
Nonadaptive One-Way to Hiding Implies
Adaptive Quantum Reprogramming

Joseph Jaeger

School of Cybersecurity and Privacy
Georgia Institute of Technology

Atlanta, Georgia, US
josephjaeger@gatech.edu

Abstract. An important proof technique in the random oracle model
involves reprogramming it on hard to predict inputs and arguing that
an attacker cannot detect that this occurred. In the quantum setting, a
particularly challenging version of this considers adaptive reprogramming
wherein the points to be reprogrammed (or output values they should be
programmed to) are dependent on choices made by the adversary. Frame-
works for analyzing adaptive reprogramming were given by, e.g., by Un-
ruh (CRYPTO 2014), Grilo-Hövelmanns-Hülsing-Majenz (ASIACRYPT
2021), and Pan-Zeng (PKC 2024). We show, counterintuitively, that
these adaptive results follow directly from the non-adaptive one-way to
hiding theorem of Ambainis-Hamburg-Unruh (CRYPTO 2019). These
implications contradict beliefs (whether stated explicitly or implicitly)
that some properties of the adaptive frameworks cannot be provided by
the Ambainis-Hamburg-Unruh result.

1 Introduction

Hash functions are a pillar of modern practical cryptography. Many of the most
efficient algorithms for a given task (public key encryption, digital signatures,
authenticated key exchange, . . .) crucially rely on hash functions for their se-
curity. Often the security cannot be reduced to standard model assumptions
about the hash function and is instead justified by modeling it as a random
oracle [4]. A variety of methods of expressing random oracle model proofs are
known which can make it easy to express analyses based on basic probabilistic
analysis [8,5,18,21,22]. An important aspect of this is bounding the probability
that an attacker notices if we adaptively modify the behavior of the oracle on
inputs which are statistically/computationally hard for the attacker to guess.

As we prepare for a post-quantum future, there is a natural desire to port
these benefits over to the quantum random oracle model [7] which captures that
an attacker locally computing a hash function may use a quantum computer to do
so in superposition. With this change in model, existing classical proofs no longer
apply and, more importantly, the standard proof techniques no longer work.
Motivated by this challenge, a variety of techniques have been introduced for
quantum random oracle model analysis [3,6,11,12,13,15,17,20,24,25,26,30,31,32].

https://orcid.org/0000-0002-4934-3405

Rather than providing new analysis tools, we provide a new perspective on
how to use an existing tool by Ambainis, Hamburg, and Unruh [3] (AHU). This
“one-way to hiding” (O2H) theorem (building on earlier versions [11,15,24,25,26])
bounds an attacker’s advantage in distinguishing between randomly chosen func-
tions based on the probability a related algorithm can extract an input on which
they differ. The common impression [3,12,20] seems to be that this result is
highly non-adaptive because these two functions must be fixed at the beginning
of the experiment, and thus it cannot be used for adaptive analysis where the
definitions of the functions can update throughout the experiment (except in a
few special corner cases where an adaptive problem can cleverly be expressed
non-adaptively).

We dispel this notion, showing that through a change of viewpoint we can
easily analyze many highly adaptive problems. As concrete applications of this
we prove that an “adaptive reprogramming framework” of Pan and Zeng [20],
a “tight adaptive reprogramming theorem” of Grilo, Hövelmanns, Hülsing, Ma-
jenz [12], and “adaptive O2H” lemmas of Unruh [24,25] are all implied by the
AHU O2H result. We use straightforward proofs that rely on almost entirely
classical reasoning. The concrete bounds we establish are essentially equivalent
to or better than the existing bounds.

The main idea underlying this new viewpoint is to switch away from viewing
the O2H functions as strictly applied to the attacker’s input. We instead use
a priori fixed permutations that take both the attacker’s input and the current
state of the “security game”, using the latter to respond to the former. Updating
the state of the game thereby adaptively changes the inputs on which the oracles
differ. In essence, we view the O2H distinguisher as internally running both
the attacker and the security game, only exporting very specific pieces of the
computation (which it could have done itself) to an oracle. We call this new
perspective the Fixed Permutation O2H, but emphasize that we are using the
AHU result directly. Our approach is inspired by a proof of Jaeger, Song, and
Tessaro [14] which used AHU’s O2H with fixed permutations to analyze the
quantum security of a key-length extension technique they call FFX.

1.1 Technique Overview

Consider a setting where an attacker makes q queries x1, . . . , xq to random oracle
H. It’s allowed to adaptively select points x˚

i , asking for Hpx˚
i q to be redefined

to some y˚
i up to n times. Let p1 be the probability it outputs 1 at the end of its

execution and p0 be the probability it outputs 1 if instead H is never redefined.
Our goal is to bound |p1 ´ p0|.

This setting is adaptive in two senses. First, the differences between the
oracles in the experiment change over time, rather than being chosen at the
beginning of the experiment. Second, the particular ways in which the oracles
are changed may depend on earlier queries of the adversary.

Classical Analysis. To analyze this classically, we might use a Bellare-Rogaway
style “equivalent-until-bad” approach [5] (or analogous approaches by Mau-

2

Obpxjq

If Di, xj “ x˚
i :

bad Ð true

If b “ 1: Return y˚
i

Return Hpxjq

PbpX,Y : H,X˚, Y ˚, Iq

If Di ď I,X “ X˚
i // bad

If b “ 1: Y Ð Y ‘ Y ˚
i

If b “ 0: Y Ð Y ‘ HpX˚
i q

Else Y Ð Y ‘ HpXq

Return pX,Y : H,X˚, Y ˚, Iq

Fig. 1. Left: Expression of oracle as pseudocode for classical equivalent-until-bad anal-
ysis. Right: Expression of oracle as a classical permutation queried in superposition
for quantum Fixed Permutation O2H analysis.

rer [18] or Shoup [22]). Therein we express this setting as a pair of pseudocode
games, parameterized by a bit b, which are syntactically identical except after
a flag bad is set. This could, for example, be captured by using the pseudocode
oracle Ob on the left of Fig. 1. Now the fundamental lemma of game playing tells
us that |p0 ´ p1| ď Prrbads.

At this point, one bounds Prrbads based on some assumption about A (e.g.,
that the x˚

i are statistically or computationally unpredictable). Applying a union
bound across all of the queries of A gives

Prrbads ď
ÿ

j

Prrxj P tx˚
i us “ q E

j
rPrrxj P tx˚

i uss.

For example, if the x˚
i are from adaptively chosen distributions that always have

min-entropy at least µ and the x˚
i are used nowhere else we get |p0´p1| ď nq2´µ.

Notably, (treating the fundamental lemma of game playing as given) the analysis
consists entirely of syntactic rewriting of the setting as pseudocode combined
with basic probability calculation.

Non-adaptive O2H. Now consider a setting where x˚
i , y

˚
i are still chosen clas-

sically, but the attacker has quantum access to H. The standard formalization
of this allows computing the classical permutational Hr‘s : px, yq ÞÑ px, y ‘ xq

in superposition. We can no longer apply the approach above, as the oracle can
be queried in a superposition over all x at once so the bad event that it was
queried on some x˚

i is not even well defined. One approach to this are “one-way
to hiding” (O2H) results [3,11,15,24,25,26] which can be thought of as a quan-
tum analog to equivalent-until-bad analysis. Consider using an O2H lemma of
AHU [3], which considers a distribution over functions H0, H1 and tells us that

|pH0
´ pH1

| ď 2q
c

E
j

rPrrMeasurepXjq P Sss.

Here pHb
is the probability an adversary outputs 1 when interacting with Hbr‘s

and the last probability considers running the adversary with access to either
oracle Hb, measuring its j-th query to the oracle, and checking whether the
resulting xj is in the set S “ tx : H0pxq ‰ H1pxqu.

3

Unfortunately, this result is non-adaptive. The two functions H0 and H1

(and thus the points where they differ) are fixed at the beginning of the game.
Consequently, it seems that the result can only be applied in the limited case that
all x˚

i , y
˚
i are chosen at the beginning of the game and thus the programming ofH

occurs immediately. (For this, consider the distribution that samples the x˚
i , y

˚
i ,

definesH0 to be a random oracle, and definesH1 to be that oracle reprogrammed
so H1px˚

i q “ y˚
i for all i.) For example, if the x˚

i are from distributions that have
min-entropy at least µ and the x˚

i are used nowhere else we get |p0 ´ p1| ď
a

nq22´µ.

Fixed Permutation O2H. This impression is incorrect. We can analyze many
adaptive reprogramming settings using AHU’s O2H. Start by simplifying it so
that rather than considering distributions over permutations of the form Hbr‘s

we consider two fixed permutations P0 and P1. It follows from AHU [3] that

|pP0 ´ pP1 | ď 2q
c

E
j

rPrrMeasurep P0pXjq ‰ P1pXjq qss.

We call this special case of AHU’s O2H the Fixed Permutation O2H. To ap-
ply this result, we switch our viewpoint. Rather than thinking of Pb being the
functions the attacker might have access to (and so the O2H distinguisher is
essentially identical to the attacker) we will think of the distinguisher as jointly
running the attacker and the “security game”. Then the permutations Pb will
be permutations that process oracle queries as a function of both the attacker’s
state and the game’s.

In our running example, to simulate the game the distinguisher will store the
random function in a quantum register H and the reprogramming points x˚

i , y
˚
i

in registers X˚
i and Y ˚

i (together with a register I counting how many points
have been chosen so far). Then when the original attack wants to query Hbr‘s

with registers X,Y the distinguisher forwards this with the game registers as a
query to its own oracle Pb defined on the right side of Fig. 1. Notationally, we
use a colon as syntactic sugar to distinguish the input registers controlled by the
attacker or the game.

Note that the distinguisher perfectly simulates the view of the attacker and
that the two permutations only differ on inputs for which X is one of the re-
programmed points. Thus the above bound on |pP0

´ pP1
| gives a meaningful

bound on |p0 ´ p1|. For example, if the x˚
i are from adaptively chosen distribu-

tions that always have min-entropy at least µ and the x˚
i are used nowhere else

we get |p0 ´ p1| ď
a

nq22´µ. Notably, (treating the Fixed Permutation O2H
as given) the analysis consisted entirely of syntactic rewriting of the setting as
permutations combined with basic probability calculation.

Backwards Bounds from Sparse Functions. Thinking classically, if each
y˚
i is uniformly random, then swapping it with Hpx˚

i q will only actually be
detectable if the attacker queries its oracle at x˚

i both before and after the re-
programming. This can be important because in some settings x˚

i may be hard

4

CRopxq

If T rxs “ K:
Sample T rxs

Return T rxs

CRepbpx˚
i q

If T rx˚
i s ‰ K:

bad Ð true

If b “ 1: Sample T rxs

FRopX,Y : Hq

HrXs Ð HrXs ‘ Y
Return pX,Y : Hq

FRepbpX˚ : H, I, Zq

If HrX˚
s ‰ ZrIs: // bad

If b “ 1: Swap HrX˚
s and ZrIs

I Ð I ` 1 mod n
Return pX˚ : H, I, Zq

Fig. 2. Left: Pseudocode for classical proof using lazily sampled random function.
Right: Permutations for Fixed Permutation O2H proof using sparse representation of
random function. Tables H and Z are initially all zero.

to query to H before the reprogramming occurred but easy to query afterwards.
Our approach so far only considering the probability of x˚

i being queried after
reprogramming and thus could not be applied.

Fortunately, the solution to this in the classical setting can be applied to
the Fixed Permutation O2H approach as well. The core idea is to consider the
“bad event” as occurring when x˚

i is chosen. Then we will look backwards in
time to see if x˚

i was previously queried to the random oracle. To do this, we
lazily sample the random oracle and then check whether a new x˚

i matches any
of the values currently in the table. This is captured by the pseudocode oracles
CRo and CRepb on the left of Fig. 2. Applying the fundamental lemma of game
playing and union bounds gives.

|p0 ´ p1| ď
ÿ

i

Prrx˚
i P T s “ nE

i
rPrrx˚

i P T ss.

If the x˚
i are from adaptively chosen distributions that always have min-entropy

at least µ we get |p0 ´ p1| ď nq2´µ. Notably, (treating the fundamental lemma
of game playing as given) the analysis consists entirely of straightforward syn-
tactic rewriting of the setting as pseudocode combined with basic probability
calculation.

For porting this idea over to the quantum regime, the important aspect of
lazy sampling was that the random oracle was represented by a sparse table (one
which had been written to in at most q locations after q queries). Zhandry [32]
showed than we can similarly represent quantum random oracles with (superpo-
sitions over) sparse tables. Thereby, we can move from the traditional quantum
random oracle which does y Ð y ‘ Hpxq for an H initialized at random to the
Fourier random oracle which does Hpxq Ð y ‘ Hpxq for an H initialized to
be all zero. In this domain, reprogramming Hpx˚

i q to a random output can be
performed by swapping its register with a register initialized to be zero. This
is captured by the permutations FRo and FRepb on the right of Fig. 2. Here
registers H, I, and Z are initialized as 0.

5

We can now apply the Fixed Permutation O2H. The distinguisher runs the
attacker, internally simulating FRo for it. Whenever the original attacker wants
to reprogram on the value in registerX, the distinguisher adds the game registers
and then forwards this as a query to its own oracle FRepb. Note that the FRepb
permutations differ only if HrX˚s and ZrIs differ (and ZrIs is necessarily zero),
so we get

|p0 ´ p1| ď 2n
b

E
i
rPrrMeasurepHrX˚

i s ‰ 0qss.

This result can give better bounds in the natural setting that q " n because
it (implicitly) switches a factor of q

?
n with n

?
q. For example, if the x˚

i are
from adaptively chosen distributions that always have min-entropy at least µ
we get |p0 ´ p1| ď

a

n2q2´µ. Notably, (treating the Fixed Permutation O2H as
given) the analysis consisted entirely of straightforward syntactic rewriting of
the setting as permutations combined with basic probability calculation.1

1.2 Applications of Our Technique

To show the broad applicability of our new perspective, we use it to imply an
“adaptive reprogramming framework” of Pan and Zeng [20], a “tight adaptive
reprogramming theorem” of Grilo, Hövelmanns, Hülsing, Majenz [12] (GHHM),
and “adaptive O2H” lemmas of Unruh [24,25]. We summarize these below.

For some of these results, the concrete bounds we establish have to be pa-
rameterized slightly differently than the original results, but we show that they
are essentially equivalent (or better) in actual use. Moreover, AHU’s O2H shows
that their upper bound also applies to the difference of square roots |

?
p0´

?
p1|.

This gives better bounds when used to prove p0 is small based on a p1 which is
known to be small. We thus get square root versions of all the results we consider
for free. These were not previously known.

Pan-Zeng Adaptive Reprogramming Framework. Pan and Zeng [20] in-
troduced an adaptive reprogramming framework which they use to analyze the
selective-opening security of Fujisaki-Okamoto-style public key encryption al-
gorithms. They express a belief that AHU’s O2H result lacked the properties
needed for these proofs, saying that,

Our core technical contribution is a computational adaptive reprogram-
ming framework in the QROM that enables a security reduction to adap-
tively and simultaneously reprogram polynomially many RO-queries which
are computationally hidden from a quantum adversary. This is a prop-
erty that cannot be provided by previous techniques in the QROM, such
as . . . the semi-classical O2H lemma [3]. . . 2

1 Prior to Zhandry’s work, rewriting quantum random functions sparsely was not
known to be straightforward. In light of the work, it is quite simple to do so for our
purposes.

2 This quote is from p.4 (aka p.95) of the proceedings version or p.3 of the current
ePrint version. Emphasis ours. We’ve changed the citation to match our numbers.

6

We prove that their computational adaptive reprogramming result is implied by
the Fixed Permutation O2H with a short proof, thereby establishing that the
O2H lemma can provide this property.3 Their framework considers arbitrary
reprogramming of the oracle and upper bounds distinguishing advantage by the
probability that measuring the input of a random query gives a value at which
the function differ. In essence, their result follows directly from the first use of
Fixed Permutation O2H that we described above.

GHHM Adaptive Reprogramming Framework. GHHM [12] gave a tight
adaptive reprogramming theorem for information theoretic settings where the
reprogrammed points are from adaptively chosen distributions with high min-
entropy, but are immediately given to the attacker. Consequently, the distin-
guishing advantage must be bound by the probability that one of the repro-
grammed points is queried before being selected and does not seem to imply
or be implied by the Pan-Zeng result. Our proof of GHHM’s theorem follows
from our second use of Fixed Permutation O2H by using Zhandry’s technique
for sparsely representing functions to provide “backwards bounds”. GHHM used
their tool for tighter proofs of hash and sign techniques (e.g., used by XMSS),
tighter proofs for Fiat Shamir signatures, and fault resistance for the hedged
Fiat-Shamir transform. Their theorem was later used by [1,10,9,16,19,28,29].

Unruh’s Adaptive O2H. Unruh [24,25] gave adaptive variants of early O2H
results for reprogramming on a single statistically hidden input. These results
obtain improved concrete bounds by separately considering the probability that
reprogrammed point is queried before or after it is sampled. Consequently, they
do not seem to imply or be implied by either the Pan-Zeng or the GHHM result.

Notably, AHU proved a theorem that had previously been shown using the
first adaptive O2H result [24]. While doing so, they note that “at least in the
proof from [23]” they could replace the adaptive O2H result with their nonadap-
tive version by programming the random oracle on many points. Our proof of
the [24] result applies the Fixed Permutation O2H two times, one of which sim-
ilarly programs the random oracle on many points. Thereby we show that the
approach of AHU actually extends to any application of the adaptive O2H, not
just that particular proof.

We reprove the [25] result through two applications of the Fixed Permuta-
tion O2H using “backwards bounds”. The setting of this result is more general
than in [24], but the concrete bounds based on collision-entropy of the input
distribution are incomparable. Our proof gives a bound in terms of min-entropy
which implies both the collision-entropy bound [25] and an improved version of
the bound in [24] (replacing a q0 factor with

?
q0).

3 Technically, the mentioned semi-classical O2H lemma is a different O2H result, but
it is known [3] to directly imply the O2H lemma we prove equivalent to the Fixed
Permutation O2H in Section 2.

7

A Non-Application. The Fixed Permutation O2H is not a panacea. We con-
clude the paper by discussing two results that seem out of reach of the Fixed
Permutation O2H with current techniques. The first result, by Alagic, Bai, Katz,
and Majenz [1], gives a variant of the GHHM result for random permutations
reprogrammed on uniformly random points. The result proves an Op

a

q{2nq

bound while we are only able to prove Op
a

q2{2nq. The second result, by Alagic,
Bai, Katz, Majenz, and Struck [2], generalizes the result when a reprogrammed
point comes from an adaptively chosen, high entropy distribution. For both, we
identify that the gap between our success in proving the GHHM result and inabil-
ity to prove these results stems from lacking techniques for expressing quantum
random permutations sparsely.

1.3 Implications of the Results

Formally, the claim that Fixed Permutation O2H implies any of these other
theorems is essentially tautological. The results were already unconditionally
proven to be true, so it is vacuously the case that any statement implies them.
The essence of the result is not that the implications hold, but rather that
the proofs thereof are straightforward and require almost exclusively classical
reasoning. (The quantum complexity is instead hidden inside of the O2H result
we take as assumed.)

There are two ways we imagine this being used in future work. If one likes
to have a “toolbox” of adaptive reprogramming results each targeted narrowly
at a particular type of problem that they are well suited to expressing, then
our results show that the Fixed Permutation O2H is useful to build such tools.
Alternatively, because of the simplicity of our proofs, one could choose to jettison
the use of individual adaptive reprogramming results and instead use Fixed
Permutation O2H directly in security proofs as a single powerful “multi-tool”.4

1.4 Overview

In Section 2 describe our notation conventions, summarize necessary background
on quantum computation, and provides the Fixed Permutation O2H lemma we
use throughout the paper. In Section 3 we prove that the lemma implies the
adaptive programming result of Pan and Zeng [20]. In Section 4 we prove that
the lemma implies the tight adaptive programming result of GHHM [12]. In Sec-
tion 5 we prove that the lemma implies two adaptive one-way-to-hiding results of
Unruh [24,25]. We conclude in Section 6 by discussing the challenges in proving
the random permutation resampling results of Alagic, Bai, Katz, and Majenz [1]
or Alagic, Bai, Katz, Majenz, and Struck [2]. A change log follows the references.

4 As an example, we note that several works [10,12,16,28] use both GHHM’s result
and O2H theorems from AHU.

8

2 Preliminaries

Notation. We write y Ð$ ArOspxq for randomized execution of A with input x
and oracle access to O which produces output y. We consider quantum A that
can access O in superposition. We let PrrGs denote the probability that game G
returns true. Registers are implicitly initialized to store the all zero string.

If S is a set, then y Ð$ S denotes sampling y uniformly from S. We let
Fcspn,mq denote the set of all functions mapping t0, 1un to t0, 1um. Sampling
H Ð$ Fcspn,mq gives a uniform random function.

2.1 Quantum Computation Background

We assume familiarity with basic quantum computation, as performing unitary
operations on registers which each contain a fixed number of qubits that can be
measured in the computational basis. Our main results are primarily based on a
“one-way to hiding” theorem (defined soon) which when treated as a blackbox
allow us to primarily think “classically”. We summarize the most important
ideas used in our proofs.

Computing Permutations. If P is a permutation, then there is a quantumly
computable unitary UP which maps according to UP |xy “ |P pxqy for x P t0, 1un.
The runtime of this unitary grows with the maximum time required to compute
P and P´1 classically. We write P in place of UP . If f : t0, 1un Ñ t0, 1um is a
function, we define the permutation f r‘spx, yq “ px, fpxq ‘ yq.

We define permutations that will be provided as (possibly quantum accessi-
ble) oracles using the following notation.

Oracle OpX1, ¨ ¨ ¨ : Z1, . . . q

//Code updating X1, . . . and Z1, . . .
Return pX1, ¨ ¨ ¨ : Z1, . . . q

Formally, the colon separating the two sets of inputs is syntactic sugar with
the same meaning as a comma. Informally, we use it to separate the vari-
ables/registers that we think of as being attacker controlled (X1, . . .) from those
we think of as being controlled by the game they interact with (Z1, . . .).

Principle of Deferred Measurement. In proofs, we find it convenient to defer
any classical measurements until the end of execution by writing the result of
the measurement (in superposition) into an auxiliary register that will otherwise
be unused. This is a standard technique, which we express informally as follows.

Lemma 1 (Principle of Joint Deferred Measurement, Informal). Let
R1, R2, . . . be a collection of registers that would be measured at time T . If be-
tween T and T 1 ą T these registers are only ever swapped with each other or
used to control operations on other registers, then it would be equivalent to defer
measuring them until time T 1.

9

Game Ghide
O pDq

b Ð$ DrOs

Return b “ 1

Game Gow
P,P 1 pDq

i Ð$ t1, . . . , qu

Run DrP s until its i-th query
Measure the input x to this query
Return pP pxq ‰ P 1

pxqq

Fig. 3. Games used for O2H Theorem 1

In the case that T 1 is the end of an experiment and we only care about the
measured value of some other register, then the measurement can be deferred
indefinitely.

Sparse Representation of a Uniformly Random Function. In two proofs
we make use of Zhandry’s [32] technique for representing random functions with
sparse tables.

Lemma 2 (Sparse QROM Representation, Informal). Using the principle
of deferred measurement, we can represent a uniformly random function with a
table in the uniform superposition that is xored into attacker chosen values when
oracle queries are made. Switching to the Fourier domain (via the Hadamard
transform), we can represent it with a table initially of all zeros for which the
attacker chosen values are xored into the table on oracle queries. Thus, after q
oracle queries, we have a (superposition over) tables with at most q non-zero
entries.

The full compressed oracle technique of Zhandry combines the above with the
ability to represent such a sparse table compactly (with q registers). When we
first make use of this approach we will, in an appendix, provide a rigorous, non-
informal breakdown of the technique into individual steps for readers unfamiliar
with the technique.

Unruh [27] gives a generalization of Zhandry’s technique, exhibiting that the
particular choices of using the Fourier domain or the Hadamard transform are
inessential for the result. We nonetheless stick with the original framing of it for
concreteness.

(Fixed Permutation) One-way to Hiding. Ambainis, Hamburg, and Un-
ruh [3] proved a “one-way to hiding” (O2H) theorem which bounds the ability
of an attacker to distinguish between two oracles by the probability that the
attacker can be used to find an input on which the two oracles differ. Their the-
orem and typical uses thereof consider distributions over the oracles. We focus
on using a variant where the oracles are permutations that are fixed ahead of
time, inspired by Jaeger, Song, and Tessaro [14]. We will define both and show
that they are essentially equivalent.

10

Consider the game Ghide defined in Fig. 3 wherein the distinguisher D is given
access to an oracle O and then outputs a bit b. For e P t1, 1{2u, we measure the
ability of D to distinguish between permutations P and P 1 by

AdvhideP,P 1,epDq “

´

Pr
”

Ghide
P pDq

ı¯e

´

´

Pr
”

Ghide
P 1 pDq

ı¯e

.

The O2H theorem bounds this in terms of the game Gow shown in the same
figure. There the distinguisher is run with access to oracle P . One of its ora-
cle queries (chosen at random) is measured and the game returns true is the
permutations P and P 1 would give different outputs on this input. We define

AdvowP,P 1 pDq “ Pr
“

Gow
P,P 1 pDq

‰

.

Theorem 1 (Fixed Permutation O2H). Let P, P 1 be permutations, D be
an distinguisher making at most q oracle queries, and e P t1, 1{2u. Then∣∣∣AdvhideP,P 1,epDq

∣∣∣ ď 2q
b

AdvowP,P 1 pDq.

Note that the two permutations are a priori fixed. Assuming P ‰ P 1, there
trivially exist distinguishers which can distinguish between the two permutations
by simply querying them on an input where they differ. Thus, when making
productive use of this theorem we will always be considering some restricted
class of distinguishers. Generally, the distinguisher will internally be running an
adversary interacting with a security game and the permutations will be used to
process when the adversary makes an oracle query to its game.

The original result of Ambainis, Hamburg, and Unruh considered distribu-
tions over oracles of the form f r‘s, rather than arbitrary permutations.5 Let D
be a distribution over pf, f 1,Dq where f, f 1 are functions and D is a distinguisher
(for comparison to AHU’s original statements, think of it as a fixed distinguisher
on input a random string z). Then we define

Advhidee pDq “

ˆ

E
”

Pr
”

Ghide
fr‘spDq

ıı

˙e

´

ˆ

E
”

Pr
”

Ghide
f 1r‘spDq

ıı

˙e

and

AdvowpDq “ E
”

Pr
”

Gow
fr‘s,f 1r‘spDq

ıı

where the expectations are over pf, f 1,Dq Ð$ D.
We can capture the relevant parts of their theorem as follows.

Theorem 2 ([3], Thm. 3). Let D be a distribution as above where D makes
at most q oracle queries. Let e P t1, 1{2u. Then∣∣∣Advhidee pDq

∣∣∣ ď 2q
a

AdvowpDq.

The following result notes that these are equivalent.

5 It additionally gave a slightly better bound for distinguishers that can make multiple
queries in parallel, but we omit this for simplicity.

11

Proposition 1. Theorem 1 and Theorem 2 directly imply each other (up to
constant factors).

Proof. Let D be given. Then define the permutations

P pX,Y : f, f 1q “ pX, fpXq ‘ Y : f, f 1q

P 1pX,Y : f, f 1q “ pX, f 1pXq ‘ Y : f, f 1q.

Then let D˚ sample pf, f 1,Dq Ð D and start running D internally. Whenever D
makes an oracle query with registers pX,Y q, the distinguisher D˚ will query its
oracle with pX,Y : f, f 1q. When D halts and outputs b, D˚ halts and outputs b
as well. It is clear that

Pr
”

Ghide
P pD˚q

ı

“ E
”

Pr
”

Ghide
fr‘spDq

ıı

,Pr
”

Ghide
P 1 pD˚q

ı

“ E
”

Pr
”

Ghide
f 1r‘spDq

ıı

, and

Pr
“

Gow
P,P 1 pD˚q

‰

“ E
”

Pr
”

Gow
fr‘s,f 1r‘spDq

ıı

(1)

and D˚ makes q queries. Hence Theorem 1 implies Theorem 2.
Now let P, P 1 and D˚ be given where D˚ makes q oracle queries. Define D to

be the distribution which always outputs pP˘, P
1
˘,Dq where P˘pd,Xq “ P pXq

if d “ 1 and P´1pXq if d “ 0. Permutation P 1
˘ is defined likewise. Now define D

to be a distinguisher which runs D˚ internally. Whenever D˚ makes an oracle
query to its oracle with register X, D prepares a register Y “ 0|X|, queries
Or‘sp1, X, Y q and Or‘sp0, Y,Xq then swaps X and Y before returning X to
D˚. When D˚ halts and outputs b, D halts and outputs b as well.

It is clear that the equalities in Eq. 1 hold again, but now D makes 2q oracle
queries. Hence Theorem 2 implies Theorem 1 up to an additional multiplicative
factor of 2 being added to the latter theorem’s bound. [\

A direct emulation of the original proof for Theorem 2 in [3] gives the constant
claimed in Theorem 1.

3 Pan-Zeng Adaptive Reprogramming Framework

In this section we prove that (a version of) the Pan-Zeng framework for computa-
tional adaptive reprogramming [20] is directly implied by the Fixed Permutation
O2H (Theorem 1). We start by recalling their framework in Section 3.1. In Sec-
tion 3.2, we state and prove our variant of the framework. The bounds provided
by the results are complex and hard to compare. In Section 3.3 we apply the same
simplifications that Pan and Zeng use when applying their result in theorems
and show that our theorem provides better concrete bounds in this case.

3.1 Pan-Zeng Framework and Security Theorem

In the Pan-Zeng framework for computational adaptive reprogramming we con-
sider multi-stage adversaryA “ pA0, . . . ,Anq trying to distinguish a non-adaptive

12

Game Gpz-hide
E,b pAq

pInit,Orac,Reproq Ð E
ps, x,H0, H1q Ð$ Init
y Ð$ A0rHbr‘sspxq

For i “ 1, . . . , n do
px, aq Ð$ Oracps, yq

H1 Ð Reprops, a,H1q

y Ð$ AirHbr‘sspxq

Return y “ 1

Game Gpz-ow
E,i pAq

t Ð$ t1, . . . , qiu
Run Gpz-hide

E,1 until Ai is initiated
Run AirH1r‘sspxq until its t-th query
Measure the input X to this query
Return pH0pXq ‰ H1pXqq

Fig. 4. Games used for the Pan-Zeng computational adaptive reprogramming frame-
work. Different stages of A implicitly share state.

world from an adaptive world. This world is parameterized by an environment
E which specifies Init, Orac, and Repro. The interactions are defined by the game
Gpz-hide defined in Fig. 4.

First Init samples parameter string s (later given to Orac and Repro), an
initial input x for A, and two functions H0 and H1. In the nonadaptive world
(b “ 0) each stage of A is given oracle access to H0r‘s, produces outputs y,
and is given inputs x from Orac. In the adaptive world (b “ 1) it is instead
given access to H1r‘s and this function H1 is adaptively updated by Repro in
between each stage of A based on an auxiliary string passed to it by Orac.
Note that the only quantum behavior of this game is internal computation by
A and its superposition queries to its Hbr‘s oracle. For e P t1, 1{2u, we define

Advpz-hideE,e pAq “

´

Pr
”

Gpz-hide
E,1 pAq

ı¯e

´

´

Pr
”

Gpz-hide
E,0 pAq

ı¯e

.

The Pan-Zeng framework (similar to O2H results) bounds the distinguish-
ing advantage of A in relation to an experiment where one of A’s queries are
measured at random and we see if that query differentiates the two oracles. Let
i P t0, . . . , nu and define qi to be the number of oracle queries that Ai makes.
This is captured by the game Gpz-ow which is parameterized by E and the choice
of i. In it, we run A in the adaptive world until stage i. A random one of its
queries in that stage are measured to see if H0 and H1 differ on that input. We

define Advpz-owE,i pAq “ Pr
”

Gpz-ow
E,i pAq

ı

.

Pan and Zeng proved the following (Lemma 2 in the proceedings version or
Lemma 3.1 in the current ePrint version).

Theorem 3 (Pan-Zeng Adaptive Reprogramming, [20]). Let E be an
environment and A “ pA0, . . . ,Anq be an adversary for which Ai makes at most
qi oracle queries. Then

∣∣∣Advpz-hideE,1 pAq

∣∣∣ ď

n
ÿ

k“0

k
ÿ

i“0

2qi

b

Advpz-owE,i pAq.

13

3.2 The Pan-Zeng Theorem is Implied by O2H

Now we state and prove a variant of Theorem 3 which follows from the Fixed
Permutation O2H (Theorem 1).

Theorem 4. Let E be an environment and A “ pA0, . . . ,Anq be an adversary
for which Ai makes at most qi ě 1 oracle queries. Let q “ q0 ` ¨ ¨ ¨ ` qn. Then

∣∣∣Advpz-hideE,e pAq

∣∣∣ ď 2q

g

f

f

e

n
ÿ

i“0

qi
q
Advpz-owE,i pAq

for e P t1, 1{2u.

Proof. To apply the Fixed Permutation O2H (Theorem 1) we will define appro-
priate P , P 1, and D from E and A. We define the permutations as follows.

P pX,Y : H0, H1q “ pX,Y ‘ H1pXq : H0, H1q

P 1pX,Y : H0, H1q “ pX,Y ‘ H0pXq : H0, H1q

Note that P pX,Y : H0, H1q ‰ P 1pX,Y : H0, H1q if and only if H1pXq ‰ H0pXq.

Now our distinguisher for P and P 1 will simply run Gpz-hide
E,b pAq (that is,

internally running both A and the algorithms of E) except whenever A would
query pX,Y q to Hbr‘s it will query pX,Y : H0, H1q to its own oracle then
return the resulting pX,Y q to A. When A produces its final output y, D halts
and outputs that as well.

By Theorem 1 we get
∣∣∣AdvhideP,P 1,epDq

∣∣∣ ď 2q
b

AdvowP,P 1 pDq. Note that D per-

fectly simulated the view of A and so AdvhideP,P 1,epDq “ Advpz-hideE,e pAq.
It remains to compute AdvowP,P 1 pDq. Let I denote a random variable taking

the value of i sampled inside of Gow
P,P 1 pDq. Define Q0 “ 1, recursively define

Qj`1 “ Qj ` qj ` 1, and define the intervals Rj “ tQj , . . . , Qi`j ´ 1u. Note that
if I P Rj , then D was halted when Aj made its I ´ Qj ` 1-th query. Then,

AdvowP,P 1 pDq “ Pr
“

Gow
P,P 1 pDq

‰

“

n
ÿ

j“0

PrrI P RjsPr
“

Gow
P,P 1 pDq|I P Rj

‰

“

n
ÿ

j“0

pqj{qq ¨ Advpz-owE,j pAq.

This completes the proof. [\

3.3 Comparing the Pan-Zeng and O2H-based theorems

By depending on qj and Advpz-owE,i pAq, the bounds in Theorem 3 and Theorem 4
can be hard to parse. Consequently, when applying Theorem 3 in proofs, Pan

14

and Zeng simplified as follows. Let ε “ maxi Adv
pz-ow
E,i pAq and note qi ď q. Then,

n
ÿ

k“0

k
ÿ

i“0

2qi

b

Advpz-owE,i pAq ď

n
ÿ

k“0

k
ÿ

i“0

2q
?
ε ď 2pn ` 1q2q

?
ε.

We can do a little better by noting q “
řn

i“0 qi and calculating,

n
ÿ

k“0

k
ÿ

i“0

2qi

b

Advpz-owE,i pAq ď

n
ÿ

k“0

n
ÿ

i“0

2qi
?
ε “ 2pn ` 1qq

?
ε.

Performing similar simplifications to the bound from Theorem 4 we get the
improved result that

2q

g

f

f

e

n
ÿ

i“0

qi
q
Advpz-owE,i pAq ď 2q

g

f

f

e

n
ÿ

i“0

qi
q
ε ď 2q

?
ε.

This analysis implicitly shows that AdvowP,P 1 pDq ď ε for the D defined in

our proof. We might as well then have stuck with the bound
∣∣∣Advpz-hideE,e pAq

∣∣∣ ď

2q
b

AdvowP,P 1 pDq in the theorem where the latter term could have been expressed

in terms of measuring one of A’s q queries chosen uniformly at random.

4 GHHM Adaptive Reprogramming Framework

In this section we prove that (a version of) the Grilo, Hövelmanns, Hülsing,
Majenz (GHHM) framework for tight adaptive reprogramming [12] is implied
by Fixed Permutation O2H (Theorem 1). We start by recalling their setting
in Section 4.1. We discuss why their security result seems not to imply or be
implied by that of Pan and Zeng [20]. In Section 4.2, we state and prove our
variant of the framework. The bounds provided by the results are complex and
hard to compare directly. In Section 4.3 we apply the same simplifications that
GHHM use when applying their result in theorems and show that our theorem
provides essentially the same concrete bounds in this case.

4.1 GHHM Framework and Security Theorem

The GHHM framework for tight adaptive program can syntactically be captured
by the Gpz-hide game from Fig. 4. Let pInit,Orac,Reproq “ E be an environment
as follows.

– Init outputs ps, x,H0, H1q where H0 and H1 are the same truly random
functions from X to Y. We will assume without loss of generality that X “

t0, 1ul and Y “ t0, 1um. s and x are empty strings.
– Orac interprets its input y as specifying a probability distribution p over X

and samples x Ð$ p and y Ð$ Y, then outputs px, aq “ px, px, yqq.6

6 The most general version of GHHM’s framework has p output a second “side-
information” string x1. They showed (Appendix A in the current ePrint version)
that the weaker version we use implies this stronger version.

15

– Repro given a “ px, yq outputs a function defined identically to H1 except it
maps x to y.

Call such an environment a “GHHM environment”. Then GHHM proved the
following information theoretic result (their Theorem 1).

Theorem 5 (GHHM Adaptive Reprogramming, [12]). Let E be a GHHM
environment and A “ pA0, . . . ,Anq be an adversary for which Ai makes at most
qi oracle queries. Then∣∣∣Advpz-hideE,1 pDq

∣∣∣ ď

n
ÿ

i“0

´

a

q̂ipi,max ` 0.5q̂ipi,max

¯

.

Here q̂i “ q0 ` ¨ ¨ ¨ ` qi´1 and pi,max “ ErmaxxPX pipxqs where the expectation is
over the behavior of the game up until the i-th oracle query and pi is a random
variable denoting the probability distribution chosen by Ai.

Even though we expressed this result using the same game from the Pan and
Zeng framework, it’s not clear that Theorem 3 or Theorem 5 implies the other.
The GHHM result seems weaker because it requires reprogrammed points to be
information-theoretically (rather than computationally) hidden and requires the
initial functions and reprogrammed output to be uniform. On the other hand,
the Pan and Zeng gives a bound in terms of the probability that A finds a point
where H1 differs from H0. To get a meaningful bound we need this probability
to be small, so the reprogrammed point must be hard to predict even after the
reprogramming occurred. GHHM (by Orac giving x to A) is explicitly not such
a setting. It instead works for cases where the reprogrammed point is hard to
predict ahead of time.7

Notably Pan and Zeng are able to apply their result to analyze the selective-
opening security of an encryption scheme, a result that a priori would seem like
guessing the reprogrammed point should be easy afterwards. They achieve this
by choosing an order of programming that differs from what one’s first instinct
would use. In essence, the “trick” they are able to use is that in the settings
they consider, they can predict ahead of time a small set S such that only points
in S will ever be programmed. Then the arrange ahead of time for the initial
functions H0 and H1 to be different on all of these points and so that the later
reprogramming will switch them back to being consistent on the reprogrammed
point. It does not seem possible in general to capture the GHHM setting in this
manner.

4.2 The GHHM Theorem is Implied by O2H

Now we state and prove a variant of Theorem 3 which follows from the O2H
result Theorem 1.
7 Technically, the Pan-Zeng result is general enough that one can likely embed a
version of the Fixed Permutation O2H by ignoring Orac and Repro. Then a version
of the GHHM result would follow by the techniques in our coming proof.

16

Theorem 6. Let E be a GHHM environment and A “ pA0, . . . ,Anq be an ad-
versary for which Ai makes at most qi oracle queries. Let q “ q0 ` ¨ ¨ ¨ ` qn.
Define q̂i and pi,max as in Theorem 5. Let e P t1, 1{2u. Then

∣∣∣Advpz-hideE,e pDq

∣∣∣ ď 2n

g

f

f

e

n
ÿ

i“0

q̂ipi,max{n.

There are two challenges that make it surprising this theorem can be proven
from the Fixed-Permutation O2H theorem. The first is that all of the dependence
on q is inside the square root, whereas O2H gives us a bound with q outside of
the square root. Secondly, (and similarly to our comparison with Pan and Zeng’s
theorem) after a reprogramming the adversary is told the point x at which the
oracle was redefined. Consequently, we can only hope to rely on the hardness
of querying the oracle on input x before it was reprogrammed. But because the
distribution for choosing x is not fixed ahead of time, if we tried to naively apply
O2H it’s not clear how to make the permutations differ on this unknown x ahead
of time.

The same insights tackle both of these challenges. Rather than thinking of
the “bad event” happening during queries to H, we are going to think of the
reprogramming process as being performed inside an oracle and the “bad event”
is querying that oracle on inputs that make it reprogram H on places where it
has “already been queried”. Note that “already been queried” is not a well de-
fined notion because the adversary could have queried all of H in superposition.
To formalize this idea, we use the techniques of Zhandry [32] to represent the
quantum accessible random oracle H as a “sparse” table which is only non-zero
on a few entries that “have been queried” by the attacker. (More precisely, it
will be a superposition over such tables.) Then reprogramming at point x can
be viewed as a fixed permutation which swaps Hpxq with an auxiliary all-zero
register. We can apply the Fixed Permutation O2H to compare that reprogram-
ming permutation and a permutation which leaves H untouched. Because the
other register is all-zero, the permutations will only differ on inputs where the
random x happens to equal one of the few non-zero entries of H.

In Section 6, we recall more recent variants of this result for reprogramming of
random permutations [1,2]. Because no permutation analog for Zhandry’s result
is known, we are unable to show they follow from Fixed-Permutation O2H.

Proof. Our first step will be moving to a setting where queries to the hash and
requests for reprogramming are both quantum queries to oracles. Consider the
game Gb

0 for b P t0, 1u defined in Fig. 5 which we will use to emulate the execution

of Gpz-hide
E,b pAq for the given A and E . The behavior of E is embedded into the

oracles. The game stores ahead of time the list of random outputs Z that will
be programmed into new locations of the hash function and random strings R
that will seed sampling the programmed point from the distributions chosen by
the attacker.

It uses the following quantum registers.

17

Games Gb
0pBq

H Ð$ Fcspl,mq

Z Ð$ Fcsprlg qs,mq

R Ð$ Fcsprlg qs,8q

|H,Z,Ry Ð |H,Z,Ry

Run BrRo,Repbs

Measure W r1s

Return W r1s “ 1

Games Gb
1pBq

R Ð$ Fcsprlg qs,8q

|Ry Ð |Ry

Run BrHY
˝ FRo ˝ HY ,Repbs

Measure W r1s

Return W r1s “ 1

RopX,Y : Hq

Y Ð Y ‘ HrXs

Return pX,Y : Hq

FRopX,Y : Hq

HrXs Ð HrXs ‘ Y
Return pX,Y : Hq

RepbpX,Y : H, I, Z,R, V q

V rIs Ð V rIs ‘ pX,Y q

Interpret X as prob. dist. p
x Ð ppRrIsq

If b “ 1 then
pHrxs, ZrIsq Ð pZrIs, Hrxsq

Y Ð Y ‘ x
I Ð I ` 1 mod 2rlg qs

Return pX,Y : H, I, Z,R, V q

Fig. 5. Games used in the analysis of Theorem 6. Registers not explicitly initialized
are initialized to all 0.

– W : The local work space ofA. Its final output guess is obtained by measuring
W r1s.

– X,Y : The registers intended for A to provide input and receive output,
respectively, from its oracles.

– H: The register storing the table specifying the random oracle.

– V : The registers used to store the reprogramming queries that A makes.

– R: The registers storing randomness used to seed the choice of x’s according
to distributions p.

– Z: The registers storing random strings to be programmed into H.

– I: The register storing a counter tracking how many reprogramming queries
have occurred. It determines which entries of V , R, and Z are used.

We think of B having direct access to the registers W,X, Y . All other registers
are controlled exclusively by the game and may not directly be modified by B.
Note that both oracles of the game are defined by classical permutations.

Given A “ pA0, . . . ,Anq we can map it to an algorithm B playing Gb
0 as

follows. It initially runs on A0 on input ε. Whenever it queries X,Y to its hash
oracle, B forwards this to its Ro oracle. When Ai would end a stage, outputting
probability distributions p, B puts the representation of this into X and prepares
Y on in the all-zero state. It makes a Repb query and returns the result to the
next phase of A. When An halts with output y, B stores that in W r1s and halts.

When b “ 1, each reprogram oracle query programs a fresh random output
(from Z) into the location of H chosen according to p. When b “ 0, nothing is
ever programmed into H. These match the behaviors of H1 and H0 in Gpz-hide

18

so B perfectly simulates the view of A, giving Advpz-hideE,e pAq “ pPr
“

G1
0pBq

‰

qe ´

pPr
“

G0
0pBq

‰

qe.
Note that B makes purely classical queries to Repb. By storing these queries

in fresh entires of V which are otherwise unused the oracle itself ensures that
it is accessed classically (by the principle of deferred measurement) so we will
not have to explicitly account for the fact that B accesses this classically, the
analysis goes through even if B makes superposition queries to Repb.

Next we will transition to the games Gb
1. In these games, rather than being

sampled at random, the registers H and Z are initialized to zeros. The oracle Ro
which writes HrXs into Y has instead been replaced with HY ˝ FRo ˝ HY here
HY is the Hadamard transform applied to register Y and FRo is the Fourier
version of Ro where instead Y is written into HrXs.

By the sparse QROM representation technique of Zhandry, these games are
completely identical so Advpz-hideE,e pAq “ pPr

“

G1
1pBq

‰

qe´pPr
“

G0
1pBq

‰

qe and the view
of A inside of B is unchanged. In Appendix A we break this claim into smaller
atomic steps.

Now we can compare the behavior of the permutations Rep1 and Rep0. They
only differ in whether Hrxs and ZrIs are swapped (b “ 1) or not (b “ 0). Thus
Rep1 and Rep0 will only differ on inputs for which Hrxs ‰ ZrIs.

We bound the difference between the b “ 1 and b “ 0 worlds of the game
using the Fixed Permutation O2H (Theorem 1). Let P “ Rep0, P

1 “ Rep1, and
D be the distinguisher that runs the all of Gb

1 internally, except it calls its oracle
on pX,Y : H, I, Z,R, V q whenever B calls its reprogramming oracle on X,Y .

Note that it makes n oracle queries. We have that Advpz-hideE,e pAq “ AdvhideP,P 1,epDq.

We complete the proof by analyzing AdvowP,P 1 pDq.8 Consider a fixed choice of
i P t1, . . . , nu in Gow

P,P 1 pDq. As discussed above, the permutations differ on the
measured input iff Hrxs ‰ Zri ´ 1s. By construction of the game Zri ´ 1s is
necessarily all zeros so this is equivalent to asking whether Hrxs is zero. Note
that H is independent of Rri ´ 1s so x “ ppRri ´ 1sq looks like a fresh sample
from p. At this point, B inside of D has made at most q̂i queries to FRo so H
is a superposition of tables each of which has at most q̂i non-zero entries. The
probability of a non-zero entry being hit can be bound by q̂i ¨ pi,max.

Thus, averaging over the possible choice of i we have

AdvowP,P 1 pDq “

n
ÿ

i“0

PrrisPr
“

Gow
P,P 1 pDq|i

‰

ď

n
ÿ

i“0

p1{nqq̂i ¨ pi,max.

Applying Theorem 1 gives the claimed bound [\

4.3 Comparing the GHHM and O2H-based theorems

By depending on q̂j and pi,max, the bounds in Theorem 5 and Theorem 6 can
be hard to parse. Consequently, when applying Theorem 5 in proofs, GHMM

8 Leaving the bound in terms of AdvowP,P 1 pDq would make it applicable to settings where
the reprogrammed points are only computationally hard to predict.

19

simplified as follows (e.g., from their proposition 2). Let pmax “ maxi pi,max.
Note that q̂i ď q, and qpmax ď

?
qpmax. Then,

n
ÿ

i“0

´

a

q̂ipi,max ` 0.5q̂ipi,max

¯

ď

n
ÿ

i“0

1.5
?
qpmax “ 1.5n

?
qpmax.

Performing analogous simplifications from the bound in Theorem 6 with gives

2n

g

f

f

e

n
ÿ

i“0

q̂ipi,max{n ď 2n

g

f

f

e

n
ÿ

i“0

qpmax{n “ 2n
?
qpmax.

5 Unruh’s Adaptive O2H

In this section, we show that Unruh’s Adaptive O2H’s results [24,25] (which
generalize an earlier result Unruh [26]) are implied by the Fixed Permutation
O2H (Theorem 1). To proving the stronger version [25] we emulate the ideas
from our proof in Section 4.

5.1 First Adaptive O2H

The first adaptive O2H result we analyze bounds how well an adversary can
distinguish between Hpx,mq and a random string where the attacker chooses m
and x is uniformly random. This is defined by the games shown in Fig. 6 for
which we define

Advun-hidee pAq “

´

Pr
”

Gun-hide
1 pAq

ı¯e

´

´

Pr
”

Gun-hide
0 pAq

ı¯e

.

The bound will consist of two terms. Intuitively, the first information the-
oretically bounds the how much A0 can contribute the advantage because x is
independent of its view. The second terms bounds in terms of how likely A1 is
to query px,mq to its oracle, captured formally by Advun-owpAq “ Pr

“

Gun-ow
pAq

‰

.
Of these advantages, Unruh proves the following relationship (Lemma 14 in

the current ePrint version).

Theorem 7 (Unruh Adaptive O2H, [24]). Let A “ pA0,A1q be an adver-
sary for which Ai makes at most qi oracle queries. Then∣∣∣Advun-hide1 pAq

∣∣∣ ď q02
´l{2`2 ` 2q1

b

Advun-owpAq.

We prove this result for Advun-hidee pAq with e P t1, 1{2u from the Fixed Per-
mutation O2H (Theorem 1). Starting from the real world, the proof will first use
O2H to program A0’s oracle to be different on all inputs starting with x. Then
Hpx,mq will only ever be used to as input to A1 and in response to its oracle
queries. We switch both uses to use B1 instead, which is equivalent. Then we
apply O2H again to switch A1’s oracle back to using Hpx,mq.

20

Game Gun-hide
b pAq

H Ð$ Fcspl ` k, nq

m Ð$ A0rHs

x Ð$ t0, 1u
l

B0 Ð Hpx,mq

B1 Ð$ t0, 1u
n

b1
Ð$ A1rHspx,Bbq

Return b1
“ 1

Game Gun-ow
pAq

i Ð$ t1, . . . , q1u

H Ð$ Fcspl ` k, nq

m Ð$ A0rHs

x Ð$ t0, 1u
l

B1 Ð$ t0, 1u
n

Run A1rHspx,B1q until its i-th query
Measure the input px1,m1

q to this query
Return px,mq “ px1,m1

q

Fig. 6. Games used for Unruh’s adaptive O2H [24]. Different stages of A implicitly
share state.

In Section 5.2 our proof of Unruh’s second result will actually imply this
theorem with a better concrete bound, replacing q02

´l{2`2 Ñ
?
q02

´l{2`1. We
find it pedagogically useful to start with this proof first. Our proof of Unruh’s
second result will apply the ideas we used for proving GHHM’s result in Section 4
— in particular, using a sparse representation of the random oracle so that we
can check for whether A0 “queried” x only after it has stopped executing.

AHU [3] used their O2H theorem to prove post-quantum security of a Fujisaki-
Okamoto variant — a result previously proven by using Unruh’s adaptive O2H
result [23].9 While discussing the differences AHU say,

While our O2H Theorem is not adaptive (in the sense that the input
where the oracle is reprogrammed has to be fixed at the beginning of the
game), it turns out that in the present case our new O2H Theorem can
replace the adaptive one. This is because our new O2H Theorem allows
us to reprogram the oracle at a large number of inputs (not just a single
one). It turns out we do not need to adaptively choose the one input to
reprogram, we just reprogram all potential inputs. At least in the proof
from [23], this works without problems.

Our proof uses this idea of reprogramming the oracle at a large number of points,
showing that the O2H theorem can replace Theorem 7 in any proof, not just the
one from [3]. Our stronger proof in Section 5.2 will only require reprogramming
at a single point.

Proof. Our proof will use the hybrid games Hpa,b,cq shown in Fig. 7 which are
parameterized by pa, b, cq P t0, 1u3. Informally, we will show the following.

Ghide
0 ” Hp0,0,0q «

2q0
?
2´l

Hp1,0,0q ” Hp1,1,1q «
2q0

?
2´l

Hp0,1,1q «
2q1

?
εow

Hp0,1,0q ” Ghide
1 .

9 In fact, both the proofs had flaws (see the ePrint version of [3]). This is orthogonal
to our discussion here.

21

Hybrids Hpa,b,cq

H Ð$ Fcspl ` k, nq

h Ð$ Fcspk, nq

x Ð$ t0, 1u
l

m Ð$ A0rRo0
as

B Ð Hpx,mq // b “ 0
B1 Ð$ t0, 1u

n

B Ð B1 // b “ 1
b1

Ð$ A1rRo1
cspx,Bq

Return b1
“ 1

Ro0
apX,M, Y : H,h, xq

If X “ x then
Y Ð Y ‘ HrX,M s // a “ 0
Y Ð Y ‘ hrM s // a “ 1

Else Y Ð Y ‘ HrX,M s

Return pX,M, Y : H,h, xq

Ro1
cpX,M, Y : H,B1, x,mq

If pX,Mq “ px,mq then
Y Ð Y ‘ HrX,M s // c “ 0
Y Ð Y ‘ B1 // c “ 1

Else Y Ð Y ‘ HrX,M s

Return pX,M, Y : H,B1, x,mq

Fig. 7. Hybrid games used for proof of Theorem 7

We proceed from left to right. Compared to Gun-hide
0 , hybrid Hp0,0,0q samples

an additional (unused) random function h and samples x at the beginning of
the game. All three parameters being zero means both random oracles respond
correctly using H and that A1 is given Hpx,mq as input. So game Gun-hide

0 is
equivalent to game Hp0,0,0q.

Now compare Hp0,0,0q to Hp1,0,0q. The change to a means that A0’s oracle will
return hpMq on any input of the form px,Mq. Consider a distinguisher D for the
Fixed Permutation O2H (Theorem 1) which runs all of Hp?,0,0q except it forwards

A0’s oracle queries to its own oracle which is either P “ Ro0
0 or P 1 “ Ro0

1. The
adversary provides X,M, Y while D provides the rest of the inputs. It outputs
the same bit A1 does. Clearly D correctly simulates the view of A.

Note that the permutations only differ on inputs for which X “ x and
that A0’s view is independent of x when interacting with Ro0

0. Consequently,

AdvowP,P 1 pDq ď 1{2l and so
∣∣`Pr“Hp0,0,0q

‰˘e
´

`

Pr
“

Hp1,0,0q

‰˘e∣∣ ď 2q0
?
2´l.

In Hp1,0,0q, A1 is given the random string Hpx,mq as input and then its oracle
returns Hpx,mq on input px,mq. In Hp1,1,1q, A1 is given the random string B1 as
input and then its oracle returns B1 on input px,mq. Note that these variables are
otherwise unused becauseA0 cannot accessHpx,mq. Consequently the games are
perfectly equivalent. Then we can move back to Hp0,1,1q with analysis analogous
to the transition from Hp0,0,0q to Hp1,0,0q. Putting these steps together gives∣∣`Pr“Hp1,0,0q

‰˘e
´

`

Pr
“

Hp0,1,1q

‰˘e∣∣ ď 2q0
?
2´l.

Now comparing Hp0,1,1q and Hp0,1,0q we see that they differ only in the be-
havior of A1’s oracle. The former will return B1 on input px,mq while the latter
will return Hpx,mq. Consider a distinguisher D1 for the Fixed Permutation O2H
(Theorem 1) which runs all of Hp0,1,?q except it forwards A1’s oracle queries to

its own oracle which is either P “ Ro1
1 or P 1 “ Ro1

0. The adversary provides
X,M, Y while D provides the rest of the inputs. It outputs the same bit A1

does. Clearly D correctly simulates the view of A.

22

Game Gun-hide2
b pAq

H Ð$ Fcspl, nq

m Ð$ A0rHs

x Ð$ ACpmq

B0 Ð Hpxq

B1 Ð$ t0, 1u
n

b1
Ð$ A1rHspx,Bbq

Return b1
“ 1

Game Gun-ow2
pAq

i Ð$ t1, . . . , q1u

H Ð$ Fcspl, nq

m Ð$ A0rHs

x Ð$ ACpmq

B1 Ð$ t0, 1u
n

Run A1rHspx,B1q until its i-th query
Measure the input x1 to this query
Return x “ x1

Fig. 8. Games used for Unruh’s second adaptive O2H [25]. Algorithm AC is classical.
Algorithm A1 can access the final state of A0 and AC .

We have
∣∣`Pr“Hp0,1,1q

‰˘e
´

`

Pr
“

Hp0,1,0q

‰˘e∣∣ ď 2q1
b

AdvowP,P 1 pD1q. Note that

the permutations only differ on inputs for which pX,Mq “ px,mq and that
the view of A run by D1 in Gow

P,P 1 matches the view it would get in Gun-ow.

Consequently, AdvowP,P 1 pD1q ď Advun-owpAq.

Finally, we can compare Hp0,1,0q and Gun-hide
0 to see that they are equivalent.

Putting together our claims and using the triangle inequality gives the bound∣∣∣Advun-hidee pAq

∣∣∣ ď 4q0
?
2´l ` 2q1

b

AdvowP,P 1 pD1q.

[\

5.2 Second Adaptive O2H

In [25], Unruh improved on his adaptive O2H result with a version that allowed
the hidden point to be chosen according to a arbitrary adaptively chosen distri-
bution, as long as this distribution has sufficient entropy. We can capture the
result using games Gun-hide2 and Gun-ow2 defined in Fig. 8. In both, sampling x is
now done with the classical algorithm AC . It cannot access A0’s state beyond
the input m passed to it. Algorithm A1 is allowed allow access the state of both

A0 and A1. Defining Advun-hide2e pAq “

´

Pr
”

Gun-hide2
1 pAq

ı¯e

´

´

Pr
”

Gun-hide2
0 pAq

ı¯e

and Advun-ow2pAq “ Pr
“

Gun-ow2
pAq

‰

.

We define the collision entropy k and min-entropy µ of AC by

k “ min
m

´ log2 Prrx “ y : x Ð$ ACpmq, y Ð$ ACpmqs

µ “ min
m,x

´ log2 Prrx “ y : y Ð$ ACpmqs.

Note that 2µ ě k ě µ.

Then we can state Unruh’s result (Lemma 9 in the current ePrint version).

23

Theorem 8 (Unruh Adaptive O2H, [25]). Let A “ pA0,A1q be an ad-
versary for which Ai makes at most qi oracle queries and AC be a classical
algorithm with collision entropy k. Then∣∣∣Advun-hide21 pAq

∣∣∣ ď 2q1

b

Advun-ow2pAq ` p4 `
?
2q

?
q02

´k{4.

We prove the following slightly generalized result.

Theorem 9. Let A “ pA0,A1q be an adversary for which Ai makes at most qi
oracle queries and AC be a classical algorithm with min-entropy µ and collision
entropy k. Then for e P t1, 1{2u.∣∣∣Advun-hide2e pAq

∣∣∣ ď 2q1

b

Advun-ow2pAq ` 2
?
q02

´µ{2

ď 2q1

b

Advun-ow2pAq ` 2
?
q02

´k{4.

Unruh conjectured that the 2´k{4 factor is an artifact of their proof technique. If
so, our proof technique has the same artifact but removes it when min-entropy
is an acceptable replacement. This, for example, allows us to directly imply a
version of Theorem 7 with the bound improved to replace q0 with

?
q0.

Our proof combines the ideas from our proof of Unruh’s first adaptive O2H
(Theorem 7) and our proof of the GHHM adaptive reprogramming result (The-
orem 5). We first move to a hybrid where we reprogram Hpxq to equal B1 before
A1 is executed (more precisely, we swap the values of Hpxq and B1). To obtain
a tighter bound for this step than in Theorem 7, we switch to a sparse repre-
sentation of H and bound the “bad event” at the time of the swap, as in our
Theorem 5 proof. Then we show the difference between this hybrid and the final
game by reprogramming A1’s access to H on input x.

Proof. For this proof we use the games shown in Fig. 9. We start with Gb which
is simply a rewritten version of Gun-hide2

b . It writes the use of AC as a single
query to an oracle Samp and make everything quantum. Algorithm A0 acts
on registers W,X, Y , while A1 may additionally act on R. (Here R stores the
randomness that will be used by AC . Giving it to A1 is equivalent for our
purposes to letting A1 access the final state of AC and additionally allows A1

to recompute the x which is stored in X˚.) Registers H and B are controlled
by the game. To enforce that the Samp query is classical, it writes the query X
(which stores m at this time) into the otherwise unused register V . So we have

Pr
”

Gun-hide2
b pAq

ı

“ PrrGbpAqs.10

Our proof will use the hybrid games Hpa,b,cq shown in Fig. 9 which are pa-
rameterized by pa, b, cq P t0, 1u3. Informally, we will show the following.

G0 ” Hp0,0,0q «
2
?

q02´µ

Hp1,0,0q ” Hp0,1,1q «
2q1

?
εow

Hp0,1,0q ” G1.

10 Formally, the syntax of A changed, so on the right-hand side it should have been
replaced with an appropriately defined A1.

24

Games Gb

H Ð$ Fcspl, nq

B Ð$ t0, 1u
n

R Ð$ t0, 1u
8

|H,B,Ry Ð |H,B,Ry

Run A0rRos

Run Sampb

Run A1rRos

Measure W r1s

Return W r1s “ 1

SampbpX,Y : H,B, V,R,X˚
q

V Ð V ‘ X
X˚

Ð X˚
‘ ACpX;RrIsq

Y Ð Y ‘ HrX˚
s // If b “ 0

Y Ð Y ‘ B // If b “ 1
Return pX,Y : H,B, V,R,X˚

q

RopX,Y : Hq

Y Ð Y ‘ HrXs

Return pX,Y : Hq

Hybrids Hpa,b,cq

R Ð$ Fcsprlg qs,mq

|Ry Ð |Ry

Run A0rHY
˝ FRo0

˝ HY
s

Run HY
˝ FSampa,b ˝ HY

Run A1rHY
˝ FRo1

c ˝ HY
s

Measure W r1s

Return W r1s “ 1

FRo0
pX,Y : Hq

HrXs Ð Y ‘ HrXs

Return pX,Y : Hq

FSampa,bpX,Y : H,B, V,R,X˚
q

V Ð V ‘ X
X˚

Ð X˚
‘ ACpX;RrIsq

pB,HrX˚
sq Ð pHrX˚

s, Bq // If a “ 1
HrX˚

s Ð Y ‘ HrX˚
s // If b “ 0

B Ð Y ‘ B // If b “ 1
Return pX,Y : H,B, V,R,X˚

q

FRo1
cpX,Y : H,Bq

If X “ X˚ then
HrX˚

s Ð Y ‘ HrX˚
s // If c “ 0

B Ð Y ‘ B // If c “ 1
Else HrXs Ð Y ‘ HrXs

Return pX,Y : H,Bq

Fig. 9. Hybrid games for proof of Theorem 9, implying the adaptive O2H result of
Unruh [25]. Algorithm A1, but not A0, may access register R.

We proceed from left to right. Consider Hp0,0,0q, In this game, rather than being
sampled at random, the registers H and B are initialized to zeros. The oracle Ro
which writes HrXs into Y has instead been replaced with two (for now equiva-
lent) oracles HY ˝ FRoi

˝ HY where HY is the Hadamard transform applied to
register Y and FRo is the Fourier version of Ro where instead Y is written into
HrXs. Similarly, FSamp which writes HrX˚s or B into Y has been replaced
with HY ˝Sampa,b ˝HY which writes Y into HrX˚s or B. By the sparse QROM
representation technique of Zhandry, these games are completely equivalent, giv-
ing PrrGbpAqs “ Pr

“

Hp0,b,0qpAq
‰

. See our proof of Theorem 6 and in particular
Appendix A for an example of how to break this equivalence claims into smaller
atomic steps.

Now in Hp0,1,0q we perform an additional swap of B and HrX˚s. Note that
FSampa,0 and FSampa,1 differ as permutations only if B ‰ HrX˚s.

We apply the Fixed Permutation O2H (Theorem 1) with D that runs all of
Hp0,?,0q internally, except it calls its oracle to emulate FSamp. Note that D makes
one oracle query and at that time H has at most q0 non-zero entries (which thus

25

Game Gperm
b pAq

Π0 Ð$ Permpnq

A0rΠ0r‘s, Π´1
0 r‘ss

s, s1
Ð$ t0, 1u

n

Π1 Ð Π0 ˝ Ss,s1

b1
Ð$ A1rΠbr‘s, Π´1

b r‘ssps, s1
q

Return b1
“ 1

Fig. 10. Game for ABKH resampling for permutations result

differ from B which is zero). Thus AdvowFSamp0,0,FSamp1,0pDq ď q0{2´µ from the

min-entropy of AC and |pPr
“

Hp0,0,0qpAq
‰

qe ´ pPr
“

Hp0,1,0qpAq
‰

qe| ď 2
a

q0{2µ.
Hybrid Hp0,1,0q swaps the registers B and HrX˚s before A1 is run. Note A1

does not have direct access to these registers, so it would be equivalent to leave B
and HrX˚s unswapped, but instead switch which of the two is used in all future
accesses to the registers. The is what’s done in the equivalent game H0,1,1.

Now Hp0,1,1q differs from Hp0,1,0q only when X˚ is queried to FRo1. Apply the
Fixed Permutation O2H (Theorem 1) with D1 that runs all of Hp0,1,?q internally

except it uses its own oracle to respond to FRo1. We get |pPr
“

Hp0,1,0qpAq
‰

qe ´

pPr
“

Hp0,1,1qpAq
‰

qe| ď 2q1
b

AdvowFRo1
1,FRo1

0
pD1q.

The previously discussed equivalence between Hp0,1,0q, G1, and Gun-hide2
1 pAq

allows us to conclude that AdvowFRo1
1,FRo1

0
pD1q “ Advun-ow2pAq and complete the

proof using the triangle inequality. [\

6 Limitations of Fixed Permutation O2H

Alagic, Bai, Katz, and Majenz [1] gave a result for the resampling of random
permutations which they call an extension of the GHHM adaptive reprogram-
ming lemma (Theorem 5) to the case of two-way accessible random permutations
which we cannot reproduce from Fixed-Permutation O2H because it is not known
if quantumly accessible random permutations can be sparsely represented.

Define the swap permutation Ss,s1 by Spsq “ s1, Sps1q “ s, and Spxq “ x
otherwise. Let Permpnq denote the set of all permutations on t0, 1un. Then the
relevant security game is shown in Fig. 10 for which we define Advperme pAq “

pPrrGperm
1 pAqsq

e
´ pPrrGperm

0 pAqsq
e
.

Of this game, they prove the following bound (their Lemma 5).

Theorem 10 (ABKH Permutation Resampling, [1]). Let A “ pA0,A1q

be an adversary for which A0 makes at most q0 oracle queries. Then

|AdvpermpAq| ď 4
a

q0{2n.

While this result is intuitively related to the GHHM adaptive reprogram-
ming result, we cannot port over our proof from Section 4, because it relied on

26

Zhandry’s technique for sparse representation of a random oracle. No sufficiently
analogous technique is currently known for random permutations. (Indeed it is
a notoriously difficult problem [27].)

Recall that there were two reasons we relied on Zhandry’s technique in that
section. First because the reprogramming points were sampled from an adap-
tively chosen distribution and then immediately given to the attacker we could
only rely on the “bad event” of querying these points before the reprogramming
occurred. But at that time we don’t know what points are bad! That is not an
issue for this theorem, as s and s1 could have been sampled at the beginning of
the game.

The second reason is an issue. We wanted bounds of the form n
?
qε (note

Theorem 10 has this form, as n “ 1). This was obtained by thinking of repro-
gramming being its own oracle and the “bad event” being that the chosen re-
programming point happened to coincide with a previous oracle query, formally
a non-zero entry in the sparse representation of the random oracle. Without a
sparse representation for random permutations, it is unclear how to emulate this.

Below for comparison, we prove a bound of the form q
?
nε for Theorem 10

using Fixed-Permutation O2H by exploiting the fact that s, s1 are non-adaptively
chosen.

In essence, the issues here correspond to the differences between the two
proofs in Section 5. The proof we provide here is in this sense analogous to our
proof of Theorem 7, and we are unable to prove an analog of Theorem 8 because
we lack techniques for sparsely representing permutations.

Proof (Weakened Theorem 10). First note that s, s1 Ð$ t0, 1un could have been
sampled at the beginning of the game. Then it would have been completely equiv-
alent to give A0 access to Πb and A1 access to Π0. We can define the fixed per-
mutations PermbpX,Y, d : Π, s, s1q to implement Πb if d “ 1 and Π´1

b if d “ 0.
They differ only on inputs for which pX, dq P tps, 1q, ps1, 1q, pΠ0psq, 0q, pΠps1q, 0qu.
So applying Theorem 1 with these two permutations and D that picks s, s1, runs
A0 with access to the permutation, then internally simulates the rest of the game
and outputs whatever A does we get

Advperme pAq “ AdvhidePerm1,Perm0,epDq ď 2q0

b

AdvowP,P 1 pDq “ 2q0
a

2{2n.

The last equality comes from noting the view of A0 is independent of s, s1 and
that for a given choice of d there are at most two uniformly random X’s on
which the permutations differ. [\

Alagic, Bai, Katz, Majenz, and Struck [2] introduced a stronger version of
this theorem which allows s to be sampled according to an adaptively chosen
distribution with high min-entropy (s1 is still uniform). For this version, the proof
technique above would not work because we cannot sample s at the beginning
of the game. At best, we could prove a variant in which A1 is never told s, s1

and so we can bound its success based its ability to query the permutations on
the bad points after they are chosen.

27

References

1. Alagic, G., Bai, C., Katz, J., Majenz, C.: Post-quantum security of the Even-
Mansour cipher. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022,
Part III. LNCS, vol. 13277, pp. 458–487. Springer, Heidelberg (May / Jun 2022).
https://doi.org/10.1007/978-3-031-07082-2_17

2. Alagic, G., Bai, C., Katz, J., Majenz, C., Struck, P.: Post-quantum security of
tweakable even-mansour, and applications. In: Joye, M., Leander, G. (eds.) Ad-
vances in Cryptology – EUROCRYPT 2024. pp. 310–338. Springer Nature Switzer-
land, Cham (2024). https://doi.org/10.1007/978-3-031-58716-0_11

3. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II.
LNCS, vol. 11693, pp. 269–295. Springer, Heidelberg (Aug 2019). https://doi.
org/10.1007/978-3-030-26951-7_10

4. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93. pp. 62–73. ACM Press (Nov 1993). https://doi.org/10.
1145/168588.168596

5. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (May / Jun 2006). https://doi.org/
10.1007/11761679_25

6. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 61–90. Springer, Hei-
delberg (Dec 2019). https://doi.org/10.1007/978-3-030-36033-7_3

7. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry,
M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (Dec 2011).
https://doi.org/10.1007/978-3-642-25385-0_3

8. Chen, S., Steinberger, J.P.: Tight security bounds for key-alternating ciphers.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 327–350. Springer, Heidelberg (May 2014). https://doi.org/10.1007/

978-3-642-55220-5_19

9. Devevey, J., Fallahpour, P., Passelègue, A., Stehlé, D.: A detailed analysis of Fiat-
Shamir with aborts. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023,
Part V. LNCS, vol. 14085, pp. 327–357. Springer, Heidelberg (Aug 2023). https:
//doi.org/10.1007/978-3-031-38554-4_11

10. Don, J., Fehr, S., Huang, Y.H., Struck, P.: On the (in)security of the buff transform.
Cryptology ePrint Archive (2023), http://eprint.iacr.org/2023/1634

11. Eaton, E.: Leighton-Micali hash-based signatures in the quantum random-
oracle model. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol.
10719, pp. 263–280. Springer, Heidelberg (Aug 2017). https://doi.org/10.1007/
978-3-319-72565-9_13

12. Grilo, A.B., Hövelmanns, K., Hülsing, A., Majenz, C.: Tight adaptive repro-
gramming in the QROM. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021,
Part I. LNCS, vol. 13090, pp. 637–667. Springer, Heidelberg (Dec 2021). https:
//doi.org/10.1007/978-3-030-92062-3_22

13. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-
based signatures. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.)

28

https://doi.org/10.1007/978-3-031-07082-2_17
https://doi.org/10.1007/978-3-031-07082-2_17
https://doi.org/10.1007/978-3-031-58716-0_11
https://doi.org/10.1007/978-3-031-58716-0_11
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-031-38554-4_11
https://doi.org/10.1007/978-3-031-38554-4_11
https://doi.org/10.1007/978-3-031-38554-4_11
https://doi.org/10.1007/978-3-031-38554-4_11
http://eprint.iacr.org/2023/1634
https://doi.org/10.1007/978-3-319-72565-9_13
https://doi.org/10.1007/978-3-319-72565-9_13
https://doi.org/10.1007/978-3-319-72565-9_13
https://doi.org/10.1007/978-3-319-72565-9_13
https://doi.org/10.1007/978-3-030-92062-3_22
https://doi.org/10.1007/978-3-030-92062-3_22
https://doi.org/10.1007/978-3-030-92062-3_22
https://doi.org/10.1007/978-3-030-92062-3_22

PKC 2016, Part I. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (Mar 2016).
https://doi.org/10.1007/978-3-662-49384-7_15

14. Jaeger, J., Song, F., Tessaro, S.: Quantum key-length extension. In: Nissim, K.,
Waters, B. (eds.) TCC 2021, Part I. LNCS, vol. 13042, pp. 209–239. Springer,
Heidelberg (Nov 2021). https://doi.org/10.1007/978-3-030-90459-3_8

15. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key en-
capsulation mechanism in the quantum random oracle model, revisited. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol.
10993, pp. 96–125. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/
978-3-319-96878-0_4

16. Kosuge, H., Xagawa, K.: Probabilistic hash-and-sign with retry in the quantum
random oracle model. In: Tang, Q., Teague, V. (eds.) PKC 2024, Part I. LNCS,
vol. 14601, pp. 259–288. Springer, Heidelberg (Apr 2024). https://doi.org/10.
1007/978-3-031-57718-5_9

17. Kuchta, V., Sakzad, A., Stehlé, D., Steinfeld, R., Sun, S.: Measure-rewind-measure:
Tighter quantum random oracle model proofs for one-way to hiding and CCA
security. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS,
vol. 12107, pp. 703–728. Springer, Heidelberg (May 2020). https://doi.org/10.
1007/978-3-030-45727-3_24

18. Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.) EU-
ROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (Apr / May
2002). https://doi.org/10.1007/3-540-46035-7_8

19. Morimae, T., Yamakawa, T.: Classically verifiable NIZK for QMA with prepro-
cessing. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part IV. LNCS, vol.
13794, pp. 599–627. Springer, Heidelberg (Dec 2022). https://doi.org/10.1007/
978-3-031-22972-5_21

20. Pan, J., Zeng, R.: Selective opening security in the quantum random oracle
model, revisited. In: Tang, Q., Teague, V. (eds.) PKC 2024, Part II. LNCS, vol.
14603, pp. 92–122. Springer, Heidelberg (Apr 2024). https://doi.org/10.1007/
978-3-031-57725-3_4

21. Patarin, J.: The “coefficients H” technique (invited talk). In: Avanzi, R.M., Keliher,
L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg
(Aug 2009). https://doi.org/10.1007/978-3-642-04159-4_21

22. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004), https://eprint.iacr.org/
2004/332

23. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A.D. (eds.) TCC 2016-B, Part II. LNCS,
vol. 9986, pp. 192–216. Springer, Heidelberg (Oct / Nov 2016). https://doi.org/
10.1007/978-3-662-53644-5_8

24. Unruh, D.: Quantum position verification in the random oracle model.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS,
vol. 8617, pp. 1–18. Springer, Heidelberg (Aug 2014). https://doi.org/10.1007/
978-3-662-44381-1_1

25. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS,
vol. 9057, pp. 755–784. Springer, Heidelberg (Apr 2015). https://doi.org/10.
1007/978-3-662-46803-6_25

26. Unruh, D.: Revocable quantum timed-release encryption. J. ACM 62(6) (Dec
2015). https://doi.org/10.1145/2817206

29

https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-030-90459-3_8
https://doi.org/10.1007/978-3-030-90459-3_8
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-031-57718-5_9
https://doi.org/10.1007/978-3-031-57718-5_9
https://doi.org/10.1007/978-3-031-57718-5_9
https://doi.org/10.1007/978-3-031-57718-5_9
https://doi.org/10.1007/978-3-030-45727-3_24
https://doi.org/10.1007/978-3-030-45727-3_24
https://doi.org/10.1007/978-3-030-45727-3_24
https://doi.org/10.1007/978-3-030-45727-3_24
https://doi.org/10.1007/3-540-46035-7_8
https://doi.org/10.1007/3-540-46035-7_8
https://doi.org/10.1007/978-3-031-22972-5_21
https://doi.org/10.1007/978-3-031-22972-5_21
https://doi.org/10.1007/978-3-031-22972-5_21
https://doi.org/10.1007/978-3-031-22972-5_21
https://doi.org/10.1007/978-3-031-57725-3_4
https://doi.org/10.1007/978-3-031-57725-3_4
https://doi.org/10.1007/978-3-031-57725-3_4
https://doi.org/10.1007/978-3-031-57725-3_4
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/978-3-642-04159-4_21
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-44381-1_1
https://doi.org/10.1007/978-3-662-44381-1_1
https://doi.org/10.1007/978-3-662-44381-1_1
https://doi.org/10.1007/978-3-662-44381-1_1
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1145/2817206
https://doi.org/10.1145/2817206

27. Unruh, D.: Towards compressed permutation oracles. In: Guo, J., Steinfeld, R.
(eds.) ASIACRYPT 2023, Part IV. LNCS, vol. 14441, pp. 369–400. Springer, Hei-
delberg (Dec 2023). https://doi.org/10.1007/978-981-99-8730-6_12

28. Yuan, Q., Sun, C., Takagi, T.: Revisiting the security of fiat-shamir signature
schemes under superposition attacks. In: ACISP 24 (2024), http://eprint.iacr.
org/2024/590

29. Yuan, Q., Tibouchi, M., Abe, M.: Quantum-access security of hash-based sig-
nature schemes. In: Simpson, L., Baee, M.A.R. (eds.) ACISP 23. LNCS, vol.
13915, pp. 343–380. Springer, Heidelberg (Jul 2023). https://doi.org/10.1007/
978-3-031-35486-1_16

30. Zhandry, M.: How to construct quantum random functions. In: 53rd FOCS. pp.
679–687. IEEE Computer Society Press (Oct 2012). https://doi.org/10.1109/
FOCS.2012.37

31. Zhandry, M.: Secure identity-based encryption in the quantum random or-
acle model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 758–775. Springer, Heidelberg (Aug 2012). https://doi.org/10.
1007/978-3-642-32009-5_44

32. Zhandry, M.: How to record quantum queries, and applications to quantum in-
differentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II.
LNCS, vol. 11693, pp. 239–268. Springer, Heidelberg (Aug 2019). https://doi.
org/10.1007/978-3-030-26951-7_9

Change Log

– May 25, 2024: Fixed recurring typo pointed out by Hans Heum

A Details of Sparse QROM Representation in
Theorem 4.2

We provide a detailed analysis of why the games Gb
0 and Gb

1 as defined in Fig. 11
(reproduced from Fig. 5 in the proof of Theorem 6) are equivalent.

We will consider a sequence of hybrid games Hb
1 through Hb

3 for which we
justify that Gb

0 is equivalent to H1, G
b
1 is equivalent to Hb

3, and Hκ is equivalent
to Hκ`1 for each κ. Formal pseudocode for the games is given in Fig. 11.

Hybrid 1. First we define Hb
1 identically to Gb

0 except that H and Z are initial-
ized by applying the Hadamard transform to the all zeros strings. Recall that
H |xy “ 1{

?
2n ¨

ř

x1 p´1qx¨x1 |x1y if x is a bitstring x P t0, 1un. When x is the
all zeros string, this gives the uniform superposition 1{

?
2n ¨

ř

x1 |x1y. Thus, if
we measured H and Z immediately, we would be assigning them a uniformly
random function as in Gb

0. Values in H and Z are only ever swapped with each
other or used to control xor’s into other registers. So by the principle of joint
deferred measurement, leaving them unmeasured is equivalent.

30

https://doi.org/10.1007/978-981-99-8730-6_12
https://doi.org/10.1007/978-981-99-8730-6_12
http://eprint.iacr.org/2024/590
http://eprint.iacr.org/2024/590
https://doi.org/10.1007/978-3-031-35486-1_16
https://doi.org/10.1007/978-3-031-35486-1_16
https://doi.org/10.1007/978-3-031-35486-1_16
https://doi.org/10.1007/978-3-031-35486-1_16
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9

Games Gb
0pBq

H Ð$ Fcspl,mq

Z Ð$ Fcsprlg qs,mq

R Ð$ Fcsprlg qs,8q

|H,Z,Ry Ð |H,Z,Ry

Run BrRo,Repbs

Measure W r1s

Return W r1s “ 1

Games Gb
1pBq

R Ð$ Fcsprlg qs,mq

|Ry Ð |Ry

Run BrHY
˝ FRo ˝ HY ,Repbs

Measure W r1s

Return W r1s “ 1

RopX,Y : Hq

Y Ð Y ‘ HrXs

Return pX,Y : Hq

FRopX,Y : Hq

HrXs Ð HrXs ‘ Y
Return pX,Y : Hq

RepbpX,Y : H, I, Z,R, V q

V rIs Ð V rIs ‘ pX,Y q

Interpret X as prob. dist. p
x Ð ppRrIsq

If b “ 1 then
pHrxs, ZrIsq Ð pZrIs, Hrxsq

Y Ð Y ‘ x
I Ð I ` 1 mod 2rlg qs

Return pX,Y : H, I, Z,R, V q

Hybrid Hb
κ

R Ð$ Fcsprlg qs,8q

|Ry Ð |Ry

|H,Zy Ð H |H,Zy // H1,H2

Run BrRo,Repbs // H1

Run BrHY,H
˝ FRo ˝ HY,H ,HZ,H

˝ Repb ˝ HZ,H
s // H2

Run BrHY
˝ FRo ˝ HY ,Repbs // H3

|H,Zy Ð H |H,Zy // H3

Measure W r1s

Return W r1s “ 1

Fig. 11. Above: Reproduction of games from the proof of Theorem 6. Below: Hybrid
games for using Zhandry’s sparse representation technique. Registers not explicitly
initialized are initialized to all 0.

Hybrid 2. Next we define Hb
2 identically to Hb

1 except the oracles Ro and Repb
have been replaced with HY,H ˝ FRo ˝ HY,H and HZ,H ˝ Repb ˝ HZ,H . These
do not change the behavior of the game because Ro “ HY,H ˝ FRo ˝ HY,H and
Repb “ HZ,H ˝ Repb ˝ HZ,H . These equalities follow from the following lemma
(and the fact that H is its own inverse).

Lemma 3. Define permutations P px, yq “ px ‘ y, yq, P 1px, yq “ px, x ‘ yq,
Spx, yq “ py, xq, and Ipx, yq “ px, yq. Then

P “ H ˝ P 1 ˝ H
S “ pU b Uq ˝ S ˝ pU´1 b U´1q

I “ pU b Uq ˝ I ˝ pU´1 b U´1q

where U is an arbitrary unitary with inverse U´1.

31

Hybrid 3. We define Hb
3 by cancelling out many Hadamard transforms in H2,

using that it is its own inverse.
First note that B does not act on register H so transform HH will commute

with it. Thereby, the initial HH used to setup H cancels with the HH before
the first oracle call. The HH ’s between any two oracle queries cancel with each
other. This leaves only the HH after the last oracle query, which we’ve deferred
to the end of the game.

Similarly, neither B nor Ro act on register Z so transform HZ will commute
with them. This similarly allows us to cancel out all HZ except the one after the
last query which is deferred until the end of the game.

Finally, comparing Hb
3 with Gb

1 we see they are identical except the former
has an additional |H,Zy Ð H |H,Zy at the end. At that point of execution all
that matters is the measurement of W r1s which is unaffected by this operation,
so it can be removed.

32

	Nonadaptive One-Way to Hiding Implies Adaptive Quantum Reprogramming

