∥Ai
R

)
and Bj =

(
Bj

L∥B
j
R

)
, where each halves

are of κ/2 bits. As before, their construction assumes the free-XOR setting, so
A0 +A1 = B0 +B1 = ∆, where ∆ =

(
∆L∥∆R

)
. They also use a random oracle

H whose range is the set of κ/2-bit strings, i.e. H : {0, 1}∗ → {0, 1}κ/2. Then,
each of CL and CR, the left and right half of the output label, is computed using
ciphertexts of bit length κ/2, random oracle queries using Ai and Bj , and a
linear function of Ai

L, A
i
R, B

j
L and Bj

R.
Based on this idea, the authors construct a system of linear equations similar

to Equation (1) and (4) so that CL or CR can be represented as linear combi-
nations using each halves of input labels, their random oracle queried values
and ciphertexts. In order to achieve a non-trivial improvement, they introduced
to use random oracle queries on inputs of the form Ai + Bj besides Ai and
Bj . Precisely, they used the random oracles of the form of H(Ai), H(Bj), and
H(Ai + Bj).3 Then, on input Ai and Bj , the construction lets the evaluator
compute the left/right half of the output label for (i, j) as

CL + (i+ α)(j + β)∆L = H(Ai) +H(Ai +Bj) + · · · ,
CR + (i+ α)(j + β)∆R = H(Bj) +H(Ai +Bj) + · · · .

RR21’s Linear Algebraic Perspective. In the dotted part of the above
equations, there must be linear combinations of the ciphertexts and the wire
labels. RR21 proposed a construction using three ciphertexts G0, G1, and G2.
Similarly as before, rearranging the equations so that only the values to be
determined by the garbler are located on the left-hand side, the construction can
be re-written in a linear-algebraic form into Equation (6).

Here, the (2i+ j + 1)-th row of Equation (6) represents the equation for the
left half of the output label when the color bits combination is (i, j). Similarly,

3 With the free-XOR setting, recall that H(A0+B0) = H(A1+B1) and H(A0+B1) =
H(A1 +B0).
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the (2i+ j + 5)-th row is for the right-half of the label when the color bits are

(i, j). Let us define
−→
t = (t0,0, t0,1, t1,0, t1,1) as before. It can be written4

1 0 0 0 0
1 0 0 0 1
1 0 1 0 1
1 0 1 0 0

0 1 0 0 0
0 1 0 1 1
0 1 0 0 1
0 1 0 1 0




CL

CR

G0

G1

G2

 =



1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 0 0 1
0 1 0 0 1 0

0 0 1 0 1 0
0 0 0 1 0 1
0 0 1 0 0 1
0 0 0 1 1 0




H(A0)
H(A1)
H(B0)
H(B1)

H(A0 +B0)
H(A0 +B1)

+Rlin


A0

L

A0
R

B0
L

B0
R

∆L

∆R

+

[−→
t 0

0
−→
t

] [
∆L

∆R

]
, (6)

where the last term is the same as
(
t0,0∆L, . . . , t1,1∆L | t0,0∆R, . . . , t1,1∆R)

⊤.
Denote the 8× 6 binary matrix on the right-hand side by Mlin and the 8× 5

binary matrix on the left-hand side by Vlin. The matrix Mlin is directly decided
by which type of oracle response is to be used. Once it has been settled, [14]
observed that the columns of Mlin and Vlin should span the same column space
in order to have the equality. This is why they set Vlin so that its columns
consist of a basis of the column space of Mlin. Since Mlin is of rank 5 by its
construction, Vlin has 5 columns resulting in having 3 ciphertexts.

Then the work by [14] is mainly devoted to find out Rlin. Observe that Rlin

plays a role in providing linear combinations that the evaluator can actually
do with the available wire label. For instance, if the evaluator has wire label
A1 = A0+∆, she cannot include only one of A0 and ∆ in the linear combination.
From this observation, Rlin in RR21 [14, Equation (6)] can be written as the
form of

Rlin =



λ00A,L λ00A,R λ00B,L λ00B,R 0 0
λ01A,L λ01A,R λ01B,L λ01B,R λ01B,L λ01B,R

λ10A,L λ10A,R λ10B,L λ10B,R λ10A,L λ10A,R

λ11A,L λ11A,R λ11B,L λ11B,R λ11A,L + λ11B,L λ11A,R + λ11B,R

ρ00A,L ρ00A,R ρ00B,L ρ00B,R 0 0
ρ01A,L ρ01A,R ρ01B,L ρ01B,R ρ01B,L ρ01B,R

ρ10A,L ρ10A,R ρ10B,L ρ10B,R ρ10A,L ρ10A,R

ρ11A,L ρ11A,R ρ11B,L ρ11B,R ρ11A,L + ρ11B,L ρ11A,R + ρ11B,R


,

where all entries are binary.5 They obtained candidates for Rlin that satisfies (6)
through computer search among these matrices.

A cumbersome point here is that Rlin generally depends on the permute bits
α and β. On the contrary, recall that in the previous constructions the matrices
are independent of the choices of the permute bits.

4 We remark that we rearranged Eq.(3) in [14] so that the top/bottom-half rows
represent the equations for the left/right-part, respectively. Compare this with the
original paper where they arranged the rows in the order of left and right alternately
for each (i, j), i.e., (0, 0)-left, (0, 0)-right, . . . , (1, 1)-left, (1, 1)-right.

5 λij,X,Z (resp. ρij,X,Z) contributes as a coefficient of Xk
Z when computing the left-half

(resp. right-half) of output labels, where X ∈ {A,B}, Z ∈ {L,R}. k is set to i if
X = A and j otherwise.

12



Knowing an information on Rlin is crucial for the evaluator to compute the
output label, while knowing the permute bits directly reveals the secret real
values to the evaluator. Thus the authors in [14] discuss how to overcome this
issue using the technique called dicing. In the next paragraph, we shall briefly
explain the dicing technique from our algebraic perspective. We believe that our
algebraic representation is simpler than the original description to understand
the technique.

Our Algebraic Perspective. Similarly as before, we apply our technique using
the sum-of-product expression (Definition 2). However, observe that we have
the column of length 8 unlike the previous cases. In this case, we remark that it
is natural to consider the top/bottom 4-dimensional vector separately instead
of applying F directly to the 8-dimensional vector. This is because each of the
4-dimensional vectors contributes to each of the left/right part depending on 4
possible choices of color bits combination.

For instance, let us consider the vector (1, 1, 0, 0 | 0, 0, 0, 0)⊤. Applying F to
each halves, we have (x+ 1 | 0)⊤, where 0 is considered as a zero function. We
also observe that, conversely, (T (x+ 1) | T (0))⊤ = (1, 1, 0, 0 | 0, 0, 0, 0)⊤.

Based on this idea, we again rewrite Equation (6) into our algebraic form. To
begin with, we consider the matrix Rlin. Then, applying F to each upper/lower
column of Rlin, we can express this as the form of

R =
[
RA | RB | xRA + yRB

]
,

where RA and RB are 2× 2 matrices of polynomials in F2[x, y]. This is derived
from the property that the Hadamard product is preserved as the polynomial prod-
uct via F (see Section 3.1). For instance, among the upper part of odd columns, we
have a relation (0, λ01B,L, λ10A,L, λ11A,L+λ11B,L) = (λ00A,L, λ01A,L, λ10A,L, λ11A,L)◦
(0, 0, 1, 1) + (λ00B,L, λ01B,L, λ10B,L, λ11B,L) ◦ (0, 1, 0, 1). Therefore, we obtain
F(0,λ01B,L,λ10A,L,λ11A,L+λ11B,L)⊤ = x · [RA]11 + y · [RB ]11, where [A]ij denotes the
(i, j)-th element of a matrix A.

Now, it is interesting to see that

R ·
[
A0

L, A
0
R, B

0
L, B

0
R, ∆L, ∆R

]⊤
= RA

[
A0

L

A0
R

]
+RB

[
B0

L

B0
R

]
+ (xRA + yRB)

[
∆L

∆R

]
= RA

[
Ax

L

Ax
R

]
+RB

[
By

L

By
R

]
.

Thus, it actually reflects the behaviour of the evaluator so that she can exploit
only the values of Ax and By.

We are now ready to provide our algebraic form of RR21’s construction. We
applied F to Vlin and Mlin, and obtained, respectively,

V =

[
1 0 x 0 x+ y
0 1 0 y x+ y

]
and M =

[
x+ 1 x 0 0 x+ y + 1 x+ y
0 0 y + 1 y x+ y + 1 x+ y

]
.

Let us write
−→
H = (H(A0), H(A1), H(B0), H(B1), H(A0 + B0), H(A0 + B1))⊤,

−→
C = (CL, CR)

⊤, and
−→
G = (G0, G1, G2)

⊤. Then, we can rewrite Equation (6) as
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follows:

V

[−→
C
−→
G

]
= M

−→
H +RA

([
A0

L

A0
R

]
+ x

[
∆L

∆R

])
+RB

([
B0

L

B0
R

]
+ y

[
∆L

∆R

])
+(x+ α)(y + β)

[
∆L

∆R

]
.

(7)

Note that the column space of M and V, consisting of vectors over F2[x, y], are
the same.

In order to construct a garbling scheme from this equation, one has to fill out
RA and RB so that the equality holds for arbitrary choice of (x, y). Although
the original paper found the matrix Rlin exhaustively, we can provide a simple
algebraic way to find out RA and RB based on our representation. At the
beginning, we observe that, on the left-hand side,

V

[−→
C
−→
G

]
=

[
CL + (G0 +G2)x+G2y

CR +G2x+ (G1 +G2)y

]
.

Check that the y-coefficient of the upper polynomial and the x-coefficient of the
lower polynomial should be the same. Moreover, in order to hold the equality
in (7), the right-hand side should satisfy the same condition. Since M generates

the same space as V, it is readily checked that M
−→
H satisfies the desired condition.

So, it remains to choose RA and RB in a way that the remaining part satisfies
the same condition. Also, it should be noted that RA and RB are chosen so that
they cancel out the quadratic terms xy∆L and xy∆R, since the left-hand side
of (7) only consists of linear polynomials.

In the subsequent sections, we shall describe a general way to find such matrices
satisfying the above mentioned conditions. For instance, we shall provide RA and
RB in Example 1, Section 5.3. Here, we observe that RA and RB are dependent
of the permute bits α and β.

Dicing Technique. As mentioned above, the garbler should send an information
on RA and RB obliviously to the evaluator in order not to reveal α and β. They
dealt with this issue using the dicing technique, which we shall explain in terms
of our algebraic perspective.

In order for the evaluator to compute the output label correctly, it is sufficient
to have only the evaluated value of R at the corresponding color bits instead of
the entire R. Here, recall that RA (similarly for RB) is a matrix with entries
in F2[x, y]. So, we denote RA(i, j) (resp. RB(i, j)) by the matrix with all of its
entries are evaluated at (x, y) = (i, j). We call the value (RA(i, j),RB(i, j)) the
marginal view at (i, j).

Because the garbler does not know which (i, j) will be held by the evaluator,
the marginal views are sent in a garbled form in a way that the evaluator can only
obtain the marginal view at her input (i, j). For instance, the garbler generates
auxiliary ciphertexts, say (z1, . . . , zt). Using zk’s, the evaluator should be able
to recover only RA(i, j) and RB(i, j) based on her input Ai and Bj . Then, she
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uses this information to recover the output label. Refer to Appendix A for more
details on the dicing technique.

Where The Improvement Comes From. In this paragraph, we provide an
intuition on how RR21 obtained its improvement over the half-gate scheme in
terms of communication costs. We emphasize that our algebraic approach is more
intuitive than its original description to understand what changes have led RR21
to achieve such improvement. It would be helpful to know whether the idea of
RR21 can be further generalized.

Recall that
−→
C and

−→
G are determined by Equation (7), where the equation is

a system of two linear equations. Observe that, as described above, these two
equations are dependent on each other. Precisely, looking at the left-hand side,
there are two linear polynomials CL+(G0+G2)x+G2y and CR+G2x+(G1+G2)y,
where G2 is shared in common as y-coefficient and x-coefficient, respectively. In
other words, these two linear polynomials can be determined by five free variables,
CL, CR, G0, G1 and G2.

Indeed, the number of free variables in the left-hand side is closely related to
the number of ciphertexts. If there were two independent linear equations, we
would have six free variables in total. This will not help us to improve against
the half-gate scheme. On the other hand, it can be seen that RR21 essentially
reduces the number of ciphertexts by forcing a system of two linear equations to
have a certain relation.

Note that the number of coefficients to be determined is actually the same as
the rank of the matrix Vlin in terms of RR21’s representation. We believe that
our algebraic representation is more intuitive to understand what is going on
than considering the rank, especially when we try to generalize the idea of RR21.

When it comes to generalization of RR21’s idea, it might be natural to
consider a system of multiple linear equations with certain number of relations.
If there were s linear equations with ℓ relations, then we would have 3s− ℓ free
variables. Among them, s variables are used to determine s-chunks of the output
label C = (C1, . . . , Cs). So, there will be 2s− ℓ ciphertexts in total, each of which
is of κ/s bits, and so on and so forth. However, as we shall see in Section 5, this
approach will not provide us an improved construction.

4 Our Garbling Model

In this section, we provide a comprehensive model that extends the linear
garbling model by [16]. We argue that this is a natural generalization of the
previous modeling, and our model captures all existing practical garbling schemes.
Based on this, we will provide a lower bound of garbling schemes in the next
section.

4.1 Motivations

Our main objective of this paper is to provide a lower bound for garbling schemes.
In order to have a meaningful bound, we should specify a methodology of garbling
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constructions. Above all, we would like to focus on constructions that exploit only
symmetric-key primitives and linear operations. Our model assumes parties can
make polynomially many queries to a random oracle. In other words, our lower
bound is obtained in the world of Minicrypt [7] in which only symmetric-key
primitives exist and no public-key primitives exist.

Observe that the original linear garbling model also assumes the same as
above. So, one might not expect to have a new model that differs from the original
one. However, we shall explain below that there is a very natural way to extend
the linear garbling model without leaving the world of Minicrypt.

Let us consider how each party in a garbling scheme plays their role by using
only symmetric-key primitives and linear operations. We assume that the linear
operations are carried out over fields of characteristic 2. And we do not allow the
operations to be performed outside of that given field.

• Garbler’s Behaviour (Basic). We first describe a basic approach that one
can imagine for the garbler’s behaviour. On the side of the garbler, he takes
the input wire labels as inputs and makes queries to a random oracle using
them. Based on these values, he returns the output wire labels along with
the ciphertexts by applying suitable linear operations. The output labels and
the ciphertexts may vary depending on the choice of the permute bits. Hence,
which linear operations to apply would be dependent on the permute bits.
• Evaluator’s Behaviour (Basic). The evaluator uses her input wire labels
to make queries to a random oracle. Using those values together with the
ciphertexts received from the garbler, she applies suitable linear combinations
to get the output wire label that corresponds to the evaluator’s input wire
labels. Since the permute bits are to be hidden to the evaluator, her linear
combinations should be only dependent on the color bits.

Let Ax and By be the evaluator’s input wire labels for some x, y ∈ F2.
The evaluator should obtain C(x+α)(y+β) for the permute bits (α, β). Here, C0

represents false. The prescribed behaviour can be formally written as

C(x+α)(y+β) = Vx,y(G1, . . . , Gr, H̃1, . . . , H̃ñ, A
x, By)⊤,

where G1, . . . , Gr are the ciphertexts and H̃1, . . . , H̃ñ are random oracle responses
using Ax and By. Moreover, Vx,y is a 1 × (ñ + r + 2) matrix and its entries
have their values in F2κ which are decided by the color bits x and y, i.e. Vx,y is
defined over F2κ [x, y]. Parsing Vx,y suitably, one might notice that Equation (2)
and (5) are the representation equivalent to the above.

Indeed, the above discussion has no difference with the consideration in the
linear garbling model. To extend the linear garbling model in a non-trivial way,
we consider the following.

In the above, observe that the output label is determined by only one equation,
i.e. Vx,y consists of one row. Then it is natural to consider the following case
as a next step: What if the output label is determined by a system of multiple
equations?
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• Extension 1 (Slicing). We assume that the wire labels are split into s parts
for an integer s. The garbler makes random oracle queries on unsliced wire
labels to get random κ/s-bit strings. He uses these random oracle queried
values and sliced input wire labels (which is also κ/s-bit) to compute the
sliced output labels and ciphertexts by applying s linear combinations. On
the other hand, the evaluator applies s linear combinations using her input
labels and ciphertexts to have the output label.

In this case, the evaluator’s behaviour can be written as follows.

−→
C (x+α)(y+β) = Vx,y(G1, . . . , Gr, H̃1, . . . , H̃ñ,

−→
Ax,
−→
By)⊤,

where each wire label is sliced into s-chunks of the same bit-length, (A1, . . . , As),

and written using vector notation as
−→
A . In addition, Vx,y now has s rows.

At this point, a somewhat weird but plausible question can be raised: Should
Vx,y be dependent only on the color bits? What if it also depends on the permute
bits?6 Of course, in such case, the evaluator cannot apply linear operations using
Vx,y since she does not know the permute bits. However, what if we assume that
the garbler can send auxiliary information so that the evaluator recovers Vx,y

without knowing the permute bits?

• Extension 2 (Dicing). The garbler makes auxiliary random oracle queries
using his wire labels. He also takes a part of Vx,y that depends on α, β as
inputs. Apply linear combinations on them to obtain auxiliary ciphertexts,
say −→z := (z1, . . . , zt). On the other hand, the evaluator makes auxiliary
random oracle queries with her input labels. Together with the auxiliary
ciphertexts −→z , she applies linear operations that only depend on her color
bits (x, y). This will reveal the part of Vx,y that depends on α, β. Hence, she
can exploit it to obtain the desired output label.

In the above description, observe that we only exploit random oracle queries and
linear operations. Thus we are still in the world of Minicrypt.

One might observe that the RR21 construction is an example that both
Extension 1 and 2 are applied. In particular, the evaluator applies Equation (7)
after proper rearranging. The value (RA,RB), the part that depends on α, β, is
sent to the evaluator by using the dicing technique requiring a small number of
ciphertexts.

We argue that the above extensions possibly capture a broader class of
garbling constructions than the linear garbling model that one can imagine from
the world of Minicrypt.

6 For notational convention, we still think that Vx,y is defined over F2κ [x, y] instead
of F2κ [x, y, α, β]. In such case, we think that their coefficients are parameterized by
α and β.
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4.2 Formalizing a Garbling Model

Based on the observation from the previous section, we formalize our new model
for garbling schemes. We argue that our model encompasses all existing practical
garbling schemes.

Let K be a subfield of F2κ/s . We say that a garbling scheme is s-linear over
K if it satisfies the following form:

• Gb: Parameterized by integers m, n, r, s, t, u, s× (sm+n) matrices A0, A1,
B0, B1, {C0

α,β : α, β ∈ {0, 1}}, {C1
α,β : α, β ∈ {0, 1}}, r × (sm+ n) matrix

{Gα,β : α, β ∈ {0, 1}}, where the entries of all vectors/matrices are in K. And
also parameterized by an integer c, t× (ℓ+ u) matrix z, and u-dimensional
vector {−−→rα,β : α, β ∈ {0, 1}}, where all the entries are in F2c .
Set a parameter dicing ∈ {0, 1}.
1. (Choose random values) Choose Ri ← F2κ for i = 1, . . . ,m. Parse Ri

into (Ri,1∥ · · · ∥Ri,s) where Ri,j ∈ F2κ/s .
2. (Random oracle queries, κ/s-bit part) Make n distinct queries to a

random oracle with κ/s-bit output (which can be chosen as a deterministic

function of the Ri values). Let H
kap
1 , . . . ,Hkap

n denote the responses to

these queries. Define
−→
S kap := (R1,1, . . . , Rm,s, H

kap
1 , . . . ,Hkap

n )⊤.7

3. (Random oracle queries, c-bit part) If dicing = 0, then
−→
S con =⊥.

Otherwise, make ℓ distinct queries to a random oracle with c-bit out-
puts (which can be chosen as a deterministic function of the Ri val-
ues). Let Hcon

1 , . . . ,Hcon
ℓ denote the responses to these queries. Define

−→
S con := (Hcon

1 , . . . ,Hcon
ℓ )⊤.7

4. (Choose masking bits) Choose random permute bits α, β ← {0, 1}.
5. (Input wire labels) For i = 0, 1, compute s-dimensional vectors

−→
A i =

Ai−→S kap,
−→
B i = Bi−→S kap and define Ai = (Ai

1∥. . .∥Ai
s), B

i = (Bi
1∥. . .∥Bi

s).
Then (A0 ∥ 0, A1 ∥ 1) and (B0 ∥ 0, B1 ∥ 1) are taken as the input wire
labels with Aα and Bβ corresponding to false. Here, the superscripts
denote the public color bits.

6. (Output wire labels) For i = 0, 1, compute s-dimensional vectors
−→
C i =

Ci
α,β

−→
S kap and define Ci = (Ci

1 ∥ . . . ∥Ci
s). Here, C

0 corresponds to false.

7. (Ciphertexts) Compute
−→
G = Gα,β

−→
S kap. If dicing = 0, then set −→z =⊥.

Otherwise, compute −→z = z(−→r α,β∥
−→
S con). Then, (

−→
G,−→z ) comprise the

garbled circuit. The former are called main ciphertexts and the latter
are auxiliary ciphertexts.

• En: On input a, b ∈ {0, 1}, set x = a+ α and y = b+ β, where α and β are
the permute bits chosen above. Output Ax ∥ x and By ∥ y.

• Ev: Parameterized by integer n, s×(n+r+2s) matrices {Vkap
x,y : x, y ∈ {0, 1}}

and s(n+ r + 2s) × (n+ t) matrices {Wcon
x,y : x, y ∈ {0, 1}}, where each of

the entries is in K.

7 “kap” is the abbreviation for kappa for the sake of meaning that Hkap
i has “κ”/s-bit

output. Similarly, “con” stands for constant where Hcon
i has (a constant) c-bit output.
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1. (Inputs) The input are wire labels Ax∥x and By∥y, tagged with their corre-

sponding color bits, and the garbled circuit (
−→
G,−→z ) = (G1, . . . , Gr, z1, . . . , zt).

2. (Random oracle queries, κ/s-bit part) Make n distinct oracle queries to
the random oracle (chosen as a deterministic function of the input wire

labels). Denote the responses to the queries by H̃kap
1 , . . . , H̃kap

n . Define
−→
T kap := (Ax

1 , . . . , A
x
s , B

y
1 , . . . , B

y
s , H̃

kap
1 , . . . , H̃kap

n , G1, . . . , Gr)
⊤.

3. (Random oracle queries, constant bit part) If −→z =⊥, then skip this
step. Otherwise, make ℓ distinct oracle queries to the random ora-
cle (chosen as a deterministic function of the input wire labels). De-

note the responses to the queries by H̃con
1 , . . . , H̃con

ℓ . Define
−→
T con :=

(H̃con
1 , . . . , H̃con

ℓ , z1, . . . , zt)
⊤.

4. (Control bit recovery) If −→z =⊥, then set Vcon
x,y = 0. Otherwise, compute

Wcon
x,y

−→
T con and parse it into a s× (n+ r + 2s) matrix Vcon

x,y .

5. Output the value (Vkap
x,y +Vcon

x,y )
−→
T kap.

We also say that the garbling scheme in the above sense is free-XOR compatible
if it satisfies the following:

• The parameters in Gb satisfy

A1 +A0 = B1 +B0 = C1
α,β +C0

α,β = [Is ∥ 0] ,

where Is is the s-dimensional identity matrix and 0 is the zero matrix of
dimension s× (sm+ n− s).

• In Step 1, Gb sets ∆ := R1 and parses ∆ into (∆1∥ . . . ∥∆s).

• In Step 2, Gb defines
−→
S kap := (∆1, . . . ,∆s, . . . )

⊤.

From the above, the free-XOR compatibility assures that
−→
A 0+

−→
A 1 =

−→
B 0+

−→
B 1 =−→

C 0 +
−→
C 1 =

−→
∆ , where

−→
∆ = (∆1, . . . ,∆s)

⊤.8

In the definition of the s-linear garbling model, the parameter dicing indicates
whether the garbler randomizes the control bits (if dicing = 1) or not. All schemes
that belong to the linear garbling model have (s, dicing) = (1, 0), i.e. the wire
labels are not sliced and there is no control bit randomization applied. On the
other hand, the RR21 construction has (s, dicing) = (2, 1), i.e. the wire labels
sliced into two parts and the control bit randomization technique is applied. In
Appendix B, we show that RR21 is 2-linear in the above sense.

As a side note, we argue that the schemes by [8] and [1] are not s-linear in
the above sense. Although, their constructions garble an AND gate with κ-bit
ciphertexts, it is less useful since they can garble only a single gate in isolation.
We think it is reasonable to exclude such schemes in our modeling in terms of
practicality. In Appendix C, we explain why their constructions are not linear.

8 We emphasize that our free-XOR compatibility requires that both input labels and
output labels have the same correlation, i.e. the labels for false and true on each
wire have the same offset ∆. It assures the scheme is composable with itself, i.e.
output labels by previous garbled gates can be used as input labels to garble next
gates.
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Remark 1. We remark that the slicing and the dicing technique can be indepen-
dently applicable. We argue that applying the dicing technique is only decided
by whether the evaluator’s linear combinations include parts that depend on
the permute bits. For instance, RR21’s construction requires the dicing since
RA and RB are dependent on α and β. An interesting aspect is that it seems
very unlikely to find RA and RB that do not depend on the permute bits when
s ≥ 2 in general. Thus it seems impossible to avoid the dicing technique when
the slicing technique is applied. However, it may be possible to obtain a scheme
with slicing but no dicing, although we are unaware of such constructions at this
point of writing.

Remark 2. We observe that most garbling schemes that are free-XOR compatible
actually employ K = F2 instead of the entire field. Up to our knowledge, the only
scheme in the linear garbling model that uses K = F2κ is [13] which is based on
the polynomial interpolation method. Note that this scheme is not free-XOR
compatible.

5 Lower Bound on Garbled Circuit

In this section, we present a lower bound for garbled AND gates in our model of
s-linear garbling scheme under several reasonable assumptions. From now on, we
assume that garbling schemes are free-XOR compatible.

5.1 Garbling Equations

In this section, we provide a notion of garbling equations. Once it is defined, we
realize that constructing a garbling scheme reduces to find a suitable form of
garbling equations. Based on this observation, we shall prove our lower bound in
the model of s-linear garbling.

In the s-linear garbling model, the algorithm Ev returns an output by com-

puting (Vkap
x,y + Vcon

x,y )
−→
T kap. Let us consider linear operations on the part of

random oracle responses in
−→
T kap. For instance, assume that Ev applies the linear

combination like H(Ax) + · · · on the input Ax. Then it can be rephrased as a
polynomial like (x+ 1)H(A0) + xH(A1) + · · · . Hence, we can rewrite this part

of operations in the form of M
−→
H , where M is the part that only depends on x

and y and
−→
H is a vector consisting of all possible random oracle responses that

can be made by the parties. In other words, M decides which oracle responses to
apply among all possibilities depending on x, y.

Suitably parsing the matrix Vkap
x,y +Vcon

x,y , one can rewrite the algorithm Ev
as follows

−→
C + (x+ α)(y + β)

−→
∆ = W

−→
G +M

−→
H +RA

−→
Ax +RB

−→
By, (8)

where all the matrices M, W, RA and RB have s rows. If the garbling scheme
is over K, then all of these matrices are defined over K[x, y]. We assume that
polynomials in K[x, y] have coefficients parameterized by α, β.6
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Finally, we observe that in order to construct a garbling scheme one should
decide what matrices to apply in the above equation. After the matrices are

determined, the algorithm Gb solves
−→
C and

−→
G in the following equation,

V

[−→
C
−→
G

]
= M

−→
H +RA(

−→
A + x

−→
∆) +RB (

−→
B + y

−→
∆) + (x+ α)(y + β)

−→
∆, (9)

so that the equality holds for all choices of (x, y). Here, V = [Is|W] and Is is
the identity matrix of the dimension s. We call the equation of the form (9) (or
equivalently, (8) at evaluator’s view) the garbling equations.

5.2 Conditions on the Matrices M and V

In the construction of the garbling equation, setting M and V is of prime
importance to be considered first. This is because the number of the columns of
V, which is obtained as a column-reduced matrix of M, is closely related to the
number of ciphertexts.

Although our argument also holds for arbitrary K, for the sake of simplicity,
we focus on the case of s-linear garbling scheme over F2. In other words, the
matrices M, V and R are considered to be defined over F2[x, y]. For the general
case, refer to Appendix D.

5.2.1 Observation on M

In this section, we discuss on how the matrix M looks like. Recall that each

entries of the s-dimensional vector M
−→
H is determined by (linear combinations

of) responses to random oracle queries using the input labels Ax and By. Since
the output by random oracles is solely determined by the color bits (x, y), it
can be written as a function η : F2 × F2 7→ F2L , where L is the bit-length of the

random oracle outputs (typically, L = κ/s in our case). In other words, M
−→
H can

be represented like (. . . ,
∑

k ηk(x, y), . . . )
⊤.

Note that any function is completely decided by the values at all possible
inputs, i.e. given any h0, h1, h2, h3 ∈ F2L , a function η that has values hi+2j

at (i, j) can be written as a polynomial in F2L [x, y]/⟨x2 + x, y2 + y⟩ using the
Lagrange interpolation:

η(x, y) = h0 · (x+ 1)(y + 1) + h1 · (x+ 1)y + h2 · x(y + 1) + h3 · xy, (10)

where h2i+j = η(i, j).

Now we describe how the matrix M and the vector
−→
H can be represented. To

ease the description, without loss of generality, we only consider the case when

M
−→
H is 1-dimensional, i.e. s = 1. For now, we assume that M

−→
H = η(x, y) for

some η. Given the polynomial η ∈ F2L [x, y]/⟨x2 + x, y2 + y⟩, we write η(x, y) =∑
i,j∈{0,1} h2i+j · (x+ 1− i)(y + 1− j) as above. Then we set M = [(x+ 1)(y +

1), · · · , xy] and
−→
H = (h0, . . . , h3)

⊤.
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However, depending on the values h0, . . . , h3, one can further reduce the
number of columns of M. For instance, consider the case when h0 = h1 and h2 =

h3. In this case, we have η = h0·(x+1)+h2·x and setM
−→
H = [x+1 x](h0, h2)

⊤. We
observe that this case occurs when we use the random oracle queries of the form
H(Ax) where h0 = H(A0) and h2 = H(A1). Similarly, when h0 = h2 and h1 = h3,

we have M
−→
H = [y + 1 y](h0, h1)

⊤. This corresponds to the case of using H(By).

In the case of h0 = h3 and h1 = h2, we can write M
−→
H = [x+y+1 x+y](h0, h1)

⊤.
This case occurs when we use H(Ax +By) under the free-xor condition.

From the above observation, it is natural to ask whether one can use any other
form of random oracle queries that would yield a better construction for garbling.
In the following, we argue that we shall only consider the aforementioned forms
of oracle queries. To begin with, we define the notion of rank of the bivariate
polynomial η.

Definition 3. Let η ∈ F2L [x, y]/⟨x2 + x, y2 + y⟩ as described in Eq. (10). Let us
consider the elements in F2L as L-dimensional vectors over F2. We shall define
the rank of η, denoted by rk(η), by the rank of the (4× L)-dimensional matrix
(over F2) whose rows are h0, . . . , h3.

For instance, in the above example of η = h0 · (x + 1) + h2 · x, we have
rk(η) = 2. Here, 4 coefficients, h0, . . . , h3, are determined by two elements, h0

and h2. In general, η can be written as η(x, y) =
∑rk(η)−1

i=0 tk · fk(x, y) for some
tk ∈ F2L and fk ∈ F2[x, y], where rk(η) ≤ 4 (note that fk has its coefficients in
F2 not F2L). We also observe that the column rank of M is actually the same as
the rank of the corresponding η.

In the following, we observe the following property.

Lemma 1. Let η be given as Eq. (10) i.e. η(i, j) = h2i+j for i, j ∈ {0, 1}. Then,
(wlog) the tuple of the coefficients (h0, h1, h2, h3) should be of one of the following
forms (up to a proper permutation):

1. rk(η) = 1 : (h0, ∗, ∗, ∗), where ∗ ∈ {0, h0};
2. rk(η) = 2 : (h0, h1, ∗, ∗), where ∗ ∈ {0, h0, h1, h0 + h1};
3. rk(η) = 3 : (h0, h1, h2, ∗), where ∗ ∈ {ih0 + jh1 + kh2 : i, j, k ∈ {0, 1}};
4. rk(η) = 4 : (h0, h1, h2, h3).

Proof. The proof is clear from the definition of the rank. ⊓⊔

The above lemma asserts that in some cases of η, corresponding garbling
schemes require random oracle queries to be made in a restrictive way which
is either useless or unlikely to hold in general. For instance, in the case of
(h0, h0, h0, 0), it means that a random oracle H should satisfy h0 = H(Ai, Bj)
for (i, j) ̸= (1, 1) and 0 = H(A1, B1). However, it seems unnatural to force a
random oracle H to have the same value at all (Ai, Bj) except at (A1, B1).

In the case when a tuple contains h0 + h1 (where the rank is 2 or 3), it means
that H should satisfy a homomorphic property, e.g. H(A1, B0) = H(A0, B0) +
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H(A0, B1). However, at this stage we are unaware whether such H exists in a
way that provides a better garbling construction.

In the case of (h0, h1, h1, h2) (where the rank is 3), one has h1 = H(A0, B1) =
H(A1, B0). The construction in [8] might be considered as a particular case of
using this type of η. They defined H(Ai, Bj) := H(Ai +Z Bj), where +Z denotes
the addition of bitstrings considered as integers (see Appendix C). However,
this construction is only useful for garbling a single gate only, since it is not
guaranteed to hold the same condition for consecutive gates.

Overall, we only consider the following types for the coefficients of η:

Definition 4. Let η be given as Eq. (10). We call that η is useful if it is one of
the following forms (up to a proper permutation):

1. rk(η) = 2: (h0, h1, h0, h1);
2. rk(η) = 3: (h0, h1, h2, h0 + h1 + h2);
3. rk(η) = 4: (h0, h1, h2, h3);

In the case of rank 2, all possible types of η can be obtained by considering
the random oracles queries of the form either H(Ax), H(By), and H(Ax +By)
as we have seen above.

In the case of rank 3, all possible types of η can be obtained by linear
combinations of the polynomials of rank 2. For instance, if the coefficients of η is
(h0, h1, h2, h0+h1+h2), then we can rewrite η as s0(x+y+1)+s1(x+y)+ t0(x+
1) + t1x, where h0 = s0 + t0, h1 = s1 + t0, and h2 = s1 + t1. In other words, it
corresponds to the case of using random oracles of the form H(Ax+By)+H(Ax).

As we are interested in a smaller rank of M (for smaller ciphertexts), we focus
our discussion on the case of rk(η) ⪇ 4, i.e. we only consider linear polynomials
as the entries of M.

In this way, we assume that we only consider the random oracles of the type
either H(Ax), H(By), and H(Ax +By), and their linear combinations. Then the

matrix M and
−→
H can be chosen accordingly.

Note that we can use different kinds of random oracles on the same input,
so the same type of polynomials can appear multiple times in M. For instance,

(although it might be less useful) one might set M =

[
x+ 1 x 0 0 · · ·
0 0 x+ 1 x · · ·

]
and

−→
H = (h0, h1, h

′
0, h

′
1, . . . )

⊤, where hi := H(Ai) and h′
i := H ′(Ai). In this case, it

means that one might compute the first-half of the wire label by querying random
oracle H with inputs Ai and the second-half is computed using another random
oracle H ′.

We also remark that any nonzero elements in the same column of M are
uniquely determined by the input to the random oracle, which means that any
nonzero elements in the same column of M must be the same. For instance
(x, y + 1)⊤ cannot be a column of M, but (0, y)⊤ can.

Summarizing our observations, M can be written as a matrix of the form:

M =
[
(ℓ1 + 1)−→u1 | ℓ1−→u1 | · · · | (ℓn + 1)−→un | ℓn−→un

]
, (11)
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where n is a positive integer, ℓi is an element in {x, y, x + y}, and −→ui is a
s-dimensional binary vector.

5.2.2 Observation on V

Since V is constructed as a column basis of M, instead of choosing V directly,
we rather impose conditions that V should satisfy on selecting the matrix M.
To begin with, as mentioned above, it is reasonable to assume that V is of the
form V = [Is |W]. As M consists of only linear polynomials, it is obvious that
the entries of W are also linear polynomials. In particular, we can always choose
W so that its entries are all homogeneous (i.e. have a zero constant), since V
contains Is. To see why, one might observe that any columns in M of the form
(ℓ+ 1)−→u and ℓ−→u could be generated by −→u and ℓ−→u . As −→u being a binary vector,
it is generated by Is. Then we might assume ℓ−→u is generated from the columns
in W whose entries have the zero constant terms.

Recalling that it is a column-reduced matrix of M, we might write V as the
form of

V = [Is |W] = [Is | ℓ1−→u1 | · · · | ℓr−→ur] . (12)

Here, the identity matrix Is should be obtained from {−→u1,
−→u2, . . . ,

−→un} of M
in Equation (11). Thus the vector −→ui ’s should contain s linearly independent
vectors. Denote r by the rank of the matrix

[
ℓ1
−→u1 | ℓ2−→u2 | · · · | ℓn−→un

]
. By proper

reordering, assume that the set {ℓ1−→u1, · · · , ℓr−→ur} is linearly independent.9 Finally,
we can write V as Equation (12). By the construction, note that we have r ≥ s.

5.3 Solving the Garbling Equation

Now we are ready to discuss on how to construct the garbling equation for general
s. Once we have chosen the matrices M and V, it remains to find (RA,RB) so
that the equality in the garbling equation (8) holds for all inputs (x, y). To find
solutions, we proceed as follows:

(Step 1) Compare the coefficients of the terms on both sides of (8) so that the
equality holds;

(Step 2) Find relations between the x-coefficient and the y-coefficient in the left
hand side;

(Step 3) Try to choose (RA,RB) so that the right hand side satisfies the relations
of (Step 2);

(Step 4) Check whether information on α and β is not revealed from the value
of (RA,RB) evaluated at some (x, y) = (i, j).

Recall that this evaluated value in (Step 4) is the marginal view.

9 Remark that it can be linearly independent even if the set {−→u1, · · · ,−→ur} is linearly
dependent.
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Compare coefficients. We write RX = RX,0x+RX,1y +RX,2, where X ∈
{A,B} and RX,i is a s× s binary matrix. Substituting this to (8) yields

−→
C +W

−→
G = M

−→
H +

(
RA,0

−→
A +RB,0

−→
B +

(
RA,0 +RA,2 + βIs

)−→
∆
)
x

+
(
RA,1

−→
A +RB,1

−→
B +

(
RB,1 +RB,2 + αIs

)−→
∆
)
y

+ (RA,1 +RB,0 + Is)xy + (constant).

(13)

Recall that the left-hand side is linear since W only contains linear terms.
So, in order that the equality holds, the right-hand side should also be linear.
This forces to choose (RA,RB) satisfying

RA,1 +RB,0 + Is = 0. (14)

Find relations. Prior to discussion on constructing the garbling equations, we
take a more look into the relations between the coefficients. From now on, we
assume that r ≤ 2s, since the communication cost would be (r/s)κ bits and we
are interested in the case of r/s ≤ 2.

Consider the term W
−→
G , the non-constant term, in the left hand side of the

equation. We split W into W1x+W2y, where each Wi is a binary matrix.Then

we remark that the 2s-dimensional vector (−→w1,
−→w2) := (W1

−→
G,W2

−→
G) is generated

by r ciphertexts Gi’s. Since there are r degree of freedom for 2s-dimensional
vectors, there must be (2s−r) independent relations among the entries of (−→w1,

−→w2).
We write such relations as

π(−→w1,
−→w2) := P−→w1 +Q−→w2 = 0, (15)

where P and Q are (2s− r)× s-dimensional binary matrices and
[
P | Q

]
is of

full rank. Since the relation π(−→w1,
−→w2) = 0 holds for any randomly chosen

−→
G , we

also have, by abusing the notation, π(W1,W2) := PW1 +QW2 = 0.
Note that in the case of half-gate scheme, where s = 1 and r = 2, this step

can be omitted because there are zero relations.

Find solutions. Now we describe how we construct the equation. In the
previous paragraph, we saw that the x-coefficient matrix W1 and the y-coefficient
matrix W2 of the left-hand side satisfy the relation π(W1,W2) = 0, where P
and Q are determined by V. On the right hand side, by the construction of M

and V, it is obvious that the coefficients of x and y in M
−→
H satisfy the same

relation. By the linearity, it remains to choose (RA,RB) so that the relation

holds. Since the relation should hold for each of arbitrarily chosen random
−→
A ,
−→
B

and
−→
∆, we deduce that (RA,RB) satisfies the followings:

π(RA,0,RA,1) = 0,
π(RB,0,RB,1) = 0,

π
(
RA,0 +RA,2 + βIs, RB,1 +RB,2 + αIs

)
= 0.

(16)

As a side note, we check that the solution space of (RA,RB) is isomorphic to
a (3rs− s2)-dimensional binary space. To see this, among 6s2 binary entries of
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(RA,RB), we have s
2 relations from (14) and (2s−r)·s relations for each equation

in (16). Thus, the solution space is of dimension 6s2− (3s(2s−r)+s2) = 3sr−s2.

Example 1. Recall that V = [ I2 |W ] =

[
1 0 x 0 x+ y
0 1 0 y x+ y

]
in RR21’s con-

struction. Then we can write W =

[
1 0 1
0 0 1

]
x+

[
0 0 1
0 1 1

]
y = W1x+W2y. In this

case, we obtain P =
[
0 1

]
and Q =

[
1 0

]
satisfying π(W1,W2) = 0.

If we find (RA,RB) using (14) and (16), we have

RA,0 =

[
a1 a2
a3 a4

]
, RA,1 =

[
a3 a4
b3 b4

]
, RA,2 =

[
c1 c2
c3 c4

]
RB,0 =

[
a3 + 1 a4
b3 b4 + 1

]
, RB,1 =

[
b3 b4 + 1
e3 e4

]
, RB,2 =

[
f1 f2
f3 f4

]
,

where f1 = a3 + b3 + c3 + α and f2 = a4 + b4 + c4 + β + 1 and the entries are
all binary elements. One might observe that (RA,RB) is 14-dimensional space
(it coincides with the result in [14]). As an example, one might check that the
matrix Rp in [14, Figure 4] is obtained by setting all free variables as zero except
b4 = c4 = 1 when (α, β) = (1, 1).

5.4 Proof of Lower Bounds on Garbled Circuits

Previously, we have found the solutions (RA,RB) satisfying (Step 1)∼(Step 3).
It remains to check whether the solution satisfies (Step 4). Our aim is to show
that in order for the found solutions to satisfy (Step 4), it is necessary to have
3s ≤ 2r. This demonstrates that any garbled gate for 2-degree Boolean functions
consists of at least 1.5κ bits, which supports the optimality of RR21’s garbling
scheme.

We argue that the marginal view at (x, y) = (0, 0) leaks information on
α and β when 3s ≥ 2r. This shows the necessary condition for (Step 4). The
following theorem is a prerequisite on such necessary conditions of P and Q.

Theorem 2. Define the matrices M and V as Section 5.2.1. Consider Equa-
tion (13) that satisfies Equation (14) and (16), where π is defined as Equa-
tion (15). Assume that the matrices M, V and therefore P, Q are given. Given
the matrices (RA,2,RB,2), if any of P, Q and P+Q are not of full rank, then
either the bit α, β, or both α and β, can be computed.

Proof. Suppose that P is not of full rank. Then, there exists a (2s−r)-dimensional

nonzero binary vector
−→
k1 such that

−→
k1

⊤P = 0. The value
−→
k1

⊤Q must be nonzero
since

[
P | Q

]
is of full rank. Combining (14) and (16) implies

π
(
RA,0 +RA,1 +RA,2 + (β + 1)Is,RB,2 + αIs

)
= 0. (17)

and yields
−→
k1

⊤Q(RB,2 + αIs) = 0 by multiplying
−→
k1

⊤ in both sides. Henceforth,

it holds that
−→
k1

⊤QRB,2 = α
(−→
k1

⊤Q
)
. By computing the left-hand side, the bit α

is determined by whether the result is zero or not.
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By a similar argument, if Q is not of full rank, we have
−→
k2

⊤P(RA,2 + βIs) = 0,

where
−→
k2 is a nonzero vector such that

−→
k2

⊤Q = 0. It comes from that π
(
RA,2 +

βIs,RB,0 +RB,1 +RB,2 + (α+ 1)Is
)
= 0. In this case, the bit β is computed by

checking whether
−→
k2

⊤PRA,2 is zero or not.
Finally, let us consider the case when P + Q is not of full rank. Combin-

ing (17) with π(RA,0,RA,1) = 0 yields π
(
RA,1 + RA,2 + (β + 1)Is,RA,1 +

RB,2 + αIs
)
= 0. Multiplying a nonzero vector

−→
k3 such that

−→
k3

⊤(P + Q) =

0, we have
−→
k3

⊤ (
P
(
RA,2 + (β + 1)Is

)
+Q

(
RB,2 + αIs

))
= 0. Since we have

−→
k3

⊤ (
P
(
RA,2 + Is

)
+QRB,2

)
=
−→
k3

⊤(βP + αQ
)
, comparing the left-hand side

with the right-hand side for all possible (α, β) ∈ {0, 1}2 allows us to reveal
(α, β). ⊓⊔

Let us briefly describe the meaning of the above theorem in terms of gar-
bling schemes. Consider a garbling construction with the garbling equation (13).
Applying the dicing technique, if necessary, we may assume that the value of
(RA,RB) at (i, j) is known to the evaluator, where Ai and Bj are the input wire
labels held by the evaluator. Then the above theorem asserts that the marginal
view at (0, 0) leaks private information on α and β whenever any of P, Q and
P+Q are not full row rank. Thus, it violates the privacy property of the scheme.

Let us denote the rank of a matrix A by rk(A). We are now ready to show
the desired result.

Theorem 3. Let Π := (Gb,En,Ev,De) be a s-linear garbling scheme over K
that is free-XOR compatible. For Π to satisfy the privacy property, it must satisfy
3s ≤ 2r. In other words, the garbled gate from Π is of at least (3/2)κ+ ct bits.

Recall that ct is the size of the auxiliary ciphertexts from the dicing technique.
In most case, a garbling scheme can be constructed so that ct = O(1). If it is the
case, one can say that any garbled gate of s-linear garbling schemes is of at least
1.5κ+O(1) bits.

Proof. For simplicity, this proof only focuses on the case when K = F2. Refer to
Appendix D for general K.

For the correctness of Π, the algorithm Ev on input x and y should satisfy−→
C + (x + α)(y + β)

−→
∆ = (Vkap

x,y +Vcon
x,y )
−→
T kap. Since the scheme is s-linear, we

may assume that it can be rewritten as Equation (8), where M, W, RA and RB

are described as above.
In order for Π to satisfy the privacy, we may assume that the matrices P, Q

and P+Q are of full rank by Theorem 2, i.e. rk(P) = rk(Q) = rk(P+Q) = 2s−r.
Recall that V = [Is |W] = [Is | ℓ1−→u1 | · · · | ℓr−→ur], where

−→ui is a s-dimensional
binary vector and ℓi ∈ {x, y, x + y} for i = 1, . . . , r. If we write ℓi = δix + ϵiy,
we obtain W = W1x+W2y such that

W1 =
[
δ1
−→u1 | · · · | δr−→ur

]
and W2 =

[
ϵ1
−→u1 | · · · | ϵr−→ur

]
.

Consider the sets Sx, Sy and Sx+y defined by Sf := {i : ℓi = f} for f ∈
{x, y, x+ y}. Then the set {Sx, Sy, Sx+y} is a partition of {1, 2, . . . , r}. Note that
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the vectors in {−→ui : i ∈ Sx} are linearly independent. This is due to the fact that
{x−→ui : i ∈ Sx} consists of column vectors of V and hence is linearly independent.
Similarly, the sets {−→ui : i ∈ Sy} and {−→ui : i ∈ Sx+y} are linearly independent.

By the definition, it holds PW1 +QW2 = 0 and it is obvious that P(δi
−→u i) +

Q(ϵi
−→u i) = P−→u i = 0 for i ∈ Sx. In other words, each row of P belongs to an

s-dimensional subspace orthogonal to the space spanned by {−→ui : i ∈ Sx}. Since
{−→ui : i ∈ Sx} is linearly independent, the dimension of the row space of P is less
than or equal to s−#Sx, where #Sx denotes the cardinality of Sx. Equivalently,
rk(P) = 2s− r ≤ s−#Sx.

Similarly we have rk(Q) ≤ s−#Sy and rk(P+Q) ≤ s−#Sx+y. Summing
up these three inequalities leads us rk(P) + rk(Q) + rk(P + Q) = 6s − 3r ≤
3s−

(
#Sx +#Sy +#Sx+y

)
= 3s− r, i.e. 3s ≤ 2r, the desired result. ⊓⊔

6 Conclusion and Further Discussions

We conclude by suggesting several open questions.

Garbling Multivariate High Degree Functions. In [11], they discussed on
extension of linear garbling model and constructing garbling schemes for Boolean
functions with high degree/multiple inputs. Precisely, they argued that garbling

n-variate Boolean polynomials of degree d requires
∑d−1

i=1

(
n
i

)
κ bits. In the case

of n = d = 2 (e.g. AND gates), it has the same size as the half-gate garbling
scheme.

Our new model of linear garbling presented in Section 4.2 has been defined
for two inputs, but can be naturally extended to cover high-degree/multi-input
case. Also, the garbling equation can be easily extended for multivariate Boolean
gates of degree d > 2 . For instance, consider an example of three-variate Boolean
gates of degree 3, such as xyz. Restricting our consideration on s = 1, we have a
garbling equation for xyz in the following form:

V

(
C
−→
G

)
= M

−→
H +RA(A+x∆)+RB(B+y∆)+RΓ (Γ +z∆)+(x+α)(y+β)(z+γ)∆.

By similar arguments in the previous sections, we may define
−→
H as an 18-

dimensional vector using H(Ai), H(Bj), H(Γ k), H(Ai, Bj), H(Bj , Γ k) and
H(Γ k, Ai) for i, j, k ∈ {0, 1} and set M as a matrix consisting of polynomials of

degree ≤ 2 according to the choice of
−→
H . We have V =

[
1 x y z xy yz zx

]
and there are total 6 non-constant coefficients. Thus, we may have a garbling
scheme with 6 ciphertexts by finding RA, RB and RΓ so that both sides of the
above equation belongs to the same space. See that RA = yz and RB = RΓ = 0
are one of such solutions.

However, one might see that this construction is no better than repeatedly
applying the half-gate scheme (not even RR21 construction!) to a circuit composed
of multiple AND/XOR gates that represents the given Boolean polynomial. Thus,
we may ask several questions. Can we obtain any construction for garbling
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multivariate/high-degree polynomials whose size is smaller than using RR21’s
construction? For instance, can we find solutions for the above garbling equation
with s ≥ 2 that yields a construction for secure garbling schemes? Or, can we
prove a lower bound for garbling n-variate polynomials of degree d where n ≥ 2
and d ≥ 2?

Garbling General Arithmetic Functions. While our discussion mostly fo-
cused on Boolean functions, one might consider extension of our approach to
garble arithmetic circuits, e.g. addition/multiplication modulo m for m > 2.
Several works such as [1] and [11] observed that generalizing free-XOR tech-
nique directly allows a technique that garbles an addition modulo m for free. In
addition, [11] considered a construction for garbling multiplication modulo m
with ciphertexts of size 2(m− 1)κ bits, whereas a typical algorithm such as the
half-gate scheme would require O(log2 m)κ bits.

As before, our approach can provide a simpler description of [11]. For instance,
in the case of m = 3, we set M =

[
f0(x) f1(x) f2(x) | f0(y) f1(y) f2(y)

]
, where

fi is a polynomial of degree 2 over F3 such that fi(x) = 1 if x = i and 0 otherwise.
Then we have V = [1 | x x2 | y y2]. We can easily find solutions for the garbling
equation with the above matrices. As a result, this yields a garbling scheme with
4 = 2(m− 1) ciphertexts.

Again, we might ask a question whether we can improve this construction
with our approach using s ≥ 2. For instance, after slicing the wire labels, can we
reduce the size of garbled gates for arithmetic circuits? Can we have any result
on the lower bound as before?

Privacy-Free Garbling. Frederiksen, Nielsen, and Orlandi [5] introduced
privacy-free garbling schemes that only satisfy authenticity property, and do not
require privacy property. They showed that such garbling schemes are useful in
some special applications such as zero-knowledge protocols.

In this paper, our result on the lower bound is only meaningful to garbled
circuits with privacy property. Is it possible to prove a lower bound for privacy-
free garbling schemes? In our model, the size of garbled gates is at least κ bits
anyway, since our setting intrinsically requires r ≥ s. Then can we say that the
current state-of-the-art privacy-free scheme described by [16] is optimal?
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A How to Randomize the Control Bits

In this section, we explain how the dicing technique works. It turns out that any
garbling construction from our algebraic perspective can be used to randomize
the control bits as well. We note that the technique in [14] can be seen as a
particular case of ours.

For the sake of readability, we mainly describe the technique with the example
of RR21’s construction, then we explain how this works in general case.

Let us recall Example 1. At the beginning of the dicing technique, the garbler
chooses (RA,RB) at random among 214 possible choices. Assume that the choice
is

R = [RA|RB ] =

[
0 0 x+ α y + β + 1
0 0 y x

]
.

It is chosen by setting all the free variables zero except e3 = 1.

To send the information on R, the garbler encrypts it column by column.
More precisely, say R = [−→r1 , . . . ,−→r4 ], where −→rk is the k-th column of R. The
algorithm Gb makes random oracle queries and define

−→
S con :=

(
Hc(A0), Hc(A1), Hc(B0), Hc(B1), Hc(A0 +B0), Hc(A0 +B1)

)⊤
,

where Hc is a random oracle that returns an 1-bit string (it is usually chosen as
the least significant bit of outputs by the random oracle that has κ/s-bit range,
i.e. Hkap in Item 1, Section 4.2).

Given the column −→rk for each k, choose −→zk := (zk1, . . . , zk5)
⊤ such that

V−→zk = M
−→
S con +−→rk , (18)

where V and M are the same as Equation (7). Then it returns the vector −→zk
which comprises the ciphertexts encrypting −→rk .
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For instance, let us take an example of −→r3 = (x+ α, y)⊤. By comparing both
sides, we have

z31 = Hc(A0) +Hc(A0 +B0) + α
z32 = Hc(B0) +Hc(A0 +B0)
z33 = Hc(A0) +Hc(A1) + 1
z34 = Hc(B0) +Hc(B1) + 1
z35 = Hc(A0 +B0) +Hc(A0 +B1).

Let Vij be the value of V evaluated at (x, y) = (i, j). Upon receiving −→zk , on
input Ai and Bj , the algorithm Ev computes

−→
r̃k = Vij

−→zk +

[
1 0 1
0 1 1

] H(Ai)
H(Bj)

H(Ai +Bj)

 .

It is easily verified that
−→
r̃k is the value of −→rk evaluated at (x, y) = (i, j), i.e. the

marginal view.
We observe that the above argument works in general not only for RR21’s

construction. Actually, the control bit randomization is carried out by encrypting
each columns of R, the randomly chosen control bits. Moreover, it is encrypted
via the same garbling equation as that used for the original garbling construction.
In other words, the matrices M and V in Equation (18) are the same as the
original garbling equation. The only condition for the control bits encryption
to work, it suffices to see whether −→rk belongs to the same space spanned by
the columns of M or V. And it turns out to be equivalent that −→rk satisfies the
relation π in Section 5. Recall that −→rk is the column of R. By (16), we see that
R, thus each of its columns, satisfies the relation π which is the desired result.
Henceforth, we argue that the control bit randomization is always possible with
its original garbling equation.

To help readers’ understanding, let us call back the previous example of RR21.
In this case, the relation π is equivalent to say that the y-coefficient on the top is
the same as the x-coefficient of the bottom. We see that, for each −→rk , it satisfies
the condition.

Let us consider why this technique does not reveal the information on α
and β. We see that the entire value of R will definitely disclose the permute
bits. Observe that −→zk ’s are encrypting the coefficients of the polynomials in R

using
−→
S con. And the decryption only reveals the value of the polynomials in R

evaluated at (x, y) = (i, j). Without knowing the wire labels other than Ai and
Bj , the evaluator cannot evaluate the polynomials outside of (i, j). Thus, it does
not disclose the entire information on R.

Remark 3. One might observe that our example of RR21 is slightly different
from their original description. Their description is intrinsically reducing the
number of ciphertexts −→z k’s encrypting the control bits by choosing the control
bits R from a small subspace rather than the full space of dimension 14. By a
tedious computation, we see that R in [14, Figure 3.] is actually determined by
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only the first column. Setting −→r 1 := (r11, r12)
⊤ = (ax+ by + c, bx+ dy + e)⊤ for

randomly chosen a, b, c, d, e ∈ F2, we check that the matrix R is the same as

R =

[
r11 r12 r12 + (x+ 1) r11 + r12
r12 r11 + r12 + (y + 1) r11 + r12 r11

]
.

Thus, it is enough to send only the encryption of −→r 1, instead of sending entire
encryptions of all columns. Therefore, it reduces the number of ciphertexts
garbling the control bits.

B RR21 is 2-Linear

In this section, we show that RR21’s construction is 2-linear in the sense of
Section 4.2. We remark that any projection map is a linear map. Thus, we shall
simply write any projected element without full description of its linear map. For
instance, in RR21 construction, we write wire labels as of the form A = (AL∥AR).
Given a matrix R over F2[x, y], denote R(i,j) by the value of R at (x, y) = (i, j).
The k-row of the matrix R is denoted by [R]k.

The following can be derived from the garbling equation (7). For instance,
(C0

L, C
0
R)

⊤ is obtained by evaluating Equation (7) at (x, y) = (0, 0). Similarly,
(G0, G1) is derived by adding the value at (0, 0) and at (1, 1). The algorithm Gb
can be written as follows:



Ax
L

Ax
R

By
L

By
R

C0
L

C0
R

C1
L

C1
R

G0

G1

G2


=



1 0 0 0 x 0 0 0 0 0 0 0
0 1 0 0 0 x 0 0 0 0 0 0
0 0 1 0 y 0 0 0 0 0 0 0
0 0 0 1 0 y 0 0 0 0 0 0

1 0 0 0 1 0
R

(0,0)
A R

(0,0)
B αβI2 0 0 1 0 1 0

1 0 0 0 1 0
R

(0,0)
A R

(0,0)
B (1 + αβ)I2 0 0 1 0 1 0

1 1 0 0 0 0
R

(0,0)
A +R

(1,1)
A R

(0,0)
B +R

(1,1)
B R

(1,1)
A +R

(1,1)
B + (α+ β)I2 0 0 1 1 0 0

[R
(0,0)
A +R

(0,1)
A ]1 [R

(0,0)
B +R

(0,1)
B ]1 [R

(0,1)
B + αI2]1 0 0 0 0 1 1





A0
L

A0
R

B0
L

B0
R

∆L

∆R

H(A0)
H(A1)
H(B0)
H(B1)

H(A0 +B0)
H(A0 +B1)


︸ ︷︷ ︸

−→
S kap

.
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With the same notation as Section A, for each k, we can check that


zk1
zk2
zk3
zk4
zk5


︸ ︷︷ ︸
−→z -part

=


1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 1 0 1 0
1 0 0 0 0 0 1 0 1 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0 1 1 0 0
1 0 1 0 0 0 0 0 0 0 0 0 1 1


︸ ︷︷ ︸

z-part



r
(0,0)
k1

r
(0,0)
k2

r
(0,1)
k1

r
(0,1)
k2

r
(1,0)
k1

r
(1,0)
k2

r
(1,1)
k1

r
(1,1)
k2

Hc(A0)
Hc(A1)
Hc(B0)
Hc(B1)

Hc(A0 +B0)
Hc(A0 +B1)


︸ ︷︷ ︸

(−→r ∥
−→
S con)-part

.

We leave it to readers to check that the algorithm Ev also satisfies our
definition.

C Non s-Linear Schemes

In this section, we briefly describe why the scheme of [8] is not linear in our
sense. In their scheme, the garbler chooses Aα, Bβ , ∆ ∈ F2κ at random. Here,
Aα and Bβ are the input wire labels that represent false. Then the other wire
label is decided by Aα+1 = Aα +Z ∆ and Bβ+1 = Bβ +Z ∆, where +Z denotes
the addition over Z2κ and the operands are considered as elements in Z2κ . The
random oracle responses are H1 = H(Aα +Z B

β), H2 = H(Aα +Z B
β +Z ∆), and

H3 = H(Aα+ZB
β+Z 2∆). They defined

−→
S kap := (Aα, Bβ , ∆,H1, H2, H3) ∈ F6

2κ .
At this stage, we remark that there seems to be no efficient way to represent

Aα+1 as Aα+1−→S kap for a matrix Aα+1 over F2κ . It should be alerted that

(1, 0, 1, 0, 0, 0)
−→
S kap is not a right way to represent Aα+1, since the addition

here is over F2κ while the desired operation should be carried out over Z2κ . In
this sense, it is misleading that the authors in [8, Section 6.2] represented as

Aα+1 = (1, 0, 1, 0, 0, 0)
−→
S kap.

Although their scheme is not linear in the above sense, we can still represent
their scheme using our algebraic approach. Set X = x+α and Y = y+ β. Define

M =
[
(X + 1)(Y + 1) (X + 1)Y X(Y + 1) XY

]
and V =

[
XY + 1 XY fa,d(X,Y )

]
,

where fa,d(X,Y ) := aXY + X + Y + d and a, d ∈ F2. Then the output
wire label C0, C1 and the ciphertext G are chosen so that V(C0, C1, G)⊤ =
M(H1, H2, H2, H3)

⊤. By comparing and properly eliminating both sides, we have

C0 = dG+H1; C0 = (d+ 1)G+H2; and C1 = (a+ d)G+H3.
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It means that when the evaluator holds Aα and Bβ , then she can recover C0 from
the first equation. Similarly, when the input labels are (Aα, Bβ+1) or (Aα+1, Bβ),
then the output C0 is obtained from the second equation. The last equation is
used when the inputs are (Aα+1, Bβ+1).

Note that, in order for the evaluator to properly carry out the computation,
she must know the value of either d, d+ 1, or a+ d accordingly with the input
labels. Here is where the dicing technique is applied. Note that d = fa,d(0, 0),
d+ 1 = fa,d(0, 1) = fa,d(1, 0), and a+ d = fa,d(1, 1). If the garbler computes and
sends zX,Y := fa,d(X,Y ) + lsb(H(AX+α, BY+β)), then the evaluator is able to
recover only the desired bit by decrypting zX,Y with her inputs Ax and By.

D Proof of Theorem 3 for general K

Sketch of proof. In general case, we have a random oracle response followed by
a multiplication by K. For instance, one might compute a sliced wire labels
by applying linear operations such as a1H(Ai) + a2H(Ai +Bj) + · · · for some
a1, a2 ∈ F2κ .

In such case, by using a similar argument to Section 5.2.1, we might write M
as

M =
[
a1(ℓ1 + 1)−→u1 | a1ℓ1−→u1 | · · · | an(ℓn + 1)−→un | anℓn−→un

]
, (19)

where ai ∈ K and ℓi and
−→ui are defined as Equation (11).

Now, let us consider V. Recall that it is a basis of the column space of M
over K. One can check that the same V as Equation (12) generates the column
space of M. In the rest of arguments, since we only use V, it still holds for this
case.

35


