
Minimize the Randomness in Rasta-Like Designs:
How Far Can We Go?

Application to Pasta

Lorenzo Grassi1, Fukang Liu2, Christian Rechberger3, Fabian Schmid3,
Roman Walch3,4, and Qingju Wang5

1 Ruhr University Bochum (Germany)
2 Tokyo Institute of Technology (Japan)

3 Graz University of Technology (Austria)
4 TACEO (Austria)

5 Telecom Paris, Institut Polytechnique de Paris (France)
Lorenzo.Grassi@ruhr-uni-bochum.de, liu.f.ad@m.titech.ac.jp,

christian.rechberger@tugraz.at, fabian.schmid@iaik.tugraz.at,
walch@taceo.io, qingju.wang@telecom-paris.fr

Abstract. The Rasta design strategy allows building low-round ciphers
due to its efficient prevention of statistical attacks and algebraic attacks
by randomizing the cipher, which makes it especially suitable for hy-
brid homomorphic encryption (HHE), also known as transciphering. Such
randomization is obtained by pseudorandomly sampling new invertible
matrices for each round of each new cipher evaluation. However, naively
sampling a random invertible matrix for each round significantly impacts
the plain evaluation runtime, though it does not impact the homomor-
phic evaluation cost. To address this issue, Dasta was proposed at ToSC
2020 to reduce the cost of generating the random matrices.

In this work, we address this problem from a different perspective: How
far can the randomness in Rasta-like designs be reduced in order to
minimize the plain evaluation runtime without sacrificing the security?
To answer this question, we carefully studied the main threats to Rasta-
like ciphers and the role of random matrices in ensuring security. We
apply our results to the recently proposed cipher Pasta, proposing a
modified version called Pastav2 instantiated with one initial random
matrix and fixed linear layers – obtained by combining two MDS matrices
with the Kronecker product – for the other rounds.

Compared with Pasta, the state-of-the-art cipher for BGV- and BFV-
style HHE, our evaluation shows that Pastav2 is up to 100 % faster in
plain while having the same homomorphic runtime in the SEAL ho-
momorphic encryption library and up to 30% faster evaluation time in
HElib, respectively.

Keywords: Rasta, Pasta, Pastav2, HHE, Interweaving matrix

1 Introduction

Privacy-preserving cryptographic protocols and primitives, such as homomor-
phic encryption (HE) and multi-party computation (MPC), have been applied
to increasingly more applications in the recent decade. However, applying them
to any given use case usually results in a huge performance penalty, both for
the runtime of the actual use case and for the communication between the in-
volved parties. Looking at applications involving HE, one can use symmetric
ciphers in so-called hybrid homomorphic encryption (HHE) (also called trans-
ciphering) [53] to address the large communication overhead between a client
encrypting the data and a server performing the homomorphic computations.
However, the reduced communication overhead then usually comes at the cost
of a larger server runtime overhead, which depends on the symmetric cipher used
in HHE. Thus, HHE allows to move the workload from a client to the server and
allows embedded devices with less computing power, RAM, and bandwidth to
securely outsource computations to a server.

HE-Friendly Schemes. In many HE schemes, such as BFV [9, 26], BGV [10],
and CKKS [12], the multiplicative depth of the evaluated circuit still is the
main bottleneck due to the absence of an efficient bootstrapping procedure.
Consequently, traditional symmetric ciphers, such as AES [17, 19], which were
optimized for fast plain performance instead of reducing the multiplicative depth
are not well suited for HHE. Thus, many new symmetric ciphers have been
proposed in the literature optimized for HHE minimizing the noise induced by
the decryption circuit. These ciphers include LowMC [2], Rasta [22], Dasta [40],
Kreyvium [11], FLIP [25], FiLIP [51], Fasta [14], Elisabeth [15] (broken in [28]),
HERA [13] (some versions recently broken in [47]), Rubato [38] (version operating
over integer rings recently broken in [29]), Masta [37], Pasta [23], and more
recently YuX [46]. For the HE schemes we target this means minimizing the
multiplicative depth of decryption. Looking at the Benchmarks from [23], ciphers
based on the Rasta design strategy are especially well suited for HHE in depth-
bounded HE schemes, at the cost of slower plain performance.

Rasta and Rasta-Like Schemes. As the majority of the symmetric schemes
in the literature, Rasta and Rasta-like schemes, including Dasta, Fasta, Masta,
and Pasta, are iterated round function schemes. However, with respect to tradi-
tional symmetric cryptographic schemes, they are characterized by the following:

– they are instantiated via new randomly generated affine layers for each new
block to be encrypted, ensuring efficient protection against statistical at-
tacks;

– their states have huge sizes for preventing linearization attacks without in-
creasing the number of rounds, and so the depth.

We refer to Section 2 for a recap of the evolution of the Rasta-like designs.

2

1.1 Our Contribution

In this paper, we continue the evolution of the Rasta design strategy and opti-
mize it for better statistical security guarantees and faster plain performance.
Especially the latter point is important for the HHE use case since HHE is ex-
plicitly designed to remove workload from a client and allow embedded devices
to participate in secure outsourcing use cases. Hence, producing a cipher with
faster plain encryption runtime further reduces the workload of the beneficiary
of the whole HHE pipeline, i.e., the resource-constrained clients.

Minimize the Randomness: From Pasta to Pastav2. In order to achieve
this result, we aim to minimize the randomness in such designs in a secure way.
We achieve this goal by proposing a new primitive called Pastav2, which is based
on Pasta, but where only the first affine layer is randomly sampled, and the
remaining components are all fixed, as detailed in Section 3. A detailed security
analysis of Pastav2 is proposed in Section 4. As one may expect, Pasta and
Pastav2 are vulnerable to the same attack vectors, especially the linearization
attack. In there, we show that, even with a single random affine layer, Pastav2
offers the same security as Pasta against such (and other) attack(s).

Moreover, to better understand why this is the optimal strategy for the mini-
mization of randomness, we also analyze the security of variants of such schemes,
including the case in which the first affine layer is fixed and any of the remaining
components (linear or nonlinear layers) is randomized, as discussed in Section 5.

Remark 1. While there could be some concerns regarding the fact that our new
scheme is still secure by only randomizing the first affine layer, we view this as
the first step to better understand the Rasta-like design strategy. Specifically, we
want to pose the question of whether current Rasta-like ciphers are over-designed
with too many random layers. Moreover, studying the security of Pastav2 can
also contribute to a better understanding of the security of Rasta-like ciphers,
with particular attention on how much randomness is needed for its security.

Interweaving Matrix: About the Statistical Security of Pastav2. The
security of Pastav2 is also related to our new generic result proposed in Sec-
tion 7 regarding its new linear layer. It is defined as a matrix F(n·m)×(n·m)

q called
interweaving matrix obtained by combining two MDS matrices – one over Fm×m

q

and one over Fn×n
q – via the Kronecker product. There, we prove that the branch

number of the obtained matrix is always n+m, which refers to the fact that the
sum of the numbers of non-zero elements at the input and at the output of an
interweaving matrixover F(n·m)×(n·m)

q is always at least n+m.
This result is also of independent interest due to the large use of the wide-

trail design strategy [18], which allows the designers to present a formal argument
regarding the security of an SPN construction against linear [50] and differen-
tial [6] attacks. As it is well known, the wide-trail strategy aims at designing
the round transformation(s) of a symmetric scheme in order to maximize the
minimum number of active S-Boxes over multiple rounds. The class of matrices
that maximize such parameters is called Maximum Distance Separable (MDS).

3

At the current state of the art, a lot of effort has been spent by the community
looking for 4× 4 (or slightly bigger/smaller) efficient MDS or almost-MDS ma-
trices for designing AES-like schemes. Apart from that, only a few strategies are
known for constructing MDS matrices of arbitrary size (as the Cauchy [58] or
the Vandermonde [44] matrices).

Our result aims to fill this gap by formally analyzing a way to construct
efficient matrices with a reasonable branch number. As a concrete impact, our
result could be of broader interest, not only for FHE-friendly designs, but also
for MPC- and ZK-friendly symmetric schemes. Since they operate over a huge
field (e.g. [1,3,8,24,31–34,42]) and make use of low-degree non-linear functions,
these SPN schemes often do not require a linear layer with a maximum branch
number in order to achieve security against statistical attacks. The interweaving
matrices could be crucial for achieving good performances and security against
statistical attacks as well.

Efficiency of Pastav2. To show the effectiveness of our proposal, we evaluate
its performance in Section 6. While Pasta accounts for special properties of
the BGV/BFV HE schemes to be the most efficient symmetric cipher for them
to date, its plain performance leaves room for improvements. As shown in [23],
encrypting 1.5MB of data takes 16 s with Pasta compared to only 40ms with
AES.6 Applying our improvements allows us to reduce the plain encryption
time of Pasta by at least 50% depending on the parameters while keeping its
advantages for fast HE decryption runtime.

Notation. Let t ≥ 1. We represent elements of Ft
p as vectors x = (x0, x1, . . . , xt−1).

For vectors x ∈ F2t
p , we denote x := xL∥xR where xL, xR ∈ Ft

p are the left and the
right t words, respectively. Further, we write roti(y) to indicate a rotation of the
vector y ∈ Ft

p by i steps to the left. With y⊙m, we denote the element-wise prod-
uct (Hadamard product) between two vectors y,m ∈ Ft

p. With diag(x1, . . . , xt)
we denote a diagonal matrix of size t× t whose diagonal is (x1, . . . , xt). Finally,
given matrices M ∈ Fm×m

p and N ∈ Fn×n
p , we denote M ⊗N ∈ F(m·n)×(m·n)

p as
the Kronecker product of two matrices.

2 Preliminary: Evolution of Rasta-like Primitives

A dedicated symmetric-key primitive for HHE should have a low AND-depth [27,
53]. At CRYPTO 2018, a family of FHE-friendly stream ciphers called Rasta was
proposed [22], and it sheds new insight into secure FHE-friendly symmetric-key
designs. The main novelty of the Rasta design strategy [22] comes from the re-
alization that a major class of attacks on symmetric ciphers, namely statistical
attacks [5–7, 21, 41, 43, 45, 50, 57], depends on a large number of cipher eval-
uations (i.e., use many plaintext-ciphertext pairs) concerning the same cipher.
Consequently, these attacks can be mitigated by randomizing the cipher for each
evaluation.
6 While AES is significantly faster in plain, its comparatively huge multiplicative depth

would lead to infeasible HHE server runtimes [23].

4

M0 S

c0

M1 S

c1

S Mr

cr

· · ·K W

truncation

M0 S M1 S Mr
· · ·

v1 ⊙K

S

v2 ⊙K vr ⊙K

W

v0 ⊙K

M0 S

c0

M1 S

c1

S Mr

cr

· · ·K W

(a) Rasta / DASTA / Masta

(b) PASTA

(c) HERA

c0

Fig. 1: Constructions of existing Rasta-like primitives.

Here, we recall and compare the main existing Rasta-like primitives, which
are depicted in Fig. 1. There, ci, vi are random vectors, Mi are random matrices,
and S denotes the nonlinear layer.

Rasta. In Rasta, both the invertible matrices M0, . . . ,Mr and the round-
constants c1, . . . , cr are randomly generated via an Extendable-Output Function
(XOF) [54] seeded with a nonce N and a block counter i. Due to this special
structure, algebraic attacks become the main threats, and the most effective
one against Rasta is the linearization attack. However, due to the usage of the
quadratic χ-transformation [16] for the nonlinear layer of Rasta, faster lineariza-
tion attack on Rasta can be achieved by exploiting a special property of its
inverse [48,49], though Rasta is still secure against this improved attack.

Dasta. The follow-up work Dasta [40] focuses on the slow instance generation
of Rasta. In Rasta, random matrices are sampled until all (r+1) are invertible.
To reduce this overhead, Dasta generates the matrices (Mj)0≤j≤r as follows:

∀j ∈ [0, r] : Mj(x) = Mf,j × Pj(x),

where Mf,j is a fixed matrix, while Pj is a structured bit permutation seeded
with the block counter i. In this way, Dasta significantly outperforms Rasta in
the plain evaluation by a factor of 200 to 400 [40], while the performance in homo-
morphic evaluation remains almost the same (The instance generation runtime
is negligible compared to the homomorphic key-stream generation). However,
as shown in [48], such a way to generate the random matrix impacts the secu-
rity margin of Dasta, which is much smaller than the one of Rasta against the
linearization attack.

Primitives over Prime Fields: Masta, HERA and Pasta. Both Rasta and
Dasta are defined over F2, which makes them less efficient in many FHE appli-
cations, though the AND-depths are relatively low. Therefore, new FHE-friendly

5

primitives have been proposed to address this issue. The ciphers Masta, HERA, and
Pasta are thus defined over Fp. First, Masta was introduced as a direct applica-
tion of the Rasta design strategy. The random matrices are now generated from
polynomials with coefficients in a prime field rather than F2. The Masta client
side runtime achieved good results, but the scheme is not geared towards HE.
Thus, the homomorphic runtime is slow in many settings. For Pasta, the design-
ers proposed a relatively cheap way to generate a random matrix for each round
and prove high branch numbers with high probability. Moreover, to prevent effi-
cient attacks on the Rasta-like ciphers as in [48] which exploits the inverse of the
nonlinear layer, the designers of Pasta choose to truncate half of the permuta-
tion output to get the keystream. The design generally exploits properties of ho-
momorphic computation for fast decompression. However, their matrix sampling
method is still slow compared to the other ciphers. In HERA, on the other hand,
the matrices of the linear layers are fixed. However, each round, the round keys
are randomized by just element-wise multiplying a random vector vi (sampled
from an XOF seeded with a nonce and block counter) to the master key K. For
the input to the first nonlinear layer, it is M0(v0⊙K+c0) = M0(v0⊙K)+M0(c0)
where c0 is a known constant. Hence, we can interpret it from a different per-
spective: First, a fixed matrix is multiplied with a randomly generated diagonal
matrix. Then, multiply this new matrix with K, and finally, a constant is added.
In this sense, its first linear layer is also somehow randomized, but in a slightly
different way from Masta and Pasta. With a small state size and a limited
number of rounds, HERA generates the smallest number of random elements and
achieves the best client-side encryption time. However, by exploiting the special
feature of the randomized key schedule and the the small state size, an algebraic
attack on HERA using multiple collisions in round keys has been proposed in [47],
which can successfully peel off the last nonlinear layer of HERA and achieve a full-
round attack under the same assumption made by the designers. In Section 6,
we dive into the specifics of the performance trade-offs of the Fp-HHE ciphers.

3 Description of Pastav2

In this section, we introduce Pastav2 as an evolution of the cipher Pasta.

3.1 Pasta

Pasta [23] is a family of stream ciphers proposed at TCHES 2023. Let p be a
prime such that log2(p) > 16 and gcd(p− 1, 3) = 1.7 Given a secret key K ∈ F2t

p ,
a nonce N and a counter i, a Pasta encryption works as follows:

– the message m ∈ F∗
p is first parsed as m = m0∥m1∥ . . . ∥mn with mi ∈ Ft

p;
– the ciphertext is defined as c = c0∥c1∥ · · · ∥cn where

ci = mi + leftt(Pasta-π(K, N, i))

7 The power map x 7→ xd is invertible over Fp if and only if gcd(p− 1, d) = 1.

6

XOFN, i

public

KL A0,L,N,i

K = KL||KR

KR A0,R,N,i

[
2I I

I 2I

] S ′

S ′

A1,L,N,i

A1,R,N,i

[
2I I

I 2I

] S ′

S ′

. . .

. . .

S

S
...

S

S

Ar,L,N,i

Ar,R,N,i

[
2I I

I 2I

] KN,i

key dependent

. . .

. . .

Fig. 2: The truncated r-round Pasta-π permutation to generate the keystream
KN,i for block i under nonce N with affine layers Aj,k,N,i.

where Pasta-π is the Pasta permutation described in the following, and
where leftt(·) returns the first t words.

The keystream generation is shown in Fig. 2.
The permutation Pasta-π(x,N, i) on a vector x ∈ F2t

p is defined as

Pasta-π(x,N, i) = Ar,N,i ◦ Scube ◦Ar−1,N,i ◦ Sfeistel (1)
◦Ar−2,N,i ◦ . . . ◦A1,N,i ◦ Sfeistel ◦A0,N,i(x),

where r ≥ 1 is the number of rounds.
Sfeistel and SCube are S-box layers defined as below:

– Sfeistel is an S-box layer defined as Sfeistel(x) = S′(xL)∥S′(xR), where S′ over
Ft
p is a Feistel structure defined as

∀l ∈ {0, 1, . . . , t− 1} : (S′(y))l =

{
yl if l = 0,

yl + (yl−1)
2 otherwise,

(2)

where y = y0∥y1∥ · · · ∥yt−1 ∈ Ft
p, and where (S′(y))l with the index l refers

to the l-th element after applying S′.
– Scube is an S-box defined as Scube(x) = x3

0∥x3
1∥ · · · ∥x3

2t−1.

For each j ∈ {0, . . . , r}, Aj,N,i is an affine layer

Aj,N,i(x) =

[
2 · I I
I 2 · I

] [
Mj,L,N,i(xL) + cj,L,N,i

Mj,R,N,i(xR) + cj,R,N,i

]
, (3)

where I ∈ Ft×t
p is the identity matrix and where Mj,L,N,i,Mj,R,N,i ∈ Ft×t

p and
cj,L,N,i, cj,R,N,i ∈ Ft

p are generated for each round from an XOF [54] seeded with
a nonce N and a counter i.

To efficiently sample each invertible matrix Mj,k,N,i ∈ Ft×t
p , they sample

sequential matrices following [35,36]:

Mj,k,N,i =
(
M̃j,k,N,i

)t

, M̃j,k,N,i =

0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1
α1 α2 α3 · · · αt

 (4)

7

for each k ∈ {L,R}, where α1, . . . , αt ∈ Fp \ {0}. In other words, Mj,k,N,i is
an invertible matrix which can be built by sampling t random elements and
performing t · (t− 1) multiplications and (t− 1) · (t− 1) additions.

3.2 The Birth of Pastav2

Next, we propose Pastav2 as a variant of Pasta, in which only the first affine
layer is randomized. We keep the main structure the same. Hence, for a prime p
such that log2(p) > 16 and gcd(p−1, 3) = 1, the permutation Pastav2-π(x,N, i)
on a vector x ∈ F2t

p is defined as

Pastav2-π(x,N, i) = Ar ◦ Scube ◦Ar−1 ◦ Sfeistel (5)
◦Ar−2 ◦ . . . ◦ Sfeistel ◦A1 ◦ Sfeistel ◦A0,N,i(x),

where r ≥ 1 is the number of rounds. The differences from Pasta are:

– only the first affine layer A0,N,i is randomized with the seed (N, i);
– the remaining r affine layers A1, . . . , Ar are fixed.

Fixed Affine Layers. We use a pre-defined MDS-matrix M ∈ Ft×t
p to instan-

tiate the affine layers A1, . . . , Ar, as shown below:

Aj(x) =

[
2 · I I
I 2 · I

]
×
[
M(xL) + cj,L
M(xR) + cj,R

]
,

where I ∈ Ft×t
p is the identity matrix, and cj,L, cj,R ∈ Ft

p are fixed round con-
stants. To sample the MDS matrix M ∈ Ft×t

p , we instantiate it as a random
Cauchy matrix [59]:

Mi,j =
1

xi + yj
,

where xi, yj are random elements in Fp such that (i) xi ̸= xj , (ii) yi ̸= yj and
(iii) xi + yj ̸= 0 for each i and j.

As we are going to prove in Section 7, the branch number of our fixed linear
layers A is t + 2. The main differences to the affine layers in Pasta are the
following:

– the matrix M and the random round constants are chosen during instantia-
tion and not sampled from an XOF;

– there is only one matrix M which is the same for both Pasta-branches and
for each round;

– the matrix M is instantiated to be an MDS matrix.

About the First Affine Layer. The first affine layer A0,N,i is defined in the
same way as Eq. (3). In Pastav2, c0,L,N,i, c0,R,N,i ∈ Ft

p are sampled using an
XOF seeded with (N, i). The matrices M0,L,N,i and M0,R,N,i are constructed

8

Table 1: Two instances of Pastav2 with 128-bit security (assuming log2(p) > 16
and gcd(p − 1, 3) = 1). We emphasize that Pastav2-3 and Pastav2-4 have the
same security level, but a different state-size t implies a different number of
rounds (and so depth).

Instance r # Key Words 2t # Plain/Cipher Words t XOF

Pastav2-3 3 256 128 Shake128
Pastav2-4 4 64 32 Shake128

as follows. First of all, we generate two matrices of the form (Eq. (4)) in Ft×t
p

denoted by Mf,L and Mf,R and fix them, i.e., they will remain the same for
different (N, i). Then, using an XOF [54] seeded with (N, i), we sample 2t nonzero
random elements in Fp, denoted by (β1, . . . , β2t). Finally, we define:

M0,L,N,i = Mf,L × diag(β1, . . . , βt),

M0,R,N,i = Mf,R × diag(βt+1, . . . , β2t).

3.3 Concrete Parameters

Based on our security analysis proposed in the next sections, Pastav2 requires
the same statesize and number of rounds as Pasta for the same security level.
Thus, as shown in Table 1, we propose the 3-round and 4-round instances denoted
by Pastav2-3 and Pastav2-4, respectively. These instances provide at least 128
bits of security (with a security margin of at least 20% [23]) for the prime fields
Fp with log2(p) > 16 and gcd(p − 1, 3) = 1. (We refer to Section 6 for concrete
values of p, which depend on the considered application.)

4 Security Analysis of Pastav2

The security analysis of Pastav2 is analogous to the one of Pasta. Here, we
focus on the effect of having only a single random affine layer in the first round.
As in Pasta, we show that chosen-plaintext attacks do not work. For this reason,
we mainly focus on known-ciphertext attacks, i.e., the attacker knows the output
of Pastav2.

About Chosen-Plaintext Attacks. The input of Pastav2 is composed of a
secret key K, a nonce N and a counter i. In particular, (N, i) is set as the input
of an XOF, and the output of the XOF is used to construct the first affine layer.
In this sense, the attacker cannot control the first affine layer given that the
used XOF is secure, even though it can adversarially choose (N, i). On the other
hand, K remains unknown and uncontrolled. Therefore, chosen-plaintext attacks,
including differential [6], truncated differential [43], impossible differential [5],
and cube [21] attacks cannot work. In more detail, in the case of a differential
attack, the difference ∆ after the first linear layer is given by

∆ = (M0 −M ′
0) · K+ (c0 − c′0) ,

9

where M0,M
′
0 are random matrices over F2t×2t

p and c0, c
′
0 ∈ F2t

p are the constant
vectors. Since K is unknown, and since the probability that either (i) M0 = M ′

0

or (ii) some rows of M0 and M ′
0 are equal is much lower than 2−128, it seems

not possible to set up such an attack.

Linear Cryptanalysis. Although the differential attack cannot work, the linear
attack [50] can work for Rasta-like ciphers in a slightly different way, as indicated
by the designers of HERA [13], i.e., it can be reduced to solving a Learning with
Errors (LWE) [55] like problem. This attack is equivalent to finding a linear ap-
proximation of the Pastav2 permutation holding with a high probability. Based
on the fact that the branch number of our fixed linear layers is t + 2 (as we
are going to prove in Section 7), we have built a simple MILP model as in [52]
and found that the minimal number of active nonlinear operations x 7→ x2 for
the first two rounds is 16 and 64 for Pastav2-4 and Pastav2-3, respectively. In
addition, according to Lemma 1 (Appendix B.5) in [13], the upper bounds of
the linear probability for the nonlinear transforms x 7→ x2 over Fp is 1

p . Since
p16 > 2128 for p > 216, we conjecture that Pastav2 is secure against this attack.

Algebraic Security against Linearization, Gröbner basis and Interpo-
lation Attacks: Relation with HERA. Similar to Pasta, the most threatening
attack on Pastav2 is the linearization attack. In such an attack, the attacker can
set up many equations in terms of K according to the outputs of Pastav2 and
solve the equation system with Gaussian elimination by treating each different
monomial as an independent variable. The degree denoted by d of these equa-
tions is upper bounded by 12 and 24 for Pastav2-3 and Pastav2-4, respectively.
In this way, the time complexity of the linearization attack is

(
2t+d
d

)ω
where

2 ≤ ω ≤ 3. Our choice for the parameters has ensured that this complexity is
larger than 2128 under ω = 2.

For the above time complexity, we implicitly assume that all polynomial
equations in K describing Pastav2 are dense, i.e., almost all monomials appear
in the final representation. To verify this assumption, we have practically verified
the density of the polynomials for Pastav2. To avoid the effect of cancellations,
we used prime numbers larger than 216. We observe that for the state sizes we
tested, the actual number of monomials in the output word with the smallest
number of monomials is always very close to the theoretic maximum number
of monomials (details in Fig. 5 – App. A), which is also the case for Pasta
as shown in [23]. In this sense, Pastav2 and Pasta provide equivalent security
against algebraic attacks, such as linearization, Gröbner basis, and interpolation
attacks, whose time complexity is closely related to the degree and density of
the polynomial equations.

The crucial point is that the first nonlinear layer cannot be efficiently peeled
off by linearizing it. Specifically, to linearize the first round in this way, it would
be necessary to introduce

(
2t+2
2

)
intermediate variables to represent each possible

term of degree smaller than 2 formed by the 2t key variables, which would
not improve the straightforward linearization attack. More details of this type
of attack can be referred to Section 5.1. Besides, note that the particular way
in which we construct the first random affine layer of Pastav2 is essentially

10

comparable to the one of Pasta or HERA, where the key is multiplied via a
random diagonal affine layer. Hence, if the first nonlinear layer can be peeled
off for Pastav2, we can also peel it off for Pasta and HERA, which will directly
lead to a breakthrough in the analysis of these two ciphers. Still, to the best
of our knowledge, no attack that peels off the first non-linear layer has been
currently proposed against Pasta or HERA in the literature, which makes us
confident on the security of Pastav2 as well. (We refer to the next Section 5 for
a detailed analysis regarding the impact of the first random affine layer against
the linearization attacks.)

Algebraic Attack using Multiple Collisions. Recently, a new algebraic at-
tack on HERA has been proposed [47] by using multiple collisions in the random-
ized round keys. This attack on some parameters of HERA succeeds because one
could efficiently peel off the last nonlinear layer when the cost to find collisions
in round keys is low, i.e., when the state size pt is small. However, the Pastav2
state size is of about 2t · log2p > 32 · t ≥ 1024 bits, which makes finding collisions
in the state too expensive (i.e., much larger than 2128). Therefore, our design is
secure against the algebraic attack proposed in [47].

Higher-order Differential Attack. For simplicity, let us denote the fixed
permutation after the first affine layer of Pastav2 by P(x) : F2t

p 7→ Ft
p. In this

way, the degree of P(x) is 12 and 24 for Pastav2-3 and Pastav2-4, respectively.
Due to such a low degree, one may feel that a higher-order differential attack
over the prime fields [4] can be mounted in a different way. However, note that
the input x of P(x) is computed as x = M0(K) + c0, where both c0 ∈ F2t

p and
the matrix M0 over F2t×2t

p are randomly generated. To mount a higher-order
differential attack over the prime field [4], the attacker needs to collect at least 13
inputs x = (x1, . . . , x2t) such that there exists an index j such that xj travels in
a multiplicative subgroup of Fp, while the remaining (x1, . . . , xj−1, xj+1, . . . , x2t)
takes the same value. Due to the addition of the random vector c0, the input of
P(x) can be viewed to be random as well. Hence, the probability that there exists
a j such that (x1, . . . , xj−1, xj+1, . . . , x2t) takes the same value for 13 random x
is equal to t

(p2t−1)12 < 2−128. Hence, Pastav2 is secure against this attack.

Meet-in-the-Middle and Guess-and-Determine Attacks. For the fixed
permutation P(x) after the first affine layer, the attacker can make many offline
queries to P(x) and collect many (x,P(x)) tuples. At the online phase, with each
random A0,N,i, the attacker only knows t words of the output of the fixed per-
mutation. Even if a match is found for these t words of P(x′), the corresponding
2t words x′ stored in the precomputed table is correct with probability 1/pt,
which means the time complexity of this attack is lower bounded by pt. Since
log2(p) > 16 and t > 32 in Pastav2, all the proposed instances have at least
128-bit security against this attack.

Similarly, assume that the attacker guesses the truncated part in order to
invert the permutation. Since each Pastav2 state is composed of 2t words and t
words are truncated, the time complexity of such a guess-and-determine attack

11

is lower bounded by O(pt). Since log2(p) > 16 and t > 32, Pastav2 is secure
against this attack.

5 Design Rationale

In the previous section, we showed that Pastav2 is secure even with a single
randomized layer. Here, we explain the design rationale of this new updated
version of Pasta. The design Pastav2 is the result of our considerations/analysis
regarding the following questions:

1. which layer should we randomize to maximize the security?
2. what are the benefits of fixing the other layers from a security point of view?
3. what are the advantages of truncation with respect to feed-forward?

Since truncation is used in Pasta, we refer to Appendix B for a discussion on
question (3). here, we focus on questions (1) and (2).

5.1 Choice of the Randomized Layer from a Security Point of View

To minimize the randomness in Rasta-like designs, the optimal choice is obvi-
ously only to randomize one layer, i.e., either one linear layer or one nonlinear
layer. here, we explain our choice to randomize the first linear layer.

Randomizing Nonlinear Layers. First, can we simply randomize one non-
linear layer? Compared with randomizing the linear layer, using a random non-
linear layer implies the usage of a random S-box. One relatively cheap way to
randomize the S-box is to introduce some random constants. For example, for
the S-box S′(y) used in Pasta, which is specified in Eq. (2), we can introduce
2(t−1) random nonzero elements in Fp sampled with an XOF seeded with (N, i).
Denote these random nonzero elements by (a1, . . . , at−1, b1, . . . , bt−1) ∈ F2t−2

p .
Then, this S-box can be randomized as follows:

(S′(y))l =

{
yl if l = 0,

yl + al−1 · yl−1 · (yl−1 + bl−1) otherwise.

Similarly, given 4t non-zero random elements (a′0, . . . , a′2t−1, b
′
0, . . . , b

′
2t−1) in Fp,

Scube an be randomized as follows:

Scube(x) = a′0 · (x0 + b′0)
3∥ · · · ∥a′2t−1 · (x2t−1 + b′2t−1)

3 ,

However, even if all nonlinear layers in Pasta are randomized in this way,
this choice impacts the security level of the scheme, which is reduced due to the
linearization attack. Specifically, since the first affine layer remains the same for
different (N, i), let us introduce the equivalent key K′ = (K′0, . . . , K

′
2t−1) satisfying

K′ = A0(K),

12

where A0 is the first affine layer. Hence, the attacker can skip the first fixed linear
layer and look for K′ directly. Next, for the above way to randomize Sfeistel, let
us further introduce 2(t− 1) variables (K′′0 , . . . , K

′
2t−3) defined as

∀i ∈ [0, t− 2] : K′′i = (K′i+1)
2 ,

∀i ∈ [t− 1, 2t− 3] : K′′i = (K′i+2)
2 .

No matter what (N, i) are, the state after the first round will always be linear in
the 2t+ 2t− 2 = 4t− 2 variables (K′0, . . . , K

′
2t−1) and (K′′0 , . . . , K

′′
2t−3).

As a result, for 3-round Pasta and for each different (N, i), the attacker
can set up t equations in 4t − 2 variables whose degree is only 2 × 3 = 6. This
means that the attacker only needs to collect

∑6
i=0

(
4t−2+i−1

i

)
=

(
4t−2+6

6

)
such

equations with about
(
4t−2+6

6

)
/t different (N, i) to solve these variables with the

linearization technique. The time complexity is upper bounded by
(
4t−2+6

6

)ω
,

where 2 < ω ≤ 3. Usually, from the perspective of designers, ω = 2 is chosen.
Similarly, for this new version of 4-round Pasta, the time complexity to break
it is upper bounded by

(
4t−2+12

12

)ω
.

For comparison, the time complexity to break 3 and 4 rounds of the original
Pasta is upper bounded by

(
2t+12
12

)ω
and

(
2t+24
24

)ω
, respectively, because the

attackers cannot efficiently peel off the first nonlinear layer with this method
due to the first random affine layer. Such a property also holds for Pastav2.
More specifically, although they can also introduce 2t− 2 intermediate variables
to linearize the first nonlinear layer for each different (N, i), these intermediate
variables are different for different (N, i) since the first affine layer varies for
different (N, i), that is, they will have different relations with the secret key K

for different (N, i). This is equivalent to the fact that the first round cannot be
efficiently peeled off, or

(
2t+2
2

)
intermediate variables should be introduced to

linearize the first round.

Randomizing an Affine Layer in the Middle Rounds. Let’s consider r
rounds of Pasta. If the affine layer Ai (for i > 0) is the only one to be ran-
domized, the attacker only needs to recover the input state of Ai, since such
state remains the same for different (N, i). Once it is found, it is possible to com-
pute backward to recover the secret key. In this way, attacking r-round Pasta
is reduced to attacking r − i rounds of Pasta, which significantly reduces the
security of Pasta.

5.2 Benefits of Having Fixed Layers from a Security Point of View

As stated Section 4, the input of the fixed permutation P (x) after the first affine
layer is random. If P (x) is malicious, e.g., instantiated with weak affine layers,
it may still weaken the security of Pastav2, allowing for concrete attacks that
aim to recover the input of P (x). By choosing secure affine layers in the fixed
permutation, e.g., using MDS matrices, it is possible to avoid this scenario and
have a better security argument.

13

Specifically, the fixed affine layers in Pastav2 provide full diffusion after only
one round and have a branch number of t+ 2, as we are going to prove in Sec-
tion 7. Comparing this to Pasta, its branch number is only shown to be larger
than t/2 with a high probability. In summary, our changes allow us to keep all
the advantages of randomizing the cipher while fully eliminating the possibility
of weak matrices, which might compromise security in some instances. For exam-
ple, there are many instances of weak matrices making the MPC-friendly cipher
LowMC vulnerable to the interpolation attack [20, Sect. 1]: “[...] the designers of
LowMC allow to instantiate it using a pseudo-random source that is not crypto-
graphically secure. Our result shows that this is risky, as using an over-simplified
source for pseudo-randomness [...] allow finding weak instances [...] ”.

6 Benchmarks

In this section, we report on the practical performance of Pastav2 and the
consequences of only randomizing the first affine layer. We compare our imple-
mentation with the Fp ciphers outlined in Section 2 based on a benchmarking
framework8 provided by [23]. We separate our performance evaluation into plain
encryption and homomorphic evaluation times and evaluate our benchmarks
with 33-bit plaintext primes. The plaintext prime p defines the plaintext domain
Fp. Increasing p has a negative impact on HE performance. Next to an overview
of the HE parameters, we present further tests, including different primes, in Ap-
pendix D. First, we reiterate the findings of previous performance comparisons.
In [23], the authors show that their HHE cipher Pasta is the fastest in the HE
domain with the 4 round version being the best for few low-precision numbers and
3 round version being the best when applied to bigger use cases. The advantages
are two-fold:

– a relatively fast homomorphic decompression, and
– a small number of rounds.

Having fewer rounds reduces the noise impact in HE computation and allows
for smaller, more efficient parameter settings. Having more efficient parameters
positively impacts the performance of subsequent use case evaluations. On the
other side, for performance on the client side, 3-round Pasta is outperformed
by all competitors, while the 4-round version is better but still far off compared
to HERA.

Plain Benchmarks. In Table 2, we report the performance numbers for the
most prominent Fp HHE ciphers. This table depicts the runtime of the encryption
implementation with a 33-bit prime in CPU cycles averaged over 1000 times. This
metric allows us to show more minor differences in runtime and be independent
of the hardware used. We will discuss the HE benchmarks on the right side later.
With different plaintext primes, the numbers change, but the overall relations
between the ciphers remain the same. The plain performance section shows the
8 https://github.com/IAIK/hybrid-HE-framework/

14

https://github.com/IAIK/hybrid-HE-framework/

101 102
104

105

106

107

HE Decompression (log) [s]

P
la

in
E

nc
ry

pt
io

n
(l

og
)

[C
yc

le
s]

• Pasta-3
• Pastav2-3
• Masta-4
• Masta-5
• Pasta-4
• Pastav2-4
• HERA
△ 17-bit prime
□ 33-bit prime
⋄ 60-bit prime

Fig. 3: Comparison of the different Fp ciphers. The two metrics are the runtime
in the homomorphic domain versus the CPU cycles for client-side encryption.
All ciphers are indicated with colors and tested with different plaintext prime
sizes indicated with shapes.

total cycles needed for the entire encryption process, then separated into nonce-
dependent instance generation and the computation of the key stream.

HERA is still the fastest cipher when evaluated in plain. On the one hand,
Pastav2 roughly halves the gap towards it. On the other hand, it retains the
advantages in the HE domain with similar speed for single blocks and lower noise
costs. In HE computation, higher noise costs are compensated with less efficient
parameter settings. We present practical consequences in Appendix D.

The other ciphers show a clear trade-off between round number and state
size performance. Smaller state sizes reduce the number of random elements,
reducing the high cost for the client side. Additional rounds, however, hurt HE
evaluation, sometimes enforcing less efficient parameter settings. Within this
trade-off, we compare the lower round instances of Pasta, Pastav2, and Masta
and their higher round instances separately. For the higher round versions, Pasta
outperformed Masta in both domains and Pastav2 further increases the gap by
doubling the plain encryption speed. Given the low-round versions, Masta was
two to three times faster than Pasta on the client side Pastav2 closes this gap
significantly down to 0-20% slower depending on the plaintext prime.

Having roughly twice the speed of Pasta follows from the new design. First,
we note that since Pastav2 has the same number of rounds and the same S-boxes
as Pasta, their multiplicative depth remains the same. To successfully encrypt
one block with statesize t, Pasta requires to sample 4 · t random elements per
affine layer (2t for the round constants and t for each of the two submatrices),

15

Table 2: Detailed performance metrics. Plain encryption time is split into nonce-
dependent instance generation and generation of the key stream. HE performance
shows runtime for encrypting the secret key and decompressing ciphertexts.

Plain Performance [Cycles] HE Performance [s]
Cipher Total Instance Generation Encrypting Enc. key Decomp.

Masta-4 1 862 325 712 804 1 149 521 0.095 57.3
Masta-5 619 314 262 892 356 422 0.096 49.8
HERA 22 294 13 607 8 687 0.108 17.2
Pasta-3 3 978 645 2 312 924 1 665 721 0.037 17.7
Pasta-4 351 994 250 693 101 301 0.099 21.4
Pastav2-3 1 956 656 49 645 1 907 011 0.033 15.0
Pastav2-4 169 632 14 353 155 279 0.094 18.2

hence, a total of 4 · t · (r+1) random elements. Pastav2, on the other hand, only
has one random affine layer. Hence, it is enough to sample 4 · t elements, which is
significantly smaller than required for Pasta. Further, in Pasta, these random
words must be transformed into the t × t matrices, which comprise each affine
layer branch. Each matrix generation requires t · (t− 1) field multiplications and
(t− 1) · (t− 1) field additions. On the contrary, in Pastav2, the random words
are only applied to the matrix’s main diagonal in the first round, resulting in t
field multiplications.

After the nonce-dependent instance is created, encryption timings are very
similar for both Pasta and Pastav2. Given the slightly different implementa-
tions for measuring the instance generation, the encryption time of Pasta is
slightly faster. Overall, the speedup of instance generation far outweighs the
minor drawbacks in encryption time.

Homomorphic Benchmarks. To show the effect of our changes on the run-
time of HHE use cases, we redo the benchmarks from [23] using their open-source
benchmarking framework.9 Hence, we benchmark the runtime of homomorphi-
cally evaluating the decryption circuit for one block of data (i.e., homomorphic
decompression).

We give benchmarks for two state-of-the-art HE libraries, namely SEAL [56]
and HElib [39], which implement the BFV [9, 26] and BGV [10] HE schemes,
respectively. The homomorphic decompression implementations of Pasta and
Pastav2 have the following difference: The matrix in the affine layers is the same
for each round (after the first one) in Pastav2 but different in Pasta, one does
not have to encode this matrix every round into HE plaintext polynomials when
using Pastav2. Similar or slightly cheaper results are expected for Pastav2,
depending on the HE libraries implementation of encoding.

9 We run all benchmarks on a Linux server with an AMD Ryzen 9 7900X CPU (4.7
GHz). Each benchmark only has access to one thread. The source code is available
at https://github.com/IAIK/hybrid-HE-framework

16

https://github.com/IAIK/hybrid-HE-framework

SEAL Benchmarks. It is found that our changes for Pasta barely affect the
benchmarks in the SEAL library. Consequently, less matrix encodings have no
real effect in SEAL and lead to practically equivalent benchmarks when using
Pasta and Pastav2. We provide detailed benchmarks for the SEAL library in
Appendix D.2.

HElib Benchmarks. In Table 2, we evaluate the HE decompression and sym-
metric key encryption with different instances of the Fp HHE ciphers in a 33-bit
prime field Fp. We refer to Appendix D.3 for benchmarks with two other prime
fields and a more extensive discussion of HE parameters. Most importantly, for
the benchmarks discussed, we selected parameters that provide the necessary
noise budget and a security parameter λ′ such that λ′ ≥ 128 bit. Contrary to
the benchmarks in the SEAL library, our changes significantly impact the homo-
morphic decompression runtime in the HElib library. This speedup stems from
a more expensive matrix encoding in HElib. Fewer matrices have to be encoded
in Pastav2 since each affine layer (except the first one) uses the same matrix.
Depending on the parameters, these changes lead to a runtime advantage in
the range of 10% to 30%. Regarding noise budget, fluctuations in the range of
1 bit can be observed, which are most likely caused by random Gaussian noise
samples.

Discussion. In general, Pasta can be seen as current state-of-the-art in HHE
for the BFV and BGV HE schemes. Pasta outperforms Masta in the HE domain.
Compared to HERA, noise consumption and multiplicative complexity ultimately
make it the better choice in many applications. We further display these scenar-
ios in Appendix D. Given these preconditions, Pastav2 is a straight improve-
ment over Pasta. Firstly, Pastav2 requires fewer random words, significantly
improving the client-side encryption. Given the BGV scheme and expensive ma-
trix encoding, Pastav2 outperforms Pasta in HElib. Finally, the multiplicative
complexity is the same s.t. all parameter settings in the HE domain also apply.
In Fig. 3, we see clearly that Pastav2 outperforms Pasta in the plain and HE
domains. Further, the concrete choice of p is determined by the concrete HE
use case. It should be set as the lowest possible value that does not lead to un-
wanted overflows in the arithmetic computations. Finally, in the case of a heavily
constrained client HERA might be the optimal choice depending on the concrete
capabilities. However, as mentioned before, higher multiplicative depth dimin-
ishes the advantages seen in Fig. 3, the results presented for the 60-bit prime were
computed with an HE security parameter of λ′ = 89-bit as increasing security
would increase runtime significantly.

7 Branch Number of an Interweaving Matrix

As a final result, we analyze and generalize the design strategy used to set up the
internal matrices of Pasta and Pastav2. The idea is to construct (n ·m)×(n ·m)
invertible matrices whose branch number is equal to n + m by combining two
MDS matrices of dimensions n×n and m×m. We call the result an “interweaving

17

matrix ”. This strategy is not new in the literature since it is already used in
Griffin, HERA, and Rubato, as discussed later. Still, a formal analysis is missing.
here, we aim to fill this gap.

Definition of an Interweaving Matrix. We start by defining an interweaving
matrix and continue with proving its branch number.

Definition 1. Given an m×m MDS matrix M and an n× n MDS matrix N ,
we define the interweaving matrix Z ∈ F(m·n)×(m·n)

q as the Kronecker product of
the matrices M and N , given by

Z :=M ⊗N =

M0,0 ·N M0,1 ·N . . . M0,m−1 ·N
M1,0 ·N M1,1 ·N . . . M1,m−1 ·N

...
. . .

...
Mm−1,0 ·N Mm−1,1 ·N . . . Mm−1,m−1 ·N

 (6)

=

M0,0 · I M0,1 · I . . . M0,m−1 · I
M1,0 · I M1,1 · I . . . M1,m−1 · I

...
. . .

...
Mm−1,0 · I Mm−1,1 · I . . . Mm−1,m−1 · I

×

N 0 . . . 0
0 N . . . 0
...

. . .
...

0 0 . . . N

 , (7)

where I ∈ Fn×n
q is the identity matrix.

Invertibility of an Interweaving Matrix. We first recall that an arbitrary
matrix M ∈ Fm×m

q is invertible if and only if its determinant det(M) is co-
prime with q, i.e., gcd(det(M), q) = 1. The determinant of a Kronecker product
is given by det(M⊗N) = det(M)n·det(N)m. Given that both N and M are MDS
matrices (as by Definition 1) and hence invertible, it follows that gcd(det(M ⊗
N), q) = 1. Thus, an interweaving matrix is always invertible.

An Alternative Representation of an Interweaving Matrix. Roughly
speaking, multiplying a vector x ∈ Fn·m

q by an interweaving matrix Z corre-
sponds to do the following:

1. re-arrange the vector x ∈ Fn·m
q into a 2-dimensional vector (or matrix) in

Fm×n
q of n rows and m columns;

2. multiply each column of this 2-dimensional vector with the n×n matrix N ;
3. multiply each row of the obtained 2-dimensional vector with the m × m

matrix M .

In short: x
MixColumns−−−−−−−−→ N × x

MixRows−−−−−−→ (N × x) × MT , where x is the 2-
dimensional vector. More formally, denoting that the diagonal matrix diag(A)x :=
diag(A, . . . , A)x indicates x matrices A in the diagonal, we can further define a
shuffle Σ(x) ∈ F(m·n)×(m·n)

q as

Σ(x) := (diag(e(x)0)y,diag(e(x)1)y, . . . ,diag(e(x)x−1)y)
T,

where (x, y) = (m,n) or (n,m), 0(x) = (0, 0, . . . , 0) ∈ Fx
q and e

(x)
i ∈ Fx

q is the
vector which contains zero apart from the i-th element which is equal to 1.

18

Lemma 1. Let Z ∈ F(m·n)×(m·n)
q be defined as in Definition 1. It can be re-

written as
Z = Σ(m) × diag(M)n ×Σ(n) × diag(N)m. (8)

The proof is given in App. C.1.

Branch Number of an Interweaving Matrix. First, we recall that the
branch number of a matrix M is defined as

B(M) := min
a∈Fm×m

q \{0}
{hw(a) + hw(M × a)} ,

where hw(·) is the Hamming weight of vector a and is defined as the number
of nonzero elements. The branch number of an MDS matrix is m+ 1. Next, we
compute the branch number of an interweaving matrix.

Theorem 1. Let Z ∈ F(m·n)×(m·n)
q be as in Eq. (6). If M and N are both MDS

matrices (as required in Definition 1), then its branch number is n+m.

Proof. Given an input x = (x0, . . . ,xm−1) ∈ Fn·m
q with α non-zero Fq-words, we

compute the minimum number of non-zero Fq-words of the output Z ×x = y =
(y0, . . . ,yn−1) ∈ Fn·m

q using the representation given in Eq. (6). For this goal, we
first remove the final shuffle Σ(m), since it does not change the number of active
words. We further define intermediate variables u = (u0,u1, . . . ,um−1), ũ =
(ũ0, ũ1, . . . , ũn−1) ∈ Fm·n

q as the input and output of the shuffle Σ(n).

One Active Fn
q -Word Case. Let’s start by considering the case in which the input

x contains at most α non-zero Fq-words with the indices i0, i1, . . . , iα−1 of the
active (i.e., non-zero) Fq-words in a set S

(n)
j = {j · n, j · n+ 1, . . . , j · n+ n− 1}

for a certain j ∈ {0, 1, . . . ,m − 1}. Without loss of generality, we assume i0 <
i1 < · · · < iα (see Fig. 4).

We follow the notations in Lemma 1, i.e., diag(N)m = diag(N,N, . . . , N)m
and diag(M)n = diag(M,M, . . . ,M)n. Based on the representation of Z given
in Eq. (8), after the application of diag(N)m, the number of active Fq-words β
is

1 ≤ n+ 1− α ≤ β ≤ n .

Indeed, n+1−α ≤ β since the matrix N is MDS, and β ≤ n follows from the fact
that only one matrix N is active. In particular, the indices k0 < k1 < . . . < kβ−1

of the active (i.e., non-zero) Fq-words after the application of N are still in the
same set S

(n)
j for the same index j ∈ {0, 1, . . . ,m− 1} as before.

Next, the matrix Σ(n) is applied. The number of active Fq-words does not
change. However, we observe the following. For each l ∈ {0, 1, . . . , β − 1}, there
exists a j ∈ {0, 1, . . . , n−1} such that il ∈ S

(m)
j = {j·m, j·m+1, . . . , j·m+m−1}.

Then:
∀h ∈ {0, 1, . . . , β − 1} \ {l} : ih /∈ S

(m)
j ,

that is, after shuffle Σ(n), elements in any Fn
q -word of u cannot appear in the

same Fm
q -word of ũ.

19

x0,0

...

x0,n−1

...

xj,0

...

xj,i0

...

xj,i1

...

xj,iα−1

...

xj,n−1

...

xm−1,0

...

xm−1,n−1

x0

xj

xm−1

diag(N)m
======⇒

u0,0

...

u0,n−1

...

uj,0

...

uj,k0

...

uj,k1

...

uj,kβ−1

...

uj,n−1

...

um−1,0

...

um−1,n−1

α+ β ≥ n+ 1

u0

uj

um−1

Σ(n)

===⇒

u0,0...
um−1,0...
u0,k0...
uj,k0...

um−1,k0...
u0,k1...
uj,k1...

um−1,k1...
u0,kβ−1...
uj,kβ−1...
um−1,kβ−1...
u0,n−1...
um−1,n−1

ũ0

ũk0

ũk1

ũkβ−1

ũn−1

diag(M)n
======⇒

y0,0
...

y0,m−1
...

yk0,0
...

yk0,m−1
...

yk1,0
...

yk1,m−1
...

ykγ ,0

...
ykγ ,m−1

...
yn−1,m−1

...
yn−1,m−1

y0

yk0

yk1

ykγ−1

yn−1

γ = β ·m

Fig. 4: Branch number for one active Fn
q -word case.

In such a case, after the application of diag(M)n, the number γ of active
Fq-words are

γ = β ·m ≥ (n+ 1− α) ·m.

Indeed, β · m ≤ γ is due to the facts that (i) β Fm
q -words are active, (ii) each

of such words contains only one active Fq-word, and (iii) M is MDS (hence, its
branch number is m+1). It follows that if one Fq-word is active in an Fm

q -word,
all m Fq-words are active after the application of the matrix M (see the last step
in Fig. 4).

It follows that the number of active words in inputs and in outputs is at least

α+ γ ≥ (n+ 1− α) ·m+ α .

This number is minimized by choosing α = n, which implies that the minimum
number of active Fq-words is n+m, as claimed.

Other Cases. In order to finish the proof, we have to consider the cases in which
we have more than a single active Fn

q -word in the input. Since the strategy to
analyze this case is equivalent to the one just proposed, and due to the page
limit, we present the details in App. C.2. In there, we show that also for this
case, the minimum number of active words in inputs and outputs is n+m.

⊓⊔

20

Interweaving Matrix in Griffin, HERA, and Rubato. Finally, we point out
that interweaving matrices are already used in the literature. For example, the
matrix used in the ZK-friendly scheme Griffin [30] can also be seen as an in-
terweaving matrix for some parameters, and the branch number following our
proof matches the branch number given by the designers of Griffin. The ma-
trix in the linear layers of Griffin [30] for statesizes t = 4 · t′ ≥ 8 is defined
as circ(2I, I, . . . , I) × diag(N,N, . . . , N)t′ , where I ∈ F4×4

q is the identity ma-
trix, and N = circ(3, 2, 1, 1) is an 4 × 4 MDS matrix. Since both circ(2, 1) and
circ(2, 1, 1) are MDS matrices, the final Griffin matrix can be seen as an in-
terweaving matrix when t′ = 2 or t′ = 3. Thus, following our proof, the matrices
have a branch number of t′ +4, which is 6 and 7, respectively. This matches the
proof given in [30].

In a similar way, the linear layer used in the HE-friendly schemes HERA [13]
and Rubato [38] corresponds to an interweaving matrix. Indeed, each row of the
Fv2

q state of HERA and Rubato is first multiplied by a v×v MDS matrix, and then
each column of the obtained state is multiplied by another v × v MDS matrix.
Based on the result just given, we can easily deduce that the branch number of
the (v · v) × (v · v) interweaving matrix of HERA and Rubato is 2 · v which also
matches the proofs by the designers.

Acknowledgments. We extend our gratitude to the reviewers of the SAC work-
shop for their invaluable feedback and insightful comments, which greatly en-
hanced the quality of this paper. Lorenzo Grassi is supported by the German Re-
search Foundation (DFG) within the framework of the Excellence Strategy of the
Federal Government and the States – EXC 2092 CaSa – 39078197. Fukang Liu
is supported by JSPS KAKENHI Grant Numbers JP22K21282, JP24K20733.
He is also funded by the commissioned research (No. JPJ012368C05801) by Na-
tional Institute of Information and Communications Technology (NICT). Qingju
Wang is supported by the ANR through project ANR-23-CE39-0009 TRUST.
Finally, this work is partly supported by the European Union under the project
Confidential6G with Grant agreement ID: 101096435.

References

1. Albrecht, M.R., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: Mimc: Efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In:
ASIACRYPT. LNCS, vol. 10031, pp. 191–219 (2016)

2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: EUROCRYPT. LNCS, vol. 9056, pp. 430–454 (2015)

3. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Sym-
metric Cryptol. 2020(3), 1–45 (2020)

4. Beyne, T., Canteaut, A., Dinur, I., Eichlseder, M., Leander, G., Leurent, G., Naya-
Plasencia, M., Perrin, L., Sasaki, Y., Todo, Y., Wiemer, F.: Out of Oddity - New
Cryptanalytic Techniques Against Symmetric Primitives Optimized for Integrity
Proof Systems. In: CRYPTO. LNCS, vol. 12172, pp. 299–328 (2020)

21

5. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: EUROCRYPT. LNCS, vol. 1592, pp.
12–23 (1999)

6. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
CRYPTO. LNCE, vol. 537, pp. 2–21 (1990)

7. Bogdanov, A., Wang, M.: Zero Correlation Linear Cryptanalysis with Reduced
Data Complexity. In: FSE. LNCS, vol. 7549, pp. 29–48 (2012)

8. Bouvier, C., Briaud, P., Chaidos, P., Perrin, L., Salen, R., Velichkov, V., Willems,
D.: New design techniques for efficient arithmetization-oriented hash functions:
ttanemoi permutations and ttjive compression mode. In: CRYPTO. LNCS, vol.
14083, pp. 507–539. Springer (2023)

9. Brakerski, Z.: Fully Homomorphic Encryption without Modulus Switching from
Classical GapSVP. In: CRYPTO. LNCS, vol. 7417, pp. 868–886 (2012)

10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. In: ITCS. pp. 309–325. ACM (2012)

11. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Paillier,
P., Sirdey, R.: Stream Ciphers: A Practical Solution for Efficient Homomorphic-
Ciphertext Compression. In: FSE. LNCS, vol. 9783, pp. 313–333 (2016)

12. Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic Encryption for Arith-
metic of Approximate Numbers. In: ASIACRYPT. LNCS, vol. 10624, pp. 409–437
(2017)

13. Cho, J., Ha, J., Kim, S., Lee, B., Lee, J., Lee, J., Moon, D., Yoon, H.: Transci-
phering Framework for Approximate Homomorphic Encryption. In: ASIACRYPT.
LNCS, vol. 13092, pp. 640–669 (2021)

14. Cid, C., Indrøy, J.P., Raddum, H.: FASTA - A Stream Cipher for Fast FHE Eval-
uation. In: CT-RSA. LNCS, vol. 13161, pp. 451–483 (2022)

15. Cosseron, O., Hoffmann, C., Méaux, P., Standaert, F.: Towards Globally Optimized
Hybrid Homomorphic Encryption - Featuring the Elisabeth Stream Cipher. IACR
Cryptol. ePrint Arch. p. 180 (2022)

16. Daemen, J.: Cipher and hash function design, strategies based on linear and differ-
ential cryptanalysis, PhD Thesis. K.U.Leuven (1995), http://jda.noekeon.org/

17. Daemen, J., Rijmen, V.: Rijndael for AES. In: AES Candidate Conference. pp.
343–348. National Institute of Standards and Technology, (2000)

18. Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: IMACC. LNCS,
vol. 2260, pp. 222–238. Springer (2001)

19. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer (2002)

20. Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized Interpolation Attacks on
LowMC. In: ASIACRYPT. LNCS, vol. 9453, pp. 535–560 (2015)

21. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In:
EUROCRYPT. LNCS, vol. 5479, pp. 278–299 (2009)

22. Dobraunig, C., Eichlseder, M., Grassi, L., Lallemand, V., Leander, G., List, E.,
Mendel, F., Rechberger, C.: Rasta: A Cipher with Low ANDdepth and Few ANDs
per Bit. In: CRYPTO. LNCS, vol. 10991, pp. 662–692 (2018)

23. Dobraunig, C., Grassi, L., Helminger, L., Rechberger, C., Schofnegger, M., Walch,
R.: Pasta: A Case for Hybrid Homomorphic Encryption. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2023(3), 30–73 (2023)

24. Dobraunig, C., Kales, D., Rechberger, C., Schofnegger, M., Zaverucha, G.: Shorter
signatures based on tailor-made minimalist symmetric-key crypto. In: CCS. pp.
843–857. ACM (2022)

22

http://jda.noekeon.org/

25. Duval, S., Lallemand, V., Rotella, Y.: Cryptanalysis of the FLIP Family of Stream
Ciphers. In: CRYPTO (1). LNCS, vol. 9814, pp. 457–475 (2016)

26. Fan, J., Vercauteren, F.: Somewhat Practical Fully Homomorphic Encryption.
IACR Cryptol. ePrint Arch. 2012, 144 (2012)

27. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic Evaluation of the AES Circuit.
In: CRYPTO. LNCS, vol. 7417, pp. 850–867. Springer (2012)

28. Gilbert, H., Boissier, R.H., Jean, J., Reinhard, J.: Cryptanalysis of Elisabeth-4. In:
ASIACRYPT (3). LNCS, vol. 14440, pp. 256–284 (2023)

29. Grassi, L., Ayala, I.M., Hovd, M.N., Øygarden, M., Raddum, H., Wang, Q.: Crypt-
analysis of Symmetric Primitives over Rings and a Key Recovery Attack on Rubato.
In: CRYPTO (3). LNCS, vol. 14083, pp. 305–339 (2023)

30. Grassi, L., Hao, Y., Rechberger, C., Schofnegger, M., Walch, R., Wang, Q.: Horst
Meets Fluid-SPN: Griffin for Zero-Knowledge Applications. In: CRYPTO. LNCS,
vol. 14083, pp. 573–606. Springer (2023)

31. Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger, C., Schofnegger, M.,
Walch, R.: Reinforced concrete: A fast hash function for verifiable computation.
In: SIGSAC. pp. 1323–1335. ACM (2022)

32. Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger, C., Schofnegger, M.,
Walch, R.: Monolith: Circuit-friendly hash functions with new nonlinear layers for
fast and constant-time implementations. IACR Cryptology ePrint Archive 2023,
1025 (2023)

33. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon:
A new hash function for zero-knowledge proof systems. In: USENIX. pp. 519–535.
USENIX Association (2021)

34. Grassi, L., Lüftenegger, R., Rechberger, C., Rotaru, D., Schofnegger, M.: On a
generalization of substitution-permutation networks: The HADES design strategy.
In: EUROCRYPT. LNCS, vol. 12106, pp. 674–704. Springer (2020)

35. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: CRYPTO. LNCS, vol. 6841, pp. 222–239 (2011)

36. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED Block Cipher. In:
CHES. LNCS, vol. 6917, pp. 326–341 (2011)

37. Ha, J., Kim, S., Choi, W., Lee, J., Moon, D., Yoon, H., Cho, J.: Masta: An HE-
Friendly Cipher Using Modular Arithmetic. IEEE Access 8, 194741–194751 (2020)

38. Ha, J., Kim, S., Lee, B., Lee, J., Son, M.: Rubato: Noisy Ciphers for Approxi-
mate Homomorphic Encryption. In: EUROCRYPT. LNCS, vol. 13275, pp. 581–610
(2022)

39. Halevi, S., Shoup, V.: Design and implementation of HElib: a homomorphic en-
cryption library. IACR Cryptol. ePrint Arch. 2020, 1481 (2020)

40. Hebborn, P., Leander, G.: Dasta - Alternative Linear Layer for Rasta. IACR Trans.
Symmetric Cryptol. 2020(3), 46–86 (2020)

41. Jakobsen, T., Knudsen, L.R.: The Interpolation Attack on Block Ciphers. In: FSE.
LNCS, vol. 1267, pp. 28–40 (1997)

42. Kim, S., Ha, J., Son, M., Lee, B., Moon, D., Lee, J., Lee, S., Kwon, J., Cho, J.,
Yoon, H., Lee, J.: AIM: symmetric primitive for shorter signatures with stronger
security. In: CCS. pp. 401–415. ACM (2023)

43. Knudsen, L.R.: Truncated and Higher Order Differentials. In: FSE 1994. LNCS,
vol. 1008, pp. 196–211 (1994)

44. Lacan, J., Fimes, J.: Systematic MDS erasure codes based on vandermonde matri-
ces. IEEE Commun. Lett. 8(9), 570–572 (2004)

45. Lai, X.: Higher Order Derivatives and Differential Cryptanalysis. Communications
and Cryptography: Two Sides of One Tapestry (1994)

23

46. Liu, F., Li, Y., Chen, H., Jiao, L., Luo, M., Wang, M.: YuX: Finite Field Multipli-
cation Based Block Ciphers for Efficient FHE Evaluation. IEEE Transactions on
Information Theory pp. 1–1 (2024)

47. Liu, F., Kalam, A., Sarkar, S., Meier, W.: Algebraic Attack on FHE-Friendly Ci-
pher HERA Using Multiple Collisions. IACR Trans. Symmetric Cryptol. 2024(1),
214–233 (2024)

48. Liu, F., Sarkar, S., Meier, W., Isobe, T.: Algebraic Attacks on Rasta and Dasta
Using Low-Degree Equations. In: ASIACRYPT. LNCS, vol. 13090, pp. 214–240
(2021)

49. Liu, F., Sarkar, S., Meier, W., Isobe, T.: The Inverse of χ and Its Applications to
Rasta-Like Ciphers. J. Cryptol. 35(4), 28 (2022)

50. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: EUROCRYPT.
LNCS, vol. 765, pp. 386–397 (1993)

51. Méaux, P., Carlet, C., Journault, A., Standaert, F.: Improved Filter Permutators
for Efficient FHE: Better Instances and Implementations. In: INDOCRYPT. LNCS,
vol. 11898, pp. 68–91 (2019)

52. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and Linear Cryptanalysis
Using Mixed-Integer Linear Programming. In: Inscrypt. LNCS, vol. 7537, pp. 57–
76. Springer (2011)

53. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: CCSW. pp. 113–124. ACM (2011)

54. NIST: SHA-3 Standard: Permutation-Based Hash and Extendable-Output Func-
tions. National Institute of Standards and Technology (NIST), FIPS PUB 202,
U.S. Department of Commerce (2015)

55. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC. pp. 84–93. ACM (2005)

56. Microsoft SEAL (release 3.7). https://github.com/Microsoft/SEAL (Sep 2021),
microsoft Research, Redmond, WA.

57. Vielhaber, M.: Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential At-
tack. IACR Cryptology ePrint Archive 2007, 413 (2007)

58. Youssef, A.M., Mister, S., Tavares, S.E.: On the Design of Linear Transformations
for Substitution Permutation Encryption Networks. School of Computer Science,
Carleton University pp. 40–48 (1997)

59. Youssef, A.M., Mister, S., Tavares, S.E.: On the Design of Linear Transforma-
tions for Substitution Permutation Encryption Networks. In: School of Computer
Science, Carleton University. pp. 40–48 (1997)

SUPPLEMENTARY MATERIAL

A About Number of Monomials in Pastav2

B On Truncation

In Pastav2, we adopt truncation rather than feed-forward operation as in Rasta
to compute the keystream words. What if the feed-forward operation is used? In
this case, we show an efficient guess-and-determine (GnD) attack. Let us focus on

24

https://github.com/Microsoft/SEAL

4 6 8 10 12 14
103

104

105

106

107

State size s

N
um

be
r

of
m

on
om

ia
ls

Theoretical estimate
Practical result

Fig. 5: Estimated number of monomials in each of the output words of Pastav2
versus lowest number of monomials found in a practical evaluation.

one output of Scube denoted by x = (x0, . . . , x2t−1). Then, for the feed-forward
operation, according to the keystream word W , we have

Ar(x) = W − K .

Since Ar remains the same for different (N, i), we can always find the inverse of
Ar denoted by A−1

r such that

x = A−1
r (W − K) .

Hence, we can guess, say x0, and compute the corresponding input of this S-box
at the last round. This guess can be reused for different (N, i) under the same
key K since A−1

r is fixed and W is known. Hence, the attacker can efficiently peel
off the last nonlinear layer by guessing the input of one S-box. Then, it only
needs to solve a system of equations in 2t variables of degree 2r−1. The total
time complexity is p ·

(
2t+2r−1−1

2r−1

)ω
for r round of the new version of Pasta,

which also significantly reduces the security of the original Pasta. To prevent
this attack, Ar also needs to be randomized, and this contradicts our original
goal to minimize the randomness in Rasta-like designs.

C Detailed Proofs – Sect. 7

In this section, we provide the full proofs of the results proposed in Sect. 7.

C.1 Proof of Lemma 1

Denote the i-th row of matrix M as Mi,∗. From the observation e
(m)
i ×M = Mi,∗,

we obtain

Σ(m) × diag(M)n = (diag(M0,∗)n,diag(M1,∗)n, . . . ,diag(Mm−1,∗)n)
T. (9)

25

Similarly, Ni,∗ denotes the i-th row of matrix N . We have

Σ(n) × diag(N)m = (diag(N0,∗)m, diag(N1,∗)m, . . . ,diag(Nn−1,∗)m)T. (10)

Finally, by multiplying Eq. (9) and Eq. (10), we get matrix Z in Eq. (6).
⊓⊔

C.2 Proof of Theorem 1 (cont.)

In order to finish the proof started in Sect. 7, we have to consider the cases in
which we have more than a single active Fn

q -word in the input. For this goal,
we introduce 1 ≤ α′ ≤ m as the number of Fn

q -words with at least one active
Fq-word:

α′ = m−
m−1∑
l=0

δ0,αl
,

where δl,h is the Kronecker delta (that is, δl,h = 0 if l ̸= h, and 1 otherwise).
For each j ∈ {0, 1, . . . ,m − 1}, let 0 ≤ αj ≤ n be the number of active Fq-

words in x⃗j . Working as before, we define βj as the number of active Fq-words
(in the same index set S

(n)
j) after the application of diag(N)m. Since N is a

MDS matrix:

– βj = 0 if and only if αj = 0;
– otherwise, 1 ≤ n+ 1− αj ≤ βj ≤ n.

It follows that the number β′ of active Fn
q -words does not change, that is, β′ = α′.

Moreover, let
βmax := max

j∈{0,1,...,m−1}
βj ,

that is, the maximum number of active Fq-word in each active Fn
q -word uj for

j ∈ {0, 1, . . . ,m}.
Next, we apply Σ(n). Since we are interested in the minimum number of active

words in inputs and in outputs, we look for the configuration that minimizes the
number of Fm

q -words. By the definition of Σ(n), suppose that two input Fq-words
uh,i and uh,j are active such that i, j ∈ S

(n)
h = {h · n, h · n+ 1, . . . , h · n+ n− 1}

for a certain h ∈ {0, 1, . . . ,m − 1}. After applying Σ(n), uh,i and uh,j cannot
appear in the same Fm

q -word. This is exactly the same as in one active Fn
q -word

case. Due to this consideration, after the application of Σ(n):

– at least βmax Fm
q -words are active;

– each active Fm
q -word contains at most β′ active Fq words.

After the application of diag(M)n where M is an MDS matrix, we have that
the number of active words is 1 ≤ (m+ 1− β′) · βmax ≤ γ ≤ n ·m. As a result,
the number of active words in inputs and outputs are at least

γ +

m−1∑
j=0

αj ≥ (m+ 1− β′) · βmax +

m−1∑
j=0

αj = (m+ 1− α′) · βmax +

m−1∑
j=0

αj .

26

Let’s start by considering the simplest case βmax = 1. In such a case, αj is
either 0 or n for each j ∈ {0, 1, . . . ,m− 1} (due to the relation between αj and
βj , keeping in mind that M is a MDS matrix). In such a case, we have that

γ +

m−1∑
j=0

αj ≥(m+ 1− α′) · βmax︸ ︷︷ ︸
=1

+

m−1∑
j=0

αj︸︷︷︸
∈{0,n}

≥ α′ · (n− 1) +m+ 1 .

By simple computation, α′ · (n− 1)+m+1 < n+m (hence, α′ · (n− 1) < n− 1)
if and only if α′ < 1, which is not possible since α′ ≥ 1. It follows that the
minimum number of active words in inputs and in outputs cannot be smaller
than n+m.

More generally, if βmax ≥ 1, then αj ∈ {0, n+ 1− βmax, n+ 2− βmax, . . . , n}
for each j ∈ {0, 1, . . . ,m− 1} (due to the relation between αj and βj , keeping in
mind that M is a MDS matrix). In such a case, we have that

γ +

m−1∑
j=0

αj ≥(m+ 1− α′) · βmax +

m−1∑
j=0

αj︸︷︷︸
∈{0,n}

≥(m+ 1− α′) · βmax + α′ · (n+ 1− βmax) .

By simple computation:

(m+ 1− α′) · βmax + α′ · (n+ 1− βmax) < n+m ↔
(m− α′) · (βmax − 1) + (n− βmax) · (α′ − 1) < 0 .

Note that

– α′ ≤ m by definition, and that βmax ≥ 1. Hence, the first term is never
negative;

– βmax ≤ n by definition, and that α′ ≥ 1. Hence, the second term is never
negative.

It follows that the previous inequality never occurs, which means that the min-
imum number of active words in inputs and in outputs cannot be smaller than
n+m. It follows that the branch number is n+m.

D Benchmarks (cont.)

In this section, we give the full overview of our benchmark results from Section 6
comparing Pastav2 and other HHE ciphers in a 17, 33, and 60-bit prime field Fp.
First, we provide plain benchmarks in all fields in Table 3. After that, we give the
HE benchmarks in the SEAL and HELib homomorphic encryption libraries. Next
to the evaluation of homomorphic decompression, we evaluate the use case as
proposed in [23] to illustrate the importance of efficient HE parameters. As a use
case, we apply three affine layers to a vector of 200 elements ((x′

i = Mi ·xi + bi,
where xi, x

′
i, bi ∈ F200

p , Mi ∈ F200×200
p) interleaved with element-wise squaring

27

Table 3: Cycles for encrypting one block in plain, averaged over 1000 executions.
Cipher Total Instance Generation Encrypting

p = 65537 (17bit):

Masta-4 1 970 769 847 971 1 122 798
Masta-5 679 259 328 556 350 703
HERA 31 874 23 536 8 338
Pasta-3 4 054 965 2 473 015 1 581 950
Pasta-4 399 284 293 409 105 875

Pastav2-3 1 950 782 90 735 1 860 047
Pastav2-4 176 999 24 388 152 611

p = 8088322049 (33bit):

Masta-4 1 862 325 712 804 1 149 521
Masta-5 619 314 262 892 356 422
HERA 22 294 13 607 8 687
Pasta-3 3 978 645 2 312 924 1 665 721
Pasta-4 351 994 250 693 101 301

Pastav2-3 1 956 656 49 645 1 907 011
Pastav2-4 169 632 14 353 155 279

p = 1096486890805657601 (60bit):

Masta-4 2 317 877 704 746 1 613 131
Masta-5 755 497 258 697 496 800
HERA 21 691 13 305 8 386
Pasta-3 5 376 040 2 966 305 2 409 735
Pasta-4 457 585 295 013 162 572

Pastav2-3 2 696 096 49 546 2 646 550
Pastav2-4 227 427 13 967 213 460

on a homomorphically encrypted vector x ∈ F200
p . This generic use case can be

seen as a small 3-layer neural network with squaring activation functions.

HE Parameter Settings. On a high level, we can set three parameters in
the BFV and BGV schemes. The polynomial degree N = m

2 as a power of two
N = 2n, the ciphertext coefficient modulus q, and the plaintext modulus p.
The ciphertexts have a noise budget, mostly depleted by multiplications and
a security level λ′ governed by N and q. When setting parameters, we set p
as the minimum modulus feasible as an increasing p adversely affects noise.
Increasing q increases our noise budget but diminishes the security parameter,
which is compensated by increasing N . Ultimately, increasing the parameters q
or N negatively impacts performance. Consequently, minimizing noise expansion
during homomorphic decompression is paramount.

D.1 Plain Benchmarks

In Table 3, we present our plain benchmarks in all considered prime fields. The
speedup of Pastav2 compared to pasta is across all primes at least 100%. The rest
of the data confirms our points in the main benchmark discussion in Section 6.

28

D.2 SEAL Benchmarks

First, we discuss the benchmarks in the SEAL library for a 17, 33, and 60-bit
prime field Fp. In Table 4, we compare the runtime for homomorphic decom-
pression and the HHE use case when using different instances of Pasta and
Pastav2. In these benchmarks, BFV is parameterized by the degree of the cy-
clotomic reduction polynomial N = 2n, such that the scheme provides at least
128 bit security and can evaluate the whole circuit without decryption error.
One can observe that our changes barely affect the benchmarks in the SEAL
library. Runtime differences between Pasta and Pastav2 are ≈ 1%, most likely
caused by timing differences from running the benchmarks on a real CPU. Con-
sequently, the additional homomorphic additions and fewer matrix encodings do
not significantly affect SEAL and lead to practically equivalent benchmarks when
using Pasta or the versions of Pastav2. In the HHE use case, we sometimes see
performance jumps between Pastav2, Pasta, and the remaining ciphers. These
substantial differences occur when the lower required noise budget allows for a
smaller polynomial degree, drastically impacting performance.

D.3 HElib Benchmarks

In Table 5, we compare the runtime for homomorphic decompression and the
HHE use case when using different instances of Pasta and Pastav2. Additionally
to the data in Section 6, we display the selected modulus degree m = 2 ·N and
the computed HE security parameter λ′. Several things can be seen in this table.
First, the performance benefit of Pastav2 spans across all plaintext parameters.
Second, the increased noise of the HElib rotation implementation further empha-
sizes the relevance of a low multiplicative depth. Finally, the Masta-5 and HERA
use cases in the 33-bit prime setting, the basic HERA and Masta-5 decompression,
and all the HHE use case evaluations in the 60-bit prime setting yielded inse-
cure parameters. Increasing m further would lead to polynomials with 131 072
coefficients. Necessary RNS decomposition of the large ciphertext modulus then
leads to large encryptions of the secret key and infeasible memory consumption
on the server side.

29

Table 4: Benchmarks for the SEAL library.
1 Block HHE use case

Cipher N Enc. Key Decomp. N Enc. Key Decomp. Use Case
s s s s s

p = 65537 (17bit):

Pasta-3 16384 0.008 4.44 32768 0.031 43.4 22.1
Pasta-4 16384 0.008 2.02 32768 0.029 69.9 20.9
Masta-4 16384 0.008 5.59 32768 0.029 51.8 20.9
Masta-5 32768 0.033 19.7 32768 0.028 74.3 20.9
HERA 32768 0.030 8.20 32768 0.028 105.6 20.8
Pastav2-3 16384 0.008 4.63 32768 0.031 43.1 22.1
Pastav2-4 16384 0.008 2.12 32768 0.031 73.9 22.3

p = 8088322049 (33bit):

Pasta-3 32768 0.033 21.8 32768 0.029 43.4 22.2
Pasta-4 32768 0.031 10.1 65536 0.118 414.1 109.8
Masta-4 32768 0.031 25.9 65536 0.111 273.1 109.7
Masta-5 32768 0.028 19.1 65536 0.111 406.2 110.4
HERA 32768 0.026 8.16 65536 0.112 592.6 105.6
Pastav2-3 32768 0.032 21.6 32768 0.028 43.0 22.0
Pastav2-4 32768 0.032 10.6 65536 0.117 410.5 109.4

p = 1096486890805657601 (60bit):

Pasta-3 32768 0.029 29.2 65536 0.125 223.0 109.8
Pasta-4 65536 0.118 56.0 65536 0.112 414.7 110.0
Masta-4 65536 0.118 132.6 65536 0.111 272.5 103.0
Masta-5 65536 0.118 99.5 65536 0.111 423.4 109.9
HERA 65536 0.119 46.4 65536 0.112 610.4 109.9
Pastav2-3 32768 0.028 28.9 65536 0.124 221.4 109.4
Pastav2-4 65536 0.125 58.9 65536 0.111 411.3 109.4

30

Table 5: Benchmarks for the HElib library.

Cipher m λ′ Enc. Key Decomp. m λ′ Enc. Key Decomp. Use Case
bit s s bit s s s

p = 65537 (17bit):

Pasta-3 65536 184 0.033 14.7 65536 128 0.035 33.8 11.5
Pasta-4 65536 163 0.033 6.93 131072 229 0.065 116.0 21.4
Masta-4 65536 163 0.038 20.0 131072 229 0.063 84.2 24.6
Masta-5 65536 133 0.045 16.5 131072 199 0.073 140.8 28.0
HERA 131072 254 0.071 11.5 131072 189 0.072 178.4 28.0
Pastav2-3 65536 184 0.031 12.3 65536 128 0.040 27.0 11.6
Pastav2-4 65536 163 0.033 5.95 131072 229 0.068 102.1 21.5

p = 8088322049 (33bit):

Pasta-3 65536 125 0.037 17.7 131072 162 0.106 112.3 38.1
Pasta-4 131072 204 0.099 21.4 131072 144 0.112 182.7 34.3
Masta-4 131072 196 0.095 57.3 131072 144 0.101 150.4 40.7
Masta-5 131072 166 0.096 49.8 131072a 117 0.131 250.9 45.4
HERA 131072 150 0.108 17.2 131072a 110 0.145 307.6 51.8
Pastav2-3 65536 125 0.033 15.0 131072 162 0.099 97.2 36.5
Pastav2-4 131072 204 0.094 18.2 131072 144 0.118 163.8 34.9

p = 1096486890805657601 (60bit):

Pasta-3 131072 162 0.118 57.4 131072a 97 0.151 162.6 51.0
Pasta-4 131072 129 0.130 29.3 131072a 83 0.167 276.3 50.1
Masta-4 131072 129 0.107 84.3 131072a 83 0.161 217.3 56.8
Masta-5 131072a 99 0.132 71.2 131072a 70 0.186 354.0 64.6
HERA 131072a 89 0.147 26.4 131072a 60 0.200 466.7 75.5
Pastav2-3 131072 162 0.113 48.9 131072a 97 0.151 138.9 45.7
Pastav2-4 131072 129 0.116 26.9 131072a 83 0.165 251.1 50.1
a Further increasing m for security resulted in infeasibly long runtimes.

31

	Minimize the Randomness in Rasta-Like Designs: How Far Can We Go?
	Introduction
	Our Contribution

	Preliminary: Evolution of Rasta-like Primitives
	Description of PASTAv2
	Pasta
	The Birth of PASTAv2
	Concrete Parameters

	Security Analysis of PASTAv2
	Design Rationale
	Choice of the Randomized Layer from a Security Point of View
	Benefits of Having Fixed Layers from a Security Point of View

	Benchmarks
	Branch Number of an Interweaving Matrix
	About Number of Monomials in PASTAv2
	On Truncation
	Detailed Proofs – Sect. 7
	Proof of Lemma 1
	Proof of Theorem 1 (cont.)

	Benchmarks (cont.)
	Plain Benchmarks
	SEAL Benchmarks
	HElib Benchmarks

