
New Limits of Provable Security
and Applications to ElGamal Encryption

Sven Schäge ⋆

Eindhoven University of Technology
s.schage@tue.nl

Abstract. We provide new results showing that ElGamal encryption cannot be proven
CCA1-secure – a long-standing open problem in cryptography. Our result follows from a
very broad, meta-reduction-based impossibility result on random self-reducible relations with
efficiently re-randomizable witnesses. The techniques that we develop allow, for the first time,
to provide impossibility results for very weak security notions where the challenger outputs
fresh challenge statements at the end of the security game. This can be used to finally
tackle encryption-type definitions that have remained elusive in the past. We show that our
results have broad applicability by casting several known cryptographic setups as instances
of random self-reducible and re-randomizable relations. These setups include general semi-
homomorphic PKE and the large class of certified homomorphic one-way bijections. As a
result, we also obtain new impossibility results for the IND-CCA1 security of the PKEs of
Paillier and Damg̊ard–Jurik, and many one-more inversion assumptions like the one-more
DLOG or the one-more RSA assumption.

1 Introduction

The ElGamal public-key encryption (PKE) scheme from 1984 is, besides RSA, the most well-known
asymmetric encryption system today and its importance for the development of cryptography can
hardly be overestimated [22]. It is conceptually simple and, since it supports the use of elliptic
curves, can provide very high efficiency. In the past, ElGamal encryption has served as a fruitful
template for the development of new schemes that are based on novel mathematical structures
like bilinear pairings or lattices and, via further modifications, paved the way for new powerful
primitives like IBE and functional encryption. Most PKE systems that are used in practice are
enhancements of the basic ElGamal scheme that additionally armor it from strong active attacks.
The scheme has become so much part of the cryptographic canon, that introductory academic
courses on cryptography that do not cover ElGamal are hardly imaginable.

Security Guarantees of ElGamal PKE. ElGamal is well-known to be IND-CPA secure (under the
DDH assumption) which states that an attacker A who is given a challenge ciphertext c∗ cannot
distinguish if it encrypts message m∗

0 or m∗
1, even if both messages have been chosen by A. Unfor-

tunately, it turns out that without further modifications ElGamal PKE cannot fulfill the stronger,
standard notion of IND-CCA2 security, where the attacker is also allowed to query a decryption
oracle at any point in the security game (with the restriction that the challenge ciphertext may not
be queried). Essentially this is due to the malleability of the ciphertexts in ElGamal encryption,
making it possible to query a slight modification c′∗ of c∗ to the decryption oracle and use the
answer to c′∗ to find the message within c∗. This impossibility result is unconditional and there
is no hope to circumvent it. However, there is another widespread but slightly weaker notion of
security called lunchtime attacks or IND-CCA1 security. According to this notion, the attacker is
allowed to also query the decryption oracle but only before she receives the challenge ciphertext.
Now the above attack cannot be applied anymore since decryption queries cannot depend on c∗.
For decades, the exact state of ElGamal’s security against lunchtime attacks has remained unclear
and, despite the theoretical and practical importance of this scheme, hardly any progress towards

⋆ The author has partially been supported by the CONFIDENTIAL6G project that is co-funded by the
European Union (grant agreement ID: 101096435).

https://orcid.org/0000-0002-8698-4244

Lunchtime Inversion (LI) Game

C A

R, cert

s1

w1

. . .

st

wt, s
∗
1 , . . . , s

∗
p

w
∗
1 , . . . , w

∗
p

Fig. 1. Security game considered in this work. We consider a relation R with statements s and witnesses
w that is used in a security game played between a challenger C and an attacker A. The certificate cert
proves that R is a re-randomizable and self-reducible relation. A has access to t adaptive inversion queries
si and for each query receives back wi such that (si, wi) ∈ R. For every challenge statement s∗i , A must
output w∗

i such that (s∗i , w
∗
i) ∈ R.

that goal has been made. In this paper, we provide new, major contributions to the following
long-standing open question.1

Can ElGamal PKE be shown IND-CCA1 secure?

We answer this question negatively in a very strong sense as detailed below.

Main Result. Our result on ElGamal encryption immediately follows from two fundamental results
on random self-reducible and re-randomizable relations (RRRs) that are assumed to be hard to
invert. In a nutshell, an RRR consists of a special relation R that is accompanied by a set of effi-
cient algorithms for sampling, self-reducibility of statements, and re-randomizability of witnesses.
A variant of RRRs that we call strong RRR additionally provides an efficient but indirect mem-
bership test. Although (strong) RRRs have a comparatively rich structure, we show that many
cryptographic setups can be captured via the notion of RRRs. Remarkably, this includes general
semi-homomorphic PKE (including ElGamal, Paillier, and Damg̊ard–Jurik PKE) where state-
ment/witness pairs correspond to ciphertext/plaintext pairs, and certified homomorphic one-way
bijections (e.g., RSA, DLOG), where statement/witness pairs correspond to output/input pairs.

In our central result, we consider a security game (Figure 1) in which an attacker has to invert an
RRR (i.e. find witnesses w∗) on a set of random challenge statements s∗ (such that (s∗, w∗) ∈ R)
that are specified at the very end of the security game. Deriving impossibility results for this
challenging scenario has proven elusive in the past and our work is the first to provide an approach
to this problem by exploiting the properties of RRRs. In a nutshell, our result shows that if the
attacker is allowed to make t+1 inversion queries, we cannot have a security reduction that is based
on a security assumption that allows up to t oracle calls (we call this a t-interactive complexity
assumption or tICA for short). This is in some sense optimal as any security game with t oracle
calls could easily be proven (tautologically) secure using security assumptions that allow t oracle
calls — simply by assuming the security of the security game. We prove the following results.

Theorem 1 (First Main Result, Informal). Let RRR be a RRR. Let ICA be a secure tICA.
Then, there is no simple2 Turing reduction that can reduce the lunchtime security of RRR with t+1
adaptive inversion queries to the security of ICA.

1 To provide some examples of explicit accounts on the importance of the question by well-known re-
searchers, Yehuda Lindell calls the problem a “big open question” [32], whereas Helga Lipmaa terms it
a “well-known open problem” [34].

2 Simple reductions call the attacker only once and do not rewind.

2

Theorem 2 (Second Main Result, Informal). Let RRR be a strong RRR. Let ICA be a secure
tICA. Then, there is no (general) Turing reduction that, while creating up to u attacker instances,
can reduce the lunchtime security of RRR with t + u adaptive inversion queries to the security of
ICA.

One mere corollary of this result is that the number of calls to an inversion oracle granted
to the attacker induces a complexity hierarchy of problems.3 Transferred to semi-homomorphic
PKE this says that its t-OW-CCA1 security (OW-CCA1 security when granted up to t decryption
queries) cannot be based on its (t− 1)-OW-CCA1 security. For t = 1 this already separates IND-
CPA security from 1-OW-CCA1 security, i.e. OW-CCA1 security with only one-time access to a
decryption oracle. However, we stress that our result on semi-homomorphic PKE is much more
general than that. Since OW-CCA1 security is weaker than IND-CCA1 security, our result shows
that semi-homomorphic PKE, and in particular ElGamal PKE, cannot be shown (t + 1)-IND-
CCA1 under any tICA under simple reductions. To obtain our results we have to overcome several
challenges.

Challenge 1: Passing the Barrier towards Weaker Security Notions. We emphasize that, in general,
the security game that we examine in our main impossibility result as depicted in Figure 1 considers
an extremely weak security notion. However, for our purpose, this is of course advantageous as our
impossibility result transfers to any security notion that is strictly stronger. Previous impossibility
results that use related techniques already considered remarkably weak security notions (Figure 2).
The weakest of them have in common that they formulate a so-called one-more inversion problem,
where the attacker is given t + 1 challenge statements at the beginning of the security game
together with subsequent t-time access to an inversion oracle [39]. However, our security notion
is even weaker than that, and in fact, passing this barrier towards a weaker security notion has
been the main obstacle to achieving further progress. In the notion that we consider, the attacker
still has t-time access to an inversion oracle. However, the attacker’s challenge statements are
only decided on at the end of the security game by the challenger. In particular, all queries to the
inversion oracle are thus independent of the final statement. For this challenging case, we show how
to derive impossibility results based on the meta-reduction approach when dealing with efficiently
random self-reducible and re-randomizable relations.

Proof Framework. Our result is obtained using the meta-reduction technique that was introduced
by Boneh and Venkatesan [9]. The proof is by contradiction, where we start to simply assume
that an appropriate PPT reduction B exists. According to the meta-reduction methodology, we
first specify an ideal attacker that breaks the security game (with unbounded resources). Since
the attacker A is successful, the reduction B must be able to use it to break some complexity
assumption C with only a polynomial overhead in running time and an at most polynomial loss of
success probability. In the second step, we show how to efficiently simulate the attacker towards the
reduction. To this end, we define an efficient meta-reductionM that runs and controls the reduction
algorithm. Crucially, we have to show that from B’s perspective, M behaves indistinguishably from
A. This shows that the combination of B and M breaks the underlying security assumption C
efficiently, thus contradicting the starting assumption. From a more abstract angle, this approach
shows that the reduction, if it exists, has already the power to break the security assumption itself.

Proof Idea. Our result holds for RRRs, relations that are random self-reducible and re-randomizable.
On a high level, we intuitively exploit that any output of the reduction, and in particular any chal-
lenge statement, can be blinded and then relayed back to the reduction B as a query – without B
noticing. More concretely, our notion of random self-reducibility guarantees that we can generate
from any challenge statement s∗i a derived statement s′∗i such that, crucially, the reduction has no
way of recognizing that s′∗i was constructed from s∗i . (Recall that to transfer the following discus-
sion to the ElGamal setting, we simply can identify statements s with ciphertexts c and witnesses
w with plaintexts m.) Next, the meta-reduction rewinds the reduction to some earlier point in the
execution and sends s′∗i as an inversion query to B which in turn responds with the corresponding
witness w′∗

i . Since the relation is random self-reducible, the meta-reduction can compute from w′∗
i

a challenge witness w′′∗
i for s∗i . However, as w′∗

i has been computed by B, the challenge witness w′′∗
i

3 For a more general discussion of both results let us for simplicity consider u = 1 in the following.

3

One-More Forgery Game

C A

R, cert

s1

w1

. . .

st

wt

s∗, w∗

One-More Inversion Game

C A

R, cert, s∗1, . . . , s
∗
t+1

s1

w1

. . .

st

wt

w∗
1 , . . . , w

∗
t+1

Fig. 2. Popular security notions that have previously been analyzed using meta-reductions. R is a relation
with statements s and witnesses w that is used in a security game played between a challenger C and an
attacker A. cert proves that R has unique witnesses. A has access to t adaptive inversion queries si and
for each query receives back wi such that (si, wi) ∈ R. For every challenge statement s∗i , A must output
w∗

i such that (s∗i , w
∗
i) ∈ R.

still might depend (in a way recognizable by the reduction) on w′∗
i . This is where we re-randomize

w′′∗
i to obtain the final response w∗

i to s∗i . We perform this last step since, similarly to before,
the meta-reduction needs to make sure that the reduction is not able to recognize that the final
output w∗

i has been computed from one of its responses. Here we exploit the properties of the
re-randomization process, which state that for any witness pair, the output distributions of the
re-randomization process are statistically close.

Certified Relations. So far, we have described how to ensure that the reduction cannot recognize any
dependencies between the challenge statement/witness pair and the queried pairs of the relation.
However, there is another important but rather subtle issue that we need to take care of. To closely
model practice, we have included in our security model that the challenger sends the description
of the relation to the attacker in the first step. Intuitively this may, for example, correspond to
a public key in a cryptographic system along with the public system parameters. To make our
technique work, the attacker needs to be able to efficiently verify that the so-specified relation
is indeed an RRR. In practice, there might be several ways to ensure this. Most of the relations
that we give as examples will allow to immediately verify the properties of the RRR. However, we
may also consider relations where this is not possible and where instead relation descriptions are
accompanied by appropriate (statistically or perfectly sound, non-interactive) proofs. Furthermore,
we may consider trusted third parties that provide both parties with the relation such that the
RRR properties are always fulfilled. This issue is indeed very subtle and in early works on related
meta-reductions has not been addressed explicitly [31].

First Result: Exploiting RRRs. We present two main results. These results depend on whether the
attacker may efficiently implement an (indirect) algorithm for deciding for given (s, w) if we have
(s, w) ∈ R or not. The first case assumes that no such algorithm exists. Our result for this case
considers a more general relation type but achieves a weaker impossibility result. In particular, the
impossibility result restricts the class of considered reductions considerably and only works for what
is commonly called simple reductions where the reduction runs the attacker a single time without
rewinding. Still, we believe that this rules out a very widespread type of reduction in cryptography.
However, as we show, it becomes clear that if we allow the reduction to rewind the attacker even
only once then this strategy becomes useless immediately. In a nutshell, the reason is that the
reduction can use a simple strategy to distinguish the ideal attacker from the meta-reduction in

4

case it can rewind the attacker, see Section 11. This strategy exploits that the meta-reduction does
not know the witness corresponding to the modified statement that it sends to the reduction after
rewinding. The ideal attacker, however, always knows all the witnesses to the queried statements.

Lunchtime Inversion Game (Semi-homomorphic PKE)

C A

pk, cert
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

s1 = c1
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

w1 = m1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

. . .

st = ct
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

wt = mt, s∗ = c∗

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

w∗ = m∗

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 3. Security definition when instantiating the first main result with RRRs based on semi-homomorphic
PKE. Statements s correspond to ciphertexts c, while witnesses w correspond to plaintextsm. The resulting
security game is equivalent to the OW-CCA1 security game for PKE.

Second Result: Exploiting Strong RRRs. In the second case, the RRR additionally admits an
efficient algorithm called RSRTest that, given witness w, checks whether (s, w) ∈ R where, impor-
tantly, s has in turn been derived from some given statement s∗ using random coins r. We call such
a relation a strong RRR. Intuitively, this algorithm can work as a weak form of membership test
for values s that have been crafted in some specific way while having access to all the information
that was used in the process of constructing s. (We stress that this does not constitute a direct,
offline membership tester for R.)

Challenge 2: Dealing with Arbitrary Reductions. In contrast to before, our second main result rules
out general (non-uniform) reductions. In this setting, we additionally have to deal with rewinding
reductions that concurrently execute several instances of the attacker. In general, this is known to
considerably complicate the analysis of impossibility results based on meta-reductions. And indeed,
in our proof, we have to address several technical challenges.

One of these challenges is to ensure that a rewinding reduction cannot obtain more information
from the meta-reduction than from the ideal attacker, for example by rewinding the attacker and
answering a query once again, but this time with a distinct response. To this end, we extend recent
techniques by [39] and [35] to guarantee that the attacker essentially behaves deterministically
overall but independent of the concrete witnesses received as long as they are correct.

Another challenge is to avoid exponential blow-ups in the simulation time when dealing with
rewinding reductions that execute several, u, attackers concurrently. To this end, we utilize some of
the technical tools that were developed in [39] and which were in turn inspired by a line of research
on resettable zero-knowledge [43,12,40,18,13]. However, our strategy fundamentally deviates from
[39] and rather follows [35]. In particular, we do not describe a recursive rewinding strategy to deal
with reductions that execute several attackers concurrently. Arguably, this makes our exposition
more accessible since we do not have to formalize concepts like slots. At the same time, we obtain
a result that is concrete. More precisely, let t′ be the number of queries granted in the lunchtime
inversion game and t be the number of queries in the security game of the interactive complexity
assumption. Previous works like [39,47] require that the attacker makes t′ = ω(κ + t + 1) queries

5

for security parameter κ while requiring an upper bound on the number of overall queries M
exchanged between the reduction and the attacker. Of course, bounding M implicitly also bounds
u, the number of attacker instances created by the reduction. In contrast, our result solely requires
an upper bound on the number of instances u created by the reduction while concretely assuming
t′ = u + t. For reductions that call a single attacker (u = 1), this now gives an optimal bound
t′ = t + 1, since for t′ ≤ t we cannot hope to obtain a separation result from general interactive
complexity assumptions with t queries.

Challenge 3: Casting Semi-Homomorphic PKE as a Strong RRR. To rule out general reductions via
our second and main result, we also show how to cast ElGamal PKE as a strong RRR. Essentially
this translates to an attacker that can check if the responses to inversion (decryption) queries
are correct, although statement/witness pairs are in general not efficiently recognizable! This task
is considerably more complicated than for mere RRRs and requires novel additional techniques.
Solving this problem for general (semi-)homomorphic PKE is one of our main contributions.

Additional Encryption of MACed Plaintext. On a high level, we approach this problem by defining
a strong RRR where statements consist of pairs of ciphertexts and witnesses of pairs of plaintexts.
It is now possible to prepare pairs of ciphertexts such that the first one contains some message
m while the second ciphertext contains a tag on m that is computed with a homomorphic MAC
(under some freshly drawn MAC key) featuring statistical security (implemented as a pairwise-
independent hash function). Since the MAC is homomorphic, this can be done even if the plaintext
in the first ciphertext is unknown. Using this approach the attacker can check whether the reduc-
tion provides correct responses to the queries even for unknown ciphertexts. This is critical when
relaying challenge statements back to the reduction in the presence of reductions that can rewind
the attacker. Our final argument will show that when instantiating the lunchtime security game
for RRRs with this strong RRR we end up in a very weak security game for (semi-homomorphic)
PKE termed Paired OW-CCA1 that is (strictly) weaker than the OW-CCA1 security game. In
particular, the main difference is that the Paired OW-CCA1 security game is less adaptive since
pairs of ciphertext are queried to the decryption oracle. On the one hand, this makes our sec-
ond impossibility result more general as we rely on a weaker security game. However, relying on
strong RRRs also influences our bounds for PKE quantitatively, increasing the number of allowed
decryption queries overall from t+ u to 2t+ 2u:

Corollary 9 (Semi-Homomorphic PKE under General Reductions). Let PKE be a semi-
homomorphic PKE. Let ICA be a tICA. Then, there is no (general) Turing reduction that, while
creating at most u instances of the attacker, can reduce the Paired OW-CCA1 security of PKE with
2t+ 2u decryption queries to the security of ICA.

Broad Applicability: Certified Homomorphic One-Way Bijections and Semi-Homomorphic PKE.
Our impossibility results are very general. The first application of our main theorems is to general
semi-homomorphic PKE. This not only includes ElGamal PKE, but also the well-known public-key
encryption system by Paillier and its generalization by Damg̊ard–Jurik. To underline the broad
applicability of our results further, we single out another practically important application that
relies on certified homomorphic one-way bijections (CHOWB) like discrete exponentiation or the
RSA permutation. It is not hard to show that these functions immediately give rise to suitable
strong RRRs and our result applies. Since CHOWBs are so common in (asymmetric) cryptography,
our result has a plethora of interesting applications (for example in the realm of one-more inversion
assumptions, here improving on some existing impossibility results).

Scope and Interpretation. Our work provides fundamental impossibility results in the standard
model under a very liberal notion of reduction where the only restrictions are i) that the reduction
treats inefficient attackers in a black-box way (Turing reduction) and ii) that the number of queries
allowed in the security assumption is strictly less than the number of queries in the security
game. The latter condition seems necessary to rule out tautological results. The former condition
states that our result does not exclude reductions that depend on the attacker. However, we
stress that, although there has been considerable progress in recent years, it seems that current
techniques for general non-black box reductions are still not able to tackle this problem without

6

Lunchtime Inversion Game (Semi-homomorphic PKE)

C A

pk, cert
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

s1 =
(
c1, c

′
1

)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

w1 = (m1,m
′
1)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

. . .

st =
(
ct, c

′
t

)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

wt =
(
mt,m

′
t

)
,

s∗1 =
(
c∗1, c

′
1
∗),

. . .

s∗p =
(
c∗p, c

′
p
∗)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

w∗
1 = (m∗

1,m
′∗
1), . . . , w∗

p = (m∗
p,m

′∗
p)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 4. Security definition when instantiating the second main result with strong RRRs based on semi-
homomorphic PKE. Statements are pairs of ciphertexts, witnesses are the corresponding plaintext pairs.
The resulting security game is equivalent to the Paired OW-CCA1 security game for PKE.

major breakthroughs. At the same time, we note that there are several arguments for considering
reductions that use attackers in a black-box sense as more natural — and in the context of security
reductions even semantically more meaningful. One such argument that was for example invoked
by Pass [39] is that such reductions will also work against attackers where parts of it are hard to
be transformed into an explicit formal description, for example, if they consist of combinations
of algorithms and humans. We emphasize that our result captures constructions that can rely on
the underlying building block in a non-black-box manner (in contrast to, for example, most oracle
separation techniques and idealized models like generic groups). Moreover, the reduction may also
use the security assumptions in a non-black-box way. The only requirement that we have is that the
reduction treats the attacker as black-box. In terms of the fine-grained hierarchy developed in [4], a
refined version of [42], this corresponds to a so-called NBN reduction. We also emphasize that, as [4]
have pointed out, if we only consider efficient attackers then knowledge of the code of the adversary
does not lend additional power to the reduction (i.e. NBNa-type reductions exist iff NNNa-type
do). So our result in fact only requires that inefficient attackers are treated in a black-box way
by the reduction. This gives a somewhat complete picture. It is well-known that ElGamal can be
proven CCA1 secure under some non-interactive assumption in idealized models like the algebraic
group model (AGM), where the reduction also has access to the attacker’s internal representation
of group elements as shown in [26]. In the AGM, essentially all algorithms are assumed to (i)
create new group elements X only via the application of the group operation to some fixed base
B of group elements and (ii) always also output the internal representation of X with respect
to B. We note that in ideal models like [26], the power to access the internal representation of
the attacker specifically seems to be the main handle towards obtaining a security proof under
non-interactive assumptions. Requiring access to the internal representation of the reduction only
in contrast yields an impossibility result under non-interactive security assumptions [29]. We stress
that [26] considers a specific and restricted attacker only that behaves according to (i) and (ii).
For arbitrary attackers in contrast, it is still largely open how reductions can exploit non-black box
access to attackers more generally to circumvent meta-reduction-based impossibility results.

Take-Home Message on ElGamal PKE. Conceptually, our arguments heavily exploit the random
self-reducibility of ciphertexts in ElGamal PKE. In a sense, random self-reducibility can be viewed
as a form of perfect malleability. In fact, it is so strong that no party, including the reduction, is

7

able to recognize the original ciphertext given the derived one. Thus, one way to view our results
on ElGamal is that:

While the malleability of the ciphertexts shows that ElGamal PKE is not IND-CCA2 secure, its
“perfect” malleability shows its lack of provable IND-CCA1 security.

2 Related Work and Overview

ElGamal PKE [22] has been invented in 1984 and can be regarded as a non-interactive twist of the
famous 1976 Diffie–Hellman protocol [19], where one of the exchanged public keys is made static.
In particular, it is the first PKE scheme based on discrete-logarithm-type assumptions. Since then,
many results have used or extended this scheme. Some important milestone results are the Cramer–
Shoup encryption scheme that can be proven IND-CCA secure in the standard model [16], and the
Boneh–Franklin scheme, the first identity-based encryption system in bilinear groups [8]. In the
standard model, meta-reductions have been introduced by Boneh and Venkatesan [9] in 1998 and
since then have proven a flexible and powerful technique for deriving strong impossibility results
besides oracle separation. Previous works have used meta-reductions mostly to derive impossi-
bility or efficiency results for concrete primitives like signatures schemes [21,20,37,27,44,5,24,25],
and encryption systems [38]. Starting with the seminal work of Coron [15], many recent works
like [31,30,3,35] use meta-reductions to prove bounds on the (non-exponential) security loss of
cryptographic constructions for one-more-forgery type problems. Other results like [10,11] use
meta-reductions to derive relationships among cryptographic one-more type problems. Probably
closest to ours is the seminal work of Pass that showed a very general impossibility result on
one-more inversion problems [39] with unique witnesses. As mentioned before, one of our main
novelties is that by focusing on RRRs and a new simulation approach, we can provide results
for a much weaker security notion that could not be covered by the previous techniques. In this
way, our result is somewhat incomparable to [39] as it at the same time increases and decreases
in generality albeit in distinct directions (since our security games are weaker but we have more
restrictions on the relations by requiring them to be random self-reducible as well). Besides the
already mentioned differences, our result provides several technical improvements that have not
been considered in [39], like the broad treatment of re-randomizable relations via new and general
notions. Finally, we point out that [39] does only hold for recognizable relations. Intuitively, this
means that it requires the existence of Strong RRRs with explicit membership tests, to begin with.
This makes it in general impossible to apply it to classical encryption-type definitions for prob-
abilistic encryption where challenges correspond to ciphertexts and witnesses to plaintexts since
the ability to recognize valid ciphertext/plaintext pairs could easily be used to simply break (even)
IND-CPA security. Few papers have specifically worked on the impossibility of proving ElGamal
PKE IND-CCA1 secure [46,34]. However, they all relate tICAs to ElGamal with t decryption
queries. As stated, this may allow for tautological results:

– The result in [34] relates ElGamal PKE to DDH/CDH type assumptions. It shows a reduction
from the security of ElGamal PKE with t decryption queries to a tICA. And indeed, the author
himself regards this as a “tautology”, “which is mainly useful to simplify further results”.

– Similarly to this, [46] relates the OW-CCA1 security of ElGamal PKE with t decryption queries
to a tICA called DTCDHA (or a combination of a weaker tICA called DTDLA and a knowledge
type assumption).

– Again, the work in [1] offers similar results. Essentially, it shows that the IND-CCA1 security of
semi-homorphic PKE schemes can be shown equivalent to an interactive assumption revolving
around what they call Splitting Oracle-Assisted Subgroup Membership Problem. We note that
this work does not make the number of queries explicit. However, the proof reveals that, as
before, the CCA1 security of ElGamal PKE with t decryption queries is reduced to a tICA.

Finally, we stress that the meta-reduction framework has recently been extended in several
directions. These extensions are typically quite generic such that they can often be applied to
many works that use a similar meta-reduction technique. Some important stepping stones are
the extension of the meta-reduction framework to rule out so-called memory-tight reduction as
initiated in [2], or the application of the meta-reduction technique to non-uniform reductions [14].

8

Overview. After the introduction of some helpful notation in Section 3, we introduce semi-homo-
morphic public-key encryption and certified homomorphic one-way bijections in Section 4. More-
over, a series of progressively weaker security notions of PKE will be provided. The notions are
characterized by an attacker that can make up to t′ chosen-ciphertext queries. In Section 5, we turn
our attention to the formal definition of so-callead RRR systems. Roughly, an RRR system consists
of the description of several algorithms that operate on some RRR. Moreover, we introduce basic
notions of correctness and soundness of these algorithms that capture precisely what properties
we require from RRRs. Then, in Section 6, we provide concrete examples of important RRRs and
strong RRRs. Importantly, we show how RRRs can be built from semi-homomorphic PKE and
CHOWBs. In Section 7, we formally introduce our new, weak security notion for relations. It is
the formalization of the security game given in Figure 1 (lunchtime inversion attacks with t adap-
tive queries). Next, in Section 8, we formally introduce our definition of t-interactive complexity
assumptions, a security assumption where the attacker may interact with the challenger t times.
Finally, with all these preparations, we are able to present our main results in the following sec-
tions. We essentially show that no RRR system can be proven secure with respect to the definition
of lunchtime inversion attacks with t′ adaptive inversion queries under a t-interactive complexity
assumption if t′ > t. Section 9 presents and proves our first main theorem. We provide interesting
applications of this theorem in Section 10. Finally, in Section 11 we present our second main re-
sult. Important applications of our second main theorem can be found in Section 12. In Section 13,
we sketch how our results can be transferred to non-uniform reductions. Finally, Section 14 dis-
cusses the practical value of our result for the construction of cryptographic systems. Moreover, it
lists some of the general approaches that could be used to circumvent our impossibility results in
cryptographic constructions.

For the benefit of the reader, we provide a standalone impossibility result of ElGamal PKE
under simple reductions in Appendix B. This applies the arguments of our first main result in a
simplified, concrete, and arguably more accessible setting.

3 Preliminaries

Relations. We use κ to denote the security parameter. Let S and W be sets and assume that
there are efficient membership tests to check whether s ∈ S and w ∈ W . We call S the set of
statements and W the set of witnesses. Assume we have a relation R ⊆ S ×W . For any s ∈ S
let Ws := {w|(s, w) ∈ R} ⊆ W be the witness set of s. Furthermore, we say that s ∈ S has
t ∈ N witnesses if |Ws| = t. If for a relation R we have that any statement s ∈ S has at least one
witness, we call it total. For simplicity, we will in the following only be interested in total relations.
Moreover, we say that a relation is unique if for all statements s we have |Ws| ≤ 1. We will use
[1; ℓ] for ℓ ∈ N to denote the set of natural numbers 1, . . . , ℓ and [ℓ] as a shorthand for [1; ℓ]. In the
following, we will always be interested in relations with superpolynomial statement set |S|.

Algorithms for Relations. We use y = A(x; r) to denote a deterministic algorithm A that takes
as input x and randomness r (for r ∈ D = {0, 1}d with some polynomial d = d(κ)) to compute
output y. Equally, we may make the random coins implicit, view A as a probabilistic algorithm,
and simply write y ← A(x) assuming that A is provided with uniformly random r ∈ D. In the
following, we will for simplicity assume that every randomized algorithm uses random coins in
D = {0, 1}d for some appropriate polynomial d unless specified explicitly otherwise. If A is an
algorithm and (a1, . . . , aℓ)← A(x) for ℓ ∈ N we use [A(x)]i for i ∈ [ℓ] to denote the ith output ai.
Similarly, we use [A(x)][i;j] to denote the projection of the output of A(x) on the coordinates i up
to j. In the same way, we use [B]i for any tuple B = (b1, . . . , bℓ) to denote the projection on the ith
component bi and [B][i;j] for the projection (bi, . . . , bj) on components i to j. In case s ∈ Sk and

w ∈ W k are tuples, we more generally write (s, w) ∈ R to denote that for all i ∈ [k] it holds that
([s]i, [w]i) ∈ R. If D is a set we use r ← D to denote that r is drawn uniformly at random from
D. Let X be some random variable that is drawn according to some discrete distribution D′ over
some set. We use H∞(X) = k if maxx Pr[X = x] = 2−k. In this case we also say that distribution
D has min-entropy H∞(X) = k.

Reductions. Let us now explain what type of reductions we consider. We mainly follow [39] here.
For an alternative, more general, and very formal treatment we refer to [4] where the reductions

9

that we focus on are called NBN reductions. Commonly, these types of reductions are simply called
Turing reductions. In a nutshell, a black-box reduction for basing the security of a primitive X
on the hardness of a primitive Y , is a probabilistic polynomial-time oracle machine B such that
BA “breaks” Y , whenever the oracle A (the attacker) “breaks” X. Typically a successful break
is defined in a security game played between a challenger and an attacker with precise conditions
under which the attacker wins. When the oracles are interactive, we only consider deterministic
attacker oracles that may be given random coins as first input. If B gives the oracle A fresh
random coins at the beginning of the security game, we also say that the reduction has created
an instance (of A). Having explicit random coins given to a deterministic oracle allows general
reductions to restart and “rewind” its oracle. Simple reductions, however, can only send these
initial random coins to the oracle once. To model probabilistic reductions we assume that each
reduction is given access to random coins rB ∈ DB . In the majority of this work, we concentrate
on uniform algorithms and in particular uniform reductions. In Section 13 we sketch how our result
could be transferred to non-uniform algorithms.

Success Probability after Rewinding. In our proofs we will make use of the well-known Splitting
Lemma, see for example [41].

Lemma 1 (Splitting Lemma). Let U and V be finite sets. Call G ⊆ U × V the set of good
elements. For any element (u, v) ∈ U × V we define ku = |{(u, v′) | (u, v′) ∈ G}|, i.e. ku is the
number of v′ ∈ V such that (u, v′) is good. Suppose there is a lower bound on the number of good
elements such that |G| ≥ ϵ |U ×V |. Define the set of super-good elements G′ as a subset of G with
G′ = {(u, v) ∈ G | ku ≥ ϵ/2 |V |}. Then it holds that

|G′| ≥ ϵ/2 |U × V |.

4 Notions for PKE and CHOWBs

In this section, we formally introduce semi-homomorphic public-key encryption together with a
series of progressively weaker security notions. We will later use the notion of OW-CCA1 (Sec-
tion 4.5) in a corollary of our first main result. We also introduce an even weaker notion called
Paired OW-CCA1 security that will later be used when applying our second main result (Sec-
tion 11) to semi-homomorphic PKE (Section 12).

4.1 Public-key encryption

A public-key encryption (PKE) system PKE = (PKEKGen,PKEEnc,PKEDec) consists of three
algorithms.

1. PKEKGen(1κ): the probabilistic key generator PKEKGen takes as input the security parameter
in unary and outputs an asymmetric key pair with public key pk ∈ PK and secret key sk ∈ SK.

2. PKEEnc(pk,m): the probabilistic encryption algorithm takes as input the public key pk ∈ PK
and a message m from some message spaceM and outputs some ciphertext c in the ciphertext
space C.

3. PKEDec(sk, c): the deterministic decryption algorithm takes as input the secret key sk ∈ SK
and a ciphertext c. It either outputs a message m ∈M if c ∈ C or a dedicated error symbol ⊥
if c /∈ C.

We say that PKE is perfectly correct if for all (pk, sk)← PKEKGen(1κ) we have for all m ∈M
that Pr[PKEDec(sk,PKEEnc(pk,m)) = m] = 1. In the following, we will only be interested in
perfectly correct PKE systems. We call a PKE system certified if i) there is an efficient algorithm
that can check whether indeed pk ∈ PK and ii) it holds that [PKEKGen(1κ;D)]1 = PK, meaning
that the set of public keys output by the key generator is efficiently recognizable.

4.2 Semi-Homomorphic PKE

We will particularly be interested in (semi-)homomorphic PKE. We say that the public key en-
cryption scheme PKE = (PKEKGen,PKEEnc,PKEDec) is homomorphic if the following properties
are fulfilled:

10

1. For all κ and all (pk, sk)← PKEKGen(1κ) it is possible to define (finite, cyclic) groups (G,+)
and (H, ·) such that the set G is equal to the plaintext spaceM andH is equal to the ciphertext
space C. We require that membership in G and H can be efficiently tested.

2. |G| grows exponentially in the security parameter.

3. There is an efficient algorithm that can draw t ∈ N uniformly from t ← [|G|] with only
statistically small error probability.

4. For any m,m′ ∈ G and any scalar t ∈ [|G|] it holds that

PKEDec(sk,
t∏

i=1

PKEEnc(pk,m) · PKEEnc(pk,m′)) =

t∑
i=1

m+m′

= tm+m′.

5. We have that C = PKEEnc(pk,M;D), that is, for every pk and each ciphertext c in the
ciphertext space there exists message m and randomness r such that c = PKEEnc(pk,m; r).

6. For uniformly randommessagem ∈M and uniformly random r ∈ D, the value PKEEnc(pk,m; r)
is distributed like a uniformly sampled ciphertext.

Property 3 allows us to not only model groups G of known order where we can directly draw
t← [|G|] but also groups of unknown order like RSA (or Paillier) setups where randomly drawing
from [(N − 1)/4] is statistically close to drawing from [ϕ(N)].

It is well-known that ElGamal PKE is a semi-homomorphic PKE. However, in the crypto-
graphic literature, we can find several other well-known PKE systems that fulfill our definition of
homomorphic PKE. Among them, there is the well-known PKE by Paillier [36] and its generaliza-
tion by Damg̊ard–Jurik [17] as well as the linear encryption scheme [7] and its generalizations [23].
For brevity, we refer to the original papers for the description of the other schemes. These works
also indicate that all required properties are fulfilled if the public keys are set up as defined in the
scheme’s description. For these cryptosystems, it is also relatively easy to actually provide crypto-
graphic proofs cert showing that the key material has been set up as given in the description. Such
a proof can thus ultimately guarantee that all the above properties are fulfilled. For example, for
Paillier encryption such a corresponding proof simply boils down to proving that gcd(N,ϕ(N)) = 1
as shown in [33]. If such a proof can be computed and verified efficiently, we call the PKE scheme
certified. It is important to stress that, since we require that plaintexts and ciphertexts are effi-
ciently recognizable, our definition excludes PKE systems like the Cramer–Shoup scheme [16] or its
IND-CCA1-secure lite version where real ciphertexts (gr1, g

r
2, . . .) are indistinguishable from “mal-

formed” ciphertexts (gr1, g
r′

2 , . . .) for r′ ̸= r that the reduction can produce. Another interpretation
of this condition is that we require that the validity of ciphertexts can be publicly verified.

4.3 ElGamal PKE

For concreteness, let us now also provide a description of ElGamal PKE.4

1. PKEKGen(1κ): the algorithm computes a random prime q with polynomial, in κ, bitlength
|q|2 and a generator g of an order q group ⟨g⟩ = G. Next, it computes x ∈ Zq and outputs
pk = (g, h = gx, q) and sk = x.

2. PKEEnc(pk,m): given message m ∈ G this algorithm draws random r ∈ Zq and outputs
ciphertext c = (c1, c2) = (gr,m · hr) ∈ G2.

3. PKEDec(sk, c): this algorithm computes given c = (c1, c2) ∈ G2 the plaintext as m = c2/c
x
1 .

We note that we could also generate the values q,G, g beforehand in some global setup phase. All
our results for ElGamal still hold then. The important fact for our results is that given all values
available to the attacker, every ciphertext will have a unique plaintext.

4 We also remark that all our results can easily be transferred to the ElGamal KEM where encapsulations
consist of just gr while the keys are defined as hr. This is because all the homomorphic properties still
hold in this scenario: using encapsulation gr · gr

′
= gr+r′ will result in key hr · hr′ = hr+r′ .

11

4.4 IND-CCA1

Let us first consider the classical notion for indistinguishability-based chosen-ciphertext security
IND-CCA1 security (aka. lunchtime security) with t′ queries.

To this end, consider the following security experiment between challenger C and attacker A.

1. The challenger C computes (pk, sk)← PKEKGen(1κ) and sends pk to the attacker A.
2. The attacker A may query up to t′ decryption queries to C. Each query consists of a ciphertext

ci for i ∈ [1; t′].
3. The challenger C responds to each such query with mi = PKEDec(sk, ci).
4. Finally, the attacker outputs a message m∗ to C.
5. The challenger draws a random message m̂∗ of the same size as m∗. Next, it draws a random

bit b and sends cb ← PKEEnc(pk, m̄b) to A where m̄0 = m̂∗ and m̄1 = m∗ (i.e. cb contains m∗

iff b = 1, otherwise m̂∗).
6. A responds with bit b′.

Intuitively, the attacker is successful if it can determine b from cb better than guessing. We say
that A wins if |Pr[b = b′]− 1/2| is non-negligible.

4.5 A Weaker Security Notion: OW-CCA1

Let us now consider a security notion that is weaker than IND-CCA1 security called one-way
CCA1 security (OW-CCA1). The difference is that the attacker now has to compute a plaintext
from some ciphertext instead of distinguishing the real plaintext from a random one. This notion
will be used in our first impossibility result. In Figure 3 and Figure 6, we provide an overview when
instantiating this notion with semi-homomorphic PKE and ElGamal PKE in particular.

1. The challenger C computes (pk, sk)← PKEKGen(1κ) and sends pk to the attacker A.
2. The attacker A may query up to t′ decryption queries to C. Each query consists of a ciphertext

ci for i ∈ [1; t′].
3. The challenger C responds to each such query with mi = PKEDec(sk, ci).
4. Finally, C draws a random message m̂∗ and sends c∗ ← PKEEnc(pk, m̂∗) to A.
5. A responds with m∗ ∈M.

The attacker wins if Pr[m∗ = m̂∗] is non-negligible.
It is easy to see that this security game is weaker than IND-CCA1 security. This is simply

because the attacker now has to compute a randomly chosen plaintext from a given ciphertext.
Now, if the attacker can compute from a given ciphertext the plaintext it can easily win in the
standard security game by decrypting c∗ (and comparing with m∗).

4.6 An Even Weaker Notion: Paired OW-CCA1

We will now consider a notion of PKE security that is yet considerably weaker. In particular, we
require that the i) attacker makes decryption queries in pairs and ii) the attacker has to output
p ≥ 1 many challenge plaintexts. This notion will be used in our second impossibility result. In
Figure 4, we provide an overview using ElGamal PKE.

1. The challenger C computes (pk, sk)← PKEKGen(1κ) and sends pk to the attacker A.
2. The attacker A may query up to ⌊t′/2⌋ decryption queries to C. Each query consists of two

ciphertext ci and c′i for i ∈ [1; ⌊t′/2⌋].
3. C responds to each such query with messages mi,m

′
i such that mi = PKEDec(sk, ci) and

m′
i = PKEDec(sk, c′i).

4. Finally, the challenger draws random messages m̂∗
1, . . . , m̂

∗
p and sends the ciphertext values

c∗1 ← PKEEnc(pk, m̂∗
1), . . . , c

∗
p ← PKEEnc(pk, m̂∗

p) to A.
5. A responds with m∗

1, . . . ,m
∗
p ∈M.

The attacker wins if the probability is non-negligible that for all i ∈ [p] we have m∗
i = m̂∗

i . This
game is weaker than OW-CCA1 security since we overall have the same number of ciphertexts (or
one less) that the attacker may query for decryption but the queries are less adaptive. Moreover,
the attacker has to decrypt more challenge ciphertexts. In particular, if attacker A breaks this
security game, then it will surely break the previous one, OW-CCA1 security as well.

12

4.7 Certified Homomorphic One-Way Bijections

For each κ let F be a family of efficiently sampleable homomorphic one-way bijections such that
|F | grows exponentially in security parameter κ. We assume that the input and output space of
each f ∈ F is efficiently sampleable. Moreover, we assume that all the functions in F are certified
so that there exists an efficient algorithm which given some f outputs 1 if f ∈ F and 0 otherwise.
We assume that each f ∈ F maps elements from finite group (A,⊕) to group (B = range(f),⊙)
of the same order. We thus have f(x⊕ y) = f(x)⊙ f(y) for all x, y ∈ A. We assume that all group
operations are efficient. Finally, let us also assume that the evaluation of f is efficient for all f ∈ F .
We will now consider a security notion in which the attacker makes a polynomial number, t = t(κ),
of inversion queries before it has to compute the pre-images of p challenge outputs (Figure 5).

1. The challenger draws f ∈ F and sends f to the attacker A.
2. The attacker A may query up to t inversion queries to C. Each query yi consists of a value in

the image of f .
3. The challenger C responds to each such query with input xi such that yi = f(xi). If i = t, the

challenger additionally sends random outputs ŷ∗1 , . . . , ŷ
∗
p to A.

4. A responds with the corresponding inputs x∗
1, . . . , x

∗
p.

The attacker wins and breaks the security of F if the probability that for all i ∈ [p] we have
y∗i = f(x∗

i) is non-negligible. There are many well-known examples of CHOWBs in cryptography
like the discrete exponentiation function or the (certified) RSA permutation. The above security
notion formalizes a form of adaptive security for CHOWBs that is a very weak variant of a so-called
one-more assumption where the challenge is given to the attacker only at the end of the security
game.

5 Random Self-Reducible and Re-Randomizable Relations (RRRs)

In the following, we will define the class of relations that we are interested in. To this end, we
formally specify several algorithms that work with some total relation R. After that, we will
provide some detailed intuition for these algorithms and how we make use of them later. Additional
intuition will be provided via the concrete examples of RRRs in Section 6.

5.1 Algorithms

To formally capture the intuition behind RRRs, we introduce the notion of RRR systems that
comprise several efficient algorithms RRR = (RGen, RSample, RSubSample, ReRand, ReCheck,
RSRStatement, RSRWitness, RVerify). We parameterize our notion by some integer k which we call
the fan-out of RRR. We will in the following assume that k = 1 unless explicitly specified otherwise.
We also introduce the notion of strong RRR systems that have an additional efficient algorithm
RSRTest: RRR′ = (RGen, RSample, RSubSample, ReRand, ReCheck, RSRStatement, RSRWitness,
RSRTest, RVerify).

– RGen(1κ): The probabilistic relation generator RGen takes as input the security parameter
κ and outputs the description of a relation R ⊆ S × W along with a proof cert ∈ U . For
simplicity, we assume that R implicitly also specifies the spaces S, W , U , and S′ ⊆ S with
superpolynomial |S′|.

– RSample(R): The probabilistic sampler RSample outputs (s, w) ∈ S×W for uniformly random
s ∈ S.

– RSubSample(R): The probabilistic sub-sampler RSubSample outputs (s′, w) ∈ R, where s′ ∈ S′

is drawn according to some distribution X with min-entropy H∞(X) ≥ κ.
– ReRand(R, s, w): The probabilistic re-randomizer ReRand is given relation R and (s, w) ∈ R.

It outputs a new witness w′ ∈W .
– ReCheck(R, s, w,w′): The deterministic checker ReCheck is given relation R, (s, w) ∈ R, and

w′ ∈W as input. It outputs a bit c indicating whether (s, w′) ∈ R.
– RSRStatement(R, s∗; r): The statement transformer RSRStatement is given as input relation

R, a statement s∗ ∈ S, and random coins r. The output is a vector of statements, s ∈ S′k for
k ∈ N, and the state st = (s∗, r) ∈ S×{0, 1}∗. We also say that s is the transformed statement
of s∗ (and r).

13

– RSRWitness(R,w, st): The deterministic derivation algorithm RSRWitness is given R, witness
vector w ∈ W k, and state st = (s∗, r) ∈ S × {0, 1}∗. It outputs a new witness w∗ ∈ W . We
also call w∗ the derivation of w.

– RSRTest(R,w, k′, st): The deterministic tester RSRTest is given R, a single witness w ∈W , an
index k′ ∈ [k], and a state st = (s∗, r) ∈ S × {0, 1}∗. The output is a bit t indicating whether
the k′th component of the transformed statement of s∗ and r has witness w.

– RVerify(R, cert): The deterministic verifier RVerify is given as input the description R and proof
cert ∈ U . The output is a bit v indicating whether the proof is correct.

If R is clear from the context, we might omit R as an input in our notation. If we do not specify an
explicit value for cert, we implicitly assume that cert = ⊥ is set. Also, if k = 1 for some concrete
RRR we may use RSRTest(R,w, st) short for RSRTest(R,w, 1, st).

Properties of R. Let us now, for some given relation R, define several properties that we might
require from the algorithms of a (strong) RRR system.

P-1: Correctness of RSample:
∀r ∈ D : RSample(R; r) ∈ R.

P-2: Correctness of RSubSample:

∀r ∈ D : RSubSample(R; r) ∈ R.

P-3: Correctness of ReRand:

∀(s, w) ∈ S ×W, r ∈ D : (s, w) ∈ R⇒ (s,ReRand(R, s, w; r)) ∈ R.

P-4: Witness indistinguishability of ReRand:

∀s ∈ S,w,w′, w′′ ∈Ws :

Pr[w′′ = ReRand(R, s, w)] = Pr[w′′ = ReRand(R, s, w′)].

P-5: Correctness and soundness of ReCheck:

∀(s, w) ∈ R,w′ ∈W : ReCheck(R, s, w,w′) = 1⇔ (s, w′) ∈ R.

P-6: Correctness of (RSRStatement,RSRWitness):

∀s∗ ∈ S, r ∈ D,w ∈W k :

([RSRStatement(R, s∗; r)][k], w) ∈ R

⇒ RSRWitness(R,w, [RSRStatement(R, s∗; r)]k+1) ∈Ws∗ .

P-7: Statement indistinguishability of RSRStatement:

∀s∗, s′ ∈ S :

[RSRStatement(R, s∗)][k] ≈s [RSRStatement(R, s′)][k].

P-8: Indistinguishable sampleability of RSubSample:

∀s∗ ∈ S, i ∈ [k] : [RSubSample(R)]1 ≈s [RSRStatement(R, s∗)]i.

P-9: Statistical correctness and soundness of (RSRStatement,RSRTest):

∀s∗ ∈ S,w ∈W,k′ ∈ [k]

Pr[(RSRStatement(R, s∗; r)]k′ , w) ∈ R]

≈s Pr[RSRTest(R,w, k′, [RSRStatement(R, s∗; r)]k+1) = 1],

where the probability is over r ← D.

Let us finally define what a certified (strong) RRR system is.

Definition 1. Let RRR be an RRR system. We say that RRR is a certified RRR system if properties
P-10 to P-11 are fulfilled where:

P-10: Correctness of RGen:

∀r ∈ D : RGen(1κ; r) = (R, cert)⇒ P-1 to P-8 are fulfilled on input R.

P-11: Soundness of RVerify:

∀R ⊆ S ×W, cert ∈ U : RVerify(R, cert) = 1⇔ P-1 to P-8 hold on input R.

14

Certified RRR systems will be utilized in our first result. In our second result, we need certified
strong RRRs.

Definition 2. Let RRR′ be an RRR system. We say that RRR′ is a certified strong RRR system
if properties P-12 to P-13 are fulfilled where:

P-12: Correctness of RGen:

∀r ∈ D : RGen(1κ; r) = (R, cert)⇒ P-1 to P-9 are fulfilled on input R.

P-13: Soundness of RVerify:

∀R ⊆ S ×W, cert ∈ U : RVerify(R, cert) = 1⇔ P-1 to P-9 hold on input R.

Intuition. Let us provide some intuition for these algorithms and the properties that we require.
The pair of algorithms RGen and RVerify, along with properties P-10 and P-11 (respectively P-12
and P-13) are used to capture that we can test if a given relation R is indeed a (strong) RRR.
To this end, we have that RGen may output a corresponding proof cert alongside R that can be
verified by RVerify. We remark that this notion also captures situations where a dedicated proof is
not necessary, such that the verifier can be convinced by performing some efficient computations
on R. An example that will also underlie our analysis of ElGamal is when R specifies a generator
g of cyclic group of prime order p. We assume that in these cases cert is set to cert = ⊥.

Our notion of re-randomizability of witnesses is captured via ReRand, ReCheck, and P-4 to
P-5. ReRand outputs when given (s, w) ∈ R a new witness w̃ ∈ Ws. At the same time, we guar-
antee a strong form of witness indistinguishability by requiring that the output distributions of
ReRand(R, s, w) and ReRand(R, s, w′), for any s and w,w′ ∈ Ws, are equal. Finally, we have that
the algorithm ReCheck can recognize, given arbitrary (s, w) ∈ R, if a new witness w′ is also in
Ws. As mentioned before, if R has unique witnesses the algorithm is trivial: it simply outputs 1 iff
w′ = w. In this case, we also say that the re-randomization of R is trivial.

To capture random self-reducibility we make use of RSRStatement, RSRWitness along with P-6
and P-7. To model strong RRRs we also exploit RSRTest and require that P-9 is fulfilled. The
algorithm RSRStatement simply constructs from statement s∗ a derived vector of statements s.
Similar to before, we have that the output of this algorithm does not reveal the input value s∗,
capturing a strong form of statement indistinguishability. Moreover, we require that whenever we
indeed obtain a witness w for s, we can use that to compute a witness w∗ for the original statement
s∗. Finally, for strong RRRs, we require that we have a weak membership test via RSRTest for
derived s and arbitrary w. However, it requires as input the state st, which has been used to
construct s from s∗. In contrast to RSRWitness that only works on a full vector w′ ∈ W k, we
can run RSRTest with a single component w ∈ W indexed by k′. Observe that nevertheless both
algorithms are fed with the same state. In this way, we can use RSRTest to stepwisely test whether
the components of w′ ∈W k are correct in the sense that a full vector w′ can later indeed be used by
RSRWitness to output witness w∗. We stress that property P-9 must hold for all possible witnesses
w, including those that could be computed from the transformed statement RSRStatement(R, s∗; r).
For most relations that we detail below, we have k = 1. However, for our final analysis of semi-
homomorphic PKE, and in particular ElGamal PKE, we have that k = 2 (intuitively indicating
that statements consist of pairs of ciphertexts).

Finally, we introduce two sampling algorithms RSample and RSubSample. The first is used to
generate relation pairs (s, w) ∈ R. The second is used to generate a new pair (s′, w′) ∈ S′×W such
that (s′, w′) ∈ R. Importantly, the output distribution of this algorithm should be statistically close
to that of the first k components of RSRStatement as encoded in P-8. So, using RSubSample we can
output k distinct values that are distributed statistically close to the statements that are output by
RSRStatement. At the same time, the output s of RSubSample should have high min-entropy. This
guarantees that we can generate hard instances of statements s such that it is difficult to compute
w with (s, w) ∈ R at all. In the algorithms that we consider we usually have that RSubSample(R)
simply does the same as RSample(R) and we have that S′ = S, but we also provide examples where
this does not hold. In our security proof, the attacker will use RSubSample to generate pairs of the
relation while the challenger may use either RSubSample or RSample to create statements.

15

6 Important RRRs

In the following, we will provide an important example of an RRR that is based on semi-homo-
morphic PKE. In Section 6.3 we show how we can easily obtain a strong RRR RRRF from certified
homomorphic one-way bijections when statement/witness pairs correspond to output/input pairs.
We emphasize that all these RRRs are not built from concrete algebraic setups, like RSA groups,
but from entire classes of building blocks ultimately leading to very broad impossibility results.
For illustrative purposes we also present, in Appendix A, an example of an RRR with non-unique
witnesses that is common in pairing-based cryptography. Moreover, the algorithms RSample and
RSubSample of this RRR are distinct, showcasing the full range of cryptographic setups that are
captured by RRRs.

6.1 RRRs from Semi-Homomorphic PKE

Let us now present an RRR, denoted RRRHomPKE, that is derived from a semi-homomorphic PKE
system PKE with associated groups G =M and H = C. Intuitively, the statements correspond to
ciphertexts while the witnesses are plaintexts. For simplicity, we assume that for each pk, PKE is
certified via some cert, to begin with. To prove that all properties of RRRs are fulfilled, we exploit
perfect correctness of the PKE such that for every ciphertext we have a unique plaintext.

– RGen(1κ) calls PKEKGen(1κ) to obtain secret key sk and public key pk. This specifies the
relation of ciphertext/plaintext pairs.

RHomPKE = {(s, w = PKEDec(sk, s))}
= {(PKEEnc(pk, w; r), w)}r∈D ⊆ C ×M.

We have S = S′ = C and W =M. The output is RHomPKE, i.e. pk, and cert.
– RSample(RHomPKE) draws randomness r ∈ D and random w ∈M and outputs

(s, w) = (PKEEnc(pk,w; r), w).

– RSubSample(RHomPKE) simply outputs (s, w)← RSample(RHomPKE).
– ReRand(s, w) outputs w.
– ReCheck(s, w,w′) outputs 1 iff w′ = w.
– RSRStatement(s∗; r) draws uniformly random m ∈M and randomness r′ ∈ D to output

(s, st) = ((s∗ · PKEEnc(pk,m; r′)) , (s∗, r′,m)) .

– RSRWitness(w, st) parses st = (s∗, r′,m) and outputs w∗ = w+(−m) where −m is the inverse
of m.

– RVerify(pk, cert) outputs 1 iff cert is a valid certificate for PKE.

Lemma 2. RRRHomPKE is a certified RRR.

Proof. Observe that all algorithms are efficient, and due to perfect correctness for every statement
there is a unique witness if RHomPKE is certified. This makes re-randomization trivial. At the
same time, RVerify perfectly tests whether a purported output of RGen is correct since PKE is
certified. Finally, RSRStatement statistically hides s∗ while RSRWitness perfectly recovers w∗. Since
the output s of RSRStatement is uniformly random it is perfectly distributed like the output of
RSubSample.

6.2 Strong RRRs from Semi-Homomorphic PKE

Let us now present an RRR, denoted RRR2HomPKE, that is derived from a semi-homomorphic
PKE system PKE. This transformation is one of our main contributions as it allows a proof under
arbitrary reductions in the first place later on. We believe that the technique can be useful in
many other contexts of cryptography as well. Intuitively, the statements now correspond to pairs
of ciphertexts while the witnesses are pairs of plaintexts. Again, we assume that the PKE is

16

certified. Moreover, we now rely on the fact that the group of plaintexts |G| = |M| has exponential
size in the security parameter.

Before we begin, let us briefly provide some intuition for the novel techniques that we use
to implement an online membership test. To provide some context, the technical challenge is to
provide a technique such that the attacker can be sure that the reduction’s responses are correct.
At the most critical part of the proof, we need this to hold even if the attacker does not know the
plaintext of one of the ciphertexts. The main idea is as follows: we make the attacker encrypt a
message in the first ciphertext and the MAC tag of that message in the second one. The MAC is
homomorphic and implemented via a two-wise independent hash function. Moreover, the MAC is
a one-time MAC and its key material u ∈ [|G|], w′ ∈ G is freshly drawn with each query. This
gives statistical security. Crucially, exploiting the homomorphic properties, the attacker can use
this technique to create from a given ciphertext s′∗ encrypting w′∗ a new ciphertext that encrypts
the tag uw′∗ + w′ without knowledge of w′∗. Of course, these two ciphertexts can also be blinded
and, after rewinding, be sent to the reduction as a single query (recall that we are considering pairs
of ciphertexts as statements). The other ciphertext in the challenge is treated in the same way. For
each challenge ciphertext, the attacker so generates two ciphertexts, one for the blinded ciphertext
and one for the MAC of this value, to extract a single challenge plaintext. We thus have fan-out
k = 2.

– RGen(1κ) calls PKEKGen(1κ) to obtain secret key sk and public key pk. This specifies the
relation of ciphertext/plaintext pairs:

R2HomPKE,sk = {((s′, s′′), (PKEDec(sk, s′),PKEDec(sk, s′′)))}
= {(s, w)} ⊆ C2 ×M2

with s = (s′, s′′) and w = (PKEDec(sk, s′),PKEDec(sk, s′′)). We have S = S′ = C2 and
W =M2.

– RSample(R2HomPKE,sk) draws randomness r′, r′′ ∈ D and random w′, w′′ ∈M and outputs

((s′, s′′), (w′, w′′))

where
s′ ← PKEEnc(pk, w′; r′) and s′′ ← PKEEnc(pk, w′′; r′′).

We set r = (r′, r′′) to denote the overall randomness and w = (w′, w′′) for the witness.

– RSubSample(R2HomPKE,x) simply outputs (s, w)← RSample(R2HomPKE,x).

– ReRand(s, w) outputs w.

– ReCheck(s, w,w′) outputs 1 iff w′ = w.

– RSRStatement(s∗; r) takes as input a pair of ciphertexts s∗ = (s′∗, s′′∗). From that it generates
four ciphertexts that are organized as pairs ŝ = (ŝ′, ŝ′′) and s̃ = (s̃′, s̃′′) along with some state
information. First, the algorithm draws randomness r̂′ and random witness ŵ′ and blinds5 the
ciphertext s′∗ to

ŝ′ = s′∗ · PKEEnc(pk, ŵ′; r̂′).

Next, we draw randomness r̂′′ and random witness ŵ′′ as well as random scalar û← [|G|] (or
statistically close to that as required by our definition of semi-homomorphic PKE). The pair û
and ŵ′′ correspond to a key of a statistically secure, homomorphic MAC that is implemented
with a pairwise independent hash function. Then, we compute the encrypted MAC by setting

ŝ′′ =

û∏
i=1

(ŝ′∗) · PKEEnc(pk, ŵ′′; r̂′′) = (ŝ′∗)û · PKEEnc(pk, ŵ′′; r̂′′)

using standard multiplicative notation. We proceed similarly for the second pair of ciphertexts
and obtain

s̃′ = s′′∗ · PKEEnc(pk, w̃′; r̃′)

5 This perfectly hides s′∗.

17

and

s̃′′ =

ũ∏
i=1

(s̃′∗) · PKEEnc(pk, w̃′′; r̃′′) = (s̃′∗)ũ · PKEEnc(pk, w̃′′; r̃′′).

The output is s = (ŝ, s̃), where ŝ = (ŝ′, ŝ′′) and s̃ = (s̃′, s̃′′), and the state consists of s∗ and all
the random values drawn throughout the game, i.e., st = (s∗, (ŵ′, r̂′, ŵ′′, r̂′′, û), (w̃′, r̃′, w̃′′, r̃′′, ũ)).

– RSRTest(w, k′, st) parses w as w = (ŵ, w̃) with ŵ = (ŵ1, ŵ2) and w̃ = (w̃1, w̃2) and the state
st as st = (s∗, (ŵ′, r̂′, ŵ′′, r̂′′, û), (w̃′, r̃′, w̃′′, r̃′′, ũ)). The algorithm first recomputes s = (ŝ, s̃)
using RSRStatement where ŝ = (ŝ′, ŝ′′) and s̃ = (s̃′, s̃′′). Next, the algorithm essentially verifies
the MACs on the plaintexts received, depending on k′ ∈ {1, 2}. If k′ = 1 the algorithm checks
if

û∑
i=1

ŵ1 + ŵ′′ = ûŵ1 + ŵ′′ = ŵ2

using standard additive notation. If k′ = 2 the algorithm checks if

ũ∑
i=1

w̃1 + w̃′′ = ũw̃1 + w̃′′ = w̃2.

On failure, it outputs 0. On success, it outputs 1.
– RSRWitness(w, st) parses st = (s∗, (ŵ′, r̂′, ŵ′′, r̂′′, û), (w̃′, r̃′, w̃′′, r̃′′, ũ)) and w = (ŵ, w̃) with

ŵ = (ŵ1, ŵ2) and w̃ = (w̃1, w̃2). It computes w′∗ = ŵ1 + (−ŵ′) where −ŵ′ is the inverse of
ŵ′ and w′′∗ = w̃1 + (−w̃′). This undoes the blinding in the plaintext space. The output is
w∗ = (w′∗, w′′∗).

– RVerify(u) outputs 1 iff the key is certified.

Lemma 3. RRR2HomPKE is a strong certified RRR.

Proof. Most properties immediately follow from the previous analysis. Observe that all algo-
rithms are efficient, and due to perfect correctness for every statement there is a unique witness
if R2HomPKE is certified. This makes re-randomization trivial. At the same time, RVerify perfectly
tests whether a purported output of RGen is correct since PKE is certified. Finally, RSRStatement
statistically hides s∗ while RSRWitness perfectly recovers w∗. Since the output s of RSRStatement
is uniformly random it is distributed like the output of RSubSample. Conceptually, RSRStatement
blinds each of the challenge ciphertexts. Next, it adds to each of the so obtained ciphertexts an
encryption of a (MAC) tag on the plaintext. Due to the homomorphic properties, this does also
work in case the plaintext of the challenge ciphertexts are not known. Moreover, since we use a two-
wise independent hash function, we obtain statistical security guarantees. The algorithm RSRTest
essentially checks whether the MAC is correct. Let us concentrate on the first set of computations
that focus on the first ciphertext. The remaining computations and arguments are analogous. To
start off, observe that û is a perfectly hidden scalar: the value is only used once and at the same
time ŝ′′ is also fully randomized by ŵ′′ (and r̂′′). We now need to show that it is hard to find two
incorrect plaintexts, that nevertheless give a positive MAC verification. We show that this only
works with small probability 1/|G| that is defined by the entropy of û. To see this, observe that
any incorrect plaintext pair v̂1, v̂2 must fulfill the same MAC equations as the correct one so that

we not only have
∑û

i=1 ŵ1 + ŵ′′ = ŵ2 but also
∑û

i=1 v̂1 + ŵ′′ = v̂2. However, this amounts to∑û
i=1(ŵ1− v̂1) = û(ŵ1− v̂1) = ŵ2− v̂2. Since û is perfectly hidden, the success probability to find

such a pair is equal to 1/|G|, which by our definition of semi-homomorphic PKE is statistically
small. To show the other direction, observe that if the algorithm is given the correct plaintexts,
then each term on the left and right will always be equal to zero (the neutral group element)
independent of û.

6.3 Strong RRRs from Certified Homomorphic One-Way Bijections

Let F denote an efficiently sampleable family of certified homomorphic one-way bijections as
defined in Section 4.7. We will now construct an RRR system RRRF with fan-out k = 1. Intuitively,
statements correspond to outputs of f while witnesses correspond to corresponding inputs.

18

– RGen(1κ) draws random certified f and outputs

Rf = {(f(z), z)} ⊆ B ×A.

We have that S = S′ = B and W = A.
– RSample(Rf) outputs (f(x), x) for uniformly random x ∈ A.
– RSubSample(Rf) simply outputs RSample(Rf).
– ReRand(s, w) outputs w.
– ReCheck(s, w,w′) outputs 1 iff w′ = w.
– RSRStatement(s∗; r) uses random coins r ∈ A to output

(s, st) = (s∗ ⊙ f(r), (s∗, r)).

– RSRWitness(w, st) parses st = (s∗, r) and outputs w ⊕ r−1.
– RSRTest(w, st) parses st = (s∗, r), recomputes (s, st) = RSRStatement(R, s∗; r), and outputs 1

iff s = f(w).
– RVerify(u) outputs 1 if f is indeed certified and 0 otherwise.

Lemma 4. RRRF constitutes a certified strong RRR system.

Proof. Since f is certified, P-12 and P-13 are trivially fulfilled. Since f is efficient, we have that P-1
and P-2 are fulfilled. Also, we obtain an efficient (offline) membership test showing P-9. It simply
checks whether s = f(w). Since we consider bijections, pre-images are unique and re-randomization
is trivial, guaranteeing P-3, P-4, and P-5. Finally, as r is uniform in A so is f(r) in B and thus
s∗ ⊙ f(r) perfectly blinds s∗ what shows P-7. Observe that this blinding can always be removed
showing P-6. Lastly, since the blinding is perfect this also shows P-8.

This class contains some of the most useful bijections in cryptography like the (certified) RSA
permutation, discrete exponentiations, or the evaluation of a non-degenerate bilinear pairing.

7 A New Weak Security Notion for Relations

Let us now formalize the main security notion that we will consider in this work (as depicted
in Figure 1). In the rest of the paper, we always assume that t, p are polynomials in the security
parameter unless specified otherwise. We state the security game using some of the syntax of
certified RRRs. However, we stress that the security game is very general and stating it does not
require the existence of most of the algorithms that are associated to RRR systems. However, our
main results will only apply if we indeed have access to all the algorithms of RRR systems.

Security Game: Lunchtime Inversion with t Adaptive Queries. The central security notion that we
consider for t ∈ N, t ≥ 1 is very simple. It is formalized as a game played between two algorithms,
a challenger C and attacker A.

1. The challenger C calls (R, cert)← RGen(1κ). The output is sent to A.
2. The parties repeat the following steps for all i ∈ [1; t].

2.i.1 The attacker A outputs statement si ∈ S.
2.i.2 The challenger C responds with uniformly random witness wi ∈Wsi such that (si, wi) ∈

R. If i = t the challenger also sends challenge statement s∗1, . . . , s
∗
p ∈ S.

3. The attacker outputs the challenge witness w∗
1 , . . . , w

∗
p ∈W .

We say that the attacker wins if for all i ∈ [p] we have (s∗i , w
∗
i) ∈ R. If in any execution of the

security game algorithm C finishes Step 2.i.2, we say that C accepts the s1, . . . , si.

To generalize our security notion, we also define the case for t = 0 where the attacker is not
allowed to query any statement for its corresponding witness.

19

Security Game: Lunchtime Inversion with t = 0 (No) Adaptive Queries.

1. The challenger C calls (R, cert)← RGen(1κ). The output is sent to the attacker A along with
p challenge statements s∗1, . . . , s

∗
p ∈ S.

2. The attacker outputs the challenge witnesses w∗
1 , . . . , w

∗
p ∈W .

Again, we say that the attacker wins if for all i ∈ [p] we have (s∗i , w
∗
i) ∈ R.

Definition 3. We say that certified (strong) RRR system RRR is secure against (lunchtime) in-
version (attacks) with t adaptive queries if no PPT attacker A can have non-negligible success
probability to win in the above security game.

8 Interactive Complexity Assumption

t-Interactive Complexity Assumptions. To model interactive complexity assumptions with t queries
we will rely on a generalization of the formulation introduced in [3] that originally focuses on
non-interactive assumptions only. It is slightly more general than the notion in [39] which uses
fixed thresholds. Intuitively, the notion we use allows arbitrary algorithms to implement a trivial
guessing strategy. A t-interactive complexity assumption (tICA) consists of t+ 3 Turing machines
ICA = (ICAGen, ICAVer, ICATriv, ICAQuery1, . . . , ICAQueryt).

– The efficient probabilistic instance generator ICAGen(1κ) → (c, st0) computes on input the
security parameter in unary a problem instance c and initial state st0.

– On input the i-th query qi and state sti−1 for i ∈ [1; t], the efficient algorithm ICAQueryi
outputs the i-th response pi and state sti. For convenience, we will also consider the set of all
the ICAQueryi as a stateful algorithm ICAQuery in the natural way.

– The efficient algorithm ICATriv is given a problem instance c and t-time oracle access to a
stateful algorithm ICAQuery. It outputs a candidate solution s. This algorithm implements a
trivial attack.

– The verification algorithm ICAVer takes as input a problem instance c, the final state stt, and
a purported solution s and outputs a bit b. If ICAVer(c, stt, s) = 1 we say that s is a valid
solution.

If ICAVer is efficient, we call ICA falsifiable.

Security Game for t-Interactive Complexity Assumptions (tICAs). Let us consider the following
security experiment ICAA

N involving attacker A.

1. The experiment runs ICAGen(1κ)→ (c, st0).
2. A is given c and oracle access to ICAQuery (run with random coins rP) for up to t queries.
3. Finally, the attacker outputs a candidate solution s.
4. The experiment returns whatever ICAVer(c, stt, s) returns.

Definition 4. We say that A efficiently breaks tICA ICA if A runs in polynomial time and

|Pr[ICAA
ICA(1

κ)⇒ 1]− Pr[ICAICATriv
ICA (1κ)⇒ 1]| = ϵ

is non-negligible where the probability is over the random coins consumed by the probabilistic al-
gorithms ICAGen, ICATriv, ICAQuery and A. We say that tICA ICA is secure if no probabilistic
polynomial algorithm can break ICA.

9 First Result: Impossibility of Simple Reductions for General RRR
Systems

In this section, we will establish our first result. A standalone proof applied to ElGamal PKE
is given in Appendix B. Before we begin, let us describe the restrictions that we make on the
considered reductions.

20

9.1 Simple Reductions

Our first result will consider a restricted form of reduction algorithms that we call simple reductions.
We stress that most of the reductions in cryptography seem to be of this type, including all
reductions that are used for security proofs of ElGamal PKE and derived schemes. In particular,
we will consider reductions B with the following properties.

– B treats the attacker in a black-box way, as in our general result.
– B only calls a single attacker.
– B does not rewind the attacker.

9.2 First Main Result

Now let us formally state our first result.

Theorem 1. Let RRR be a certified RRR system with constant fan-out k. Let p be a constant that
indicates the number of statements that the attacker must invert in the lunchtime-inversion game.
Then there is no simple PPT reduction B that can reduce the security of the lunchtime-inversion
game with t+ 1 adaptive queries to the security of any t-interactive complexity assumption ICA.

9.3 Proof of Theorem 1

Let us provide an overview of the proof. At first, we specify an ideal (unbounded) attacker A for
which the reduction has to work. Next, we present an efficient meta-reduction M that simulates
the ideal attacker. Finally, we analyze the difference between the behavior of a reduction B in the
two cases. We show that the reduction will not be able to tell the two settings apart. Thus, the
reduction also has to work for the efficient M . The combination of B and M will therefore break
the underlying tICA. The meta-reduction gains its power from rewinding the reduction.

In a nutshell, the proof relies on the fact that we can always find a useful rewinding spot after
rewinding. The useful rewinding spot is an attacker query such that i) the reduction provides a
(correct) response to that query and ii) the reduction does not query its tICA challenger before
delivering the response. Intuitively, the meta-reduction will repeatedly try to hit a useful rewinding
spot and send new queries that are derived from the challenge statements to the reduction. The
proof exploits that in each of these runs, with non-negligible probability, the reduction will behave
as in the first run if presented with a new query since new queries are distributed statistically close
to queries of the first run. Let us now be more formal.

9.4 The Ideal Attacker A

1. The attacker A receives random coins r, and R, cert. It aborts in case RVerify(R, cert) ̸= 1.
Otherwise, it continues.

2. The parties repeat the following steps for all i ∈ [1; t+ 1].
2.i.1 The attacker A draws (si, wi)← RSubSample(R) and sends si to the challenger.
2.i.2 The challenger responds with witness w′

i. If i = t, the challenger also sends challenge
statements s∗1, . . . , s

∗
p ∈ S. The attacker aborts in the case that ReCheck(si, wi, w

′
i) ̸= 1.

Otherwise, it continues.
3. The attacker checks if s∗1, . . . , s

∗
p ∈ S and aborts otherwise. Next, the attacker uses its un-

bounded power to compute a challenge witness w∗
ℓ ∈ W for each ℓ ∈ [p]. To this end it could

for example compute RSample(R; r) for all possible random coins and generate the set Ws∗ℓ
for

each ℓ ∈ [p]. From this, it can draw an arbitrary witness w′
ℓ ∈ Ws∗ℓ

. Next, it re-randomizes
witness w′

ℓ by computing w∗
ℓ ← ReRand(s∗ℓ , w

′
ℓ). The final output consists of w∗

1 , . . . , w
∗
p.

9.5 The Meta-Reduction M can Rewind Reduction B

We will now consider a meta-reduction M that acts as an attacker against the purported reduc-
tion B. In particular, we assume that M can store the full execution state statei of B after B has
sent some message and awaits a corresponding response. With these states, M can rewind B to a
previous point in time by loading the corresponding execution states. Let us now specify how the
meta-reduction simulates the ideal attacker.

21

9.6 The Simulated Attacker

0. The meta-reduction M receives the tICA instance c and relays it to B along with random coins
rB ∈ DB .

1. The attacker M receives r,R, cert from B and aborts if RVerify(R, cert) ̸= 1. Otherwise, it
continues.

2. The parties repeat the following steps for all i ∈ [1; t+ 1].
2.i.1 First the attackerM storesB’s execution state statei. Next, the attackerM calls (si, wi)←

RSubSample(R) and sends si to the reduction.
2.i.2 The reduction responds with a witness w′

i ∈ W . If the reduction B outputs a query to
its tICA challenger, this query is simply relayed by M to its tICA challenger. Likewise,
all responses are relayed back to B. The attacker M aborts if ReCheck(si, wi, w

′
i) ̸= 1.

Otherwise, it continues. If i = t the reduction also sends challenge statements s∗1, . . . , s
∗
p ∈ S

to M .
2’ The attacker checks if s∗1, . . . , s

∗
p ∈ S. On failure it aborts. Otherwise, it halts B and stores the

current execution state state∗ of B. Then, for each ℓ ∈ [p] the attacker M repeats the following
loop:
2’.ℓ The attacker M computes (s′ℓ, st

∗
ℓ)← RSRStatement(R, s∗ℓ) with s′ℓ = (s′ℓ,1, . . . , s

′
ℓ,k). Next,

M iterates through all k components of s′ℓ. To this end, it repeats the following loop for
all j ∈ [k]:
2’.ℓ.j The attacker M iterates through all possible states statev. To this end, it repeats the

following loop for all state indices v ∈ [t+ 1]:
2’.ℓ.j.v The attacker M rewinds the reduction B back to the point before [2.v.1] by

loading statev. Next it sends s′ℓ,j to B. If M receives a response w′
ℓ,j ∈ W and no

external query to its tICA challenger has been made by the reduction in the time
between sending s′ℓ,j and receiving w′

ℓ,j , M leaves this loop immediately (break6).

Otherwise, it checks whether v = t+1. In case v = t+1 7, attacker M jumps back
to 2’.ℓ and repeats the entire computation calling RSRStatement(R, s∗ℓ) with fresh
randomness.8

3. The meta-reduction computes the value w′∗
ℓ ← RSRWitness(R, st∗ℓ , w

′
ℓ) for each ℓ ∈ [p] and

from this w∗
ℓ ← ReRand(R, s∗ℓ , w

′∗
ℓ) for all ℓ ∈ [p]. Next it loads B’s state state∗, and outputs

the challenge witnesses w∗
1 , . . . , w

∗
p ∈W .

4. B responds with a solution to the tICA challenge.
5. Finally, meta-reduction M relays that solution to the tICA challenger.

9.7 Analysis

The proof relies on the following lemma.

Lemma 5. The following conditions are fulfilled:

1. M runs in expected polynomial time.
2. M always outputs w∗

1 , . . . , w
∗
p if it finishes its computations.

3. All values w′
ℓ,j received by M as responses to s′ℓ,j in the rewinding process of M are correct with

non-negligible probability, i.e. (s′ℓ,j , w
′
ℓ,j) ∈ R.

4. With probability statistically close to one, the reduction B can never distinguish M from A.
5. M makes at most t queries to the ICA challenger.

With Lemma 5 we are guaranteed that B, after expected polynomial time, outputs a solution
to the tICA challenge when given w∗

1 , . . . , w
∗
p with non-negligible probability. This concludes the

proof of Theorem 1. We note that previous results on meta-reductions like [39] also require the
reduction to run in expected polynomial time. By an application of the Markov inequality, we can
then truncate the execution of the machine while still guaranteeing an inverse polynomial success
probability for infinitely many security parameters. It remains to prove Lemma 5.

6 The attacker M continues at Step 2′.ℓ.j′ for j′ = j + 1.
7 This means, that M has not received w′

ℓ,j ∈W as a response to s′ℓ,j in any of the states statev or if the
reduction has always made external queries.

8 This implictly means that if M firts receives an external query as a response to s′ℓ,j the loop just
continues.

22

Proof. Consider a reduction B that breaks the underlying security assumption with probability ϵ
when communicating with an attacker. The splitting lemma guarantees with non-negligible prob-
ability ϵ′ = ϵ/2, that the randomness rB ∈ DB used by the reduction B will make B accept
at least a fraction of ϵ′ = ϵ/2 of all the possible query tuple (s1, . . . , st+1) ∈ St+1. To see this
set U = DB to be the randomness space for B and V = St+1 to be the space of all possible
statement tuples and let G be all (u, v) ∈ U × V that make B break the tICA. By assumption
we have that |G|/|U × V | ≥ ϵ. In terms of the splitting lemma, the randomness rB is thus a
super-good element. In particular, for super-good randomness rB , B will with probability ϵ′ accept
a randomly generated tuple (s1, . . . , st+1) ∈ St+1 that is computed by the ideal attacker A as
si = [RSubSample(R)]1 for each i ∈ [t + 1]. Each such tuple will make the reduction output the
challenge statements and if the reduction B is provided corresponding witnesses w∗

1 , . . . , w
∗
p to the

challenges s∗1, . . . , s
∗
p next, B will break the tICA. Observe that if B accepts s1, . . . , si+1 for any

i ∈ [t] it will trivially also accept s1, . . . , si. In the following, we will thus concentrate on a single,
fixed randomness rB that the reduction uses and assume it to be super-good. This accounts for at
most an additional non-negligible decrease of the overall success probability by a factor of ϵ′.

Let us now focus on the difference in the behaviour of reduction B when B communicates
with M instead of the ideal attacker A. A closer inspection reveals that the only case that the
behavior may differ occurs if the reduction does abort in Step 2’ but does not abort otherwise or if
in Step 2’ (or one of the substeps) the reduction delivers to an attacker query s a response w that
is incorrect such that we have (s, w) /∈ R. Otherwise, the simulation is perfect. Let us thus now
analyze this event in more detail. We begin with a helpful observation. We observe that for each
tuple (s1, . . . , st+1) ∈ St+1 that the reduction accepts there is always one si with i ∈ [t + 1] such
that i) the reduction does not make a query to its tICA challenger before delivering the response
wi and ii) the reduction has provided a correct response in the first run. The first condition is
guaranteed simply because the number t+1 of queries allowed in the lunch-time inversion game is
larger than the number of queries t allowed in the communication with the tICA challenger. The
second condition is true since the meta-reduction (in the first run) and the ideal attacker, both
have access to the witnesses of the statements they send. Thus they can always use ReCheck to
verify the responses and any successful reduction is bound to deliver correct witnesses wi for every
i ∈ [t] with high probability.

First, observe that if the meta-reduction finishes, it will by construction always output witnesses
w∗

1 , . . . , w
∗
p.

Let us next show that the meta-reduction runs in expected polynomial time. First, observe
that all operations performed in step 2’.ℓ.j.v are efficient. To argue that the entire meta-reduction
is efficient, and since the number of each loop iteration is polynomially bounded (ℓ ∈ [p], j ∈
[k], v ∈ [t + 1]) we must now specifically show that the jumps in Step 2’.ℓ.j.v back to 2’.ℓ will
not make the overall runtime super-polynomial. We thus have to analyse how likely such jumps
are. To this end, compute the probability Pr[Eℓ,j,v] of the event Eℓ,j,v that after sending s′ℓ,j in
statev, M has received back witness w′

ℓ,j ∈ W while B has not made an external query. Recall
that B will with probability ϵ′ accept a random tuple of statements before the attacker outputs a
forgery. This in particular means that to any single statement sv of such a vector, the reduction
will respond with a witness wv with at least probability ϵ′. Recall that s′ℓ,j is distributed as sv
(except for statistically small probability δ). So, from the viewpoint of the reduction, the overall
tuple of statements received so far (s1, . . . , sv−1, s

′
l,j) is distributed like a tuple of an ideal attacker

except with probability δ. Thus, the reduction will respond to s′ℓ,j with witness w′
ℓ,j with at least

probability ϵ′ − δ in state statev. Now, since we must always have that at least one of the t + 1
statements that are delivered to B in an accepting tuple will not invoke external queries to compute
the response, we have that Pr[Eℓ,j,v] ≥ (ϵ′ − δ)/(t+1) for at least one of the possible states statev
with v ∈ [t+1]. Next, compute the probability Pr[Eℓ,j] of the event Eℓ,j that for any of the states
statev with v ∈ [t+ 1], reduction R has responded to query s′ℓ,j with w′

ℓ,j ∈W without making an
external query. For this event we have that Pr[Eℓ,j] = Pr[Eℓ,j,1 ∨ . . . ∨ Eℓ,j,t+1] ≥ (ϵ′ − δ)/(t+ 1).
This means that after an expected number of x = O(1/Pr[Eℓ,j]) iterations per j ∈ [k] the meta-
reduction will not jump back to 2′.ℓ. Let us finally compute the probability Pr[Eℓ] of the event
Eℓ that the reduction responds with w′

ℓ,j to all the s′ℓ,j with j ∈ [k] (for fixed ℓ) without making
any external queries. We have that Pr[Eℓ] = Pr[Eℓ,1 ∧ . . . ∧ Eℓ,k]. Now, since any derived value
s′ℓ,j is distributed statistically close to any of the sv (and thus statistically close to a value that is

23

independent of any other s′ℓ′,j′) we get that Pr[Eℓ,i+1|Eℓ,i] ≥ (ϵ′− δ)/(t+1) for all i = 1, . . . , k−1.

Now, we have probability Pr[Eℓ] = Pr[Eℓ,1] ·
∏k−1

i=1 Pr[Eℓ,i+1|Eℓ,i] ≥ ((ϵ′ − δ)/(t+ 1))
k
. For any

sufficiently large security parameter, we have that ϵ′ ≥ δ since δ is statistically small and ϵ′ is
non-negligible. Thus Pr[Eℓ] ≥ (ϵ′/(2t+ 2))

k
and since k is constant, Pr[Eℓ] is non-negligible. Thus

after at most a polynomial number of iterations O(1/Pr[Eℓ]) the meta-reduction will not jump
back and finish the loop for a single ℓ ∈ [p]. Repeating this process for all ℓ and relying on the
fact that all operations in step 2′.ℓ.j.v are indeed efficient, we now obtain that after an expected
polynomial number of iterations the meta-reduction obtains all p k-tuples w′

ℓ = (w′
ℓ,1, . . . , w

′
ℓ,k) for

ℓ ∈ [p]. This shows that M is indeed efficient.
Now let us consider the probability that all the witnesses received in the rewinding process are

indeed correct in the sense that (s′ℓ,j , w
′
ℓ,j) ∈ R. This is necessary because since R is not a strong

RRR, the meta-reduction cannot test whether the outputs are indeed correct. We have that the
reduction responds with a correct witness w′

ℓ,j per statement s′ℓ,j with probability at least ϵ′ − δ.
This is because i) in the first run, each statement si will make the reduction respond with wi

with probability at least ϵ′ and ii) the s′ℓ,j are distributed like the si except with probability δ. So
after receiving a total of p · k witnesses s′ℓ,j the probability that all of them are correct is at least

(ϵ′ − δ)p·k which is non-negligible in case p · k is constant. (Jumping ahead, in our second main
proof, we can, by the properties of the Strong RRR, immediately test whether the responses of
the reduction are indeed correct. This reduces the bound to (ϵ′ − δ)k. We are thus able to have a
polynomial p at this point. However, we need to still require k to be constant since the algorithm
RSRStatement always outputs k statements at a time. If only a single one of them is incorrect we
have to jump back.)

Let us finally analyze the distribution of values produced by the meta-reduction and com-
pare them to the ideal attacker. First observe that according to the view of the reduction B,
B will always see at most a single transformed statement s′ℓ,j , each time as part of a tuple of
statements of the form s = (s1, . . . , si, s

′
ℓ,j). Since only the last statement is not distributed like

the output of the ideal attacker, the distribution of s is identical to the ideal attacker except for
statistically small probability δ. In other words, B will respond as for an ideal attacker except
with probability δ. Now if the values w′

ℓ,j received by M are all correct, M can finally compute
w′

ℓ
∗ ← RSRWitness(R, st, w′

ℓ) and ultimately, after re-randomization, the meta-reduction outputs
all the re-randomized w∗

1 , . . . , w
∗
p. Due to property P-4, each of these values is distributed like the

ideal attacker. Thus, the reduction will not tell the tuple (w∗
1 , . . . , w

∗
p) apart from the witnesses

output by the ideal attacker outputs.
At last, observe that, after the rewindings, B’s view will be such that overall it has received

a tuple of statements (s1, . . . , st+1). Since the s1, . . . , st+1 are exactly distributed as the ideal
attacker, the reduction will never be able to distinguish the meta-reduction from the ideal attacker
except for probability ζ. Moreover, the meta-reduction has never made more than t queries to the
challenger of the tICA as it is merely relaying queries from the reduction to the tICA challenger
in Step 2. By assumption, this will only account for up to t external queries. In particular, no
additional query will be relayed to the tICA challenger after a rewinding in Step 2’.

To sum up, we have that i) the runtime of M is polynomially bounded, ii) that it will always
output a witness tuple (w∗

1 , . . . , w
∗
p), iii) that the witnesses received by M from B in the rewinding

process are correct with non-negligible probability, and iv) that the reduction B can never distin-
guish M from A with probability statistically close to one. Finally, we have v) that M makes only
at most t queries to the ICA challenger altogether. Thus B outputs after expected polynomial time
a solution to the tICA challenge when given w∗ with non-negligible probability.

9.8 No Need for the Forking Lemma

It might be tempting to consider an analysis of the error probability that relies on the Forking
Lemma [41]. However, it turns out that this is not necessary and the Splitting Lemma suffices.
Arguments based on the Forking Lemma often need to guarantee that the queries sent at the
rewinding spot before and after the actual rewinding are distinct. This accounts for an additional
term in the analysis that depends on the size of the set of all possible queries. In particular, a small
set of queries is prohibitive for a security proof. In our analysis, however, this is not necessary. This

24

is because in our analysis we could theoretically have that the two queries (statements) that are
sent at the rewinding spot, one before and one after the actual rewinding, may be equal. This is
essentially because the second query is constructed by deriving it from a challenge statement. So
a single answer w to statement s could theoretically help to not only compute a witness for s but
also for other statements s∗ that, after blinding (for self-reducibility), happen to result in s.

10 Applications of First Main Theorem

We now present several interesting applications of our first theorem. To apply it to semi-homo-
morphic PKE, we can simply concretely instantiate the RRR system in the theorem by RRR where
k = 1 (Figure 3). We immediately end up in the OW-CCA1 security game for PKE. At the same
time, this establishes a hierarchy of security games.

Corollary 1. There is no simple PPT reduction that can reduce the OW-CCA1 security of a
certified semi-homomorphic PKE with t+ 1-decryption queries to the security of any t-interactive
complexity assumption.

Corollary 2. There is no simple PPT reduction that can reduce the OW-CCA1 security of any
certified semi-homomorphic PKE with t + 1 decryption queries to the OW-CCA1 security of the
same semi-homomorphic PKE with t decryption queries.

Exploiting that CHOWBs can easily be cast as RRRs (Sectionx 6.3), we can also apply our
first result to CHOWBs (Figure 5).

Lunchtime Inversion Game (CHOWB)

C A

f, cert
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

s1 = y1
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

w1 = x1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

. . .

st = yt
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

wt = xt, s∗1 = y∗
1 , . . . , s

∗
p = y∗

p−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

w∗
1 = x∗

1, . . . , w
∗
p = x∗

p←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 5. Security definition when instantiating the second main result with strong RRRs based on CHOWB
f ∈ F . Statements s correspond to output values y, while witnesses w correspond to inputs x of f . The
resulting security game is equivalent to the security game for CHOWBs.

Corollary 3. Let F denote an efficiently sampleable family of certified homomorphic one-way
bijections. Then we have that there is no simple PPT reduction that can reduce the security of F
with t+ 1-inversion queries to the security of any t-interactive complexity assumption.

Corollary 4. Let F denote an efficiently sampleable family of certified homomorphic one-way
bijections. Then we have that there is no simple PPT reduction that can reduce the security of F
with t+ 1-inversion queries to the security of F with any t-inversion queries.

Even more concretely, we finally obtain a result on ElGamal PKE (Figure 6). This in particular
shows that ElGamal cannot be shown IND-CCA1 secure via simple reductions. Appendix B gives
a standalone proof of this result.

25

Corollary 5. There is no simple PPT reduction that can reduce the OW-CCA1 security of ElGamal
PKE with t+ 1 decryption queries to the security of any t-interactive complexity assumption.

Simple ElGamal Lunchtime Inversion Game

C A

g, q, pk = gx

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

s1 = (gr1 , pkr1 ·m1)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

w1 = m1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

. . .

st = (grt , pkrt ·mt)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

wt = mt, s∗ = (gr
∗
, pkr∗ ·m∗)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

w∗ = m∗

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 6. Security definition considered in our first result. Statements are ElGamal ciphertexts, witnesses are
the corresponding plaintexts. The public parameters define a cyclic group of prime order q with generator
g and a public key pk. This guarantees that for each ciphertext, there is a unique plaintext.

As a last example, we may apply our result to the discrete exponentiation function which in
prime order groups yields a certified homomorphic one-way bijection, i.e. a concrete instance of
Rf .

Corollary 6. There is no simple PPT reduction that can reduce the one-more DLOG assumption
with access to t′ DLOG-queries to the security of any t-interactive complexity assumption where
t′ = t+ 1.

The one-more DLOG assumption and one-more variants of other CHOWBs have for example
been analyzed in [6]. This result is a quantitative improvement over [39] who showed an asymptotic
bound of t′ = ω(κ+ t+ 1). However, in this result, we consider only simple reductions.

11 Second Main Result

In this section, we describe our second main result. We believe that it is instructive to first explain
how our first result breaks down in the presence of rewinding reductions.

11.1 On the Necessity of Non-Rewinding Reductions

For our first result, it is important that the reduction cannot rewind the attacker. Otherwise, it
could (in Step 2.i.2) first try to send some incorrect w′ to M such that (s, w′) /∈ R when answering
an inversion query for s. Only if the attacker aborts, the reduction would rewind M and retry to
respond to the query s with a correct w. However, since M can in a rewound run not notice if w′

is correct while the ideal attacker can always notice this, the reduction can easily tell A and M
apart. This is a fundamental problem when dealing with RRRs.

11.2 Tackling Rewinding Reductions

In our second main result, we will thus extend and refine the above idea to deal with general
reductions. In particular, we need to take care of rewinding reductions. At the same time we take

26

care of reductions that execute several, u, attackers concurrently. To this end, we make use of novel
and known techniques. However, what is crucial is that because of the generic problem that we
described we now have to rely on strong RRR systems when dealing with rewinding reductions.
This has important consequences. First, we will end up showing an impossibility result for the
weaker notion of Paired OW-CCA1 security (Section 4.6) when applying our result to strong
RRRs based on semi-homomorphic PKE. This makes our result seemingly stronger than the last
one since this notion is weaker than OW-CCA1 security and thus IND-CCA1 security. However,
crucially, the result now holds only if the reduction makes at most half the number of queries
⌊t/2⌋ to its ⌊t/2⌋ICA challenger where t is the number of queries by the attacker. This also makes
our result somewhat weaker. Finally, we will consider reductions that make at most arbitrary u
instances overall.

Theorem 2. Let RRR be a certified strong RRR system with constant fan-out k. Let p be a poly-
nomial. There is no PPT reduction B that can reduce the security of the lunchtime inversion game
with t′ ≥ (u+ t) adaptive queries to the security of any tICA while creating at most u instances of
the attacker overall.

Intutition: Lazy Simulation. Let us provide some intuition for the simulation strategy of our final
meta-reduction. Assume the reduction B creates u instances of the attacker A. Intuitively, we
employ a careful generalization of the previous proof strategy that is applied to each simulated
attacker, one after the other. The meta-reduction M simulates all of these runs. Since it has
to deal with rewinding reductions, the proof makes sure that the ideal attacker and the meta-
reduction behave deterministically from the point of view of the reduction. Thus rewindings do
not help the reduction to obtain additional information. Corresponding to the lunchtime inversion
game (Figure 1, Section 7), in the first phase of each of the simulated attackers, the meta-reduction
only queries the reduction on t + 1 random statements. At the end of each of these phases, the
meta-reduction has received back the corresponding witnesses to its random queries and also the
set of challenge statements s∗1, . . . , s

∗
p. Let A

′ be the instance of the simulated attacker that receives
the challenge statements first. This starts the second phase of the simulation of A′ which is similar
to the proof of the first main theorem. First, the meta-reduction stores the state of the reduction at
this point to later come back to it. Next,M repeatedly rewinds B back to hit a useful rewinding spot
with a derived statement. However, in this proof a useful rewinding spot fulfills three conditions.
It is an index i, such that in the time span between query si from A′ and corresponding response
wi sent to A′, the reduction has i) not made any external query to the interactive complexity
assumption, ii) has responded with a correct response (this can now be tested), and iii) not required
any of the u − 1 other instances of the (simulated) attacker to output a forgery. As in the first
proof, i) ensures that the outside communication between B and its challenger is not disturbed.
The third condition is crucial to avoid that simulation runtimes can grow exponentially when the
communication with the attacker is nested by the reduction after rewinding [39]. Since there are
only t queries from the reduction to the complexity assumption overall and since we only have
at most u instances (and at most u − 1 that are different from A′) there will always be at least
one useful rewinding spot if t′ ≥ u+ t by the pigeon-hole principle. Now, the reduction, as in the
first proof, proceeds according to a lazy strategy that tries to extract all p challenge witnesses by
exploiting thatM can repeatedly send new query si to B and that, with high probability, B behaves
as in the first run. As a first step, it randomizes the first challenge statement s∗1 (exploiting random
self-reducibility) and sends the result as a new query s′i at index i to B. Since the distribution of
the two queries si, s

′
i are statistically close, the reduction will with high probability behave as after

the first query and output a witness without calling the challenger of the complexity challenge.
On failure, M simply generates another randomization of s∗1 and tries again. Observe that since
we now rely on strong RRRs, the meta-reduction can, like the ideal attacker, always check if the
responses from the reduction are correct. On success, M can exploit the response to s′i and the
properties of the RRR (random self-reducibility and re-randomizability) to obtain a solution w∗

1

to the first challenge statement. After that, M repeats the process with all of its other challenge
statements, one after the other. Since the meta-reduction can now immediately check if a witness
w∗

i is indeed correct (exploiting the indirect membership test of strong RRRs at the end of Step
2’.ℓ.j in the meta-reduction of Appendix B.5), the meta-reduction can proceed in a step-by-step
manner and only continue if the previous witness was successfully found. In this way, the meta-

27

reduction can slowly but surely accumulate all p witnesses. Next, the meta-reduction returns to the
original execution state and, after re-randomization, outputs the solutions to the challenge queries.
By the properties of the RRR, the reduction will accept these values with high probability. The
simulation continues until the next simulated attacker receives its challenge statements and the
process of extracting solutions to the challenge statements is repeated. This increases the runtime
of the meta-reduction at most by an additional factor of u. Finally, if M has computed responses
to all challenge statements, B will output the solution to the tICA.

Let us now begin with the formal proof. The proof closely follows the proof for the first main
theorem.

11.3 The Ideal Attacker

Assume the attacker Aideal is given access to a random oracle h(·). In the lunchtime inversion
security game with challenger C, the ideal attacker Aideal works as follows. To model that the
reduction can rewind the attacker at will, we model Aideal as a deterministic next message function:

1. Verifying the initialization values. If C feeds Aideal with relation R, a proof cert, and random
coins r, Aideal runs RVerify(R, cert) = b. If b = 0, the attacker aborts. Otherwise, Aideal deter-
ministically computes the first statement. To this end, it computes randomness r1 = h(r,R, 1)
and (s1, w1) = RSubSample(R; r1) and outputs s1 to C.

2. Verifying the initialization values and the witnesses. If C sends to Aideal a message consist-
ing of values r′, R′, cert′, w′

1, . . . , w
′
i′ for i′ ∈ [t′], the attacker first verifies all values in that

view. To this end, Aideal at first verifies the initialization values as before. It thus com-
putes RVerify(R′, cert′) = b, and if b = 0, Aideal aborts. Otherwise Aideal verifies the wit-
nesses w′

1, . . . , w
′
i′ . To this end Aideal will compute ri = h(r,R, i) for all i ∈ [i′] and then

(si, wi) = RSubSample(R; ri). Next, it will check for all i ∈ [i′] that ReCheck(R, si, wi, w
′
i) = 1.

On failure A aborts. After this verification, Aideal computes a new statement. It computes
(si′+1, wi′+1)← RSubSample(R; ri′+1) with ri′+1 = h(r,R, i′ + 1) and outputs si′+1 to C.9

3. Verifying the initialization values, the witnesses, and computing challenge witnesses. If the
message r′, R′, cert′, w′

1, . . . , w
′
t′ , s

∗
1, . . . , s

∗
p is sent by C to Aideal, Aideal first verifies the ini-

tialization values r′, R′, cert′ as before. On failure, it aborts the simulation of A. Next, Aideal

verifies the witnesses w′
i for i ∈ [t′] as before. On failure Aideal aborts. Finally, it tests whether

we have s∗1, . . . , s
∗
p ∈ S. If this does not hold, the ideal attacker aborts. Next, Aideal uses its

unbounded power to compute w∗
1 , . . . , w

∗
t′ such that (s∗i , w

∗
i) ∈ R for all i ∈ [t′]. The ideal at-

tacker can do this by repeatedly running RSample(R; r′′) for all possible random values r′′ ∈ D
and finding among the outputs, for all i, the lexicographically smallest pair (s∗i , w

′∗
i) ∈ R.

Next, the ideal attacker can compute r∗ = h(r,R, t′ + 1) (we also use rt′+1 = r∗) and output
w∗

i ← ReRand(R, s∗i , w
′∗
i ; r∗).

This ends the description of Aideal. Observe that Aideal wins with probability 1. Also, Aideal is
entirely deterministic.

Invariant of Each Instance of the Ideal Attacker. Observe that for each instance of the ideal
attacker we always have that for a single query (si, wi)← RSubSample(R; ri) it holds that

1. the reduction outputs to A a correct witness w′
i as a response to si. By property P-5 it holds

that ReCheck(R, si, wi, w
′
i) = 1 if and only if (si, wi) ∈ R.

2. in the time between receiving si and responding w′
i, B has not made a query to its tICA

challenger.
3. in the time between receiving si and responding wi, B has not sent a challenge statement to

any of the other u− 1 instances.

The last two properties simply hold by the pidgeonhole principle because there are overall t + u
queries made by the attacker but only at most u − 1 other instances of A and at most t queries
to the tICA. So for at least one query the latter two properties are fulfilled. The first property is
always fulfilled since the ideal attacker will simply abort if ReCheck(R, si, wi, w

′
i) ̸= 1.

9 Observe that this process guarantees that the ideal attacker will only output a new statement if it has
received correct witnesses for all the previous statements. In this way, we carefully make the derivation
of si′+1 depend on the correctness of the witnesses provided by the reduction but not on the witnesses
themselves.

28

11.4 The Meta-Reduction M Rewinds B and Behaves Deterministically

We will now consider a meta-reduction M that executes the purported reduction B. We use A[z] to
denote the zth instance of A that is simulated by B with z ∈ u. We will keep most of the variables
that have been used in the first proof. For any variable x that belongs to the communication
between B and A[z] we write x[z]. As before, we assume that M can store the full execution state
statei[z] of B immediately after A[z] has sent message si[z] and awaits a corresponding response.
With these states, M can rewind B to a previous point in time by loading the corresponding
execution states. Correspondingly state∗[z] is the state of B when B has just output s∗1[z], . . . , s

∗
p[z]

to A[z].

We will also use that since the meta-reduction controls the reduction it can easily simulate the
deterministic behavior of the ideal attacker via appropriate bookkeeping. For the sake of simplicity,
we refrain from explaining this in detail. We can imagine a table that essentially simulates what the
random oracle does for the ideal attacker. The table could for example contain all the randomness
ri[z] and r∗[z] that M uses to compute si[z]. Another way to view this, is that M precomputes all
the ri[z] for i ∈ [t+ 1] and z ∈ [u] as random values in D and uses them consistently.

Let us now specify how the meta-reduction proceeds. Intuitively it behaves honestly as long
as the reduction does not require any of the A[z] to deliver a witness tuple w∗

1 [z], . . . , w
∗
p[z] to

challenge s∗1[z], . . . , s
∗
p[z]. We now have to address that the reduction may, at any time, create new

instances of the attacker. Moreover, the messages may arbitrarily be interleaved. In the following,
let z′ be a variable counting the current number of instances created and initialize it to z′ = 0. By
assumption, we always have z′ ≤ u.

11.5 The Simulation of u Attackers

0. The attacker M receives the tICA instance c and relays it to B along with random coins
rB ∈ DB .

1. If at any point, M receives r,R, cert from B it verifies the initialization values by computing
RVerify(R, cert). It aborts if RVerify(R, cert) ̸= 1. Otherwise, it increments z′ setting z′ ←
z′ + 1 and starts to simulate a new, z′th instance A[z′] of the attacker. To this end, M first
sets (r[z′], R[z′], cert[z′]) = (r,R, cert). Next, M stores B’s execution state state1[z

′], calls
(s[z′]1, w[z

′]1)← RSubSample(R[z′]), and outputs s1[z
′].

2. If B sends to A[z] (z ∈ [z′]) a message r′[z], R′[z], cert′[z], w′
1[z], . . . , w

′
i′ [z] for i′ ∈ [t′], A[z]

first verifies the initialization values as the ideal attacker. To this end, instance A[z] com-
putes RVerify(R′[z], cert′[z]) = b, and if b = 0, it aborts. Otherwise A[z] verifies the witnesses
w′

1[z], . . . , w
′
i′ [z]. To this end, it computes (si[z], wi[z]) = RSubSample(R[z]; ri[z]) for each i.

Next, it will check for all i ∈ [i′] that ReCheck(R[z], si[z], wi[z], w
′
i[z]) = 1. On failure A[z]

aborts. After this verification, A[z] computes a new statement. This is done by computing
(si′+1[z], wi′+1[z])← RSubSample(R; ri′+1[z]). Now M stores B’s execution state as statei′+1[z]
and outputs si′+1[z] to B.

3. Verifying the initialization values, the witnesses, and computing challenge witnesses. If a mes-
sage consisting of r′[z], R′[z], cert′[z], w′

1[z], . . . , w
′
t′ [z], s

∗
1[z], . . . , s

∗
p[z] is sent by B to A[z] for

(z ∈ [z′]), A[z] first verifies the initialization values r′[z], R′[z], cert′[z] as before. On failure,
B aborts the simulation of A[z]. Next, A[z] verifies the witnesses w′

i[z] for i ∈ [t′] as before.
On failure, A[z] aborts. Finally, it tests whether we have s∗1[z], . . . , s

∗
p[z] ∈ S. If this does

not hold, A[z] aborts. Now, A[z] looks up if the values w∗
1 [z], . . . , w

∗
p[z] have in the past al-

ready been computed. If so, it outputs them to the reduction. Otherwise, it calls algorithm
(w∗

1 [z], . . . , w
∗
p[z])← Extract(z) and outputs w∗

1 [z], . . . , w
∗
p[z].

4. If at any point, M receives a query of the reduction that is directed at its tICA challenger,
M just relays it to its own tICA challenger and sends the response of its own tICA challenger
back to B.

This finishes the description of the meta-reduction. Observe that besides Extract all algorithms are
efficient. It remains to specify algorithm Extract.

29

11.6 The Extraction Algorithm

Essentially while focusing on a single z, Extract closely follows the rewinding strategy of the meta-
reduction of the first proof. The only change is that useful rewinding spots are defined differently
and that the proof now supports polynomial p and constant k — in contrast to demanding constant
k·p only. A useful rewinding spot is now characterized by the behavior of reductionB when receiving
s′ℓ,j [z] in state statev[z] s.t. (s

′
ℓ,1[z], . . . , s

′
ℓ,k[z], st

∗
ℓ [z]) = RSRStatement(R[z], s∗[z]; rv[z]). We call

s′ℓ,j [z] when it is sent to the reduction in state statev[z] a useful rewinding spot if

1. the reduction outputs to A[z] a witness w′
ℓ,j [z] with RSRTest(R[z], w′

ℓ,j [z], j, st
∗
ℓ [z]) = 1 as a

response.

2. in the time between receiving s′ℓ,j [z] and responding w′
ℓ,j [z] has not made a query to its tICA

challenger, and

3. in the time between receiving s′ℓ,j [z] and responding w′
ℓ,j [z] has not sent a challenge statement

to any of the other z′ − 1 instances.

In our arguments, we will intuitively use the fact that these conditions are fulfilled with non-neglible
probability. The second and third requirements hold with non-negligible probability because i) M
attempts to send s′ℓ,j [z] in any possible state and ii) s′ℓ,j [z] is distributed like the si of the ideal
attacker except for a statistically small error. We thus have that any query s′ℓ,j [z] of A[z] has
the same probability of making B fulfill the last two properties, as one of the queries si of the
ideal attacker. The first property holds because property P-9 holds for strong RRRs. It essentially
states that the test performed via RSRTest(R[z], w′

ℓ,j [z], j, st
∗
ℓ [z]) = 1 is statistically close to the

test ReCheck(R, si, wi, w
′
i) = 1 performed by the ideal attacker. For any z ∈ [z′], and z′ ≤ u we

must thus always be able to find a useful rewinding spot with non-negligible probability. Let us
now describe algorithm Extract.

Extract(z):.

1’ M stores the execution state state∗[z] of B.

2’ The meta-reduction repeats the following loop for each ℓ ∈ [p]:

2’.ℓ The meta-reduction computes (s′ℓ[z], st
∗
ℓ [z]) ← RSRStatement(R[z], s∗ℓ [z]) with s′ℓ[z] =

(s′ℓ,1[z], . . . , s
′
ℓ,k[z]). Next, the meta-reduction iterates through all k components of s′ℓ[z].

To this end, it repeats the following loop for all j ∈ [k]:

2’.ℓ.j The meta-reduction iterates through all possible states statev[z]. To this end, it re-
peats the following loop for all state indices v ∈ [t+ 1]:

2’.ℓ.j.v The meta-reduction rewinds the reduction B back to the point before [2.v.1] by
loading statev[z]. Next it sends s′ℓ,j [z] to B. If M receives a response w′

ℓ,j [z] ∈ W ,
M checks i) if no external query to its tICA challenger has been made by the
reduction in the time between sending s′ℓ,j [z] and receiving w′

ℓ,j [z], ii) whether no
challenge s∗1[z

′′], . . . , s∗p[z
′′] has been sent to any other instance A[z′′] (z′′ ̸= z) by

the reduction in the time between sending s′ℓ,j [z] and receiving w′
ℓ,j [z], and iii) if

w′
ℓ,j [z] looks like a correct witness for statement s′ℓ,j [z] with respect to R[z] by

testing RSRTest(R,w′
ℓ,j [z], j, st

∗
ℓ [z]) = 1. If all of these conditions are fulfilled, M

leaves the loop immediately (break10). Otherwise, it checks whether v = t+ 1. On
success11, the meta-reduction jumps back to 2’.ℓ and repeats the entire computation
calling RSRStatement(R[z], s∗ℓ [z]) with fresh randomness.

3’. The meta-reduction computes the value w′∗
ℓ [z]← RSRWitness(R[z], st∗ℓ [z], w

′
ℓ[z]) for each ℓ ∈ [p]

and from this w∗
ℓ [z] ← ReRand(R[z], s∗ℓ [z], w

′∗
ℓ [z]; r∗[z]) for all ℓ ∈ [p]. Next it loads B’s state

state∗[z], and returns the challenge witnesses w∗
1 [z], . . . , w

∗
p[z] ∈W .

10 The meta-reduction continues at Step 2′.ℓ.j′ for j′ = j + 1.
11 This means, that the meta-reduction has not received w′

ℓ,j [z] ∈W as a response to s′ℓ,j [z] in any of the
states statev[z] or that the reduction has always made external queries or that it has always queried
challenge statements to other instances.

30

11.7 Analysis

The proof is very close to the previous proof of our first main result.
Consider a reduction B that breaks the underlying security assumption with probability ϵ

when communicating with an attacker. First observe that any reduction B that will never see a
tuple (w∗

1 [z], . . . , w
∗
t+1[z]) for any of the z ∈ [z′] can easily be used to break the tICA since it will

essentially only receive randomly generated statements. So in the following we assume that for
at least one z′′ ∈ [z′] the reduction will accept s1[z

′′], . . . , st+1[z
′′]. For any other z ∈ [z′] − z′′

we assume that the reduction accepts arbitrary e[z] ∈ [t + 1] queries. For convenience, we also
set e[z′′] = t + 1. Now, using this notation we have that the reduction will in general accept
statements s1[z], . . . , se[z][z] for each A[z]. Now let us consider the set S′ of all possible tuples that
the reduction could potentially accept before breaking the tICA where

S′ =

 (s1[1], . . . , se[1][1]),

. . . ,
(s1[z

′], . . . , se[z′][z
′])

 ∣∣∣∣∣∣∀z ∈ [z′] : si,z ∈ S, e[z] ∈ [t+ 1]
∧maxẑ∈[z′]{e[ẑ]} = t+ 1

 .

For convenience, we call S′ the set of all possible configurations. Assume B has success probability
ϵ when communicating with the ideal attacker. The splitting lemma guarantees with non-negligible
probability ϵ′ = ϵ/2, that the randomness rB ∈ DB used by the reduction B will make B accept
at least a fraction of ϵ′ = ϵ/2 of all the possible query tuples s′ ∈ S′. To see this, set U = DB to be
the randomness space for B and V = S′ to be the space of all possible statement tuples and let G
be all (u, v) ∈ U × V that make B break the tICA. By assumption we have that |G|/|U × V | ≥ ϵ.
In terms of the splitting lemma, the randomness rB is thus a super-good element. In particular, for
super-good randomness rB , B will with probability ϵ′ accept a random s′ ∈ S′. In the following,
we will concentrate on a single, fixed randomness rB that the reduction uses and assume it to be
super-good. This accounts for at most an additional non-negligible decrease of the overall success
probability by a factor of ϵ′. For convenience, let us prepare some additional terminology.

We say that B accepts configuration

s′ =
(
(s1[1], . . . , se[1][1]), . . . , (s1[z

′], . . . , se[z′][z
′])
)
∈ S′

if for each z ∈ [z′], B accepts (s1[z], . . . , se[z][z]) when communicating with A[z]. Observe that if
B accepts

s′ =
(
(s1[1], . . . , se[1][1]), . . . , (s1[z

′], . . . , se[z′][z
′])
)
∈ S′

it trivially also accepts

s′′ =
(
(s1[1], . . . , se′[1][1]), . . . , (s1[z

′], . . . , se′[z′][z
′])
)
∈ S′

if e′[z] ≤ e[z] for all z ∈ [z′] since each tuple (s1[z], . . . , se′[z][z]) is a prefix of (s1[z], . . . , se′[z][z]).
In this case, we also say that s′′ ∈ S′ is a prefix of s′ ∈ S′. Moreover, we say that configuration
s′ ∈ S′ is maximal in statev[z] if i) B accepts s′ and ii) any other s′′ ∈ S′ accepted by B in state
statev[z] is a prefix of s′. For tuple s = (s1[z], . . . , si[z]) ∈ Si we define the size of s as |s| = i. For
configuration

s′ =
(
(s1[1], . . . , se[1][1]), . . . , (s1[z

′], . . . , se[z′][z
′])
)
∈ S′

we also define the size of s′ as |s′| =
∑z′

i=1 e[z] and the size of its zth component as |s′|z = e[z] for
all z ∈ [z′]. In our proof, we will rely on the fact that after each rewinding, Extract only slightly
changes the configuration that B sees by appending a single value to some accepted configuration.
Let us be more precise. Let s′ be the maximal configuration that B accepts in statev[z]. Then in
any step of Extract(z), the statements that B sees will form a configuration s′′ ∈ S′ such that for all
components z′′ ̸= z we have i) [s′]z′′ = [s′]z′′ (i.e. their projections to the z′′th component are equal)
ii) [s′]z is a prefix of [s′′]z, and iii) |s′|z+1 = |s′′|z. This intuitively says that in statev[z], Extract(z)
will only send a single new statement s′ℓ,j [z] to B that will form the tuple s1[z], . . . , sv[z], s

′
ℓ,j [z] in

the communication with A[z]. The accepted statements in the communication with all other A[z′′]
for z′′ ̸= z remain the same. As a result, the failure probability of this event can be bounded as in
the first proof by simply bounding how much s′ℓ,j [z] differs from a statement that an ideal attacker
would send.

31

Next, let us analyze the difference in the behaviour of the reduction B, when B communicates
withM instead of the ideal attacker. A closer inspection reveals that the only case that the behavior
may differ occurs if the reduction does abort in the run of Extract[z] but does not abort otherwise.
Apart from that, the simulation is perfect.

First, observe that if Extract(z) finishes, it will always output p witnesses w∗
1 [z], . . . , w

∗
p[z].

Next, observe that except for the algorithms in Extract all operations in the description of the
meta-reduction are efficient. Moreover, except for the back jump in Step 2’.l.j.v of Extract, all
operations in Extract are efficient as well. Let us now ensure that this jump is taken at most an
expected polynomial number of times. Once we have established this, the entire meta-reduction will
have expected polynomial runtime. To this end, we proceed as in our first proof. Let us now focus
on a run of Extract(z) on some arbitrary but fixed input z. First, compute the probability Pr[Eℓ,j,v]
of the event Eℓ,j,v that after sending s′ℓ,j [z] in statev[z], M has received back witness w′

ℓ,j [z] ∈ W
while B has not made an external query. Recall that B will with probability ϵ′ accept a random
configuration s′ ∈ S′. Since Extract is called on input z, M has already received s∗1[z], . . . , s

∗
p[z].

This in particular means that B accept [s′]z = (s1[z], . . . , st+1[z]) when communicating with A[z].
This in particular means that to any single statement sv[z] of the tuple (s1[z], . . . , st+1[z]), the
reduction will respond with a witness wv[z] to A[z] with at least probability ϵ′. Recall that s′ℓ,j [z]
is distributed as sv[z] (except for statistically small probability δ). So, from the viewpoint of
the reduction, the overall series of statements received so far s1[z], . . . , sv−1[z], s

′
l,j [z] from A[z] is

distributed like the series of an ideal attacker except with probability δ. Thus, the reduction will
respond to s′ℓ,j [z] with witness w′

ℓ,j [z] with at least probability ϵ′ − δ in state statev[z]. Now, since
we must always have that at least one of the t+ u statements that are delivered to B will neither
invoke external queries to compute the response nor make B send a challenge statement to some
other instance, we have that Pr[Eℓ,j,v] ≥ (ϵ′− δ)/(t+u) for at least one v ∈ [t+1]. Next, compute
the probability Pr[Eℓ,j] of the event Eℓ,j that for any of the states statev[z] with v ∈ [t + 1],
reduction R has responded to query s′ℓ,j [z] with w′

ℓ,j [z] ∈ W without making an external query.
For this event we have that Pr[Eℓ,j] = Pr[Eℓ,j,1 ∨ . . .∨Eℓ,j,t+1] ≥ (ϵ′− δ)/(t+u). This means that
after an expected number of x = O(1/Pr[Eℓ,j]) iterations the meta-reduction will not jump back
to 2′.ℓ. Let us finally compute the probability Pr[Eℓ] of the event Eℓ that the reduction responds
with w′

ℓ,j [z] to all the s′ℓ,j [z] with j ∈ [k] (for fixed ℓ) without making any external queries. We have
that Pr[Eℓ] = Pr[Eℓ,1 ∧ . . . ∧ Eℓ,k]. Now, since any derived value s′ℓ,j [z] is distributed statistically
close to any of the sv[z] (and thus statistically close to a value that is independent of any other
s′ℓ′,j′ [z]) we get that Pr[Eℓ,i+1|Eℓ,i] ≥ (ϵ′ − δ)/(t + u) for all i = 1, . . . , k − 1. Now, we have

probability Pr[Eℓ] = Pr[Eℓ,1] ·
∏k−1

i=1 Pr[Eℓ,i+1|Eℓ,i] ≥ ((ϵ′ − δ)/(t+ u))
k
. For any sufficiently large

security parameter, we have that ϵ′ ≥ δ since δ is statistically small and ϵ′ is non-negligible. Thus
Pr[Eℓ] ≥ (ϵ′/(2t+ 2u))

k
and since k is constant, Pr[Eℓ] is non-negligible. Thus after at most a

polynomial number of iterations y = O(1/Pr[Eℓ]) the meta-reduction will finish the loop for each
of the ℓ ∈ [p]. Repeating this process for all ℓ while using that all other operations of M are indeed
efficient, we now obtain that after an expected polynomial number of iterations Extract computes
all p k-tuples w′

ℓ[z] = (w′
ℓ,1[z], . . . , w

′
ℓ,k[z]) for ℓ ∈ [p]. Now with the values received in this way, M

can finally compute w′
ℓ[z]

∗ ← RSRWitness(R[z], st[z], w′
ℓ[z]) and ultimately, after re-randomization,

the meta-reduction outputs all the re-randomized w∗
1 [z], . . . , w

∗
p[z].

Since all arguments are essentially independent of the concrete choice of z, this shows that after
expected polynomially time, Extract will always output the w∗

1 [z], . . . , w
∗
p[z] for any z. As B is a

PPT algorithm we have that u is polynomial. Since Extract will be called at most z′ ≤ u times,
the meta-reduction runs in expected polynomial runtime overall.

Let us next show that with non-negligible probability, all w′
ℓ,j [z] are correct in the sense that

(s′ℓ,j [z],w
′
ℓ,j [z]) ∈ R[z]. Observe that we have to consider at most a polynomial number y = p · k · u

of values w′
ℓ,j [z] that the meta-reduction will ultimately use to compute all the w∗

ℓ [z] for ℓ ∈ [p] and
z ∈ [z′]. Due to property P-9, each of these values is distributed like the values of the ideal attacker
except with statistically small error γ. With probability ζ = (1 − γ)y we will thus have that all
the w′

ℓ,j [z] are correct. For convenience let γ
′ = γ · y and observe that for sufficiently large security

parameter we have that γ′ is statistically small as well. But since (1 − γ)y ≥ (1 − y · γ) = 1 − γ′

due to Bernoulli’s inequality, we have that ζ is statistically close to 1 as well.
Let us finally analyze the distribution of values produced by the meta-reduction and compare

them to the ideal attacker. First observe that B will always see at most one single transformed

32

statement s′ℓ,j [z] at a time. Each time, this will only occur after a rewinding and as part of a tuple of
statements (s1[z], . . . , si[z], s

′
ℓ,j [z]) that B receives. Since only the last statement is not distributed

like the output of the ideal attacker, these distributions have statistical distance of at most δ. So
with probability 1− δ each (s1[z], . . . , si[z], s

′
ℓ,j [z]) looks distributed like the values from the ideal

attacker. Since M runs in expected polynomial-time, it needs a polynomial number of rewindings
overall y to compute all the w∗[z]. We now have that all the rewindings get accepted by B with
probability ζ ′ = (1−δ)y ≥ 1−yδ that is statistically close to one. Now if the values received in this
way are all correct, M can finally compute w′

ℓ
∗[z]← RSRWitness(R[z], st[z], w′

ℓ[z]) and ultimately,
after re-randomization, the meta-reduction outputs all the re-randomized w∗

1 [z], . . . , w
∗
p[z]. Due to

property P-4, the distribution of each of these values is distributed like the ideal attacker.
At last, observe that according to the view of the reduction B, B accepts a tuple of statements

(s1[z] . . . , st+1[z]) for at least one z ∈ [z′]. Since the s1[z], . . . , st+1[z] are exactly distributed as
the statements sent by the ideal attacker, the reduction will not be able to distinguish the meta-
reduction from the ideal attacker in this case with probability. So overall, the distributions of values
received by M and the ideal attacker are always identical, except with statistically small error δ.
Finally, the meta-reduction has never made more than t queries to the challenger of the tICA as
it is merely relaying queries from the reduction to the tICA challenger and back again.

To sum up, we have that i) the runtime of M is polynomially bounded, ii) that Extract(z) will
always output a witness tuple (w∗

1 [z], . . . , w
∗
p[z]), iii) that all the witnesses w′

ℓ,j [z] output by the
reduction are correct with probability statistically close to 1, and iv) that the reduction B can
never distinguish M from the ideal attacker with probability statistically close to one. Thus B
must behave as if it communicates with the ideal attacker and finally output a solution to the
tICA challenge.

Now with the values received in this way,M can compute w′
ℓ[z]

∗ ← RSRWitness(R[z], st[z], w′
ℓ[z])

and ultimately, after re-randomization, the meta-reduction outputs all the re-randomized witnesses
w∗

1 [z], . . . , w
∗
p[z]. Due to property P-4, the distribution of each of these values is identical to what

the ideal adversary produces. Thus, with non-negligible probability the reduction will accept w∗[z]
and output a solution to the tICA challenge.

12 Applications of Second Main Theorem

We now present several immediate applications of our second main theorem.

Corollary 7. There is no PPT reduction that, while creating at most u instances, that can reduce
the Paired OW-CCA1 security of a certified semi-homomorphic PKE with t+u-decryption queries
for pairs of ciphertexts (Figure 4) to the security of any t-interactive complexity assumption.

Corollary 8. There is no PPT reduction that, while creating at most u instances, can reduce the
IND-CCA1 security of a certified semi-homomorphic PKE with 2t+ 2u-decryption queries overall
(Figure 4) to the security of any t-interactive complexity assumption.

Corollary 9. There is no PPT reduction that, while creating at most u instances, can reduce the
Paired OW-CCA1 security of any certified semi-homomorphic PKE with t+ u-decryption queries
to the Paired OW-CCA1 security of the same semi-homomorphic PKE with t-decryption queries.

Corollary 10. Let F denote an efficiently sampleable family of certified homomorphic one-way
bijections. Then we have that there is no PPT reduction that, while creating at most u instances, can
reduce the security of F with t+ u-inversion queries to the security of any t-interactive complexity
assumption.

Corollary 11. Let F denote an efficiently sampleable family of certified homomorphic one-way
bijections. Then we have that there is no PPT reduction, while creating at most u instances, that
can reduce the security of F with t+ u-inversion queries to the security of F with any t-inversion
queries (Figure 5).

Since ElGamal is semi-homomorphic, we can immediately obtain strong separation results for
ElGamal PKE.

33

Corollary 12. There is no PPT reduction that, while creating at most u instances, can reduce the
Paired OW-CCA1 security of ElGamal PKE with t+ u adaptive queries for pairs of ciphertexts to
the security of some tICA (Figure 7).

Final ElGamal Lunchtime Inversion Game

C A

g, q, pk = gx

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

s1 =
(
(gr1 , pkr1 ·m1), (g

r′1 , pkr′1 ·m′
1)
)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

w1 = (m1,m
′
1)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

. . .

st =
(
(grt , pkrt ·mt), (g

r′t , pkr′t ·m′
t)
)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

wt = (mt,m
′
t),

s∗1 =
(
(gr

∗
1 , pkr∗1 ·m∗

1), (g
r′∗1 , pkr′∗1 ·m′∗

1)
)
,

. . .

s∗p =
(
(gr

∗
p , pkr∗p ·m∗

p), (g
r′∗p , pkr′∗p ·m′∗

p)
)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

w∗
1 = (m∗

1,m
′∗
1), . . . , w∗

p = (m∗
p,m

′∗
p)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 7. Statements are pairs of ciphertexts. Witnesses are the corresponding plaintext pairs.

Corollary 13. There is no PPT reduction that, while creating at most u instances, can reduce the
IND-CCA1 security of a homomorphic PKE with 2t+2u decryption queries overall to the security
of some tICA.

13 Extension to Non-Uniform Algorithms

So far, we have assumed that all algorithms are uniform. We are confident that our second main
result can also be transferred to non-uniform algorithms if we restrict our attention to falsifiable
assumptions. In particular, we can use the same methodology that was employed in [14] to show
how to obtain non-uniform results for [39]. In a nutshell, this means that we can substitute all PPT
algorithms by poly-sized circuits. Qualitatively we may now also rule out non-uniform reductions,
however, we also need the meta-reduction to be non-uniform. This is theoretically incomparable to
our main result. Let us provide some intuition of the essential challenges towards obtaining a non-
uniform variant of our result. Unfortunately, the algorithmM from the non-uniform proof cannot be
applied since, when dealing with a non-uniform reduction, M cannot guarantee that its statements
are distributed independently random from B’s point of view. However, this is necessary for the
employed strategy where M tries to rewind queries and send in some new but equally distributed
statements. In particular, we need that the distributions of the original and modified statement
are equal (or statistically close) from B’s point of view to argue that the behavior of M does not
deviate from A too much. Otherwise, B could recognize that it is communicating with M and
not A. To this end, we want that each message sent by M as a statement has full entropy like
the messages computed by A. Intuitively, when we deal with a non-uniform reduction we run into
the problem that B is given an advice string that may depend on A. So, there might be some

34

potential queries for which we are not guaranteed full entropy anymore. Fortunately, [14] show
while relying on a result of Unruh [45], that the number of problematic queries, that do in fact
noticeably depend on the advice string, is polynomially bounded. All other possible queries still
have high enough entropy. To deal with the problematic queries then we can simply assume that
M is also non-uniform and that M receives as an advice string (which in turn depends on B) all
of the problematic queries together with the responses by A at startup. In this way, M can also
perfectly simulate the problematic queries.

14 Practical Impact and Ways to Circumvent our Results

Besides its theoretical importance, we consider our result to be of considerable value for the design
of cryptographic systems. It can be used as a criterion to decide which draft designs are impossible
to prove secure at very early stages of the design process. As for any impossibility result, it is
advantageous that our result holds for very weak security games. Often the starting points of
new cryptographic systems are simpler building blocks with weak security properties. Next, these
building blocks are step-wisely improved to resist stronger attacks in stronger security models. It
is thus beneficial that our impossibility result already manifests itself for weak notions (and before
further effort has been spent to improve the basic designs).

From a more abstract point of view, it has been shown in many previous works that relations
with unique witnesses, or more generally re-randomizable witnesses, can allow for meta-reduction-
based impossibility results and often constructions must circumvent these results. Our results
further support this. At the same time, they show that when basing cryptographic designs on
random self-reducible relations we have to be even more careful since impossibility results hold
more broadly. This is particularly interesting in light of the usefulness of security assumptions that
are based on RRRs for developing tight security reductions.

Let us consider some general ways to circumvent our and previous results. One reliable way to
do this is to use relations with at least two witnesses and no efficient re-randomization procedure.
A strategy that can be based on this uses proofs involving so-called partitioning arguments. The
idea is to let the reduction secretly partition the space of witnesses for each statement into two
sets. The first set contains witnesses that the reduction can efficiently produce. They will be used
in the query phase. However, the second set contains witnesses that the reduction cannot produce
herself but which she can use to extract a solution to the underlying complexity assumption. Of
course, this technique crucially relies on the fact that the two witness sets are indistinguishable
to the attacker so that with good probability the attacker will indeed output a witness from the
second set.

Other techniques that might help to circumvent our results rely on the programmability of
the random oracle model as exemplified in [28]. In a nutshell, one way to view the uniqueness
requirement is that it makes each statement a perfectly binding commitment to its witness. As
such, by publishing statements, the reduction fixes critical witnesses at an early stage. However,
using the programmability of the random oracle we may delay the specification of the witnesses
to some later point in time by essentially implementing commitments that are non-committing for
the reduction and can be opened on the fly.

Finally, our result does not exclude reductions that depend on the attacker. However, we stress
that, although there has been considerable progress in recent years, it seems that for arbitrary
attackers current techniques for general non-black box reductions are still not able to tackle this
problem without major breakthroughs.

References

1. Armknecht, F., Katzenbeisser, S., Peter, A.: Group homomorphic encryption: characterizations, im-
possibility results, and applications. Des. Codes Cryptogr. 67(2), 209–232 (2013). https://doi.org/
10.1007/S10623-011-9601-2, https://doi.org/10.1007/s10623-011-9601-2

2. Auerbach, B., Cash, D., Fersch, M., Kiltz, E.: Memory-tight reductions. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 101–132. Springer, Heidelberg, Germany, Santa
Barbara, CA, USA (Aug 20–24, 2017). https://doi.org/10.1007/978-3-319-63688-7_4

35

https://doi.org/10.1007/S10623-011-9601-2
https://doi.org/10.1007/S10623-011-9601-2
https://doi.org/10.1007/S10623-011-9601-2
https://doi.org/10.1007/S10623-011-9601-2
https://doi.org/10.1007/s10623-011-9601-2
https://doi.org/10.1007/978-3-319-63688-7_4
https://doi.org/10.1007/978-3-319-63688-7_4

3. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic reductions.
In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 273–304.
Springer, Heidelberg, Germany, Vienna, Austria (May 8–12, 2016). https://doi.org/10.1007/

978-3-662-49896-5_10

4. Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions, revisited. In: Sako, K., Sarkar,
P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 296–315. Springer, Heidelberg, Germany,
Bengalore, India (Dec 1–5, 2013). https://doi.org/10.1007/978-3-642-42033-7_16

5. Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind signature schemes. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 82–99. Springer, Heidelberg,
Germany, Bengalore, India (Dec 1–5, 2013). https://doi.org/10.1007/978-3-642-42045-0_5

6. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The power of RSA inversion oracles
and the security of Chaum’s RSA-based blind signature scheme. In: Syverson, P.F. (ed.) FC 2001.
LNCS, vol. 2339, pp. 319–338. Springer, Heidelberg, Germany, Grand Cayman, British West Indies
(Feb 19–22, 2002)

7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 15–19,
2004). https://doi.org/10.1007/978-3-540-28628-8_3

8. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 19–23, 2001). https://doi.org/10.1007/3-540-44647-8_13

9. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring. In: Nyberg, K. (ed.) EU-
ROCRYPT’98. LNCS, vol. 1403, pp. 59–71. Springer, Heidelberg, Germany, Espoo, Finland (May 31 –
Jun 4, 1998). https://doi.org/10.1007/BFb0054117

10. Bresson, E., Monnerat, J., Vergnaud, D.: Separation results on the “one-more” computational prob-
lems. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 71–87. Springer, Heidelberg, Germany,
San Francisco, CA, USA (Apr 7–11, 2008). https://doi.org/10.1007/978-3-540-79263-5_5

11. Brown, D.R.L.: Irreducibility to the one-more evaluation problems: More may be less. Cryptology
ePrint Archive, Report 2007/435 (2007), http://eprint.iacr.org/

12. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge (extended abstract).
In: 32nd ACM STOC. pp. 235–244. ACM Press, Portland, OR, USA (May 21–23, 2000). https:
//doi.org/10.1145/335305.335334

13. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the plain model from
standard assumptions. In: 51st FOCS. pp. 541–550. IEEE Computer Society Press, Las Vegas, NV,
USA (Oct 23–26, 2010). https://doi.org/10.1109/FOCS.2010.86

14. Chung, K., Lin, H., Mahmoody, M., Pass, R.: On the power of nonuniformity in proofs of security. In:
Kleinberg, R.D. (ed.) ITCS ’13, Berkeley, CA, USA, January 9-12, 2013. pp. 389–400. ACM (2013).
https://doi.org/10.1145/2422436.2422480

15. Coron, J.S.: Optimal security proofs for PSS and other signature schemes. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer, Heidelberg, Germany, Amsterdam, The
Netherlands (Apr 28 – May 2, 2002). https://doi.org/10.1007/3-540-46035-7_18

16. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen
ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol. 1462, pp. 13–25. Springer, Heidel-
berg, Germany, Santa Barbara, CA, USA (Aug 23–27, 1998). https://doi.org/10.1007/BFb0055717

17. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilis-
tic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg,
Germany, Cheju Island, South Korea (Feb 13–15, 2001). https://doi.org/10.1007/3-540-44586-2_
9

18. Deng, Y., Goyal, V., Sahai, A.: Resolving the simultaneous resettability conjecture and a new non-
black-box simulation strategy. In: 50th FOCS. pp. 251–260. IEEE Computer Society Press, Atlanta,
GA, USA (Oct 25–27, 2009). https://doi.org/10.1109/FOCS.2009.59

19. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654
(1976). https://doi.org/10.1109/TIT.1976.1055638

20. Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain hash. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 14–18, 2005). https://doi.org/10.1007/11535218_27

21. Dodis, Y., Reyzin, L.: On the power of claw-free permutations. In: Cimato, S., Galdi, C., Persiano, G.
(eds.) SCN 02. LNCS, vol. 2576, pp. 55–73. Springer, Heidelberg, Germany, Amalfi, Italy (Sep 12–13,
2003). https://doi.org/10.1007/3-540-36413-7_5

22. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blak-
ley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 19–23, 1984)

36

https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-642-42033-7_16
https://doi.org/10.1007/978-3-642-42033-7_16
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/978-3-540-79263-5_5
https://doi.org/10.1007/978-3-540-79263-5_5
http://eprint.iacr.org/
https://doi.org/10.1145/335305.335334
https://doi.org/10.1145/335305.335334
https://doi.org/10.1145/335305.335334
https://doi.org/10.1145/335305.335334
https://doi.org/10.1109/FOCS.2010.86
https://doi.org/10.1109/FOCS.2010.86
https://doi.org/10.1145/2422436.2422480
https://doi.org/10.1145/2422436.2422480
https://doi.org/10.1007/3-540-46035-7_18
https://doi.org/10.1007/3-540-46035-7_18
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1109/FOCS.2009.59
https://doi.org/10.1109/FOCS.2009.59
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/11535218_27
https://doi.org/10.1007/11535218_27
https://doi.org/10.1007/3-540-36413-7_5
https://doi.org/10.1007/3-540-36413-7_5

23. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman
assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–
147. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2013). https://doi.org/
10.1007/978-3-642-40084-1_8

24. Fischlin, M., Fleischhacker, N.: Limitations of the meta-reduction technique: The case of Schnorr
signatures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 444–
460. Springer, Heidelberg, Germany, Athens, Greece (May 26–30, 2013). https://doi.org/10.1007/
978-3-642-38348-9_27

25. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr signatures. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 512–531. Springer, Heidelberg, Ger-
many, Kaoshiung, Taiwan, R.O.C. (Dec 7–11, 2014). https://doi.org/10.1007/978-3-662-45611-8_
27

26. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 33–62. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 19–23, 2018). https://doi.org/10.1007/978-3-319-96881-0_
2

27. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for discrete log based sig-
natures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 93–107. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 17–21, 2008). https://doi.org/10.1007/978-3-540-85174-5_
6

28. Guo, F., Chen, R., Susilo, W., Lai, J., Yang, G., Mu, Y.: Optimal security reductions for unique
signatures: Bypassing impossibilities with a counterexample. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 517–547. Springer, Heidelberg, Germany, Santa Bar-
bara, CA, USA (Aug 20–24, 2017). https://doi.org/10.1007/978-3-319-63715-0_18

29. Hanaoka, G., Matsuda, T., Schuldt, J.C.N.: On the impossibility of constructing efficient key encapsu-
lation and programmable hash functions in prime order groups. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 812–831. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 19–23, 2012). https://doi.org/10.1007/978-3-642-32009-5_47

30. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduction. In: Fischlin,
M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 66–83. Springer, Heidelberg,
Germany, Darmstadt, Germany (May 21–23, 2012). https://doi.org/10.1007/978-3-642-30057-8_
5

31. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 537–553. Springer, Heidelberg, Germany,
Cambridge, UK (Apr 15–19, 2012). https://doi.org/10.1007/978-3-642-29011-4_32

32. Lindell, Y.: Is ElGamal IND-CCA1 Secure? – Answer. https://crypto.stackexchange.com/

questions/26867/is-elgamal-ind-cca1 (2015), [Online; accessed 03-April-2022]

33. Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part II. LNCS, vol. 10402, pp. 613–644. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 20–24, 2017). https://doi.org/10.1007/978-3-319-63715-0_21

34. Lipmaa, H.: On the CCA1-security of Elgamal and Damg̊ard’s Elgamal. Cryptology ePrint Archive,
Report 2008/234 (2008), https://ia.cr/2008/234

35. Morgan, A., Pass, R.: On the security loss of unique signatures. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018, Part I. LNCS, vol. 11239, pp. 507–536. Springer, Heidelberg, Germany, Panaji, India
(Nov 11–14, 2018). https://doi.org/10.1007/978-3-030-03807-6_19

36. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J.
(ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg, Germany, Prague, Czech
Republic (May 2–6, 1999). https://doi.org/10.1007/3-540-48910-X_16

37. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent to discrete log. In: Roy,
B.K. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20. Springer, Heidelberg, Germany, Chennai,
India (Dec 4–8, 2005). https://doi.org/10.1007/11593447_1

38. Paillier, P., Villar, J.L.: Trading one-wayness against chosen-ciphertext security in factoring-based
encryption. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 252–266. Springer,
Heidelberg, Germany, Shanghai, China (Dec 3–7, 2006). https://doi.org/10.1007/11935230_17

39. Pass, R.: Limits of provable security from standard assumptions. In: Fortnow, L., Vadhan, S.P. (eds.)
43rd ACM STOC. pp. 109–118. ACM Press, San Jose, CA, USA (Jun 6–8, 2011). https://doi.org/
10.1145/1993636.1993652

40. Pass, R., Venkitasubramaniam, M.: On constant-round concurrent zero-knowledge. In: Canetti, R.
(ed.) TCC 2008. LNCS, vol. 4948, pp. 553–570. Springer, Heidelberg, Germany, San Francisco, CA,
USA (Mar 19–21, 2008). https://doi.org/10.1007/978-3-540-78524-8_30

37

https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-38348-9_27
https://doi.org/10.1007/978-3-642-38348-9_27
https://doi.org/10.1007/978-3-642-38348-9_27
https://doi.org/10.1007/978-3-642-38348-9_27
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-319-63715-0_18
https://doi.org/10.1007/978-3-319-63715-0_18
https://doi.org/10.1007/978-3-642-32009-5_47
https://doi.org/10.1007/978-3-642-32009-5_47
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1007/978-3-642-29011-4_32
https://crypto.stackexchange.com/questions/26867/is-elgamal-ind-cca1
https://crypto.stackexchange.com/questions/26867/is-elgamal-ind-cca1
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1007/978-3-319-63715-0_21
https://ia.cr/2008/234
https://doi.org/10.1007/978-3-030-03807-6_19
https://doi.org/10.1007/978-3-030-03807-6_19
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/11935230_17
https://doi.org/10.1007/11935230_17
https://doi.org/10.1145/1993636.1993652
https://doi.org/10.1145/1993636.1993652
https://doi.org/10.1145/1993636.1993652
https://doi.org/10.1145/1993636.1993652
https://doi.org/10.1007/978-3-540-78524-8_30
https://doi.org/10.1007/978-3-540-78524-8_30

41. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M. (ed.) EURO-
CRYPT’96. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg, Germany, Saragossa, Spain (May 12–
16, 1996). https://doi.org/10.1007/3-540-68339-9_33

42. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryptographic primitives.
In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg, Germany, Cambridge,
MA, USA (Feb 19–21, 2004). https://doi.org/10.1007/978-3-540-24638-1_1

43. Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs. In: Stern, J.
(ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 415–431. Springer, Heidelberg, Germany, Prague, Czech
Republic (May 2–6, 1999). https://doi.org/10.1007/3-540-48910-X_29

44. Seurin, Y.: On the exact security of Schnorr-type signatures in the random oracle model.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 554–571.
Springer, Heidelberg, Germany, Cambridge, UK (Apr 15–19, 2012). https://doi.org/10.1007/

978-3-642-29011-4_33

45. Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 205–223. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2007). https:
//doi.org/10.1007/978-3-540-74143-5_12

46. Wu, J., Stinson, D.R.: On the security of the ElGamal encryption scheme and Damg̊ard’s variant.
IACR Cryptol. ePrint Arch. p. 200 (2008), http://eprint.iacr.org/2008/200

47. Zhang, J., Zhang, Z., Chen, Y., Guo, Y., Zhang, Z.: Black-box separations for one-more (static) CDH
and its generalization. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874,
pp. 366–385. Springer, Heidelberg, Germany, Kaoshiung, Taiwan, R.O.C. (Dec 7–11, 2014). https:
//doi.org/10.1007/978-3-662-45608-8_20

A RRR with Non-Unique Witnesses

For illustration, we will now provide an example of an RRR system where we have S′ ̸= S and
non-unique witnesses. In particular, the difference between S and S′ will be that all elements in
S′ have a representation with parity bit 1 (the XOR of all the bits of its binary representation is
1) whereas for S this is not required. Our RRR system works in the common setting of symmetric
bilinear pairings. Consider the following RRR system RRRe with fan-out k = 1:

– RGen(1κ) computes two groups G,GT of order q (with polynomial bitlength |q|2) that are
equipped with an efficient, bilinear, and non-degenerate map e : G×G→ GT and two gener-
ators g, h of G. It outputs a description of

Re = {(e(x1, g) · e(x2, h), (x1, x2))|(x1, x2) ∈ G}

alongside g, h, and e. We have W = G2, S = GT , and S′ ⊊ S such that any s ∈ S′ has parity
bit 1.

– RSample(Re) draws uniformly random w1, w2 ∈ G and outputs s = e(w1, g) · e(w2, h) and
w = (w1, w2).

– RSubSample(Re) draws random group elements w1, w2 ∈ G until s′ = e(w1, g) · e(w2, h) has
parity bit 1. Then it outputs s′ and w = (w1, w2).

– ReRand(s, w) draws r ∈ Zq and output w′ = (w1h
r, w2g

−r).
– ReCheck(s, w,w′) where w′ = (w′

1, w
′
2) output 1 if e(w′

1, g) · e(w′
2, h) = s and otherwise 0.

– RSRStatement(s∗) repeatedly draws random r ∈ Zq (r ̸= 0) until the representation of (s∗)r

has parity bit 1 to compute and output (s, st) = ((s∗)r, (s∗, r)).

– RSRWitness(w, st) parses st as st = (s∗, r) and w as w = (w1, w2) and output w∗ = (w
1/r
1 , w

1/r
2).

– RSRTest(w, st) parses st as st = (s∗, r) and w as w = (w1, w2), computes w∗ = (w∗
1 , w

∗
2) =

(w
1/r
1 , w

1/r
2) and outputs 1 if e(w∗

1 , g) · e(w∗
2 , h) = s∗ and otherwise 0.

– RVerify(u) outputs 1 iff q is prime and of appropriate size and g, h are indeed generators of G
and e is a degenerate bilinear pairing as required.

Lemma 6. RRRe is a certified strong RRR system.

Proof. First observe that RVerify(u) can efficiently test all important properties such that P-13 and
P-14 are fulfilled. Also, observe that by choosing r in ReRand we uniformly draw a new witness w′

for the same statement independent of the input witness w. Now observe that e(w′
1, g) ·e(w′

2, h) = s

38

https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/3-540-48910-X_29
https://doi.org/10.1007/3-540-48910-X_29
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-540-74143-5_12
http://eprint.iacr.org/2008/200
https://doi.org/10.1007/978-3-662-45608-8_20
https://doi.org/10.1007/978-3-662-45608-8_20
https://doi.org/10.1007/978-3-662-45608-8_20
https://doi.org/10.1007/978-3-662-45608-8_20

for w′ = (w′
1, w

′
2) = (w1h

r, w2g
−r) always simplifies to e(w1, g) · e(w2, h) = s. These facts imply

that the re-randomization algorithm is correct, that it provides witness indistinguishability, and
that ReCheck is correct and sound showing P-3, P-4, P-5. Observe that the output s = (s∗)r of
RSRStatement blinds s∗ perfectly. This shows P-7. Moreover, given a witness w = ((w∗

1), (w
∗
2)) for

s such that s = (s∗)r = e(w1, g) ·e(w2, h) we can easily see that w∗ = ((w1)
1/r, (w2)

1/r) is a witness
for s∗. This shows P-6 and P-9. Finally, since e is efficient, we also have P-1 and P-2. P-8 follows
since the output of RSRStatement is uniform over the elements in S with parity bit 1 in the first
k coordinates, exactly like the output of RSubSample.

B Impossibility of Simple Reductions for OW-CCA1-Security of
ElGamal PKE

To see our arguments in a more concrete setting, we provide a stand-alone proof for the ElGamal
PKE scheme. We concentrate on the first main result. Recall the definition of ElGamal PKE scheme
in Section 4.3 and consider the security notion of OW-CCA1 security that is strictly weaker than
IND-CCA1 (lunchtime) security. The resulting security game can be found in Figure 6.

B.1 Application of First Main Result

Now let us formally state an application of our first main result when applied to ElGamal PKE.

Theorem 3. Let ICA be a secure tICA. Then, there is no simple reduction that can reduce the
lunchtime security of ElGamal PKE with t+ 1 adaptive decryption queries to the security of ICA.

B.2 Proof of Theorem 3

In the proof, we concentrate on an impossibility result under OW-CCA1 security. This immediately
implies an impossibility result against IND-CCA1 attacks since the OW-CCA1 notion is weaker
than IND-CCA1.

We proceed exactly as in the general proof but are able to make considerable simplifications.
We specify an ideal (unbounded) attacker A for which the reduction has to work. Next, we present
an efficient meta-reduction M that simulates the ideal attacker. Finally, we analyze the difference
between the behavior of reduction B in the two cases. We show that the reduction will not be
able to tell the two settings apart. Thus, the reduction also has to work for the efficient M . The
combination of B and M will therefore break the underlying tICA. The meta-reduction gains its
power from rewinding the reduction.

In a nutshell, the proof relies on the fact that we can always find a useful rewinding spot after
rewinding. A useful rewinding spot is a decryption query c′ that is sent after the reduction has
been rewound to some previous state such that i) the reduction provides a (correct) plaintext m′ to
that query and ii) the reduction does not query its tICA challenger before delivering the response.
Intuitively, the meta-reduction will repeatedly try to hit a useful rewinding spot and send new
decryption queries c′ to B that are derived from the challenge ciphertext to the reduction until
it receives back message m′. The proof exploits that in each of these runs, with non-negligible
probability, the reduction will behave as in the first run if presented with a new decryption query
since new queries are exactly distributed as in the first run. Let us now be more formal.

B.3 The Ideal Attacker A

1. The attacker A receives random coins r and pk. The attacker M receives pk = (g, h, q) and
random coins r from B. If g does not generate a group G of prime order q or if h /∈ G the
attacker aborts. Otherwise, it continues.

2. The parties repeat the following steps for all i ∈ [1; t+ 1].

2.i.1 The attacker A computes a ciphertext/plaintext pair by drawing random message mi ∈ G
and computing ci ← PKE.Enc(pk,mi). Next, it sends ci to the challenger.

39

2.i.2 The challenger responds with message m′
i. The attacker aborts in the case that mi ̸= m′

i.
Otherwise, it continues. If i = t, the challenger also sends challenge ciphertext c∗ ∈ C. If
c∗ /∈ C the attacker aborts. Otherwise, it continues.

3. The attacker uses its unbounded power to compute the plaintext m∗ ∈ G in c∗. To this
end, it could for example compute all possible messages m ∈ G and all possible ciphertexts
c ← PKE.Enc(pk,m) for all possible random coins. In this way, it can find m∗ such that for
some random coins we have c∗ ← PKE.Enc(pk,m∗). The value m∗ is the final output of the
attacker.

B.4 The Meta-Reduction M can Rewind Reduction B

We will now consider a meta-reduction M that executes the purported reduction B. In particular,
we assume that M can store the full execution state statei of B after B has sent some message
and awaits a corresponding response. With these states, M can rewind B to a previous point in
time by loading the corresponding execution states. Let us now specify how the meta-reduction
simulates the ideal attacker.

B.5 The Simulated Attacker

0. The attacker M receives the tICA instance c and relays it to B along with random coins
rB ∈ DB .

1. The attacker M receives pk = (g, h, q) and random coins r from B. If g does not generate a
group G of prime order q or if h /∈ G, M aborts. Otherwise, it continues.

2. The parties repeat the following steps for all i ∈ [1; t+ 1].

2.i.1 First the attacker M stores B’s execution state statei. The attacker M computes a
ciphertext/plaintext pair by drawing random message mi ∈ G and computing ci ←
PKE.Enc(pk,mi). Next, it sends ci to the reduction.

2.i.2 The reduction responds with a message m′
i ∈ G. If the reduction B outputs a query to

its tICA challenger, this query is simply relayed by M to its tICA challenger. Likewise,
all responses are relayed back to B. The attacker M aborts if mi ̸= m′

i. Otherwise, it
continues. If i = t the reduction also sends challenge statement c∗ to M . If c∗ /∈ C the
meta-reduction aborts. Otherwise, it continues.

2’ Once the attacker has received the challenge statement and checked if c∗ ∈ C, it halts B
and stores the current execution state state∗ of B. Let c∗ = (c∗1, c

∗
2) and denote the plaintext

stored in c∗ as m∗ such that for some randomness r∗ we have c∗ = PKE.Enc(pk,m∗; r∗) =
(gr

∗
, pkr

∗ ·m∗). Then, the meta-reduction computes a derived statement c′ = (c′1, c
′
2) by drawing

uniformly random m′′ ∈ G and random r′′ ∈ Zq and computing

c′ = (c∗1 · gr
′′
, c∗2 · pkr

′′
·m′′) = (gr

∗+r′′ , pkr
∗+r′′ ·m∗ ·m′′).

Observe that with this choice c′ is distributed like an encryption of a random group element
m′ = m∗ ·m′′ with fresh randomness. In particular, c′ is independent of c∗. The meta-reduction
iterates through all possible states statev. To this end, it repeats the following loop for all state
indices v ∈ [t+ 1]:

2’.v The meta-reduction rewinds the reduction B back to the point before [2.v.1] by loading
statev. Next, it sends c′ to B. If the reduction outputs a message m′ ∈ G while not making
a query to its tICA challenger, the meta-reduction leaves this loop immediately (break12).
Otherwise, it checks whether v = t+1 indicating that it has tried to send c′ in all possible
states. On success, the meta-reduction jumps back to 2’ and repeats the entire computation
with fresh randomness for r′′ and m′′.

3. M computes m∗ = m′/m′′, loads B’s state state∗, and outputs the message m∗.
4. B responds with a solution to the tICA challenge.
5. Finally, M relays that solution to the tICA challenger.

12 The meta-reduction continues at Step 2’.v′ for v′ = v + 1.

40

B.6 Analysis

Consider a reduction B that breaks the underlying security assumption with probability ϵ when
communicating with an attacker. The splitting lemma guarantees with non-negligible probability
ϵ′ = ϵ/2, that the randomness rB ∈ DB used by the reduction B will make B accept at least
a fraction of ϵ′ = ϵ/2 of all the possible query tuples (c1, . . . , ct+1) ∈ Ct+1. To see this set U =
DB to be the randomness space for B and V = Ct+1 to be the space of all possible statement
tuples and let G be all (u, v) ∈ U × V that make B break the tICA. By assumption we have
that |G|/|U × V | ≥ ϵ. In terms of the splitting lemma, the randomness rB is thus a super-good
element. In particular, for super-good randomness rB , B will with probability ϵ′ accept a randomly
generated tuple (c1, . . . , ct+1) ∈ Ct+1 that is computed by the ideal attacker A via an encryption
ci ← PKE.Enc(pk,mi) for each i ∈ [t + 1]. Each such tuple will make the reduction output the
challenge ciphertext next and if the reductionB is provided corresponding messagem∗,B will break
the tICA. Observe that if B accepts c1, . . . , ci+1 for any i ∈ [t] it will trivially also accept c1, . . . , ci.
In the following, we will thus concentrate on a single, fixed randomness rB that the reduction uses
and assume it to be super-good. This accounts for at most an additional non-negligible decrease
of the overall success probability by a factor of ϵ′.

Let us analyze the difference between the execution of a reduction with an ideal attacker and
the meta-reduction M from B’s point of view. A closer inspection reveals that the only case that
the behavior may differ occurs if the reduction does abort in Step 2’ but does not abort otherwise
or if in Step 2’ the reduction delivers to the attacker a response m′ such that for c′ we have
PKE.Dec(sk, c′) ̸= m′. Otherwise, the simulation is perfect. Let us thus now analyze this event in
more detail.

We start with a useful observation. We observe that for each tuple (c1, . . . , ct+1) ∈ Ct+1 that
the reduction accepts there is always one ci i ∈ [t + 1] such that i) the reduction does not make
a query to its tICA challenger before delivering the response and ii) the reduction has provided a
correct message in the first run.

The first condition is guaranteed simply because the number of queries allowed in the security
game, t + 1, is larger than the number of queries allowed in the communication with the tICA
challenger. The second condition is true since the meta-reduction (in the first run) and the ideal
attacker, both know the messages within the ciphertexts queries they send. Thus they can always
verify the responses and any successful reduction is bound to deliver correct messages mi for every
i ∈ [t]. Next, observe that all the values given to B as query ci (including those after rewindings)
have the same distribution. So the statements given to the reduction before and after the rewinding
cannot be told apart.

Next observe that if the meta-reduction finishes its computations in Step 2’, it will always
compute m′.

Let us now show that the meta-reduction runs in expected polynomial time. First, observe
that all operations performed in step 2’.v are efficient. To argue that the entire meta-reduction is
efficient, we must now specifically show that the jumps in Step 2’.v back to 2’ will not make the
overall runtime super-polynomial. To this end, we have to analyze how likely such jumps are. To
this end, compute the probability Pr[Ev] of the event Ev that after sending c′ in statev, M has
received back witness m′ while B has not made an external query. Recall that B accepts a random
tuple of ciphertexts (c1, . . . , ct+1) (before it outputting challenge ciphertext c∗) with probability at
least ϵ′. This in particular means that to any single ciphertext cv with v ∈ [t+1], the reduction will
respond with a witness mv with at least probability ϵ′. Recall that c′ is distributed as cv. So, from
the viewpoint of the reduction, the overall tuple of statements received so far (c1, . . . , cv−1, c

′) is
distributed like the values of an ideal attacker. Thus, the reduction will respond to c′ with witness
m′ with at least probability ϵ′ in state statev. Now, since we must always have that at least one of
the t+ 1 ciphertexts that are delivered to B in an accepting tuple will not invoke external queries
to compute the response, we have that Pr[Ev] ≥ ϵ′/(t + 1) for at least one of the possible states
statev with v ∈ [t + 1]. Next, compute the probability Pr[E] of the event E that for any of the
states statev with v ∈ [t + 1], reduction B has responded to query c′ with m′ without making an
external query. For this event we have that Pr[E] = Pr[E1 ∨ . . . ∨ Et+1] ≥ ϵ′/(t + 1). This means
that after an expected number of x = O(1/Pr[E]) iterations the meta-reduction will not jump
back to 2′.ℓ.

41

Now let us now bound the probability that the message m′ received by M in the rewinding
process is indeed the correct plaintext encrypted in c′ such that there is randomness r′ ∈ Zq with

c′ =
(
gr

′
, pkr

′
m′

)
.

This bounding process is necessary because the meta-reduction cannot actually test whether the
output m′ is indeed correct. We have that the reduction responds with a correct witness m′ per
ciphertext c′ with probability at least ϵ′. This is because i) in the first run, each ciphertext ci will
make the reduction respond with mi with probability at least ϵ′ and ii) the c′ is distributed exactly
like the ci. So the probability that m′ is correct is at least ϵ′.

Let us finally analyse the overall distribution of values produced by the meta-reduction and
compare them to the ideal attacker. This is simple. First observe that in each rewinding attempt,
B will at most see a single transformed ciphertext c′, each time as the last component of a tuple
of received ciphertexts (c1, . . . , ci, c

′). All of these values are distributed exactly like the values of
the ideal attacker. Now, if the values received in this way are all correct, M can finally compute
m′ and ultimately m∗. Since there is only a single plaintext per ciphertext (for fixed pk) we have
that m∗ is also exactly distributed like the output of the ideal attacker. Thus, the probability of
telling the ideal attacker and the meta-reduction apart is zero.

To sum up, we have that i) the runtime of M is polynomially bounded, ii) that it will always
output m∗, iii) that the value m′ received in the rewinding process is correct with non-negligible
probability, and vi) that the reduction B cannot distinguish M from A. Moreover, we have that
v) by the setup, M makes at most t queries to the ICA challenger. Thus B outputs after expected
polynomial time a solution to the tICA challenge when given m∗ with non-negligible probability.

42

	New Limits of Provable Security and Applications to ElGamal Encryption

