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Abstract. In computer arithmetic operations, the Number Theoretic
Transform (NTT) plays a significant role in the efficient implementation
of cyclic and nega-cyclic convolutions with the application of multiplying
large integers and large degree polynomials. Multiplying polynomials is
a common operation in lattice-based cryptography. Hence, the NTT is a
core component of several lattice-based cryptographic algorithms. Two
well-known examples are the key encapsulation mechanism Kyber and
the digital signature algorithm Dilithium. In this work, we introduce a
novel and efficient method for safeguarding the NTT against fault at-
tacks. This new countermeasure is based on polynomial evaluation and
interpolation. We prove its error detection capability, calculate the re-
quired additional computational effort, and show how to concretely use
it to secure the NTT in Kyber and Dilithium against fault injection
attacks. Finally, we provide concrete implementation results of the pro-
posed novel technique on a resource-constrained ARM Cortex-M4 mi-
crocontroller, e.g., the technique exhibits a 72% relative overhead, when
applied to Dilithium.

Keywords: Lattice-Based Cryptography · Post-Quantum Cryptogra-
phy · Kyber · Dilithium · NTT · Fault Countermeasures.

1 Introduction

The Number Theoretic Transform (NTT) is a core building block of a number of
cryptographic schemes defined over polynomials rings. It plays a central role in
various lattice-based cryptographic schemes that rely on the difficulty of certain
computational problems in structured lattices.

Both the post-quantum key encapsulation mechanism Kyber [23] and the
post-quantum digital signature scheme Dilithium [17] make use of the NTT to
efficiently compute polynomial multiplication. Both algorithms have recently
been selected by the US National Institute of Standards and Technology (NIST)
for final standardization [19]. The initial draft standards have recently been
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published for public comment and review as FIPS 203 [2] and FIPS 204 [3] for
Kyber and Dilithium, respectively.

Kyber and Dilithium were designed with NTT-friendly parameters, in order
to allow for an efficient implementation of polynomial multiplication using the
NTT.

While the NTT provides significant benefits in terms of speed and memory, it
is also an attractive target for side-channel and fault attacks [22, 15]. While there
have been several studies focusing on protecting the NTT against side-channel
attacks [21, 18, 10, 6, 8], there has been comparatively little research conducted
on the fault resistance of the NTT itself [22, 6].

Related Work In the context of lattice-based cryptography, a number of fault
attacks have been presented. For instance, various fault attacks against BLISS,
ring-TESLA, and the GLP-scheme have been reported in [7]. Differential fault
attacks against deterministic variants of Dilithium and Falcon have been pre-
sented in [9] and [4]. Fault attacks against signature verification in Dilithium
and Falcon have been considered in [20, 22, 5].

In [14], a chosen-ciphertext fault attack against Kyber is introduced where the
fault can be injected during almost the entire decapsulation or at more specific
locations during re-encryption. This proposed approach involves manipulating
the ciphertext and correcting it by fault injection to obtain inequalities and re-
cover the secret key using belief propagation. It has been demonstrated that this
method can bypass several countermeasures such as straightforward shuffling
and boolean masking methods [14]. In [24], single instruction skip fault injec-
tions during the decapsulation are considered for various KEM algorithms such
as Kyber. More precisely, the attack approach involves exploiting the Fujisaki-
Okamoto (FO) transform used in Kyber. The attacker implements a skipping-
the-equality-test attack by carefully injecting faults during the decapsulation
process. This fault injection causes the algorithm to skip a critical equality test
between the original and re-encrypted ciphertexts, consequently bypassing this
security check. It has been shown that this method can be effective in compro-
mising the security of Kyber implementations. In addition, the attack has been
improved in [11] considering single bit flips.

Regarding attacks on the NTT itself, several studies have demonstrated that
the NTT operation is susceptible to fault attacks, as outlined below. In [12]
the attack presented in [14] has been improved to include binomial sampling
and NTT butterflies and by relaxing the fault model to include random faults
and instruction skips. This work also shows that the countermeasure proposed
in [14] is not effective against the improved attacks. In [22], a number of fault
attacks against the NTT are demonstrated, hence highlighting the criticality of
safeguarding this operation against fault attacks. In more detail, the proposed at-
tack approach on NTT in [22] involves manipulating the twiddle factors in NTT
implementations. The attack is based on fault injection in the Cooley-Tukey
butterfly operation to zeroize the twiddle factor. Therefore, the corresponding
changes result in a significant reduction in the entropy of the NTT’s output.
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By extending this fault to an entire stage of the NTT, and eventually to the
whole NTT, the output entropy is greatly reduced. This attack is also prac-
tically demonstrated against ARM Cortex-M4 implementations of Kyber and
Dilithium.

Contributions In this work, we present a novel technique to protect the NTT
against fault attacks based on polynomial evaluation and interpolation. Our
main idea is illustrated in Fig. 1.

f(X) (f(ωj))

f(u) f(u)

NTT

evaluation

NTT−1

interpolation

?

check

Fig. 1. The basic idea behind our countermeasure against fault injection.

To protect the computation of NTT(f) against fault injection for some poly-
nomial f , we suggest an implementation of the NTT that evaluates the polyno-
mial f on a selected point u. To verify the correctness of the output of the NTT,
the implementation reconstructs the value f(u) by polynomial interpolation. The
inverse NTT−1 can be protected analogously. This implies that a complete ring
multiplication, i.e., NTT transformations and the point-wise multiplication, can
be protected with the proposed novel technique, hence providing full protection
for this operation.

We describe the details of this countermeasure, the choice of the interpolation
point u, the error detection properties of the proposed countermeasure and its
adaption to different forms of the NTT with application to Dilithium and Kyber.
We also investigate the additional computational effort required by this counter-
measure. Finally, we provide a practical evaluation of the proposed method on an
ARM Cortex-M4 microcontroller. In the exemplary case of Dilithium, the results
indicate that the proposed technique incurs a 72% computational overhead.

Structure This paper is structured as follows. Section 2 provides background
information about the NTT, Kyber and Dilithium. Section 3 presents the pro-
posed method for safeguarding the NTT against fault attacks, the error detec-
tion properties of the proposed countermeasure and its application to Kyber
and Dilithium. Section 4 describes a practical evaluation result of the proposed
countermeasures on an ARM Cortex-M4 microcontroller with application to
Dilithium. Conclusions and an outlook are in Sec. 5.
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2 Background

This section provides background information regarding the Number Theoretic
Transform (NTT), Dilithium and Kyber. Furthermore, it fixes the notation used
throughout this paper.

2.1 The Number Theoretic Transform

Let K be a field and φ(X) = Xn +1 with n = 2k for some integer k ≥ 0. Let us
assume that K contains a 2n-th root of unity ω. Then φ(X) can be factored as
follows:

φ(X) = (Xn/2 − ωn/2)(Xn/2 − ω3n/2)
= (Xn/4 − ωn/4)(Xn/4 − ω5n/4)(Xn/4 − ω3n/4)(Xn/4 − ω7n/4)
= · · ·
=

∏n−1
j=0 (X − ω(2brk(j)+1)/4),

(1)

where brk(j) denotes the bit-reversal of a k-bit number j, i.e., brk
(∑k−1

i=0 ai2
i
)
=∑k−1

i=0 ak−1−i2
i.

The factorization of φ(X) in Eq. (1) leads to a series of ring isomorphisms
over multiple layers `:

` = 0 : K[X]/(Xn + 1)

` = 1 : K[X]/(Xn/2 − ωn/2)×K[X]/(Xn/2 − ω3n/2)

...
...

` = k − 1 :
n−1∏
j=0

K[X]/(X − ω2br`(j)+1)

∼=

∼=

∼=

(2)

The chain of isomorphisms defined in Eq. (2) is canonical and simply given
by modular reduction as follows:
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` = 0 : f(X)

` = 1 : (f(X) mod (Xn/2 − ωn/2), f(X) mod (Xn/2 − ω3n/2))

...
...

` = k − 1 : (f(ω2br2(j)+1))j=0,...,n−1

,

where in the last layer k − 1 we identify f(X) mod X − ω2br2(j)+1 with
f(ω2br2(j)+1)

We define the NTT : K[X]/(φ) → Kn as the concatenation of the isomor-
phisms in Eq. (2), so we have:

NTT(f) = (f(ω2brk(0)+1), f(ω2brk(1)+1), . . . , f(ω2brk(n−1)+1)). (3)

If we equip Kn with component-wise addition and multiplication, then the NTT
is a ring isomorphism. In other words, NTT(f + g) = NTT(f) + NTT(g) and
NTT(f · g) = NTT(f)� NTT(g), where � denotes component-wise multiplica-
tion.
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Fig. 2. The Cooley-Tukey algorithm for computing NTT.



6 Sven Bauer, Fabrizio De Santis, Kristjane Koleci, and Anita Aghaie

The latter property is the reason why the NTT plays such an important role
in many cryptographic schemes. It turns the computationally expensive multipli-
cation of two polynomials of degree n into n field multiplications. This comes at
the cost of first computing the NTT for the two polynomials and then comput-
ing NTT−1 of the component-wise product. In many applications, however, one
of the polynomials is fixed, so an application can simply store and use NTT(f)
without recomputing it every time. For this reason, many cryptographic schemes
specify explicitly that the NTT of a polynomial is to be stored or transmitted to
another party, rather than the polynomial in its usual representation as a string
of coefficients.

2.2 Implementing the NTT

The representation of the NTT as a series of isomorphisms in Eq. (2) leads
directly to an efficient implementation, namely the well-known Cooley-Tukey
butterfly construction. Let f(X) be a polynomial of degree n− 1:

f(X) =

n−1∑
j=0

fjX
j , (4)

then the modular reductions mapping layer 0 to layer 1 in Eq. (2) are described
by the following equations:

f(X) mod (Xn/2 − ωn/2) =

n/2−1∑
j=0

(fj + ωn/2fj+n/2)X
j (5)

and

f(X) mod (Xn/2 − ω3n/2) =

n/2−1∑
j=0

(fj − ωn/2fj+n/2)X
j . (6)

Repeating this for all layers gives the Cooley-Tukey butterfly structure of a
typical NTT implementation, illustrated for n = 8 in Fig. 2. Reversing all oper-
ations gives the Gentleman-Sande implementation of the inverse NTT. A single
butterfly does the following:

a′ = b− a · ωj (7)
b′ = b+ a · ωj (8)

So to recover a, b from a′, b′ we compute:

a =
1

2
(b′ − a′)ω−j (9)

b =
1

2
(b′ + a′) (10)

The multiplication with 1
2 can be deferred by multiplying every result by 2− log2 n

in a final step. Eq. (9) and (10) lead to the inverse scheme of Fig. 2 shown in
Fig. 3.
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Fig. 3. The Gentleman-Sande algorithm for computing NTT−1.

2.3 Dilithium

Dilithium [17] is a lattice-based general purpose digital signature scheme based
on the Module Small Integer Solutions (M-SIS) and Module Learning with Er-
rors (M-LWE) problems. The module is of dimension k × t over the polynomial
ring Rq = Zq[X]/(Xn +1), where n = 256 and q = 223 − 213 +1 = 8380417. We
see that 2n divides q− 1, so the NTT as constructed in Sec. 2 can be applied to
multiply elements of Rq. Because n = 256 = 28, it requires eight butterfly layers
like the ones shown in Fig. 2. The reference implementation that is part of [17]
implements the NTT in this way. For its inverse NTT−1 it uses the Gentleman-
Sande algorithm. There are currently three versions Dilithium-2, Dilithium-3,
Dilithium-5 targeting the NIST security level 1, 3, 5, respectively. The param-
eters consist of the module dimension (k, t), the sampling bound of the secret η,
and the rejection thresholds β and ω, cf. Table 1. The NTT is used in the key
generation, signature generation, and signature verification routines of Dilithium
to perform the (k× t)× (t×1) matrix-to-vector polynomial multiplications As1,
Ay, and Az, respectively.

2.4 Kyber

Kyber [23] is a lattice-based key encapsulation mechanism based on the Module
Learning With Errors (M-LWE) problem. The module is of dimension t× t over
the polynomial ring Rq = Zq[X]/(Xn +1), where n = 256 and q = 13 · 28 +1 =
3329. Note that n divides q− 1 but 2n does not. Therefore, the chain of isomor-
phisms in Eq. (2) breaks off at the penultimate seventh layer. Hence, in Kyber,
the NTT reduces multiplication in Rq to multiplying a sequence of polynomials
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of degree one modulo a polynomial of degree two. The reference implementation
that is part of [23] implements the NTT in this way. For its inverse NTT−1

it uses the Gentleman-Sande algorithm, starting at the second layer. There are
currently three versions Kyber-512, Kyber-768, Kyber-1024 targeting the NIST
security levels 1, 3, 5, respectively. Each variant is specified by a parameter set,
cf. Table 1, where t denotes the module dimension, (d1, d2) are the rounding
parameters, and η is the width of the centered binomial distribution. The NTT
is used in the key generation and encryption routines of Kyber to perform the
(t× t)× (t× 1) matrix-to-vector polynomial multiplications Ats and As′.

Table 1. Kyber and Dilithium parameter sets.

NIST t (d1, d2) η(s, s
′) η(e, e′, e′′)

Kyber-512 1 2 (10, 4) 6 4
Kyber-768 3 3 (10, 4) 4 4
Kyber-1024 5 4 (11, 5) 4 4

NIST (k, t) η β ω

Dilithium-2 1 (4, 4) 2 78 80
Dilithium-3 3 (6, 5) 4 196 55
Dilithium-5 5 (8, 7) 2 120 75

3 Fault Resistant NTT using Polynomial Evaluation and
Interpolation Techniques

This section presents the proposed method for safeguarding the NTT against
fault attacks and its error detection capability. Furthermore, it provides a cal-
culation of the additional computational effort required and shows how to con-
cretely use it to secure the NTT in Kyber and Dilithium.

3.1 Proposed countermeasure

The idea behind our countermeasure is shown in Fig. 1. More precisely, let u ∈ K,
where the criteria for choosing u are given in Lemma 3, then our countermeasure
consists of the following steps:

1. Compute w = f(u) by evaluating f at u;
2. Compute NTT(f) = (f(ω2brk(0)+1), f(ω2brk(1)+1), . . . , f(ω2brk(n−1)+1)) with,

e.g., the usual Cooley-Tukey algorithm;
3. Compute w′ = f(u) by interpolating the n− 1 output values NTT(f);
4. Check that w = w′. If this is not the case, then a fault in the computation

of NTT(f) has been detected.

Let us first look at the computational cost of this countermeasure. Its error
detection properties will be analyzed in Sec. 3.2.

Lemma 1. Let u ∈ K and f ∈ K[X] of degree n − 1. Then computing f(u)
requires at most n− 1 multiplications and n− 1 additions in K.
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Proof. This refers to Horner’s method. We write

f(X) =

n−1∑
j=0

fjX
j = ((· · · ((fn−1X + fn−2)X + fn−3) · · · )X + f1)X + f0 (11)

and count the operations on the right. ut

As we have clearly shown in Eq. (3), the NTT maps a polynomial f to n
values of f . By interpolation, the polynomial f can be reconstructed from these
n values.

In detail, we write

Lj(X) =
∏

0≤i<n
i 6=j

X − ω2i+1

ω2j+1 − ω2i+1
, j = 0, 1, . . . , n− 1 (12)

for the n Lagrange polynomials for the points {ω, ω3, ω5, . . . , ω2n−1}. These poly-
nomials form a basis of the K-vector subspace of polynomials of degree at most
n− 1 in K[X] and have the property that

Lj(ω
2i+1) =

{
1 if i = j

0 if i 6= j
(13)

Then

f(X) =

n−1∑
j=0

f(ω2j+1)Lj(X) (14)

For our countermeasure, we do not want to reconstruct f from f(ω2j+1)j=0,...,n−1

but just evaluate f at a single point u. We note that the values Lj(u) can be
precomputed as soon as u is fixed. The interpolated value can then be calculated
with Eq. (14). In particular, if the point u is fixed at compile-time and only f
varies at run-time, then we can precompute the values Lj(u) and link them as
a table to the code.

Lemma 2. Let u ∈ K and f ∈ K[X] of degree n−1. Then computing f(u) given
f(ω2j+1)j=0,...,n−1 and (Lj(u))j=0,...,n−1 requires at most n multiplications and
n− 1 additions.

Proof. Count the operations on the right-hand side of Eq. (14). ut

An algorithmic description of the proposed countermeasures is provided in
Appendix A.

3.2 Error detection properties

Let us now have a look at the error detection capability of our countermeasure.
Consider a single Cooley-Tukey butterfly as illustrated in Fig. 4:

Then let us fix an error model. We assume that fault injection can cause any
of the following types of errors:
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·ωj

Fig. 4. A single Cooley-Tukey butterfly from Fig. 2.

1. An error in one of the input coefficients.
2. An error in the multiplication with ωj . This is equivalent to an error in the

input coefficient that is being multiplied by ωj .
3. An error in the subtraction. This is equivalent to an error in an input coef-

ficient in the following layer.
4. An error in the addition. This is also equivalent to an error in an input

coefficient in the following layer.

We see that all four types of errors can be reduced to an error in an input
coefficient in one of the layers of the Cooley-Tukey implementation of the NTT.

A fault in a single coefficient somewhere in the NTT means that the poly-
nomial in one of the ring isomorphisms of Eq. (2) is changed. Let us assume
this happens in layer ` and write g(X) ∈ K[X]/(Xn/2` −ω(2br`(i)+1)n/2`) for the
affected polynomial. Then g(X) is changed to

g̃(X) = g(X) +DXm (15)

for some D ∈ K and some integer m, 0 ≤ m < n/2`.
We need to determine how the error propagates through the following layers

in the NTT implementation. To do this, we translate the error in layer ` to an
error in layer 0. Define a polynomial

e(X) := D
( 2`−1∏
j=0,j 6=i

Xn/2` − ω(2br`(j)+1)n/2`

ω(2br`(i)+1)n/2` − ω(2br`(j)+1)n/2`

)
Xm. (16)

Now

e(X) mod (Xn/2` − ω(2br`(j)+1)n/2`) =

{
DXm if i = j

0 if i 6= j
. (17)

Hence, the error that replaces g(X) with g̃(X) is equivalent to an error that
replaces the input f(X) with

f̃(X) = f(X) + e(X) (18)

Therefore, the injected error changes the output of the NTT to

NTT(f̃) = NTT(f) + NTT(e) (19)

and the interpolation in our countermeasure will compute f̃(u) = f(u) + e(u)
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Lemma 3. Let u ∈ K \{0} such that un/2` 6= ω(2br`(j)+1)n/2` for any 0 ≤ ` ≤ k
and any 0 ≤ j < 2`. Then the countermeasure described in Sec. 3.1 detects an
error in a single coefficient in an NTT implementation as in Sec. 2.2.

Proof. We have just seen that the interpolation step of the countermeasure com-
putes f̃(u) = f(u)+e(u), whereas the evaluation step computes f(u). We notice
from the definition of e(X) in Eq. (16) that e(u) 6= 0. Hence, f̃(u) 6= f(u) and
therefore the error is detected. ut

If an attacker injects several faults, we cannot provide an absolute guaran-
tee of detecting them with our countermeasure. However, such faults are still
detected with a high probability. It seems reasonable to assume that an attack
with several faults will change the interpolated value randomly. In this case, the
probability that an attack of this type is detected, is 1−1/q if K has q elements.

3.3 Applying the countermeasure to the inverse NTT

All the concepts presented in the previous section can be adapted to the NTT−1

operation and the Gentleman-Sande algorithm as well.
Specifically, the order of the operations in Sec. 3.1 changes. If the input to

NTT−1 is NTT(f) for some polynomial f , then our countermeasure, applied to
NTT−1 becomes:

1. Compute w = f(u) by interpolating NTT(f), the input to NTT−1;
2. Compute f = NTT−1(NTT(f));
3. Compute w′ = f(u) by evaluating f on u;
4. Check that w = w′. If this is not the case, then a fault in the computation

of NTT−1 has been detected.

From Eq. (9) and Eq. (10) we see that a single Gentleman-Sande butterfly
looks like in Fig. 5.

+

−

+

+

· 1
2
ω−j

· 1
2

Fig. 5. A single Gentleman-Sande butterfly from Fig. 3

As in Sec. 3.2, we pointed out that the four types of errors listed there can
again each be reduced to an error in a single coefficient. Such an error can
again be described by the addition of a monomial DXm as in Eq. (15). The
resulting error in the output of NTT−1 is then provided by Eq. (16). The faulty
output of NTT−1 is given by Eq. (18). So, in this case, the interpolation step
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of the countermeasure computes f(u), whereas the evaluation computes f̃(u).
The proof of Lemma 3 shows that, if u is chosen as in Lemma 3, then e(u) 6= 0.
Hence, f̃(u) 6= f(u) and the error in the computation of NTT−1 is detected.

3.4 Compatibility of the countermeasure with ring operations

When used as part of a cryptographic algorithm, the purpose of the NTT is
typically to accelerate multiplication. Polynomial addition, although not accel-
erated by the NTT, is also a common operation in cryptographic algorithms that
use the NTT. Therefore, it is worth exploring the compatibility of our counter-
measure with these operations and determining if it can be utilized to provide
protection for them as well.

The ring multiplication h = f · g can efficiently be computed using the NTT
as h = NTT−1(NTT(f ·g)) = NTT−1(NTT(f)�NTT(g)). Therefore, our coun-
termeasure can be extended to protect the multiplication and not just the NTT
by following the steps outlined below:

1. Compute w′
1 = f(u), w′

2 = g(u), by interpolating the n− 1 output values of
NTT(f) and NTT(g), respectively;

2. Compute w = h(u) by evaluating the result of the multiplication at u;
3. Check that w = w′

1w
′
2. If this is not the case, then a fault in the computation

of the ring multiplication has been detected.

Note that in some algorithm specifications, e.g., Kyber, some inputs are already
NTT-transformed, so that the transformations NTT(f) and NTT(g) in the first
step are not always needed. For error detection to cover both the NTT operations
as well as the multiplication, the checksums w′

1 and w′
2 have to be verified as de-

scribed in Sec. 3.1. Otherwise, if, for example, w′
1 = 0, errors in the computation

of NTT(g) may go undetected.
Analogously, our countermeasure is compatible with polynomial addition.

This is particularly interesting when a polynomial is split into two shares as a
countermeasure against side-channel attacks. If f = f1 + f2 and w1 = f1(u),
w2 = f2(u), then we can check that f(u) = w1 + w2, hence providing combined
side-channel and fault resistance.

3.5 Comparison with other countermeasures

An obvious way of securing an NTT implementation against single faults is to
compute the NTT twice and compare the results. Computing the NTT with the
Cooley-Tukey method costs n

2 log2(n) multiplications and n log2(n) additions.
From Lemmas 1 and 2 we see that the total cost of our countermeasure is 2n−1
multiplications and 2n − 2 additions. Hence, the cost of our countermeasure
relative to the cost of the NTT in terms of multiplications is

2n− 1
n
2 log2(n)

=
4− 2/n

log2(n)
(20)
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and in terms of additions it is

2n− 2

n log2(n)
=

2− 2/n

log2(n)
. (21)

In the case of Dilithium we have n = 256 and hence the cost of our countermea-
sure is about an extra 50% multiplications and an extra 25% additions. This is
significantly less than the overhead of 100% for computing the NTT a second
time. In practice, the exact performance cost depends on the implementation
details (cf. Sec. 4).

In [13], a different type of countermeasure against fault attacks is presented.
The authors enlarge the modulus q and use this ‘extra space’ to introduce redun-
dancy into the coefficients of the NTT. The cost of this countermeasure depends
very much on the hardware architecture underlying the implementation. The idea
is to use registers which are wide enough to hold numbers significantly larger
than q. Similarly, the effectiveness of this countermeasure depends very much on
exactly this register width. An important difference between the countermeasure
in [13] and the one presented in this paper is that our countermeasure guarantees
the detection of a single fault in a coefficient, while the error detection property
in [13] is probabilistic.

As we have seen at the end of Sec. 3.2, our countermeasure can also detect
errors beyond the guaranteed detection with a certain probability. How this
compares to the probabilistic error detection of [13] again depends very much on
the concrete implementation. However, if we assume implementation on a 32-bit
platform and if we further assume that the size of q is roughly 16 bit, then the
probabilistic error detection capability of our countermeasure and that of [13]
are similar.

3.6 Adapting the countermeasure to Kyber

As we have described in Sec. 2.4, the NTT in Kyber leaves out the final layer. In
other words, the NTT computes n/2 polynomials ajX + bj of degree one such
that

ajX + bj = f(X) mod (X2 − ω(2brk−1(j)+1)2). (22)

So, instead of computing f(u) for our countermeasure as in the previous section,
it seems natural to compute f(X) mod (X2 mod u) instead.

To adapt our countermeasure, we define polynomials for j = 0, 1, . . . , n/2−1:

Mj(X) :=

2k−1−1∏
i=0,i6=j

X2 − ω(2brk−1(i)+1)2

ω(2brk−1(j)+1)2 − ω(2brk−1(i)+1)2
(23)

Lemma 4. With the notation as above:

f(X) =

n/2−1∑
j=0

(ajX + bj)Mj(X) (24)
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Proof. Observe that

Mj(X) mod (X2 − ω(2brk−1(i)+1)2) =

{
1 if j = j

0 if j 6= i
. (25)

Hence, we have for all i = 0, 1, . . . , n/2− 1:

n/2∑
j=0

(ajX + bj)Mj(X) mod (X2 − ω(2brk−1(i)+1)2) = aiX + bi

= f(X) mod (X2 − ω(2brk−1(i)+1)2).

(26)

ut

Let u ∈ K. Then, before the NTT, we can compute

f(X) mod (X2 − u) =
(n/2−1∑

j=0

f2j+1u
j
)
X +

(n/2−1∑
j=0

f2ju
j
)

(27)

Both sums can be computed efficiently with Horner’s method again. This requires
n/2− 1 multiplications and n/2− 1 additions in K for each sum. Hence, n− 2
multiplications and n− 2 additions are required in total.

Looking at the definition of Mj(X) in Eq. (23), we see that Mj(X) mod (X2−
u) =: mj ∈ K for all j = 0, 1, . . . , n/2− 1.

Hence, using Lemma 4, we can compute f(X) mod (X2 − u) from the NTT
output, i.e., from the polynomials ajX + bj as:

n/2−1∑
j=0

(ajX + bj)Mj(X) mod (X2 − u) =

n/2−1∑
j=0

(ajX + bj)mj

=
(n/2−1∑

j=0

ajmj

)
X +

(n/2−1∑
j=0

bjmj

) (28)

Computing the two sums on the right requires n/2 multiplications and n/2− 1
additions for each, and so n multiplications and n− 2 additions in total.

Lemma 5. Let u ∈ K \ {0} such that un/2`+1 6= ω(2br`(j)+1)n/2` for any 0 ≤
` ≤ k and any 0 ≤ j < 2`. Then the countermeasure as described in this section
detects an error in a single coefficient in the Kyber NTT.

Proof. Based on the same arguments as before, any error is equivalent to an
error of the type e(X) as in Eq. (16). The checksum in Eq. (28) will be wrong
by e(X) mod (X2 − u). We have chosen u such that this is non-zero. Hence, the
error will be detected. ut
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4 Practical Evaluation

To verify the feasibility of our approach and our estimates for its performance
impact, we implemented our countermeasure on a ‘black pill’ board with an
STM32F401CCU6 microcontroller [1]. This microcontroller is based on an ARM
Cortex-M4 CPU architecture. We implemented our countermeasure for the ex-
emplary case of Dilithium. So the field is Fq with q = 8380417, and we are
working in the ring Fq[X]/(X256 + 1).

We took the NTT from the Dilithium implementation by the pqm4 library
[16], a well-known library that provides optimized implementations of post-
quantum cryptographic schemes for microcontroller-based platforms.

The results of our performance measurements are summarized in Table 2.

operation clock cycles (avg.)
evaluate f 2879

interpolate NTT(f) and evaluate 3160

compute NTT(f) 8406

Table 2. Performance numbers for our countermeasure applied to Dilithium.

The relative cost of our countermeasure applied to Dilithium can easily be
computed from the numbers in Table 2 as:

(cost of evaluating f) + (cost of interpolating NTT(f) and evaluating)
(cost of NTT)

≡ 72%

This is close to the expected overhead from the theoretical estimate given in
Sec. 3.5. The implementation of our countermeasure has not been optimized for
the Dilithium NTT or a particular point in the evaluation. So there may be
some potential for further optimizations. The NTT implementation in the pqm4
library, on the other hand, is highly optimized.

5 Conclusion

We have presented a countermeasure that protects an implementation of the
NTT or its inverse against a single fault in one of the coefficients. We have seen
that this fault model also covers faults in a twiddle factor, the multiplication
with a twiddle factor and the addition in a butterfly operation. Our counter-
measure requires 2n − 1 multiplications and 2n − 2 additions in the field K,
hence is significantly faster than a redundant computation. We have also shown
how to adapt our countermeasure to situations where the computation of the
NTT is ‘incomplete’, as it is the case for Kyber. Our countermeasure can be
safely combined with further masking and shuffling countermeasures to achieve
combined fault and side-channel protections. Finally, it is worth noting that the
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countermeasure presented in this paper can also be applied to other schemes
using the NTT operation, e.g., other cryptographic schemes based on structured
lattices.
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A Algorithmic Countermeasure

This section provides an algorithmic description of the proposed fault counter-
measure to protect the NTT operation. Alg. 1 describes a fault resistant NTT for
Rq = Zq[X]/(Xn + 1) and K = Zq, while Alg. 2 and Alg. 3 describe algorithms
for polynomial evaluation and interpolation using the Horner and Lagrange tech-
niques, respectively. In particular, Alg. 3 takes advantage of a precomputation
algorithm specified in Alg. 4.

Algorithm 1 Algorithmic description of the fault resistant NTT for Rq =
Zq[X]/(Xn + 1) and K = Zq.
Require: f ∈ Rq with f = (f0, ..., fn−1), u ∈ K as defined in Lem. 3 and L =

Precompute(u)
Ensure: f̂ ∈ Kn s.t. f̂ = (f̂0, ..., f̂n−1) with f̂j = f(ω2brk(j)+1) for 0 ≤ j < n− 1
1: procedure FaultResistant-NTT(f, u, L)
2: w ← Eval(f, u)
3: f̂ ← NTT(f)
4: w′ ← Interpolate(f̂ , L)
5: if w 6= w′ then
6: Error()
7: end if
8: return f̂ = (f̂0, ..., f̂n−1)
9: end procedure

Algorithm 2 Evaluation by Horner’s rule for Rq = Zq[X]/(Xn+1) and K = Zq.
Require: f ∈ Rq s.t. f = (f0, ..., fn−1) and u ∈ K
Ensure: w ∈ K
1: procedure Eval(f, u)
2: w ← fn−1

3: for i← 0 to n− 2 do
4: w ← fn−2−i + wu
5: end for
6: return w
7: end procedure
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Algorithm 3 Lagrange interpolation with immediate evaluation for K = Zq.
Require: f̂ ∈ Kn with f̂ = (f̂0, ..., f̂n−1), u ∈ K and L = Precompute(u)
Ensure: w′ ∈ K
1: procedure Interpolate(f̂ , L)
2: w′ ← 0
3: for i← 0 to n− 1 do
4: w′ ← w′ + f̂i · L[i]
5: end for
6: return w′

7: end procedure

Algorithm 4 Precompute the Li(u) for interpolation, where Li is defined in
Eq. (12) and K = Zq.
Require: u ∈ K
Ensure: L = (L0(u), L1(u), . . . , Ln−1(u))
1: procedure Precompute(u)
2: for i← 0 to n− 1 do
3: L[i]← Li(u)
4: end for
5: return L
6: end procedure


