Stickel’s Key Agreement Algebraic Variation

Daniel Nager
daniel.nager@gmail.com
May 2024

Abstract
In this document we present a further development of non-commutative algebra based key agreement due to E. Stickel and a way to deal with the algebraic break due to V. Shpilrain.

Introduction
E. Stickel [Sti05] proposed a non-commutative algebra based key agreement further algebraically broken first by V. Shpilrain [Shp08]. Later C. Mullan [Mul11] broke some suggested modifications of Shpilrain in [Shp08].

Here is presented a modification of Stickel’s key exchange that circumvents Shpilrain attack. Mullan attack is not relevant here as is a response to Shpilrain proposals to answer his attack, and we address original Shpilrain algebraic break.

Stickel’s non-commutative algebra based key agreement

The original Stickel’s [Sti05] key exchange is similar in concept to the ordinary Diffie-Hellman key agreement, in particular the operation to get the intermediate value of Alice or Bob the following expressions are used:

\[A, B, W \in GL(n, p) \]
\[AB \neq BA \]
\[U = A^l W B^m \]
\[V = A^r W B^s \]

\(l, m \in \mathbb{Z}_p \) is the private key of Alice, and \(r, s \in \mathbb{Z}_p \) is the secret key of Bob. \(U \) is the intermediate value send from Alice to Bob, and \(V \) the intermediate value send from Bob to Alice, then the shared secret \(S \in GL(n, p) \) is:

\[S = A^l V B^m = A^r U B^s = A^{l+r} W B^{m+s} \]
Shpilrain algebraic attack on Stickel’s key agreement

The method to break this scheme is to find matrices $X, Y \in GL(n, p)$ such that:

$$XA = AX$$
$$YB = BY$$
$$U = XWY$$

We need to apply a transformation on the third equation as follows:

$$X_1 = X^{-1}$$
$$X_1U = WY$$

resulting in a overdetermined but consistent system of linear equations:

$$X_1A = AX_1$$
$$YB = BY$$
$$X_1U = WY$$

with X and Y found we apply to V value of Bob the following transformation:

$$XYV = XA'WB^sY = A'XWYB^s = A'UB^s = S$$

So we get the shared secret without knowledge of the secret keys, just from intermediate values.

Proposed variant of Stickel’s key agreement

The proposed variant is similar but changing the intermediate value, U or V:

$$A, B, W \in GL(n, p)$$
$$AB \neq BA$$
$$U = A^lWB^m + A^rWB^s$$
$$V = A^eWB^f + A^gWB^h$$

From these equations a key agreement is done almost the same way, $l, m, r, s \in Z_p^n$ is the private key of Alice and $e, f, g, h \in Z_p^n$ is the private key of Bob.

U is the intermediate value send from Alice to Bob, and V the intermediate value send from Bob to Alice, then the shared secret $S \in GL(n, p)$ is:

$$S = A^lVB^m + A^rVB^s = A^lUB^f + A^gUB^h$$
$$S = A^e+WB^f+m + A^e+rWB^f+s + A^e+s+WB^h+m + A^g+rWB^h+s$$
The question is there’s no necessarily a $U = X W Y$ for this construction, that will work the same to find the shared secret. We can try to find $U = X_1 W Y_1 + X_2 W Y_2$, but not as a system of linear equations as the inverse of X_1 trick does not work as the second term of the addition remains a product of two unknown matrices, so not solvable as a linear system of equations.

In order to ensure there’s no X, Y satisfying $U = X W Y$ we need to do, first, ensure U is in $GL(n, p)$, which is not guaranteed. U must be non-singular. Being U non-singular and knowing a matrix is non-singular iff it’s the product of non-singular matrices we infer that X and Y must be non-singular as well.

Then, to prove there’s no solution to $U = X W Y$ we apply the same Shpilrain attack that’s not probabilistic or number intensive. We need just to check if the overdetermined system of equations:

$$X_1 A = A X_1$$
$$Y B = B Y$$
$$X_1 U = W Y$$

where X_1 and Y are unknown matrices and the rest known, is inconsistent. If this is the case the exponents used are valid.

Simplified version

We can provide a simplified version of the variant that’s more elegant and easy to understand, at the price of halving the keyspace of Alice and Bob, the formulas are:

$$A, B, W \in GL(n, p)$$
$$A B \neq B A$$
$$U = A^m W + W B^r$$
$$V = A^h W + W B^h$$

This is the instance of the scheme when $m = 0, r = 0, f = 0$ and $g = 0$. As we’re presenting in this document just the algebraic circumvention of Shpilrain attack, and not key sizes or parameters n and p in $GL(n, p)$, we can ignore keyspace reduction and take it as a optional scheme.

Example parameters

As an example parameters for the linear group a minimal non-conservative choice can be $GL(4, p)$ where p is a 16-bit prime. This results in a shared secret of 256-bits and a key size of $4 \cdot p^4 \sim 256$ bits.
References

