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Abstract—Circuit Private Set Intersection (Circuit-PSI) allows
two parties to compute any functionality f on items in the
intersection of their input sets without revealing any information
about the intersection set. It is a well-known variant of PSI
and has numerous practical applications. However, existing
circuit-PSI protocols only provide security against semi-honest
adversaries. One straightforward solution is to extend a pure
garbled-circuit-based PSI (NDSS’12) to a maliciously secure
circuit-PSI, but it will result in non-concrete complexity. Another
is converting state-of-the-art semi-honest circuit-PSI protocols
(EUROCRYPT’21; PoPETS’22) to be secure in the malicious
setting. However, it will come across the consistency issue since
parties can not guarantee the inputs of functionality f stay
unchanged as obtained from the last step.

This paper addresses the aforementioned issue by introducing
the first maliciously secure circuit-PSI protocol. The central
building block named Distributed Dual-key Oblivious PRF
(DDOPRF), provides an oblivious evaluation of secret-shared
inputs with dual keys. Additionally, we ensure the compatibility
of DDOPRF with SPDZ, enhancing the versatility of our circuit-
PSI protocol. Notably, our construction allows us to guarantee
fairness within circuit-PSI effortlessly. Importantly, our circuit-
PSI protocol also achieves online linear computation and com-
munication complexities.

I. INTRODUCTION

The private set intersection (PSI) aims to compute the
intersection set of two sets of items from two parties without
revealing any other information [19, 23, 27]. PSI has plenty
of applications, including contact tracing [20], advertising con-
version [54], secure data analysis [3], and genomic sequence
testing [53]. Many companies utilize PSI for commercial
activities or database transmissions [24, 35]. Consequently,
they contribute to the development of numerous open-source
projects related to PSI, such as SecretFLow1 from Antgroup,
Private-Join-and-Compute2 from Google. In addition to PSI,
parties typically would like to generalize the standard PSI
protocol to meet practical needs. An interesting application
is f (PSI), which usually called circuit-PSI [11, 23]. Circuit-
PSI aims to compute some arbitrary functionality f over the
intersection set, and only reveal the computation result f (PSI),
but not the items in the intersection themselves [30]. However,
existing works for circuit-PSI [11, 23, 41, 44, 47] are under

1https://github.com/secretflow
2https://github.com/google/private-join-and-compute

semi-honest model, whose security properties may not hold
in the presence of malicious adversaries. Designing a circuit-
PSI protocol in the malicious model is very meaningful as it
captures many realistic scenarios where the parties may take
arbitrary strategies to break the security of a protocol.

Huang et al. [23] leveraged a pure garbled-circuit method to
design a sort-and-compare network to compute the intersection
set. A possible way to extend [23] with malicious security
is via a general malicious garbled-circuit method, e.g., au-
thenticated garbling method [51]. However, the computational
complexity depends on the intricacy of the functionality that
parties need to compute and is linear in the number of non-
linear gates in the circuit. This can result in impractical
computational cost and circuit complexity.

For semi-honest circuit-PSI protocols [11, 41, 44, 47], they
designed Oblivious PRF (OPRF) protocols based on Oblivious
Transfer (OT) to compute the shares of the intersection set
instead of letting parties learn the intersection set in the
clear. The parties can use the secret-shared set as input for
the following secure computation. However, if those circuit-
PSI protocols are transformed into malicious versions by
substituting all underlying protocols into malicious ones, it
will cause a consistency issue. That is to say, when two parties
obtain secret-shared values and send them to the following
computation, the malicious adversary may change the values.
Previous work has not considered how to ensure that parties
use the same values they obtained from the last step for the
input of functionality of f (PSI).

A straightforward way to solve this issue is to use a commit-
ment or authentication protocol to ensure that the values sent
to the functionality f stay unchanged. Miao et al. [34] utilize a
Pedersen commitment, additive homomorphic encryption, and
zero-knowledge proof protocol to achieve a PSI-sum protocol
(a specialization of f (PSI)) in the malicious setting. However,
their protocol is subject to expensive asymmetric operations
and causes higher complexity, and it only supports computing
the sum of intersection payload rather than arbitrary compu-
tations. Therefore, this leaves the following open problem:

Can we solve the consistency issue and construct a mali-
cious circuit-PSI protocol with linear computation and com-
munication complexity?

We answer this question affirmatively by proposing the first



malicious circuit-PSI protocol with concrete efficiency. The
first solution that comes to our mind is to use a generalized
secure computation method, SPDZ [15, 26], as an underlying
primitive. SPDZ supports secret-shared secure addition and
multiplication over a finite field and uses the Message Authen-
tication Code (MAC) to authenticate each input value. It can be
seen as a general run-time MPC environment. However, if we
use SPDZ in a black box way, and parties call the underlying
primitives in SPDZ to achieve the same functionality as
f (PSI), it may need plenty of addition and multiplication
operations and result in higher communication rounds. Instead
of using a general framework to solve this problem, we re-
design different modules in circuit-PSI to integrate a succinct
malicious circuit-PSI protocol. The contributions of this paper
are as follows.
Our Contributions. We design a Distributed Dual-key Obliv-
ious Pseudorandom Function (DDOPRF) protocol. It aims to
obliviously compute the PRF results for secret-shared input
sets x⃗ and y⃗, and distributed keys. Then, parties can compare
the PRF results and select the secret-shared input sets to the
following functionality f computation to get f(x⃗∩ y⃗). During
this process, we need to ensure that parties can not learn which
items are selected and used as input of f . Therefore, parties
will use a malicious secret-shared shuffle protocol to shuffle
their input items.

Initially, we intended to design a succinct distributed OPRF
protocol to achieve f (PSI) and make it more practical, and it
fulfilled our intention as expected. Then, we found that our
designed OPRF protocol can be extended with a “dual-key”
gadget, which only has constant communication extra costs.
And this gadget can bring fairness to the protocol. In more
detail, we summarise important features of our protocol as
follows:

• Malicious Security. DDOPRF is compiled with SPDZ,
so based on the MAC authentication method of SPDZ,
our circuit-PSI protocol provides malicious security prop-
erties. Compared to the previous efficient circuit-PSI
protocols [11, 30, 44, 47], we are the first to propose a
circuit-PSI protocol in the malicious setting without any
third party.

• Fairness. To achieve fairness in a malicious protocol can
be costly and hard to achieve based on cryptographic
protocols [18]. It needs to prevent the corrupted party
from aborting the protocol prematurely after obtaining
the output (and before the other party obtains it). Fairness
can be crucial in many motivating scenarios where both
parties need to know the intersection set, particularly in
computational scenarios between companies. The right
of one company that does not receive the computation
results will be violated if the PSI protocol is single-
output. Some fair PSI protocols have been proposed
[1, 16, 18]. However, those PSI protocols are subjected to
low efficiency or need a trusted third party. Therefore, we
design a “dual-key” mechanism and use it as a module
in our circuit-PSI protocol to achieve fairness. The aug-
mentation of the circuit-PSI protocol with fairness incurs

only minimal computational overhead.
• Linear Complexity. We build our circuit-PSI protocol

based on the DDOPRF protocol, which is succinct and
only needs two-round communication to get PRF results
for the input values. The “dual-key” mechanism is sim-
ple and costs constant communication and computation
overheads. We formalize each module according to our
malicious circuit-PSI protocol, achieving linear complex-
ity.

In conclusion, we propose the first maliciously secure
circuit-PSI protocol based on an SPDZ-compatible OPRF
protocol (DDOPRF). The code of our paper is valuable at
https://github.com/mcPSI.

A. Application

The limitation of the previous PSI-related works is that
those are specially designed for intersection set computation.
Our circuit-PSI protocol can be seen as a secret-shared com-
putation with more versatility and applicability. Some of the
applications are listed as follows.
Application 1: Database operations.
By plugging our SPDZ-compatible OPRF into the set compu-
tations, we obtain various two-party private set computation
protocols that are secure in the malicious setting. Private set
computation is crucial for database operations It can be used
for operations on the database in a privacy-preserving way, for
example, database join [54], query [20]. Specifically, the two
companies have two databases respectively, and they want to
perform joint operations on the items of the two databases.
They can use circuit-PSI to align items according to indexes,
select the items in both databases, or perform any operations
on the selected items.
Application 2: Vertical Federated Learning (VFL).
VFL [32] is a privacy-preserving machine learning framework
in which the training dataset is vertically partitioned. So items
in the dataset share the same ID while holding different
features. PSI-related protocols can be used for ID alignment
in a VFL system. Parties can get all the items with the same
ID while keeping the other items private.
Application 3: Privacy-preserving telemetry.
Telemetry refers to the collection and transmission of various
types of data from different devices, sensors, or equipment of
systems, such as a shipboard system, to a central monitoring
station. Those data can be analyzed and help in real-time
monitoring, control, and analysis of various parameters related
to the ship’s operation, safety, and performance [37, 45].
However, if the telemetry data comes from different service
manufacturers, the data needs to be treated as private and
not be revealed to others during the analysis. Circuit-PSI can
be used to identify the identities and counts of all items
distributed from different parties [22], and it is also a most
powerful way to visualize data and is thus used in many data
analysis applications [33].
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II. RELATED WORK

Before diving into the technical details of our construction,
we compare our protocol to relevant works in this section and
discuss challenges in extending the existing PSI solutions to
the malicious circuit-PSI problem.

Malicious PSI. The most common method to achieve mali-
cious PSI protocols [9, 19, 40, 44, 46, 47] is utilizing the
Oblivious Key-Value Store (OKVS) structures. Dong et al.
[19] propose a semi-honest two-party PSI protocol based on
Garbled Bloom Filters (GBF), one of OKVS structures. Based
on Dong et al.’s [19] work, Rindal et al. [46] convert it
to a malicious setting via a cut-and-choose technique. Next,
Pinkas et al. [40] propose the first two-party PSI protocol with
linear communication and security in the malicious setting. In
their work, an OKVS structure based on cuckoo hashing is
proposed and achieves a constant rate. Then, Rindal et al.
[47] optimize the OKVS structure by combining VOLE, and
achieve the performance improvement compared to Pinkas et
al. [40]. Furthermore, Bienstock et al. [9] present an RB-
OKVS scheme, which achieves the best encoding rate (0.97)
and the best efficiency compared to priors OKVS structures.
Plugging the RB-OKVS scheme into the PSI implementation
[44], it obtains the most efficient malicious PSI to date.
However, if we trivially extend malicious PSI to circuit-PSI,
that is to say, the parties send the PSI results to the following
functionality, it will reveal {x⃗ ∩ y⃗} to parties.

Circuit-PSI. The functionality of circuit-PSI is to securely
compute arbitrary functions over the intersection set. Huang
et al. [23] present the notion of circuit-PSI, and use a
generic garbled-circuit approach [55] to achieve it. It achieves
O(nlogn) complexity with small constant factors, where n is
the size of the input set. Afterward, Pinkas et al. [41] propose
a circuit-PSI protocol based on OPRF and reduce the com-
munication complexity to O(n). However, the computational
complexity of their protocol is super-linear O(n(logn)2).
While this bottleneck is solved in [11], Chandran et al.
propose a concretely efficient circuit-PSI protocol with linear
complexity. Both protocols [11, 41] are based on the IKNP-
style OT extension protocol [4], and the communication cost
of those can be improved by utilizing the Vector Oblivious
Linear Evaluation (VOLE) style OT extensions as discussed in
[44, 47]. However, it will involve more computation cost, and
the concrete performance depends on the network parameters
[11]. Specifically, those circuit-PSI protocols [11, 41, 44, 47]
are secure in the semi-honest setting.

The core idea of the OPRF-based circuit-PSI protocols
[11, 41] is similar to PSI protocols [27, 42] except that the in-
tersection results are secret-shared between the parties, which
can be used as inputs of the following circuit computation. In
more detail, for a value v0 (resp. v1) in the input set of P0

(resp. P1), P0 (resp. P1) will gets an output random value a0
(resp. a1). If v0 = v1, and v0 is in the intersection set, then
we can get 1 = a0 ⊕ a1. Otherwise, 0 = a0 ⊕ a1. As we can
see, if we adopt those circuit-PSI protocols to the malicious
setting, the main challenge is how to guarantee the consistency

of secret-shared results and inputs of the following circuits.
Since the intersection set results are secret-shared between two
parties, a malicious party might tamper with the secret-shared
results and send the tampered results to the following circuits.
Then, the correctness of those circuit-PSI results cannot be
guaranteed. Next, the protocols in [30] also achieve malicious
circuit-PSI with the help of an untrusted third party, and it also
reveals the size of the intersection set to the untrusted party.

Fair PSI. Debnath et al. and Dong et al. [16, 18] propose
fair two-party PSI protocols, where both parties learn the
result or neither does. This is called ”all or nothing”. Their
protocol relies on homomorphic encryption, zero-knowledge
proofs, and other asymmetric key primitives. Therefore, those
protocols are subjected to the efficiency issue. Abadi et al.
[1] extend the fair two-party PSI protocol to a multi-party
setting. However, they do not present any experiments or
implementation results related to their proposed protocol.

Oblivious Pseudorandom Function. OPRF is an essential
primitive for building PSI-related protocols. The frequently
used method for building OPRF is based on OT extension
protocol [4]. As we mentioned above, a line of circuit-PSI
works [13, 27, 28, 39, 41] based on OT extension are subject to
the consistency issue when trivially converting those protocols
into malicious circuit-PSI. Dodis-Yampolskiy PRF (DY-PRF)
[17] is another method to construct OPRF [10]. The DY-PRF-
based OPRF can be combined with cryptographic commitment
protocols and serve as ”glue” for other parts of a circuit-PSI
protocol to solve the consistency issue in the malicious setting.
Miao et al. [34] combine a DY-PRF-based OPRF protocol
with a Pedersen commitment protocol and achieve a PSI-
sum protocol in the malicious setting. Their DY-PRF is built
by an additively homomorphic encryption scheme. Therefore,
their protocol is subject to the efficiency limitation of HE.
In our paper, we take advantage of the secret sharing and
authentication methods [26] to avoid the costliest part of their
[34] protocol.

III. PRELIMINARIES

We use G to denote an abelian group, and F denotes a
finite field (e.g., F = Fpk for some prime p) with items
of ℓ bits. [n] denotes the set {0, 1, ..., n − 1} and [l, r] to
denote {l, l + 1, ..., r − 1, r}. Given a set x⃗, we use x

$←− x⃗
to denote x is uniformally sampled from x⃗. We use a||b
to denote strings concatenation of a and b. For an ℓ-bits
string x ∈ {0, 1}ℓ, we use bi to denote its i-th bit of x,
and x =

∑ℓ
i=1 bi · 2ℓ−i. For a sharing of x over G, the bit

decomposition operation is a protocol for converting a sharing
⟨x⟩ into ℓ shares ⟨b1⟩, ..., ⟨bℓ⟩, where ⟨b1⟩ represents the most
left bit share of x.

A. Security Model and Fairness Definition

We consider a two-party model in Section IV. In the two-
party model, any party can be corrupted by a malicious
adversary. We prove the security of our protocols in the
ideal/real world paradigm [31]. To begin with, we testify that
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our protocol is secure in the semi-honest setting. Then, we
compile our protocol to be secure in the malicious setting. To
prove the security of our circuit-PSI protocol, the standard
functionality of each sub-protocol used in our protocol is
presented for access as a trusted party, and to function as a
sub-functionality.

As for the definition of fairness, the complete fairness
is impossible for the two-party setting [14], instead, partial
fairness can be achieved. Therefore, we achieve a relaxation
of fairness (i.e. partial fairness) in this paper. We follow and
extend the definition of fairness in [7, 38] as follows.

Definition 1. A two-party secure protocol Π that achieves
the functionality F (x, y) is (c, ϵ)-fair if: For any working
time t, an adversary A runs the protocol Π for computing
F . Whenever A aborts the protocol and attempts to recover
F (x, y), let q0 denote the A’s probability of success. Then, the
other party C can run in the working time c · t for computing
F (x, y) after the protocol is aborted by A, such that q1 is the
C’s probability of success. It holds that |q0 − q1| ≤ ϵ.

In this paper, we consider a relaxation of fairness, which
means the adversary has one-bit privilege as the upper bound
to recover the protocol results. Looking ahead, whenever the
protocol aborts, the possibility of one party infers the results
F (x, y) with a one-bit advantage over the other party during
the same working time.

B. Dodis-Yampolskiy PRF

The Dodis-Yampolskiy PRF (DY-PRF) requires a cyclic
group G with prime-order p, and is defined as

FDY(k, x) = g
1

k+x ,

where g is a generator of G, and k
$←− Zp. The pseudorandom-

ness is guaranteed by the q-DDH inversion (q-DDHI) problem.

C. Authenticated Secret Sharing

Linear secret sharing. We use JxK to denote an additive linear
secret sharing (LSS) for x ∈ F shared between n parties such
that each Pi holds a random share JxKi ∈ F with

∑
i∈[n]JxKi =

x. The secret x can be constructed iff all the parties reveal
their shares and then sum them up. Therefore, LSS preserves
perfect privacy against n − 1 corrupted parties [6]. If x and
y are two values shared between n parties, LSS supports the
following linear operations:

• JzK← JxK + JyK: Pi computes JzKi ← JxKi + JyKi;
• JzK ← c + JxK: P0 computes JzK0 ← c + JxK0 and Pi

computes JzKi ← JxKi for all i ∈ [n] \ {0};
• JzK← c · JxK: Pi computes JzKi ← c · JxKi,

where we can verify Jx+ yK = JxK+ JyK, Jc+ xK = c+ JxK,
and Jc·xK = c·JxK. All the operations mentioned above do not
need interaction between parties. In particular, if we want to
compute multiplication operation as JzK← JxK ·JyK and verify
z = xy, then the parties require interaction. One commonly
used approach to achieve multiplication operation is Beaver’s
method [43]. In detail, suppose the parties pre-share a Beaver

Triple (JaK, JbK, JcK) with a · b = c. The parties can perform
the following interaction to compute Jx ·yK from JxK and JyK:

• The parties compute JeK← JxK−JaK and JfK← JyK−JbK;
• The parties open JeK and JfK to obtain e and f ;
• The parties compute JzK← JcK+ f · JaK+ e · JbK+ e · f ,

where we can verify that z = xy is just as required.
Authenticated secret sharing. Authenticated secret sharing
(ASS) ensures the integrity of shared secrets. A typical SPDZ-
style ASS [15] relies on information-theoretic message au-
thentication codes (IT-MACs) for integrity. To be specific,
the parties will additionally share JξK for a secret MAC
key ξ

$←− F. For a sharing JxK, the parties also share its
MAC sharing Jγ(x)K such that γ(x) = ξ · x. We call
⟨x⟩ = (JxK, Jγ(x)K) as an authenticated secret sharing for a
secret x, and ⟨x⟩i = (JxKi, Jγ(x)Ki) ∈ F2 as an authenticated
share held by Pi. Since the soundness error is proportional to
the inverse of the field size, we require F to be sufficiently
large (i.e., |F| > 2κ); this is crucial to detect errors with
overwhelming probability. ASS supports the following local
computation:

• ⟨z⟩ ← ⟨x⟩+ ⟨y⟩: ⟨z⟩ ← (JxK + JyK, Jγ(x)K + Jγ(y)K);
• ⟨z⟩ ← c+ ⟨x⟩: ⟨z⟩ ← (c+ JxK, c · JξK + Jγ(x)K);
• ⟨z⟩ ← c · ⟨x⟩: ⟨z⟩ ← (c · JxK, c · Jγ(x)K),

where we can verify ⟨x+ y⟩ = ⟨x⟩+ ⟨y⟩, ⟨c+ x⟩ = c+ ⟨x⟩,
and ⟨c · x⟩ = c · ⟨x⟩.

Commonly, the parties may reveal an ASS ⟨x⟩ when using
ASS sharing for computation, and the parties have to make
sure that x is opened correctly. To secure open an ASS sharing
⟨x⟩, the parties can leverage the embedded MAC to detect any
introduced error. Specifically, the parties compute

JdK← Jγ(x)K− x · JξK. (1)

The parties then each commit to its share of d followed by
opening to check if d = 0 and abort it is not the case.

Computing multiplication between ASS sharings ⟨x⟩ and
⟨y⟩ can be done by using an Authenticated Beaver Triple
(⟨a⟩, ⟨b⟩, ⟨c⟩) satisfying a · b = c. The parties can perform
the following interaction to compute ⟨x · y⟩ from ⟨x⟩ and ⟨y⟩:

• The parties compute ⟨e⟩ ← ⟨x⟩−⟨a⟩ and ⟨f⟩ ← ⟨y⟩−⟨b⟩;
• The parties partically open ⟨e⟩ and ⟨f⟩ (not their MACs)

to obtain e and f ;
• The parties compute ⟨z⟩ ← ⟨c⟩+ f · ⟨a⟩+ e · ⟨b⟩+ e · f .

In the malicious setting, the corrupted parties may tamper their
values when opening e and f . Thus, the parties must check
the correct opening of e and f , using the method as shown
previously in Eq. (1). Note that the above definitions for LSS
and ASS generally work over vectors. We use Jx⃗K to denote
a vector sharing of x⃗, and γ(x⃗) to denote its MAC vector
sharing where γ(x⃗i) = ξ · x⃗i.
Arithmetic black-box. We define the functionality of arith-
metic black-box to capture the above commands over ASS
sharings over Zp as shown in Fig. 1. We refer to well-known
instantiations from existing SPDZ-style protocols [15, 25, 26,
36]. For completeness, we also provide the details in §A.
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Functionality FABB

Parameters: a prime p.
The ABB functionality contains the following commands:

• ⟨r⟩ ← Rand(): Output an ASS sharing ⟨r⟩ for r ∈ Zp.
• ⟨x⟩ ← Input(x): Output a randomly ASS sharing ⟨x⟩

for the input value x.
• (⟨a⟩, ⟨b⟩, ⟨c⟩) ← RandomMul(): Output three ASS

sharings (⟨a⟩, ⟨b⟩, ⟨c⟩) such that a · b = c.
• ⟨z⟩ ← Mul(⟨x⟩, ⟨y⟩): On input ⟨x⟩ and ⟨y⟩, output ⟨z⟩

such that z = x · y.
• Linear combination: Given ⟨x⟩, ⟨y⟩ and a, b, c ∈ Zp,

the parties can compute ⟨z⟩ = a · ⟨x⟩+ b · ⟨y⟩+ c for
free with communication.

• x ← Open(⟨x⟩): On input an ASS sharing ⟨x⟩, open
x to all the parties, and check the MAC value of x.

Fig. 1. The arithmetic black-box functionality.

D. Permutation

A permutation is a bijective function π : [n] 7→ [n]. We use
Sn to denote a symmetric group containing all [n] 7→ [n] per-
mutations. For a vector x⃗ = {x1, ..., xn}, when a permutation
function π is applied over x⃗, the value xi (i ∈ [n]) is moved
to the position π(i) as

y⃗ = π(x⃗) = (x⃗π(0), · · · , x⃗π(n−1)). (2)

Then, we use π−1 to denote the inverse of a permutation
π. Therefore, y⃗i = x⃗π(i), or equivalently, x⃗i = y⃗π−1(i). We
denote by π ◦ ρ the composition of two permutations π and ρ
such that π ◦ ρ(i) = π(ρ(i)).

Functionality FSSS

Parameters: a prime p; n denotes the dimension of the
shared vector to be shuffled.
The SSS functionality contains the following commands:

• Shuffle: On input ⟨x⃗⟩ with x⃗ ∈ Zn
p , sample a random

permutation π
$←− Sn. Compute x⃗′ ← π(x⃗) and reshare

⟨x⃗′⟩ between the parties.

Fig. 2. The ideal secret-shared shuffle functionality.

E. Secret-shared shuffle

A secret-shared shuffle (SSS) with authentication allows the
shareholders to jointly permutate authenticated secret sharing
⟨x⃗⟩ of a vector x⃗ using a random permutation π known by
neither party [12]. This paper will rely on a maliciously secure
SSS ideal functionality over ASS sharings. The functionality is
formally defined in Fig. 2. The detail of the SSS protocol [49]
used in our circuit-PSI protocol is described in Appendix B.

IV. CONSTRUCTION

In this section, we first provide an overview and the intu-
ition of our proposed malicious circuit-PSI protocol ΠmcPSI.
Next, we introduce our proposed sub-protocol, DDOPRF, and
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Fig. 3. An overview of ΠmcPSI.

explain how DDOPRF is used as the main building block of
ΠmcPSI to fulfill the privacy requirements.

A. Workflow Overview

We introduce the high-level workflow of our malicious
circuit-PSI protocol ΠmcPSI. For two parties P0 and P1, their
input sets are x⃗ = {x1, ..., xn} and y⃗ = {y1, ..., yn}. As
depicted in Fig. 3, we also introduce a ”gadget” to guarantee
fairness. This ”gadget” can be added into one step before any
ready-to-opened results.

Initially, P0 and P1 will share each item and its authenti-
cated share in the input set, and then P0 and P1 both obtain
⟨x⃗⟩ and ⟨y⃗⟩. Next, parties will take their authenticated shares
as the input of the functionality FSSS to get the shuffled shares
⟨π(x⃗)⟩ and ⟨ρ(y⃗)⟩. The permutations π and ρ are random
and not known by any party. In the following, we construct
a Distributed Dual-key OPRF protocol ΠDDOPRF as a sub-
protocol. ΠDDOPRF will take the secret-shared shuffled sets as
inputs and generate the pseudorandom values for each item
in the input sets without revealing the secret keys and shared
values. Therefore, P0 and P1 will learn the pseudorandom val-
ues of the permuted input set F (k, π(x⃗)) and F (k, ks, ρ(y⃗)),
respectively. Two keys k, ks are constructed to make sure
that the pseudorandom values can be opened with fairness.
Then, P0 and P1 will invoke a bit decomposition operation
[2] to recover the secondary key ks bit by bit to compare
those pseudorandom values F (k, ks, π(x⃗)) and F (k, ks, ρ(y⃗))
and find the equal ones. For i ∈ [1, n], j ∈ [1, n], if
F (k, ks, π(x⃗i)) = F (k, ks, ρ(y⃗j)), then P0 and P1 will take
the corresponding shares ⟨π(x⃗i)⟩ and ⟨ρ(y⃗j)⟩ for the next
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functionality that predefined by two parties. Before parties
open the final results, they also use the ”gadget” to open the
results with fairness. They will choose a secret shared key
and use it to encrypt the final results in the secret sharing
way. Next, they use a bit decomposition protocol to change
the secret shared key bit-wise and open it bit by bit. Finally,
P0 and P1 can decrypt and obtain the final results f(x ∩ y).
Intuition: If two parties use a plain OPRF protocol to
compute the PRF results of their input sets and open those
results, one dishonest party may abort at any time during the
first open process. Though the dishonest party can not learn
another party’s input items, the adversary may learn how many
items in the intersection set have been opened, i.e., ≤ |x⃗∩ y⃗|.
Then the simulator cannot simulate this adversary behavior,
as it cannot learn when the adversary will abort. Therefore,
we need to ensure that the adversary will either learn all or
nothing, as will the other party. The details will be introduced
in the following sections.

B. DDOPRF Protocol from DY-PRF

We propose a Distributed Dual-key OPRF (DDOPRF) pro-
tocol based on DY-PRF. In particular, the protocol starts with
parties sharing a PRF key JkK, a secondary key ks and an input
JxK. At the end of the protocol, the parties output F (k, x) or
F (k, ks, x).
A semi-honest DDOPRF protocol. We design a semi-honest
DDOPRF protocol with one PRF key as follows:

• The parties generate a sharing JrK for a random secret
r ∈ Zp and a beaver triple (JaK, JbK, JcK).

• The parties compute JdK ← JrK · (JkK + JxK) using
(JaK, JbK, JcK). The parties open JdK to obtain d.

• The parties compute JeK← JrK · d−1.
• The parteis locally run ([e])← Convert(JeK). The parties

open ([e]).

The correctness of the above protocol is easy to check:

JeK = JrK · d−1 = JrK · (r · (k + x))−1

= Jr · (r · (k + x))−1K
= J(k + x)−1K

From the definition of Convert, for two parties, P0 can
compute gJeK0 and P1 can compute gJeK1 . Clearly,

gJeK0 · gJeK1 = ge = g
1

k+x .

Efficiency properties. The above semi-honest DDOPRF pro-
tocol has nice efficiency properties. In particular, the parties
only perform one secret-shared multiplication for computation
JdK followed by two openings: one is for opening d and
another for opening ge. It only requires two rounds to compute
the OPRF output. As we discussed in related work, previous
constructions of OT-based OPRF protocols suffer from diverse
shortcomings, including high communication complexity, or
not supporting secret-shared data structure.

C. Compile DDOPRF with Malicious Security

This semi-honest DDOPRF enjoys low communication
costs. In this section, we will show how to compile the
semi-honest protocol with malicious security. While generic
techniques (e.g., zero-knowledge proof, GMW compiler) can
adapt semi-honest protocols to be malicious secure, the main
drawback is their inefficiency. In this section, we show how
to adapt the semi-honest DDOPRF with very low overhead.

In the following, we first introduce a multiplication secret-
sharing (MSS) over G, which resembles LSS over Fp. Then
we design authenticated multiplication secret sharing (AMSS)
over G, borrowing authentication mechanisms from SPDZ-like
ASS over Fp. By carefully combining AMSS with ASS, we
design maliciously secure DDOPEF with low overhead.
Multiplicative secret sharing over G. Let G be a prime-order
cyclic group with order p, where g is the group generator. We
use ([x]) to denote a multiplicative secret sharing (MSS) over
G, where Pi holds a share ([x])i such that

∏
i∈[n]([x])i = gx.

Namely, the parties share a secret in the exponent. The above
multiplicative secret sharing over G supports the following
computation:

• ([z])← ([x]) · ([y]): Pi computes ([z])i ← ([x])i · ([y])i;
• ([z])← ([x])c: Given a public c ∈ Zp, Pi computes ([z])i ←
([x])ci ,

where we can verify that ([x + y]) = ([x]) · ([y]) and ([c ·
x]) = ([x])c. Namely, multiplication between ([x]) and ([y])
corresponds to addition in the exponent, and ([x])c corresponds
to scalar multiplication in the exponent.
Authenticated multiplicative secret sharing over G. Sim-
ilarly, we define authenticated multiplicative secret sharing
(AMSS) ⟨[x]⟩ = (([x]), ([γ(x)])) over G, where γ(x) = ξ ·
x (mod p). We assume the parties share the MAC key ξ
using an LSS sharing JξK. AMSS supports the following local
computation:

• ⟨[z]⟩ ← ⟨[x]⟩ · ⟨[y]⟩: ⟨[z]⟩ ← (([x]) · ([y]), ([γ(x)]) · ([γ(y)])),
• ⟨[z]⟩ ← ⟨[x]⟩c: ⟨[z]⟩ ← (([x])c, ([c · γ(x)])); here c ∈ Zp.

We can verify that ⟨[x+ y]⟩ = ⟨[x]⟩ · ⟨[y]⟩ and ⟨[c · x]⟩ = ⟨[x]⟩c.

Functionality FABB+

Parameters: a prime p; a cyclic group G of order p, where
g is the generator of G.
The ABB functionality contains the following commands:

• Rand,RandMul,Mul,Open defined as in FABB.
• ⟨[x]⟩ ← Convert(⟨x⟩): On input a ASS sharing ⟨x⟩,

output an AMSS sharing ⟨[x]⟩.
• gx ← Open(⟨[x]⟩): On input a group ASS sharing ⟨[x]⟩,

output gx to all the parties, and check the MAC value
of gx.

Fig. 4. The extended arithmetic black-box functionality.

Sharing conversion from ⟨x⟩ to ⟨[x]⟩. We note that an
MSS sharing ([x]) over Zp can be non-interactively converted
from an LSS sharing JxK over G of order p. In particular,
each party locally computes ([x])i ← gJxKi . Similarly, the
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parties can obtain an AMSS sharing ⟨[x]⟩ over G from an
ASS sharing ⟨x⟩ over Zp, by simply running the above
conversion for JxK and Jγ(x)K, respectively. In this paper, we
use ⟨[x]⟩ ← Convert(⟨x⟩) to denote the conversion.
Secretly open gx from ⟨[x]⟩. To open gx from ⟨[x]⟩ correctly,
similar to the trick used in ASS, the parties can leverage the
MAC sharing ([γ(x)]) to detect any possible error. In particular,
the parties run the following open protocol Open(⟨[x]⟩) to
detect possible errors during opening:

1. Each party Pi reveals its share ([x])i. By combining all
parties’ shares, the parties obtain gx

′
, and gx

′
may not

equate to gx due to additive errors.
2. Each parties Pi computes di ← (gx

′
)JγKi/([γ(x)])i.

3. After each party committing to di, all the parties decom-
mit di and check whether

∏
i di = 1 over G. Abort if the

check fails.

The above check resembles the MAC check for SPDZ
ASS in equation 1, despite the check being evaluated in the
exponent. Correctness is easy to check:∏

i

di =
∏
i

(gx
′
)JξKi/

∏
i

([γ(x)])i

= g
∑

i(x
′JξKi)/gγ(x)

= gx
′ξ/gx·ξ,

which equals to 1 over G iff x = x′.
The enhanced ABB+ functionality FABB+. We formalize an
enhanced ABB functionality called ABB+, which captures not
only commands for SPDZ ASS over Fp but also the commands
for AMSS over G; here |G| = p. In the following, whenever
we require operation over ASS and AMSS authenticated shar-
ings, we will directly resort to this ABB+ functionality. This
modular formalization enables a clear and easy-understanding
design.

Protocol ΠDDOPRF

Parameters: The DY-PRF F (k, x) = g
1

k+x ; an ASS sharing
⟨k⟩ for the PRF secret key k; an optional input ASS sharing
⟨ks⟩ for the secondary PRF secret key ks;
Protocol: On input ⟨x⟩ and ⟨k⟩, ⟨ks⟩, do the following:

1. ⟨r⟩ ← FABB.Rand()
2. ⟨d⟩ ← ⟨r⟩ · (⟨k⟩+ ⟨x⟩)
3. open d← FABB+.Open(⟨d⟩)
4. ⟨e⟩ ← d−1 · ⟨r⟩
5. If ⟨ks⟩ is provided as an input, ⟨e⟩ ← ⟨e⟩ · ⟨ks⟩
6. ⟨[e]⟩ ← FABB+ .Convert(⟨e⟩)
7. open ge ← FABB+ .Open(⟨[e]⟩), e can be g

1
k+x or

g
ks

k+x .

Fig. 5. The malicious DDOPRF protocol.

Our malicious-secure DDOPRF protocol. Using FABB+, it
is very clear to design a maliciously secure DDOPRF protocol
in a modular fashion. The idea is to authenticate the secure
computation using prior authenticated mechanisms from ASS

and AMSS. We give the theorem of our DDOPRF protocol as
follows.

Theorem 1. In the FABB, FABB+ -hybrid model, the protocol
ΠDDOPRF implements FDDOPRF correctly and securely against
malicious adversary.

The ideal functionality and full proof of Theorem 1 are in
Appendix .C.

D. Obtaining Fairness for Free Using Dual-Key

Specifically, we construct a DDOPRF protocol based on the
DY-PRF structure to guarantee fairness of the following PSI-
related computation. The first key is to randomize the input
value x and get a PRF value of x, and the secondary key is to
re-randomize the PRF value. We give a formal description
of our DDOPRF protocol in Fig 5. The ASS sharing ⟨k⟩
of the PRF secret key k is generated for computing the
pseudorandom value of the input x. In steps 1-4, the parties
can compute an ASS sharing ⟨e⟩ = ⟨(k + x)−1⟩. Instead
of directly converting it to AMSS sharing, if parties add a
secondary PRF secret key ks on the PRF value e as in step 5,
we can get a PRF value associated with two keys and convert
it to AMSS sharing ⟨[e]⟩ = ⟨[g

ks
k+x ]⟩ in step 6. If not, the parties

will directly convert e into AMSS sharing. Finally, parties open
the final OPRF value in step 7. If a secondary key is used, the
OPRF result will be g

ks
k+x , otherwise, it opens g

1
k+x . We will

present how our proposed DDOPRF with correlated keys can
guarantee fairness of ΠmcPSI in Section. IV-E.

In conclusion, our protocol ΠDDOPRF features a low-round
property and low communication. Specifically, ΠDDOPRF only
requires three rounds of communication: The first round is
from computing ⟨e⟩ using a beaver triple, the second round
opens ⟨[e]⟩, and the third round checks the opened result ge.

E. Our Circuit-PSI from DDOPRF

In this section, we show the construction of a fair and
malicious circuit-PSI protocol, which uses ΠDDOPRF as a core
building block. Besides, we illustrate some other common
PSI computations based on circuit-PSI protocol, including
PSI with payload computation. Specifically, we present an
efficiency enhancement method for malicious secret shared
shuffle protocol. We will discuss the details in the following.
ΠmcPSI is shown as Fig 6. In the two-party setting, two

parties P0 and P1 have two input sets x⃗ and y⃗, respectively.
If two parties need to compute PSI rather than circuit-PSI,
they can reveal the set intersection before they send the secret
shares into the functionality computation. So they do need
to invoke the secret shared shuffle protocol to shuffle their
input sets. We will introduce the PSI and circuit-PSI protocols
together in more detail in the following.

As shown in step 1, on the input sets x⃗ and y⃗, P0 and
P1 invoke the functionality FABB.Input to get the ASS shares
⟨x⃗⟩ and ⟨y⃗⟩ of their input sets. Next, P0 and P1 will use a
malicious-secure SSS protocol to secretly shuffle their input
shares ⟨x⃗⟩ and ⟨y⃗⟩, i.e., ⟨x⃗′⟩ = π(⟨x⃗⟩) ← FSSS(⟨x⃗⟩), ⟨y⃗′⟩ =
ρ(⟨y⃗⟩)← FSSS(⟨y⃗⟩). Neither P0 or P1 know the permutation
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Protocol ΠmcPSI

Parameters: Two parties Pb (b ∈ {0, 1}); x⃗ = {x1, ·, xn}
and y⃗ = {y1, ·, yn} denotes two sets with n values; an
authenticated vector x⃗ where x⃗ ∈ Zn

p ; the length of each
item in x⃗ and y⃗ is ℓ; an ASS sharing ⟨k⟩ for the PRF secret
key.
Protocol:

1. For i ∈ [1, n]: The parties generate ASS shares
of their inputs ⟨xi⟩ ← FABB.Input(xi), ⟨yi⟩ ←
FABB.Input(yi);

2. For f(x⃗∩y⃗): The parties use the SSS protocol to shuffle
their shares ⟨x⃗′⟩ ← FSSS(⟨x⃗⟩), ⟨y⃗′⟩ ← FSSS(⟨y⃗⟩);

3. Let ⟨k⟩, ⟨ks⟩ ← FABB+ .Rand() be the PRF key
sharing for ΠDDOPRF.

4. Run DDOPRF protocol over ⟨x⃗′⟩ using key shar-
ing ⟨k⟩. Denote the output as F (k, x⃗′), where each

F (k, x′
i) = g

1
k+x′

i .
5. Run DDOPRF protocol over ⟨y⃗′⟩ using key sharing
⟨k⟩, ⟨ks⟩. Denote the output as F (k, ks, y⃗

′),where each

F (k, ks, y
′
i) = g

ks
k+y′

i .
6. Use the bit decomposition operation over ⟨ks⟩, and get

the sharing of sequence ⟨b1 · 2ℓ−1⟩ · · · ⟨bℓ · 20⟩, where
bt (t ∈ [1, ℓ]) is the t-th bit of ks (left most first).

7. The parties open ⟨b1 · 2ℓ−1⟩ · · · ⟨bℓ · 20⟩ one by one,
and reconstruct ks locally;

8. The parties locally compute (F (k, x′
i))

ks to get
F (k, ks, x

′
i);

9. Pb,b∈{0,1} prepares two empty sets R⃗Xb and R⃗Yb ;
10. For i ∈ [1, n], j ∈ [1, n]:

a) The parties compare F (k, ks, x⃗′
i) and F (k, ks, y⃗′

j);
b) If F (k, ks, x⃗′

i) = F (k, ks, y⃗′
j), Pb,b∈{0,1} picks

out the matched record R⃗Xb = ⟨x⃗′
i⟩ ∪ R⃗Xb and

R⃗Yb = ⟨y⃗′
j⟩ ∪ R⃗Yb ;

11. The parties have learned the number of matched records
|x⃗′∩ y⃗′| and picked out the matched records from ⟨x⃗′⟩
and ⟨y⃗′⟩ to perform the following secure computation;

12. For x⃗∩ y⃗: The parties open their shares R⃗X0 and R⃗Y0

with fairness to recover the intersection set {x⃗ ∩ y⃗};
13. For f(x⃗ ∩ y⃗): The parties take their shares R⃗X0 and

R⃗Y0 , R⃗X1 and R⃗Y1 as inputs to a circuit for the
functionality f .

14. When two parties open the computation results, they
will check the corresponding Mac values. If an error
happens, the protocol will abort.

Fig. 6. Protocol ΠmcPSI using SPDZ-compatible DDOPRF.

methods π and ρ. For better understanding, we describe the
functionality FSSS in a black-box way here and will discuss an
optimized SSS protocol in detail in the following subsections.

After both parties shuffle their input sharings, they can
not learn anything from the shuffled sharings x⃗′ and y⃗′.
Then, in steps 3-5, parties will invoke the DDOPRF protocol
ΠDDOPRF as defined in Fig. 5 to generate the pseudorandom
values for the permuted sharing. Specifically, let ⟨k⟩, ⟨ks⟩ ←
FABB+ .Rand() be the PRF keys sharings for DDOPRF pro-
tocol. Two parties run DDOPRF protocol over ⟨x⃗′⟩ and ⟨y⃗′⟩
using key sharings ⟨k⟩ and ⟨ks⟩. In step 4, two parties output

the OPRF values of x⃗′ under the PRF key sharing ⟨k⟩, denoted
as {F (k, x⃗′

i)}i∈[1,n]. In step 5, two parties output the OPRF
values of y⃗′ under the PRF key sharing ⟨k⟩ and secondary key
sharing ⟨ks⟩, denoted as {F (k, ks, y⃗′i)}i∈[1,n]. To make sure
that two parties can compare the OPRF values at the same
time, and they can get all comparison results or nothing, two
parties will run a bit decomposition protocol on the secondary
key sharing ⟨ks⟩ in step 6. Then, they can open the bit
composition of ks one by one to reconstruct ks. After that,

two parties can compute (F (k, x′
i))

ks = g
ks

k+x′
i with g

ks
k+y′

i to
get which items are in the intersection set.

In the following, the parties intend to find the corresponding
sharings in the intersection set. In step 9, the parties will
prepare two empty sets to store the sharings. In step 10,
the parties can find matches over {F (k, ks, x⃗′

i)}i∈[1,n] and
{F (k, ks, y⃗′j)}j∈[1,n] After parties learn all matched records.
They pick out the matched records from ⟨x⃗′⟩ and ⟨y⃗′⟩, and
perform the following secure computation. Therefore, in step
8, the parties use the stored sharings, whose DDOPRF results
match, as the inputs of the following circuit to achieve
f(x⃗ ∩ y⃗). With the help of a malicious secure ΠDOPRF, P0

and P1 will obtain pseudorandom results {F (k, ks, x⃗′
i)}i∈[1,n]

and {F (k, ks, y⃗′j)}j∈[1,n]. Since the input values have been
shuffled before ΠDDOPRF, P0 and P1 can not correlate their
input values x⃗ and y⃗ with the pseudorandom results. At the
end of ΠDDOPRF, parties pick the corresponding shares in the
permuted shared sets ⟨x⃗′⟩ and ⟨y⃗′⟩, and send those shares
to the following circuit. Therefore, this process achieves the
computation of f(x⃗∩ y⃗). As we can see, the consistency issue
we mentioned before will be solved since the shares sent into
the circuit are with MAC shares. They can open the final
results to verify whether parties modify the shares before the
circuit computation.

F. Fairness of Protocol ΠmcPSI

The principle of fairness is defined such that if one party
knows certain information, the other party should also be
aware of the same information [18]. In ΠmcPSI, one party
obtains PRF values of the input set g

1
k+x′

i (i ∈ [1, n]), and
another party gets re-randomized input set with two PRF keys

⟨g
ks

k+y′
i ⟩. We propose that the secondary key ks is used to re-

randomize the PRF value and ensure the fairness. If two parties
only compute standard PRF values with only one PRF key, i.e.,
g

1
k+x′

i and g
1

k+y′
i , then they open those PRF values to each

other one by one to compare each value. However, if one of
the parties is corrupted, the corrupted party can quit at any time
during the opening process. We can observe that, the corrupted
party can learn some information, such as the intersection set
having at least t items if the corrupted party finds t items
in the intersection before quitting. Moreover, the corrupted
party might obtain more information than another party. If
the corrupted party aborts after another party shares one item
(if this item belongs to the intersection set), the corrupted
party can learn the intersection set at least has one item but
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another party learns nothing. So it would be hard to measure
the leakage based on the ideal/real-world simulation method.
Since the simulator can not simulate when the adversary would
abort and define the amount of leakage.

Therefore, we construct ΠDDOPRF, and we find that if we
construct two correlated keys for the PRF value, the problems
mentioned above can be solved. Specifically, two parties will

open g
1

k+x′
i and ⟨g

ks
k+y′

i ⟩. Because the randomization of the

PRF value ⟨g
ks

k+y′
i ⟩ is guaranteed by the secondary key ks, two

parties can not distinguish it with a random value. Afterward,
they invoke a bit decomposition protocol to recover ks bit by
bit. Subsequently, the two parties can locally compute the PRF
values for input sets with the same keys to get the intersection
result. We can observe that, the adversary will learn the final
intersection set or nothing.

If two parties intend to compute fair f (PSI), for the final
result of f (PSI), two parties also can use the same trick as
used in DDOPRF to guarantee fairness. To be specific, before
the parties reveal the final shares, they will select a secret key
to encrypt their shares. After they open the encrypted shares,
they will open the encrypted keys bit-by-bit to decrypt the
shares and get the final results.
Malicious PSI with payload computation (labeled circuit-
PSI). We also present how to use ΠmcPSI to achieve PSI with
payload computation as follows. Let us assume two secret-
shared tables ⟨X⟩ and ⟨Y ⟩, and X and Y are both two-column
tables of P0 and P1, where the first column is the ID column
and the second is the payload column. The parties want to
perform an intersection over two ID columns for X and Y and
then select out all the payload values associated with the IDs
in the intersection. The parties do not want to reveal which
records are used in the computation, and the only allowed
leakage is the number of matched records, i.e., the cardinality
of the intersection.

Similarly, parties will compute the ASS for their input
matrices, shown as ⟨X⟩, ⟨Y ⟩. Next, the parties perform row-
wise secret-shared shuffle over ⟨X⟩ and ⟨Y ⟩. Let us denote the
shuffled table as ⟨X ′⟩ = ⟨π(X)⟩ and ⟨Y ′⟩ = ⟨ρ(Y )⟩ for some
random permutation methods π and ρ. Neither of the parties
learns about the permutation methods. Then, the parties invoke
ΠDDOPRF. For ΠDDOPRF, they first sample a random sharing
⟨k⟩ as the ASS key sharing of the DY-PRF. Parse ⟨X ′⟩ as
(⟨X ′(0)⟩, ⟨X ′(1)⟩) and ⟨Y ′⟩ as (⟨Y ′(0)⟩, ⟨Y ′(1)⟩), where X ′(0)

and Y ′(0) are the ID columns. The parties run ΠDDOPRF over
the ID column of ⟨X ′⟩ using PRF key sharing ⟨k⟩, and run
ΠDDOPRF over ⟨Y ′⟩ with PRF key sharing ⟨k⟩ and secondary
key sharing ⟨ks⟩. Then, they invoke the bit decomposition
protocol on ⟨ks⟩ to open this key bit by bit. So parties can
compute {F (k, ks, X

′(0)
i )}i∈[1,n] to do the following com-

parison. At the end of this protocol, the parties can learn
the pseudorandom values of those ID columns, denoted as
{F (k,X ′(0)

i )}i∈[1,n] and {F (k, Y ′(0)
i )}i∈[1,n]. After that, P0

prepares two empty tuple sets RX0
and RY0

, and P1 prepares
RX1 and RY1 , and they will find all the matched records be-
tween ⟨π(X)⟩ and ⟨ρ(Y )⟩ from the DDOPRF output, and put

those matched sharings into the empty sets. More concretely,
for i ∈ [1, n], j ∈ [1, n], the parties compare F (k,X ′(0)

i ) and
F (k, Y ′(0)

j ). If F (k,X ′(0)
i ) = F (k, Y ′(0)

j ), P0 (P1) picks out
the matched record RX0

= ⟨X ′
i⟩∪RX0

(RX1
= ⟨X ′

i⟩∪RX1
)

and RY0 = ⟨Y ′
j⟩ ∪ RY0 (RY1 = ⟨Y ′

i⟩ ∪ RY1 ). For payload
computation, the parties take their shares R

(1)
X0

and R
(1)
Y0

, R(1)
X1

and R
(1)
Y1

as inputs to the following payload computation. Note
that due to the secret-shared shuffle, the parties do not know
which records are matched, and they only learn the number
of matched records at the end of the protocol.

G. Concrete SSS Protocol Instantiation

Our protocol relies on a FSSS in a black-box way, meaning
that any malicious secure SSS protocol that secretly computes
FSSS can be used here. When diving into the concrete in-
stantiations, however, some existing SSS protocols [5, 12, 23]
based on permutation networks suffer from high round and
communication complexity, which may incur high latency
when used in the WAN setting.

We provide a concrete instantiation for a malicious-secure
SSS protocol with better efficiency and use it as a black-box
way. The used malicious-secure SSS protocol [49] is based on
a recently proposed two-party SSS protocol from [12] known
as the CGP protocol, which is only secure in the presence
of a semi-honest adversary. The details of the malicious
SSS protocol [49] and our enhancement are presented in
Appendix B.

V. SECURITY PROOF

We follow the simulation-based security model [31] with
malicious security and static corruption. The security goals are
defined as an ideal functionality F. This ideal functionality
works as a trusted entity that receives inputs from parties,
performs the defined computation, and outputs results to
parties. In the real world, an adversary A who represents a
corrupted party C will run the protocol with the other honest
parties. In the ideal world, a simulator S will interact with F.

Definition 2. A protocol Π securely computes functionality
F in the presence of a malicious adversary if for every PPT
adversary A there exists a PPT simulator S, such that

RealΠ,A(z),C(1
κ, 1λ, xi,i/∈C)

c≡ IdealΠ,S(z),C(1
κ, 1λ, xi,i/∈C).

The left side of the equation represents the joint output from
the honest parties and adversity A, and xi represents the input
from a party Pi and z is the auxiliary input from A. Similarly,
the right side denotes the joint output from the honest parties
and simulator S. We say that Π can securely compute the
functionality F with less than statistical error 2λ under the
malicious model.

Then we define the ideal functionality of FmcPSI as in Fig. 7

Theorem 2. In the FABB,FABB+ ,FSSS,FDDOPRF-hybrid
model, the protocol ΠmcPSI implements FmcPSI correctly and
securely against malicious adversary, and achieves (2, 0)-fair.

9



Functionality FmcPSI

Parameters: The party P0 inputs x⃗ = {x1, · · · , xn}, and
another party P1 has an input set y⃗ = {y1, · · · , yn};
FmcPSI:

1. On receiving (FmcPSI, x⃗) from P0 and (FmcPSI, y⃗) from
P1, the functionality stores x⃗ and y⃗ and waits. If
any party aborts outputs ⊥ to both parties and aborts.
Otherwise, continue.

2. On recceiving (compute) from both parties, the func-
tionality outputs the computation results f(x⃗ ∩ y⃗) and
size of the intersection set |x⃗ ∩ y⃗| to both patries if it
does not abort. Otherwise, ⊥ is output to parties.

Fig. 7. Ideal functionality of FmcPSI.

Proof Sketch. In this part, we give an essential proof sketch
of FmcPSI to establish that it is maliciously secure and
fair. First, we solve the consistent issue by designing an
SPDZ-compatible OPRF protocol (i.e., DDOPRF). That is,
we augment OPRF by adding the authentication mechanisms
provided by SPDZ in the secret-sharing format. Instead of
using heavy asymmetric-based commitment schemes, SPDZ
provides the symmetric-key counterpart ”message authentica-
tion codes” (MAC) for authentication. A MAC is a way of
authenticating a value, ensuring that any revisions to the value
can be detected by checking its MAC. DDOPRF perfectly
integrates all the features in SPDZ, including MAC. Therefore,
the computation results sent to a functionality f will be
checked by MAC, and any changes to those results will be
detected. At the end of this protocol, the correctness of FmcPSI
can be ensured.

Next, we give a discussion about the fairness of our
protocol. FmcPSI achieves (2, 0)-fair. According to the partial
fairness definition in Definition. 1, whenever the adversary
aborts the protocol, the upper bound of its advantage in
recovering the results is known one more bit than the other
party. Therefore, the recovering time of the adversary will be
half of the other party, and it can achieve the same probability
of success. Besides, the fairness of FmcPSI is guaranteed by
the bit-decomposition protocol, which is also built on SPDZ
and secure under the malicious model.

Nevertheless, the correctness, security, and fairness of
FmcPSI are guaranteed by the primitives used in it. The detailed
simulation-based proofs are shown in Appendix .C.

VI. IMPLEMENTATION AND PERFORMANCE

A. Experiment Environment

We implement our protocol in C++ and based on YACL3,
which provides several cryptographic interfaces (e.g., pseu-
dorandom generator, oblivious transfer, network). We run all
experiments on a desktop PC equipped with 12th Gen Intel(R)
Core(TM) i9-12900K at Ubuntu 20.04 LTS and 125 GB
of memory. We run our protocols in two different network
settings with the Linux tc command. One is the local-area

3https://github.com/secretflow/yacl
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Fig. 9. Time and communication for circuit-PSI protocols on n = 256 and
LAN network setting.

network (LAN) with 10 GBps. Another is the wide-area
network (WAN) with 100 Mbps. In our paper, the compu-
tational security parameter is κ = 128, the statistical security
parameter is λ = 64, and the size of each element is ℓ = 128.

set size n 28 210 212 214 216 218 220

Offline 0.06 0.58 10.43 90.18 1445.66 23131 -
Online (without fairness) 0.12 0.50 1.83 7.32 28.78 115.90 455.95

Online (with fairness) 0.14 0.58 2.05 8.07 32.03 128.02 512.42
Comm. 0.08 0.31 1.15 4.52 17.98 71.85 287.34

TABLE I
Running time (in s) and Communication cost (in MB) of ΠmcPSI for

different set sizes (n ∈ {28, 210, 212, 214, 216, 218, 220}) in LAN setting.

B. Performance of DDOPRF

We first report the performance of our DDOPRF protocol
in terms of the running time and communication cost. The
performance is measured for generating PRF values for items
in the input sets from two parties, where the number of items
n is taken from {26, 27, 28, 210, 212}. Besides, we compare
our DDOPRF protocol with the OPRF protocol used in [34].
Fig. 8 shows the running time of our DDOPRF protocol with
the OPRF protocol used in Miao et al. [34]. In Miao’s work,
they also propose an OPRF protocol based on DY-PRF and
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set size n 28 210 212 214 216 218 220

LAN

End2End Time
Ours 0.14 0.57 2.08 8.05 32.18 128.16 511.24

PSM [11] 0.219 0.334 0.545 0.70 1.65 6.07 24.78
≈ 1.6×

Comm.
Ours 0.08 0.31 1.15 4.52 17.98 71.85 287.34

PSM [11] 0.38 1.53 6.10 24.33 99.48 397.65 1700.82
≈ 4.8× ≈ 4.9× ≈ 5.3× ≈ 5.4× ≈ 5.5× ≈ 5.5× ≈ 5.9×

WAN (100Mbps)

End2End Time
Ours 0.19 0.73 2.40 9.07 35.16 139.39 558.89

PSM [11] 1.779 2.526 4.092 7.73 16.49 42.85 162.61
≈ 9.4× ≈ 3.5× ≈ 1.7× -

TABLE II
Running time (in seconds) and Communication cost (in MB) of ΠmcPSI and the circuit-PSI protocol in [11] for different set sizes

(n ∈ {28, 210, 212, 214, 216, 218, 220}) in different network settings.

set size n 28 210 212 214 216 218 220

Ours 0.14 0.58 2.05 8.07 32.03 128.02 512.42
SCS-PSI [23] 0.309 0.81 3.464 14.87 63.86 274.12 -

Miao et al. [34] 8.25 33 141 553.8 2215 8860 25583

TABLE III
Runtime (in seconds) of ΠmcPSI and PSI protocols in [23, 34] for different

set sizes (n ∈ {28, 210, 212, 214, 216, 218})

combine it with distributed keys. As we can see from the
results, the running time of DDOPRF is around 100x faster
than that of Miao’s protocol (low comm.), and 10x faster than
Miao’s optimized OPRF protocol (low comp.). Specifically,
the running time of DDOPRF includes the offline and online
time. However, it does not conclude the dual-key computation
part. That is to say, the running time of DDOPRF shown in
Fig. 8 does not guarantee fairness, since Miao’s work also does
not consider fairness property. Because we test the malicious
DDOPRF protocol here, the malicious OTs protocol from [48]
is used as a primitive in DDOPRF. We note that all OTs
execution and the MAC check can be done in a batch in one
round. Besides, we also use VOLE to enhance the generation
of MAC on SPDZ, and this technique was proposed in [52].

set size n 28 210 212 214 216 218 220

Ours 0.08 0.31 1.15 4.52 17.98 71.85 287.34
SCS-PSI [23] 8.76 42.41 207.20 1002.62 4941.83 24139 -

Miao et al. [34] 0.12 0.481 1.89 7.1 28.3 111.22 436.720

TABLE IV
Communication cost (in MB) of ΠmcPSI and PSI protocols in [40, 47] for

different set sizes (n ∈ {28, 210, 212, 214, 216, 218}).

C. Performance of Malicious Circuit-PSI

In this section, we show the thorough performance of
our malicious circuit-PSI protocol. Our malicious circuit-PSI
protocol includes three parts, 1) secret shared shuffle, 2)
DDOPRF, and 3) functionality f computation (with fairness).

We first give the specific numbers of ΠmcPSI in the localhost
setting in Table. I. In this table, we divide the running time of

ΠmcPSI into two parts: offline and online times. And we also
represent the online time with/without fairness guaranteed.
During the offline process, it generates quantities of beaver
triples and correlated random values for later online shuffle and
DDOPRF protocol. As for fairness, to guarantee the fairness in
DDOPRF protocol, we need to change the arithmetic sharings
of a key to boolean sharings vis bit decomposition protocol.
In our implementation, we use 0/1 arithmetic sharings to sub-
stitute the boolean sharings to avoid complex implementation.
When the set size n equals 220, it takes hours and the socket
will be dead so we do not give a specific number. However,
we could still infer the time since the offline communication
cost is O(nlogn) and computation cost is O(n2). The primary
expense incurred during offline periods stems from the shuffle
process.

Then, we compare ΠmcPSI with the existing two-party PSI
protocols [23, 34]. To compare our protocol to other PSI proto-
cols [23, 34], ΠmcPSI does not include the offline running time.
For the circuit computation, we use the same functionality as
used in [34], which aims to compute the sum of items in the
intersection set. And we both focus on the malicious setting.
Nevertheless, Huang’s PSI protocol [23] brings a semi-honest
PSI based on garbled circuit methods. Their work also can
be trivially extended to achieve the PSI-sum computation and
be secure under the malicious setting. Therefore, we compare
our protocol with those representative works as presented in
Table. III. It is worth mentioning that, the running time of
ΠmcPSI does not include offline time, and it includes the online
time of SSS, DDOPRF (with fairness), and sum computation.
As we can conclude from Table. III, the online time is similar
to the running time of DDOPRF protocol, since the online
time of SSS is nearly 0 when the size of input set is rather
small (n < 212). Compared to Miao’s work, the running time
of ΠmcPSI is nearly 50x faster. Compared to the semi-honest
PSI [23], our work is around 1.9x more efficient in the running
time.

Next, we also compare the communication costs of ΠmcPSI
with [23, 34] shown in Table. IV. Notably, we only count
the online communication cost of ΠmcPSI. We also present a
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Protocol Aims Fairness Comm. asymptotic Assumption

Semi-Honest Security

SCS-PSI [23] PSI ✗ (2ℓnlog(2n) + ((3n− 1)ℓ− n) + 2ℓnlog2(2n̂))ϕ CDHPSM [11] PSI, circuit-PSI ✗ 0.25ℓnλ+ 0.5ℓλ+ 8ℓn
VOLE-PSI [47] PSI, circuit-PSI ✗ (λ+ 2log(n))n+ 217κn0.05 + κn+ |baseOT| LPN+CDH

Malicious Security

PaXoS [40] PSI ✗ 2κn+ ℓ(2.4n+ 2λ+ χ) + λ(2.4n+ 2ℓ) + |baseOT| CDH
VOLE-PSI [47] PSI ✗ 3κn+ 217κn0.05 + |baseOT| LPN+CDH

Blazing [44] PSI ✗ 2.3κn+ 214.5κ+ |baseOT| LPN+CDH

Dong et al. [18] PSI ✓
need a semi-trusted server O(n2)

CDHMiao et al. [34] PSI-Sum ✗ O(n)
Ours PSI, circuit-PSI ✓ (2λ+ 2)ℓn

TABLE V
Theoretical comparison of different PSI-related protocols, using the computational security κ = 128, the length of each item ℓ, and the statistical security

λ = 40. n is the size of input set, and we consider the sizes of two input sets to be equal.

comparison of ΠmcPSI with other PSI-related works on n =
28 in Fig. 9. We can conclude from those tables that ΠmcPSI
features good communication performance, which is several
orders of magnitude faster than Huang’s protocol, and around
1.5x less than the communication cost of Miao’s protocol.

Next, we show the running time and communication cost
of ΠmcPSI in different network settings and compare it with
one of the state-of-the-art semi-honest circuit-PSI protocol
[11] in Table. II. Our communication and computation costs
are linear than the size of input sets. Compared to the semi-
honest circuit-PSI protocol [11], we can conclude that ΠmcPSI
achieves better online efficiency towards the smaller size of
input sets in the WAN setting. Specifically, all the online times
include the computation for fairness. Besides, our protocol
has better online communication cost than [11]. As we can
conclude from the results, our malicious circuit-PSI protocol
brings some extra costs at certain levels compared to state-
of-the-art circuit-PSI protocol [11], but our efficiency remains
competitive in terms of communication costs and running time
on the WAN network.

D. Theoretical Analysis

In Table VI-B, we provide a thorough theoretical compar-
ison of our protocols with other PSI-related semi-honest and
malicious protocols in different security settings. SCS-PSI [23]
is a pure circuit-based PSI protocol in the semi-honest setting.
Its communication cost is linear with the number of the used
gates. Therefore, we use ϕ to represent the communication cost
for one non-free gate. Next, we show the main communication
cost of PSM [11], a private membership test protocol.

As for the malicious protocols, although Miao’s work
achieves linear communication complexity, it relies on too
many asymmetric operations, including the Pedersen commit-
ments and ElGamal encryptions, resulting in low efficiency
(shown in Tables III and IV). In ΠmcPSI, we consider ℓ = 2κ
since the field size of the DDOPRF is 2κ. More specifically,
in the shuffle protocol, the offline communication cost is
O(κn log n + κn). The online communication cost of the

shuffle process is 2λn as it needs to shuffle the input items
and their MAC values. Then, in the DDOPRF protocol,
the communication cost is 2λℓn. In Table. VI-B, we focus
solely on the online linear communication cost of ΠmcPSI. In
conclusion, ΠmcPSI is not only the first malicious circuit-PSI
protocol but also achieves fairness and better efficiency.

VII. CONCLUSION AND DISCUSSION

This paper proposes a malicious secure and fair circuit-
PSI protocol. Specifically, we design a distributed dual-key
oblivious PRF, which can be used for designing our circuit-PSI
protocol. Besides, we also bring up some gadgets to improve
the efficiency of our protocol, including improved malicious
secret-shared shuffle method and batched consistency check.
And we believe those sub-protocols are of independent inter-
est.
Future work. Many recent researches focus on how to extend
the two-party PSI-related protocols to the multi-party setting.
If we trivially extend our malicious circuit-PSI protocol into
a multi-party setting, it needs a multi-party secret-shared
shuffle protocol, and the DDOPRF protocol will be executed
between n parties. It may result in low efficiency and non-
linear communication complexity. Therefore, it remains to
design a maliciously secure circuit-PSI protocol with better
complexity.
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APPENDIX A
ARITHMETIC BLACK-BOX FUNCTIONALITY

The detailed implementation of the functionality FABB is as
follows.
SPDZ-style preprocessing. In the preprocessing phase, the
SPDZ-style protocol will use oblivious transfer as an under-
lying technique for generating triples RandomMul() [25].
RandomMul: The pre-processing of random multiplication
RandomMul() is to generate multiplication triples. The triple
generation protocol is as follows. For two parties P0 and
P1, each party samples a⃗(0/1), b(0/1), which are randomly
sampled from a finite field F. Both parties call the Random
OT protocol Fkτ,k

ROT , where each party inputs a⃗(0/1) in bit
form, i.e., (a

(0/1)
1 , ..., a

(0/1)
τk ) = g⃗−1(a(0/1)), where g⃗ =

(1, 2, 22, ..., 2k−1), integer parameter τ ≥ 3, k is the length
of generated triple value. Then they do the following:
1. P1 receives q

(1,0)
0,h , q(1,0)1,h , and P0 receives s

(0,1)
h = q

(1)

a
(0)
h ,h

,
for h = 1, ..., τk;

2. P1 sends d
(1,0)
h = q

(1,0)
0,h − q

(1,0)
1,h + b(1);

3. P0 sets t
(0,1)
h = s

(0,1)
h +a(0) ·d(1,0)h = q

(
0,h1, 0)+a

(0)
h · b(j),

for h ∈ [1, τk]. Then sets q
(1,0)
h = q

(
0,h1, 0).

4. Two parties split (t
(0,1)
1 , ..., t

(0,1)
τk ) and (q

(1,0)
1 , ..., q

(1,0)
τk )

into τ vectors of k components, denoted as (⃗t1, ..., t⃗τ ) and
(q⃗1, ..., q⃗τ ).

5. P0 sets c⃗
(0)
0,1 = (g⃗ · t⃗1, ..., g⃗ · t⃗τ );

6. P1 sets c⃗
(1)
0,1 = (g⃗ · q⃗1, ..., g⃗ · q⃗τ ).

Next, each party can locally compute c⃗(0/1) = a⃗(0/1) ·b(0/1)+∑
(c⃗

(0/1)
(0,1) + c⃗

(0/1)
(1,0) ). After each party sample a random vector

r⃗ over a finite field, each party will sets a(0,1) = a⃗(0/1) · r⃗ and
c(0,1) = c⃗(0/1) · r⃗. Then parties can get a valid triple (a, b, c).
SPDZ-style online evaluation. In the online phase, the SPDZ-
style protocol includes the following commands.
Input: the input command takes an input x and outputs an
ASS value to each party ⟨x⟩ ← Input(x): The parties generate
an ASS sharing ⟨r⟩ ← FABB.Rand(), and open the value r

to the party who owns the input value x. So the party will
compute ϵ = x− r and broadcast ϵ. Then, all parties compute
⟨x⟩ = ⟨r⟩+ ϵ.
Mul: On input (JxK, JyK) from parties, the parties will take one
multiplication triple (JaK, JbK, JcK) and compute JeK = JxK −
JaK and JfK = JyK− JbK. Then, the parties compute JcK + f ·
JaK + e · JbK + e · f , which equals to Jx · yK.
Open: on input (Open, ⟨x⟩) from each party, each party
broadcasts ⟨x⟩ and recovers x =

∑
i∈[n]JxKi. Moreover, all

parties need to run a MAC check for the opened values x
in case the corrupted party opens incorrect values. The parties
perform JdK = Jγ(x)K−x·JξK and check whether d equals to 0
and aborts if not. The above example is for a single evaluation.
However, in implementation, the parties will perform a batch
of MAC checks for better efficiency. For batch MAC check, all
parties input a set of shared items {⟨x1⟩, . . . , ⟨xt⟩}. Then, they
use FABB.Rand() to sample a vector of secret-shared random
values {Jr1K, . . . , JrtK}, and compute x̃ =

∑t
j=1JrjK · JxjK.

Next, each party computes JσK =
∑t

j=1JrjK · Jγ(xj)K− x̃ · ξ.
Therefore, parties can perform a batched MAC check by
measuring whether σ equals 0.

APPENDIX B
SECRECT SHARED SHUFFLE

The semi-honest CGP SSS protocol [12]. The CGP shuffle
protocol relies on a specified correlation called oblivious punc-
tured matrix (OPM). In an n-dimention OPM, a sender holds
a matrix M of n× n, while the receiver holds a permutation
π ∈ Sn and a punctured matrix M̃ of M , where the receiver
doesn’t know M [i, π(i)] for all i ∈ [n]. From the OPM
correlation, the parties can produce a correlation called shuffle
tuple. In particular, the sender compute two n-dimension
vectors (⃗a, b⃗) such that a⃗i =

∑
j Mj,i, b⃗i =

∑
j Mi,j for all

i ∈ [n], and the receiver computes a n-dimension vector ∆⃗

such that ∆⃗i =
∑

j ̸=i M̃j,π(i) −
∑

j ̸=π(i) M̃i,j .
Those shuffle tuples can be generated in the offline phase,

and the online process of the CGP shuffling protocol is as
follows. Suppose P1 is the sender and P0 is the receiver. Using
a shuffle tuple corresponding to a permutation π, the parties
can shuffle a secret-shared vector ⟨x⟩ as follows: P1 sends
δ⃗ ← Jx⃗K1− a⃗ to P0. P0 sets Jy⃗K0 ← π(Jx⃗K0 + δ⃗)+ ∆⃗ and P1

sets Jy⃗K1 ← b⃗. Clearly, Jy⃗K0 + Jy⃗K1 = π(Jx⃗K0 + Jx⃗K1 − a⃗) +
π(⃗a)− b⃗+ b⃗ = π(x⃗). The prior shuffling hides the underlying
permutation π from P1.

During this process, instead of directly applying the per-
mutation π to achieve SSS, the authors split the permutation
π into smaller disjoint permutations via Benes permutation
network [8] to improve the performance. For n elements
x1, ..., xn, the Benes network will be split into two permu-
tations, and each permutation acts on n/2 elements. Every
wire represents whether the element is swapped or not. Then,
for each 2/n Benes network, it will recursively call a Benes
network with half the inputs and half the outputs. The Benes
network for n elements contains 2 log n− 1 layers, and each
layer contains n/2 2−element swappers.
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Fig. 10. Waksman Network with n inputs and outputs.

Therefore, the parties run another shuffling using another
shuffle tuple (corresponding to another permutation ρ known
to P1) with roles reversed. In this manner, no party learns the
underlying composed permutation.
The malicious-secure SSS protocol. Besides the semi-honest
secure shuffle protocol, some malicious secure shuffle proto-
cols [21, 29] are proposed. Those protocols design malicious
CGP-style SSS protocol over ASS. Similarly, for an authenti-
cated vector sharings ⟨x⃗⟩, the parties will perform the CGP-
style shuffle protocol to get a shuffle tuple ((π, δ⃗), (⃗a, b⃗)),
where (π, δ⃗) is for a receiver P0, and (⃗a, b⃗) is for a sender
P1. Then, parties will use their ASS sharings ⟨x⃗⟩ to do
the CGP-style shuffling process as we mentioned before. P1

sends δ⃗ ← ⟨x⃗⟩ − a⃗ to P0, The difference is that the parties
can perform a MAC check to detect errors at the end of
the protocol. So the checks can ensure data integrity and
correct shuffling. However, those protocols are subjected to the
selective failure attack as depicted in [49]. More concretely, a
malicious sender P1 may add errors to δ⃗ when P1 is expected
to send δ⃗ = ⟨x⃗⟩ − a⃗ to P0. Instead of sending the correct
message δ⃗ to P0, P1 will change one element in δ⃗. Then,
P1 guesses where the changed element has been permuted
to. According to the post-execution check result, P1 can
learn whether the guess is correct or not. More details about
selective failure attack are presented in Appendix. Therefore,
the authors [49] propose a malicious secure SSS protocol that
is also resistant to the selective failure attack. They not only
propose a correlation check to defeat an incorrect correlation
attack but also design a leakage-reduction mechanism to
remove possible leakage to defend against the selective failure
attack. Then, all the techniques used in their protocol are
combined with authenticated secret sharing to formalize a
malicious secure secret-shared shuffle protocol.
Concrete Optimizations. In Πm-PSI, we need to use a
malicious-secure SSS protocol [49] as a building block. This
work also inherits the technical components of CGP protocol,
and it also utilizes the Benes network [8] as a permutation
structure. Based on their work, we substitute the Benes net-
work with the Waksman network [50]. As shown in Fig. 10,
the Waksman network [50] is a realization of a permutation
network using exactly n log n − n + 1 2-element swappers

when n is a power of 2. The Waksman network is recursive
and is built by two n/2−input Waksman networks. Compared
to the Benes network, the Waksman network achieves better
trade-offs between communication and computation costs.

APPENDIX C
SECURITY PROOF

In this section, we give the ideal world definition of our
proposed protocols and depict simulation-based proofs.

A. DDOPRF

Functionality FDDOPRF

Public Parameters: a prime p, a group G and a generator
of the group g.
Private Parameter: A PRF key k

$←− Zp and its related ASS
sharing ⟨k⟩; A secondary PRF key ks

$←− Zp and its ASS
sharing ⟨ks⟩.
DDOPRF:

1. on receiving (DDOPRF, ⟨x⟩) from both parties, the
functionality outputs F (k, x) = g

1
k+x to both parties

if it does not abort. Otherwise, ⊥ is output to both
parties;

2. on receiving (DDOPRF,Dual-key, ⟨x⟩) from both par-
ties, the functionality outputs F (k, ks, x) = g

ks
k+x to

both parties if it does not abort. Otherwise, ⊥ is output
to both parties.

Fig. 11. Ideal functionality of DDOPRF.

Theorem 3. In the FABB, FABB+ -hybrid model, the protocol
ΠDDOPRF implements FDDOPRF correctly and securely against
malicious adversary.

Proof. We can construct an ideal world simulator
SDDOPRF as the following:
1. SDDOPRF is given the public parameter p,G, g, and a

share of x. SDDOPRF simulates FABB and FABB+ , chooses
k′, k′s, x

′ $←− Zp and records ⟨k′⟩, ⟨k′s⟩ and ⟨x′⟩;
2. SDDOPRF invokes the adversary A with p,G, g, and ⟨x′⟩;
3. SDDOPRF receives a FABB.Rand() call from the adversary,

generates a random number r ∈ Zp, and returns a share of
r to the adversary, and SDOPRF records ⟨r⟩;

4. SDDOPRF receives the invocations to FABB.Mul() for com-
puting ⟨d′⟩ = ⟨r⟩ · (⟨k′⟩+ ⟨x′⟩), return a share of d′ to the
adversary;

5. SDDOPRF receives an invocation to FABB.Open. SDDOPRF
does the MAC check of the inputs received in this step and
the previous step, against stored shares ⟨d′⟩, ⟨k′⟩, ⟨x′⟩, ⟨r⟩.
If all shares received from the adversary are correct, send
d′ to the adversary; otherwise, send abort to FDDOPRF, and
abort the protocol execution with the adversary;

6. SDDOPRF receives an invocation to FABB.Mul() for comput-
ing ⟨e′⟩ ← d′−1 · ⟨r⟩, and SDDOPRF records ⟨e′⟩ and returns
a share of e′ to the adversary; If SDDOPRF receives an
invocation to FABB.Mul(), it will compute ⟨e′⟩ ← ⟨e′⟩·⟨k′s⟩.
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And SDDOPRF records ⟨e′⟩ and returns a share to the
adversary;

7. SDDOPRF receives an invocation to FABB+ .Convert() for
converting ⟨e′⟩ to ⟨[e′]⟩. SDDOPRF records ⟨[e′]⟩ and returns
a share to the adversary;

8. SDDOPRF receives an invocation to FABB+ .Open() for
openning ⟨[e′]⟩. SDDOPRF does the MAC check on all inputs
received from the adversary since step 6. If the check fails,
SDDOPRF sends abort to FDDOPRF and abort the protocol
execution with the adversary. Otherwise, SDDOPRF sends
its input ⟨x′⟩ to FDDOPRF, receives the output ge

′
from

FDDOPRF then passes it to the adversary.
As we can see, in this simulation: the distribution of the

view of the adversary in a real execution is the same as that in
the simulation because the shares are information-theoretically
secure; the simulation aborts whenever an error is detected in
a real execution; and the distribution of the joint output in the
simulation is the same as that in a real execution. Therefore
the simulation is indistinguishable from a real execution, thus
FDDOPRF can be security implemented by ΠDDOPRF.

B. FairSec

Theorem 4. In the FABB,FABB+ ,FSSS,FDDOPRF-hybrid
model, the protocol ΠFairSec implements FFairSec correctly and
securely against malicious adversary.

Proof. We construct an ideal world simulator SPSI as the
following: SPSI is given its input set x⃗ = {x1, · · · , xn}. SPSI
simulates FABB, FABB+ , FSSS, FDDOPRF.

1. SPSI invokes the real-world adversary A with x⃗.
2. For i ∈ [1, n]: SPSI receives a FABB.Input(x′

i) call from
the adversary A, then generate ASS sharing ⟨x′

i⟩ ←
FABB.Input(x′

i) and sends P0’s shares to A;
3. SPSI sends (mc-PSI, x⃗′) to the ideal functionality
Fmc−PSI.

4. SPSI selects a random y⃗′ = {y′1, · · · , y′n}, generates ASS
sharings ⟨y⃗′⟩.

5. SPSI receives invocations to FSSS to shuffles the shares
⟨x⃗′′⟩ ← FSSS(⟨x⃗′⟩), ⟨y⃗′′⟩ ← FSSS(⟨y⃗′⟩), then sends P0’s
shares to A;

6. SPSI receives a FABB+ .Rand() call from A, generate k,
ks and returns sharings of PRF keys ⟨k⟩ and ⟨ks⟩ to A.

7. SPSI receives an invocation to FDDOPRF

to computes Zx = {F (k, x⃗′′
i)}i∈[1,n] and

Zy = {F (k, ks, y⃗′′i)}i∈[1,n]. SPSI computes the
multiplicative sharing of the results and returns P0’s
shares to A.

8. SPSI receives an invocation to FbDEC to get the shares of
sequence ⟨b0 · 2λ−1⟩ · · · ⟨bλ−1 · 20⟩, where bi is the i-th
bit of ks (left most first) and returns P0’s shares to A.

9. SPSI receives the shares ⟨b0 · 2λ−1⟩ · · · ⟨bλ−1 · 20⟩ one by
one from A and send P1’s shares to A, and they can
reconstruct ks locally;

10. If A aborts at any time in the previous steps, send abort
to Fm−PSI, otherwise sends cardinality to Fm−PSI and
receives back |x⃗′ ∩ y⃗′|.

11. SPSI opens Zx and Zy so that A can find matching ele-
ments in these two sets. SPSI and A also have the sharing
of R⃗Xb

, R⃗Yb
which corresponds to the set intersection.

12. If A aborts at any time in the previous step, send abort
to Fm−PSI, otherwise if A invokes Ff , SPSI sends
compute to Fm−PSI and receives back f(x⃗′ ∩ y⃗), which
is then forward to A.

Also, in this simulation, the adversary can only see the
shares of the vectors generated during the simulation, which
are information-theoretically secure. Thus, the distribution of
the joint output in the simulation is the same as that in a
real execution, and FairSec is secure under this situation. This
situation when constructing the simulator for FairSec with
corrupted P1 is quite similar to the corrupted P0 except that
P0 is acted by the simulator and P1 is acted by the adversary.
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