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Abstract. It is well-known that a system of equations becomes easier
to solve when it is overdefined. In this work, we study how to overdefine
the system of equations to describe the arithmetic oriented (AO) ciphers
Friday, Vision, and RAIN, as well as a special system of quadratic equa-
tions over F2ℓ used in the post-quantum signature scheme Biscuit. Our
method is inspired by Courtois-Pieprzyk’s and Murphy-Robshaw’s meth-
ods to model AES with overdefined systems of quadratic equations over
F2 and F28 , respectively. However, our method is more refined and much
simplified compared with Murphy-Robshaw’s method, since it can take
full advantage of the low-degree F2-linearized affine polynomials used in
Friday and Vision, and the overdefined system of equations over F2ℓ can be
described in a clean way with our method. For RAIN, we instead consider
quadratic Boolean equations rather than equations over large finite fields
F2ℓ . Specifically, we demonstrate that the special structure of RAIN allows
us to set up much more linearly independent quadratic Boolean equations
than those obtained only with Courtois-Pieprzyk’s method. Moreover, we
further demonstrate that the underlying key-recovery problem in Biscuit
(NIST PQC Round 1 Additional Signatures) can also be described by
solving a much overdefined system of quadratic equations over F2ℓ . On
the downside, the constructed systems of quadratic equations for these
ciphers cannot be viewed as semi-regular, which makes it challenging to
upper bound the complexity of the Gröbner basis attack. However, such
a new modelling method can significantly improve the lower bound of the
complexity of the Gröbner basis attacks on these ciphers, i.e., we view
the complexity of solving a random system of quadratic equations of the
same scale as the lower bound. How to better estimate the upper and
lower bounds of the Gröbner basis attacks on these ciphers based on our
modelling method is left as an open problem.

Keywords: Friday, Vision, RAIN, Biscuit, overdefined system, algebraic
attack, Gröbner basis



1 Introduction

In 2002, Courtois and Pieprzyk presented the first algebraic attack on AES in [22]
by modelling it with an overdefined system of quadratic equations over F2 based
on their observation on the inverse function y = x−1 over F2ℓ . Subsequently at
CRYPTO 2002, Murphy and Robshaw presented a similar method to model AES
with an overdefined system of quadratic equations directly over F28 [40]. To solve
such a special system of equations, Courtois and Pieprzyk proposed the so-called
XSL algorithm [22], which is a variant of the XL algorithm [21]. However, it has
been pointed out in [20,37] that the assumptions on the XSL algorithm are too
optimistic, and that the claimed successful algebraic attacks on full-round AES
in [22,40] are flawed. By these results, the community seems to have reached a
consensus that AES [23] is secure against algebraic attacks.

After the seminal papers [22,40], however, there seems to be no other progress
on such modelling methods. A closely related technique may be Buchmann-
Pyshkin-Weinmann’s modelling method proposed at FSE 2006, where AES-128
could be modelled with 200 polynomial equations of degree 254 and 152 linear
equations [16]. Although this method allows them to obtain the Gröbner basis
under a suitable monomial ordering directly, converting the Gröbner basis into a
lexicographical order or an elimination order [8] will be too costly, and hence it
cannot affect the security of AES-128. As conjectured by Buchmann-Pyshkin-
Weinmann, this modelling method can be applied to various iterated block
ciphers especially with rich algebraic structures. This has been confirmed by
some Gröbner basis attacks [3,7,35] on AO ciphers including MiMC, Griffin, Arion,
Anemoi, whose degree of the nonlinear function (a power map) or its inverse is
usually low.

In this work, we will instead follow Murphy-Robshaw’s main idea since
Buchmann-Pyshkin-Weinmann’s method is too inefficient for the inverse function,
i.e., its inverse is itself and it is still of extremely high degree. Our main goal is to
shed new insight into ciphers with rich algebraic structures over F2ℓ . In particular,
we aim to take full advantage of the used nonlinear and linear cryptographic
components to improve the modelling method.

Motivation of this work. A number of AO ciphers have been proposed during
these years [3,4,5,14,19,24,32,34], and some of them were also broken due to
the insufficient understanding of such designs [2, 11, 25, 38, 39, 43]. Almost all
these successful attacks are algebraic attacks with a clever method to exploit the
inner algebraic structures, while such a strategy does not usually work well for
conventional block ciphers. The very first algebraic attacks on block ciphers date
back to Courtois-Pieprzyk’s and Murphy-Robshaw’s attacks on AES by exploiting
its rich algebraic structure. Unfortunately, the two attacks are flawed due to the
incorrect estimation of the time complexity of the XLS algorithm. Since then, no
similar attacks have been proposed for symmetric-key primitives.

Since there are some AO ciphers resembling AES, e.g., Friday [5], Vision [4] and
RAIN [24], it seems important to revisit the modelling techniques to construct an
overdefined system of quadratic equations describing these ciphers, and check
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whether some unexpected properties have been neglected by the designers. Such
a work is meaningful as these AO ciphers are less studied and any potential
weakness may lead to a fatal attack in the future. Therefore, we are motivated
to dive into the algebraic structures of Friday, Vision and RAIN, and see whether
some neglected properties can be identified.

Although Friday has been broken in [2], the same attack cannot apply to its
successor Vision. It is thus meaningful to develop a more general algebraic method
that can better capture their common underlying algebraic structures, e.g., the
low-degree F2-linearized affine polynomials. Studying Friday is also important to
this work since it is the simplest example to explain our new modelling method,
though it has been broken.

For the cipher RAIN, it is designed to be friendly to the post-quantum signature
scheme Rainier [24] built upon the MPC-in-the-head technique, whose security
relies on the difficulty of the key-recovery attack on RAIN from a single plaintext-
ciphertext pair. In particular, RAIN has a very small number of rounds, i.e., 3
rounds are sufficient and 4 rounds can be used for higher security. Currently, the
best attacks could only reach 2 rounds [39,43], so attacking 3 or 4 rounds is on
demand.

In addition to the above 3 symmetric-key primitives, we also find that the
candidate Biscuit [10] in NIST PQC Round 1 Additional Signatures may be prone
to our attacks, though the inverse function is not used here. Specifically, it is
also built with the MPC-in-the-head technique and relies on the difficulty to
solve m structured quadratic equations in n variables over F2ℓ , which is called
the powAff2 problem. As a candidate in NIST PQC project, studying Biscuit is
meaningful.

Our contributions. We propose a new method to overdefine the polynomial
systems describing Friday, Vision, RAIN and powAff2. Solving such systems will
either help find the preimage (e.g., Friday and Vision), or solve the secret key
(e.g., RAIN and Biscuit). Specifically, we have the following new results:

1. The preimage attack on r rounds of Friday is reduced to solving 7r quadratic
equations in 4r variables over F2ℓ .

2. The preimage attack on r rounds of Vision with s ≥ 2 state words is reduced
to solving 5s + 14s(r − 1) quadratic equations in 3s + 6s(r − 1) variables over
F2ℓ .

3. The key-recovery attack on r ≥ 3 rounds of RAIN is reduced to solving
(5r +5)ℓ quadratic Boolean equations in rℓ variables. In Gröbner basis attack,
the field equation for each variable x ∈ F2, i.e., x2 = x, is also useful, and
hence we indeed need to consider the problem to solve (6r + 5)ℓ quadratic
equations in rℓ variables with Gröbner basis. Moreover, we further reveal
that the problem can also be reduced to solving (6r + 5)ℓ quadratic equations
in rℓ variables over F2ℓ .

4. The powAff2 problem with m quadratic equations in n variables over F2ℓ can
be overdefined as 4m + n quadratic equations in 2n variables over F2ℓ .
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However, the constructed systems of quadratic equations {f1(x1, . . . , xn) =
0, . . . , fm(x1, . . . , xn) = 0} are not semi-regular, since there are many nontrivial
syzygies, e.g., there exists a linear polynomial4 li,j(x1, . . . , xn) =

∑n
i=1 uixi such

that li,j · fi = fj , though both fi and fj are quadratic. Note that the trivial
syzygies are caused by fi · fj = fj · fi, which can then generate many other
trivial syzygies at a higher degree. Hence, the solving degree computed from the
Hilbert series based on the assumption that {f1, . . . , fm} are semi-regular is just
a lower bound on the actual solving degree for solving our constructed system of
equations. Intuitively speaking, there are many more rows reduced to zero as the
degree of the Macaulay matrix increases (see the definition in Sect. 2) for our
equation system, and hence we need to consider a higher degree compared with
the case when only trivial syzygies exist.

Indeed, there has been a study [6] on the cost to compute the Gröbner basis
for polynomials over F2 where extra syzygies are taken in account, as detailed in
Appendix B. We recommend to read it and believe that the lower bound on the
solving degree is still meaningful and the difference between the actual solving
degree and the one computed based on the semi-regular assumption is small for
polynomial systems we study in this work. Additionally, we have experimentally
verified that such lower bounds are indeed tight for small-scale equation systems,
yet we cannot claim the same for higher dimensions as it lacks theoretic support.
If using such lower bounds to estimate the complexity of the Gröbner basis attack,
we obtain the following results:

1. As the first third-party analysis of Vision, we can improve the designers’
attack by up to 7 rounds.

2. Using 3 rounds of RAIN with the 256-bit key is insecure, and we thus
recommend to use 4 rounds.

3. All parameters of Biscuit are vulnerable to Gröbner basis attacks, and there-
fore they do not meet the security requirement by NIST.

Organization. We first briefly recall the Gröbner basis in Section 2, and then
recall how to model AES with an overdefined system of quadratic equations over
F2 and F28 in Section 3. Next, we present our new algebraic modelling methods
for Friday, Vision and RAIN, Biscuit in Section 4, Section 5, Section 6, and Section
7, respectively, and give the corresponding analysis of the time complexity as
well as the experimental simulation. Finally in Section 8, we conclude this paper
by summarizing our new insight into these ciphers with our modelling method.

2 Preliminaries

Let K = Fq be a finite field and K [x1, . . . , xn] be a polynomial ring defined over
K with x1, . . . , xn as variables. A multivariate polynomial system is defined as
F = {f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)}.
4 This is just an example. A formal definition of syzygy can be referred to Sect. 2.
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Let I = ⟨f1, . . . , fm⟩ be the ideal generated by the set of polynomials
{f1, . . . , fm}, and V (I) be its corresponding variety. The polynomial systems
describing cryptographic primitives usually generate zero-dimensional ideals. In
other words, the set of points in their corresponding variety over the algebraic
closure of the field is finite. Finding the corresponding variety of an ideal is
an NP-hard problem and is used as a security argument in the design of many
primitives. The variety V (I) can be computed with the help of a special type of
basis for the ideal I called Gröbner basis.

Definition 1 (Gröbner Basis [15]). The set G = {g1, . . . , gt} is a Gröbner
basis for I = ⟨f1, . . . , fm⟩ if and only if ⟨G⟩ = I and ⟨lm(G)⟩ = ⟨lm(I)⟩ where
⟨lm(G)⟩ is the ideal generated by the leading monomials of the set G.

For a monomial ordering ≺ and polynomial system F , the Macaulay matrix
of F with degree d is denoted by M≺[d](F). Columns of M≺[d](F) are labeled
by monomials of degree at most d, and sorted in ≺-descending order from
left to right. Each row of M≺[d](F) is labeled by a polynomial mjfi where
deg(mj) ≤ d − deg(fi) and mj is a monomial in x1, . . . , xn.

For example, let F = {f1, f2} = {x2 + xy, 4x + 3y}. Then M≺[2](F) for
degrevlex order is defined as:

M[2](F) =

x2 xy y2 x y 1


1 1 0 0 0 0 f1
0 0 0 0 4 3 f2
4 3 0 0 0 0 xf2
0 4 3 0 0 0 yf2

In [36], it was shown that for a large enough d, the row-echelon form of
M≺[d](F) gives a Gröbner basis of F . Later, F4 [26] and F5 [27] were published
as more efficient algorithms to compute a Gröbner basis, which can efficiently avoid
rows reduced to zero when computing M≺[d](F). Using F4/F5, the complexity
of computing the Gröbner basis in grevlex order is as follows:

O

((
n + Dreg

Dreg

)ω
)

, (1)

where n is the number of variables in the polynomial system, Dreg is the degree
of regularity of the system, and ω is the linear algebra constant for Gaussian
elimination.

When the polynomial system is not defined over F2, the Gröbner basis in
grevlex order must be converted to a Gröbner basis in the lex order which has
triangular form and can be solved efficiently. To convert the Gröbner basis in
grevlex order to lex order, the FGLM [28] algorithm is applied and its complexity
is detailed as below.

Proposition 1 (Complexity of the FGLM algorithm [9]). Given a Gröbner
basis G1 ⊂ K[x1, . . . , xn] w.r.t. a monomial ordering ≺1 of a zero-dimensional
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system, the complexity of computing a Gröbner basis G2 ⊂ K[x1, . . . , xn] w.r.t. a
monomial ordering ≺2 with FGLM is

O(n · Dω),

where D is the degree of the ideal generated by G1, i.e., the number of solutions
counted with multiplicity in the algebraic closure of K.

As commented in [9], the cost of changing monomial ordering is cheaper than
computing the Gröbner basis when the system has very few solutions. In our
attacks, we also use the same assumption. Indeed, this is also widely used in the
literature, e.g., solving the LWE problem with algebraic techniques [1], algebraic
attacks on cryptographic schemes like Friday [2], Biscuit [13], UOV [9, 29], and
the designers’ estimation of the resistance against Gröbner basis attacks [4,14,
19,24,32,34], just to name a few. The reason why the Gröbner basis attack on
AES-128 [16] does not fall into this category is that the constructed polynomials
are too special, i.e., they directly form a special Gröbner basis G1 where each
polynomial in G1 has a univariate leading monomial of the same degree as of
the nonlinear component, which results in an extremely high degree of the ideal
generated by this G1 according to Corollary 1 in [16]. Finally, we also mention
that there is an improved variant of the FGLM algorithm called the sparse FGLM
algorithm [28] with complexity O(D(N1 + n log D)) where N1 is the number of
non-zero elements in a sparse multiplication matrix.

After performing the FGLM algorithm, solving the triangular system to
retrieve the solutions to the system is done via factoring polynomials of degree
D defined over the finite field Fq using the Cantor-Zassenhaus’s algorithm [17]
with complexity [41]:

O(D2(log2 D log2 log2 D)(log2 q + log2 D)),

which is also viewed as less costly than computing the Gröbner basis in our
attacks.

Degree of regularity. Computing the complexity of a Gröbner basis in Equa-
tion 1 is difficult in general because computing the degree of regularity Dreg is
challenging. The complexity of computing a Gröbner basis is upper bounded by
the solving degree of the system, which we denote by Dsol. The solving degree of
a polynomial system is the smallest integer d, such that a row-reduced echelon
form of M[d](F) results in a Gröbner basis for F . Unfortunately, computing
Dsol without computing the Gröbner basis itself is a hard task. However, if the
polynomial system F is semi-regular5, i.e., m ≥ n, Dreg can be upper bounded by
the index of the first non-positive coefficient in the Hilbert series Sm,n(z) [6, 31]:

Sm,n(z) =
∏m

i=1(1 − zdeg(fi))
(1 − z)n

, (2)

5 It is conjectured that this holds for most cases [30].
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where deg(fi) denotes the degree of the polynomial fi. However, as far as we
know, no polynomial system can be proved to be semi-regular in Gröbner basis
attacks on cryptographic primitives. It is mostly conjectured that the system
is semi-regular and then experiments are run on small-scale ciphers in order to
compare the theoretic solving degree derived from the Hilbert series and the
actual solving degree.

Although we could also rely on a similar conjecture, this may not hold for our
constructed polynomial system. To understand this, it is necessary to introduce the
concept called syzygy. A syzygy on F is an m-tuple (g1, . . . , gm) ∈ Km[x1, . . . , xn]
such that

g1f1 + . . . + gmfm = 0.

When constructing the Macaulay matrix using the naive method, i.e., multiplying
all monomials mj of degree smaller than d − deg(fi) with fi, there will be many
syzygies generated, i.e., many rows will be reduced to 0. If the syzygies are mainly
caused by the trivial ones6 fi · fj = fj · fi, we can use the Hilbert series to upper
bound the solving degree. However, if there are many non-trivial syzygies on F ,
for the same degree d, much more rows of M≺[d](F) will be reduced to zero,
and hence we may need to use a larger d. Hence, we conjecture that for our
constructed polynomial system, the solving degree is lower bounded by the index
of the first non-positive coefficient in the Hilbert series Sm,n(z). The reader can
also refer to Appendix B to better understand the above statement.

On the algebra constant ω. In the context of Gröbner basis attacks using
F4/F5, due to the sparsity of the Macaulay matrix, some practical experiments in
the literature suggest that using ω = 2 to estimate the time complexity is realistic,
e.g., the Gröbner basis attacks on UOV [9] and Friday [2]. Our experiments for
Friday, Vision and RAIN also support ω = 2. Moreover, it is also common for
designers to choose ω = 2 to estimate the resistance against the Gröbner basis
attack [4, 14,19,24,32,34].

3 Overdefined Systems of Quadratic Equations for AES

Denote the polynomial basis of the finite field F2ℓ by {1, t, t2, . . . , tℓ−1}. Then,
each element z ∈ F2ℓ can be written as z =

∑ℓ−1
i=0 zit

i where (z0, . . . , zℓ−1) ∈ Fℓ
2.

In this way, it is sufficient to only use −→z = (z0, . . . , zℓ−1) ∈ Fℓ
2 to represent the

element z in the field F2ℓ .
In the polynomial ring F2ℓ [x], the following polynomial denoted by Bℓ(x) is

called an F2-linearized affine polynomial:

Bℓ(x) = λ0 +
ℓ−1∑
i=0

λi+1x2i

. (3)

6 At a higher degree, i.e., as d of M≺[d](F) increases, we then have many other trivial
syzygies caused by p · fi · fj = p · fj · fi for ∀p ∈ K[x1, . . . , xn].
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In particular, it corresponds to an affine transform on −→x . It is clear that this
univariate polynomial is uniquely represented by its coefficients (λ0, . . . , λℓ) ∈
Fℓ+1

2ℓ . Especially, when it is invertible, we can find its inverse denoted by B−1
ℓ (x),

which is also of the form:

B−1
ℓ (x) = λ′

0 +
ℓ−1∑
i=0

λ′
i+1x2i

. (4)

As the inverse function y = x−1 over F2ℓ cannot take 0 as the input, it is
common to use it to construct an S-box denoted by Iℓ(x) in the following way:

Iℓ(x) =
{

x−1, for x ̸= 0,

0, for x = 0.
(5)

For convenience, we use % to denote the modular operation, and use [i0, i1]
to denote the set of integers i satisfying i0 ≤ i ≤ i1 throughout this paper.

3.1 The AES Round Function

We will not give the full description of the AES algorithm [23] here. Instead, we
only focus on its round function, as it is more relevant to the algebraic modelling
methods in [22,40].

The AES state is a vector of 16 words in F28 and the used irreducible polyno-
mial for F28 [x] is x8 + x4 + x3 + x + 1. For simplicity, denote the AES state by
(a0, . . . , a15) ∈ F16

28 , and denote its binary representation by (−→a0, . . . , −→a15) ∈ F128
2 .

The round function denoted by RA can be written as

RA = MA ◦ LinA ◦ IA(a0, . . . , a15),

where LinA ◦ IA forms the S-box layer of AES, and MA is the affine transform
layer, i.e., the composition of ShiftRows, MixColumns, round constant additions
and round key additions. In particular, LinA ◦IA(a0, . . . , a15) is defined as follows:

(I8(a0), . . . , I8(a15)) = IA(a0, . . . , a15),
(B8(a0), . . . , B8(a15)) = LinA(a0, . . . , a15),

where the coefficients of B8(x), i.e., (λ0, . . . , λ8), satisfy λi ̸= 0 for i ∈ [0, 8].

3.2 Courtois-Pieprzyk’s Algebraic Modelling Method

We first describe Courtois-Pieprzyk’s method to construct an overdefined system
of quadratic Boolean equations for AES. According to [22], the following 5
equations over F2ℓ hold for y = x−1:

xy = 1, x2y = x, xy2 = y, x4y = x3, xy4 = y3.
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If we consider these 5 equations over F2ℓ , their degrees are obviously 2, 3, 3,
5 and 5, respectively. However, if using the isomorphism between F2ℓ and Fℓ

2,
these 5 equations can be transformed into 5n quadratic Boolean equations in 2n
Boolean variables (−→x , −→y ). The reason is that the map x 7→ x2i over F2ℓ for a
positive integer i corresponds to a linear transform in the elements in −→x over F2.
In particular, it has been proved that these 5n quadratic Boolean equations are
linearly independent [18].

With this observation in mind, it is then trivial to construct an overdefined
system of quadratic Boolean equations to describe AES by introducing intermedi-
ate variables for all outputs of I8(x). Note that except I8(x), all the remaining
operations in AES are linear (or affine).

3.3 Murphy-Robshaw’s Algebraic Modelling Method

In Murphy-Robshaw’s method, they proposed the so-called Big Encryption
System (BES), where the BES state is defined by a vector of 16 × 8 = 128
elements over F28 . Note that the AES state is a vector of 16 elements over F28 .
Denote the BES state by (a0,0, . . . , a0,7, a1,0, . . . , a1,7, . . . , a15,7) ∈ F128

28 , and there
will be additional conditions7 on such an enlarged state such that it is finally
equivalent to AES, as specified below:

∀i ∈ [0, 15], j ∈ [0, 7] : ai,(j+1)%8 = a2
i,j . (6)

Or alternatively, ∀i ∈ [0, 15], there are

(ai,0, ai,1, ai,2, ai,3, ai,4, ai,5, ai,6, ai,7) = (ai,0, a2
i,0, a22

i,0, a23

i,0, a24

i,0, a25

i,0, a26

i,0, a27

i,0).

The round function of BES denoted by RB is then defined as

RB = MB ◦ LinB ◦ IB(a0,0, . . . , a15,7),

where MB is an affine transform in the BES state words. For IB, it is simply
defined as:

(I8(a0,0), . . . , I8(a15,7)) = IA(a0,0, . . . , a15,7).
As for LinB , it is a bit more technical, and it is a block diagonal matrix with 16
identical blocks LB , i.e., LinB = Diag16(LB), where

LB =



(λ1)20 (λ2)20 (λ3)20 (λ4)20 (λ5)20 (λ6)20 (λ7)20 (λ8)20

(λ8)21 (λ1)21 (λ2)21 (λ3)21 (λ4)21 (λ5)21 (λ6)21 (λ7)20

(λ7)22 (λ8)22 (λ1)22 (λ2)22 (λ3)22 (λ4)22 (λ5)22 (λ6)22

(λ6)23 (λ7)23 (λ8)23 (λ1)23 (λ2)23 (λ3)23 (λ4)23 (λ5)23

(λ5)24 (λ6)24 (λ7)24 (λ8)24 (λ1)24 (λ2)24 (λ3)24 (λ4)24

(λ4)25 (λ5)25 (λ6)25 (λ7)25 (λ8)25 (λ1)25 (λ2)25 (λ3)25

(λ3)26 (λ4)26 (λ5)26 (λ6)26 (λ7)26 (λ8)26 (λ1)26 (λ2)26

(λ2)27 (λ3)27 (λ4)27 (λ5)27 (λ6)27 (λ7)27 (λ8)27 (λ1)27


(7)

7 Indeed, the round function of BES is constructed in such a way that these conditions
can hold.
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In other words, LinB is also a linear transform8 in the BES state words. In this
way, MB ◦ LinB forms an affine transform in the BES state words, and IB is the
only nonlinear operation in BES. The above can be similarly performed for the
key schedule, and we omit the details as these are less relevant.

In a word, the internal states and round keys will become vectors of 128
elements in F28 . Then, represent the input state of each I8 by an intermediate
variable over F28 . In this way, each output state of I8 is also affine in these
variables. Moreover, due to the conditions specified in Equation 6 on the BES
state, the input denoted by Lin and output denoted by Lout of each I8 can be
expressed as linear functions of the following forms:

Lin = α0,0 +
∑
j=1

7∑
i=0

αj,ivj,i, Lout = α′
0,0 +

∑
j=1

7∑
i=0

α′
j,ivj,i, (8)

where vj,i are those introduced intermediate variables satisfying vj,(i+1)%8 = v2
j,i

for 0 ≤ i ≤ 7, and (αj,i, α′
j,i) are constant coefficients.

For the inverse function y = x−1 over F2ℓ , according to Courtois-Pieprzyk’s
observation, there are

xy = 1, x2y = x, xy2 = y, x4y = x3, xy4 = y3,

which imply the following 5n quadratic equations over F2ℓ if x2i and y2i for
0 ≤ i ≤ ℓ − 1 are renamed as independent variables xi and yi, respectively:

(xy)2i

= 1, → xiyi = 1

(x2y)2i

= x2i

→ x(i+1)%ℓyi = xi,

(xy2)2i

= y2i

→ xiy(i+1)%ℓ = yi, ,

(x4y)2i

= (x3)2i

→ x(i+2)%ℓyi = xix(i+1)%ℓ,

(xy4)2i

= (y3)2i

→ xiy(i+2)%ℓ = yiy(i+1)%ℓ,

for ∀i ∈ [0, ℓ − 1]. (9)

Compared with the Boolean case, it is much easier to observe that these 5n
equations are linearly independent as each equation contains one term that never
appears in other equations.

According to the expressions of the input and output of each I8 in BES shown
in Equation 8, and the fact that (x2j0 + y2j1 )2i = x2(i+j0)%ℓ + y2(i+j1)%ℓ holds over
F2ℓ for ∀i, j0, j1 ∈ N, we can set up 5n quadratic equations for each I8, resulting
in an overdefined system of quadratic equations over F28 to describe BES.

Remark 1. The above explanation of BES is rather simplified. In our following
new attacks on Friday and Vision, although we exploit a similar method, we never
need to construct an equivalent cipher with an enlarged state, nor redefine the
8 While there is a constant term λ0 in B8(x) of AES, the authors do not consider it

here when defining LinA for BES. This is because it can be moved to the definition
of the affine transform MB .
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round functions. Instead, our method is much simpler and easier to understand,
i.e., we will show how to construct overdefined systems of quadratic equations
over F2ℓ directly based on the ciphers’ original descriptions.

4 New Algebraic Modelling Method for Friday

In this section, we present the first application of our new modelling method
inspired by Murphy-Robshaw’s method. As can be observed on the application
to Friday, our method is much simpler and can take full advantage of the details
of Bℓ(x).

4.1 Description of Friday

Friday [5] is a ZK-friendly hash function over F2ℓ (ℓ ≥ 128) based on the Merkle-
Damgård (MD) construction. The round function denoted by RF of the underlying
permutation denoted by Per(x, key) is defined as follows:

Rf (x) = ki + C ◦ B−1 ◦ In(x),

where ki ∈ F2ℓ is the i-th (i ≥ 1) round key generated with the master key key,
and both B(x) and C(x) are F2-linearized affine polynomials defined as below:

B(x) = x4 + b2x2 + b1x + b0, C(x) = x4 + c2x2 + c1x + c0.

By the MD construction, the compression function of Friday is

hi+1 = Per(x, hi) + x + hi.

It should be mentioned that Friday was soon broken with Gröbner basis at
ASIACRYPT 2019 [2], where a smart algebraic modelling method was proposed.
The details can be referred to Appendix A. In a word, for r rounds of Friday
where r is an even number, the preimage attack can be reduced to solving r

2
equations of degree 36 in r

2 variables over F2ℓ .

4.2 New Algebraic Modelling Method for Friday

It is found that the efficiency of the model proposed in [2] comes from a relatively
small number of variables, though the degree of equations is high. However,
our new modelling method is not related to it. Instead, it is more like Murphy-
Robshaw’s idea for AES, but it is improved in order to exploit the low degree (or
sparsity) of the F2-linearized affine polynomials B(x) and C(x). Observe that all
coefficients in B8(x) of AES are nonzero, while the Bℓ(x) used in Friday satisfies
λi = 0 for i ∈ [4, ℓ].

Let us consider the preimage attack on r rounds of Friday using a single block,
i.e., the goal is to find x satisfying h1 = Per(x, h0) + x + h0 for a given (h0, h1).

11
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Fig. 1: Modelling the round function of Friday

As shown in Figure 1, introduce the variable xi to denote the input of C(x) at
the i-th round. Then, there will be

∀i ∈ [1, r − 1] : C(xi + ki) · B(xi+1) = 1,

B(x1) · (C(xr) + kr + h1) = 1,

where the last equation is to capture the relation between the input and output
of the compression function. In more details, these r equations are specified as
follows:

∀i ∈ [1, r − 1] : (x4
i + c2x2

i + c1xi + c0 + ki)(x4
i+1 + b2x2

i+1 + b1xi+1 + b0) = 1,

(x4
1 + b2x2

1 + b1x1 + b0)(x4
r + c2x2

r + c1xr + c0 + kr + h1) = 1.

As can be observed, each of them is of the following form:

(y4 + c2y2 + c1y + β1)(z4 + b2z2 + b1z + β2) = 1, (10)

where β1, β2 are known constants, and y, z are variables over F2ℓ .

Overdefining the polynomial system. For an equation of the form as in
Equation 10, it is feasible to set up more quadratic equations by introducing
additional variables. Specifically, let us introduce variables in the following way:

∀i ∈ [0, iℓ] : yi = y2i

, zi = z2i

.

By definition, we have the following 2iℓ quadratic equations:

∀i ∈ [0, iℓ − 1] : y(i+1)%ℓ = y2
i , z(i+1)%ℓ = z2

i .

First, let us consider iℓ = 2. In this case, Equation 10 can be rewritten as

(y2 + c2y1 + c1y0 + β1)(z2 + b2z1 + b1z0 + β2) = 1.

Unfortunately, it is still a single equation and more quadratic equations cannot
be generated.

However, this is not the case if iℓ = 3. In this case, Equation 10 is first
rewritten as

(y2 + c2y1 + c1y0 + β1)(z2 + b2z1 + b1z0 + β2) = 1.

Meanwhile, due to the extra variables (y3, z3), we indeed can set up 3 additional
quadratic equations:

(y2 + c2y1 + c1y0 + β1)2(z2 + b2z1 + b1z0 + β2)

12



= (y3 + c2
2y2 + c2

1y1 + β2
1)(z2 + b2z1 + b1z0 + β2)

= (y2 + c2y1 + c1y0 + β1),

(y2 + c2y1 + c1y0 + β1)(z2 + b2z1 + b1z0 + β2)2

= (y2 + c2y1 + c1y0 + β1)(z3 + b2
2z2 + b2

1z1 + β2
2)

= (z2 + b2z1 + b1z0 + β2),

(y2 + c2y1 + c1y0 + β1)2(z2 + b2z1 + b1z0 + β2)2

= (y3 + c2
2y2 + c2

1y1 + β2
1)(z3 + b2

2z2 + b2
1z1 + β2

2)
= 1.

Therefore, for r rounds of Friday, by introducing 4r variables xi,j to represent
x2j

i for i ∈ [1, r] and j ∈ [0, 3], we can set up (1 + 3)r = 4r quadratic equations
in these variables according to the above method, and 3r quadratic equations by
definition, i.e.,

∀i ∈ [1, r], j ∈ [0, 2] : xi,(j+1)%ℓ = x2
i,j .

In total, r rounds of Friday can be modelling as 4r + 3r = 7r quadratic equations
in 4r variables over F2ℓ .

4.3 Comparison and Experiments

Indeed, analyzing Friday is less interesting as it has been broken in [2], but it
is a good starting point to understand our new insight into such designs with
low-degree Bℓ(x). Especially, the method in [2] will no longer be feasible for
Vision, while our new method can still apply, even though Vision is the successor
of Friday and shares a very similar structure.

For completeness, we give a comparison between the estimated time complexity
to compute Gröbner basis for the two methods, as shown in Table 1. As already
stated, the estimated time complexity for our modelling method is just a lower
bound.

Experimental verification. To verify the complexity of our new Gröbner basis
attack, we implemented it on Friday using MAGMA [12] on a Linux cluster. As
shown in Table 2, as r increases, the practical solving degree Dsol is the same
with Dreg derived from the Hilbert series, which indicates that the lower bound
is indeed tight for small-scale ciphers. Moreover, the practical running time also
implies that using ω = 2 to estimate the time complexity is reasonable.

5 New Algebraic Modelling Method for Vision

After Jarvis and Friday were broken in [2], another two ciphers called Vision
and Rescue were proposed for the Marvellous family in [4]. Although Rescue

13



Table 1: Comparison between the time complexity of Gröbner basis attacks on
Friday with different algebraic modelling methods, where the time complexity
(# field operations in logarithm base 2) is estimated under ω ∈ {2.8, 2} and the
complexity with ω = 2.8 is given in parenthesis.

r 6 8 10 12 14 16 18 20

The algebraic modelling method in [2]

#variables 3 4 5 6 7 8 9 10
#equations 3 4 5 6 7 8 9 10

Dreg 94 125 156 187 218 249 280 311
Complexity 34 (48) 47 (65) 59 (83) 72 (101) 85 (118) 97 (136) 110 (154) 123 (172)

Our new algebraic modelling method

#variables 24 32 40 48 56 64 72 80
#equations 42 56 70 84 98 112 126 140

Dreg 6 7 8 9 10 11 12 13
Complexity 39 (54) 48 (67) 57 (80) 67 (93) 76 (106) 85 (119) 94 (131) 103 (144)

Table 2: Experimental verification of the Gröbner basis attack on Friday, where
the complexity (# field operations in logarithm base 2) is calculated with ω = 2.

Rounds (r) #variables #equations Dsol Dreg Time(s) Complexity

2 8 14 3 4 0.01 15
3 12 21 4 4 0.02 22
4 16 28 5 5 1.88 29
5 20 35 5 6 40.35 32
6 24 42 6 6 3437 39

is more popular than Vision, we only focus on Vision in this work as it is very
similar to Friday, and our technique can be efficiently applied. As Vision is mainly
used for constructing the ZK-friendly hash function, we will no more consider
the key-recovery attack as it is less meaningful. Instead, we only consider hash
functions built on Vision. We find that the designers suggest to use the sponge
construction to build the hash function, and the rate of the sponge construction
as well as the length of the hash value are both set as half of the state size. In
the following, we will focus on the preimage attack on such hash functions built
on Vision.

5.1 Description of the Unkeyed Vision Permutation

It has been explicitly stated in [4] that the master key will be set to zero and
the corresponding generated round keys are treated as round constants when a
Marvellous design is used as an unkeyed permutation. As our target is the hash
function, we omit the description of the keyed Vision permutation, and only focus
on the unkeyed permutation.
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The round function of the unkeyed permutation Vision follows the common
SPN structure. The Vision state is composed of s words (a1, . . . , as) ∈ Fs

2ℓ where
s > 1, which makes it different from Friday as the Friday state is simply one word
over F2ℓ . For the round function of Vision at the i-th round, the Vision state will
pass through 8 operations, as shown below:

aj = Iℓ(aj), ∀j ∈ [1, s]
aj = B−1

3 (aj), ∀j ∈ [1, s]
(a1, . . . , as)T = M · (a1, . . . , as)T ,

aj = aj + σi,j , ∀j ∈ [1, s]

aj = Iℓ(aj), ∀j ∈ [1, s]
aj = B3(wj), ∀j ∈ [1, s]

(a1, . . . , as)T = M · (a1, . . . , as)T ,

ai = ai + ϵi,j , ∀j ∈ [1, s],

where M = (M [i][j])1≤i,j≤s ∈ Fs×s
2ℓ is an MDS matrix, σi = (σi,1, . . . , σi,s) ∈

Fs
2ℓ , ϵi = (ϵi,1, . . . , ϵi,s) ∈ Fs

2ℓ are round constants, and the definitions of B3(x) and
Iℓ(x) can be referred to Equation 4 and Equation 5, respectively. For convenience,
we denote the total number of rounds of Vision by r.

As can be observed, the round function is similar to Friday, i.e., they both
use the inverse function, a degree-4 F2-linear affine polynomial and its inverse.
However, the state size is increased, and thus a mixing layer M is introduced.
Moreover, Iℓ(x) is applied twice in each round. In particular, the degree-4 affine
polynomial and its inverse will be applied after the second and first Iℓ(x) lay-
ers, respectively. Such changes make the advanced algebraic modelling method
proposed in [2] infeasible, as stated in [2]. This also implies that the advanced
algebraic modelling method in [2] highly relies on the special structure of Friday,
and cannot work well for a more general design.

5.2 Modelling Vision with a Polynomial System

Let us consider r rounds of Friday. As shown in Figure 2, at the i-th round
where (2 ≤ i ≤ r), we introduce 2s variables (wi,1, . . . , wi,s) and (zi,1, . . . , zi,s) to
represent the outputs of the B−1

3 (x) layer and the second Iℓ(x) layer, respectively.

Equations from the first and second Iℓ(x) in the last r − 1 rounds.
According to the above way to introduce intermediate variables, we can derive
the following s equations according to the first Iℓ(x) layer at the i-th round
(2 ≤ i ≤ r):

∀k ∈ [1, s] : B3(wi,k) ·
( s∑

j=1
M [k][j] · B3(zi−1,j) + ϵi−1,k

)
= 1. (11)
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Fig. 2: Modelling the round function of Vision

For the second Iℓ(x) layer at the i-th round (2 ≤ i ≤ r), we similarly derive
the following s equations:

∀k ∈ [1, s] : zi,k · (
s∑

j=1
M [k][j] · wi,j + σi,k) = 1. (12)

In other words, we can set up 2s equations for each round after the 1st round.
Of course, it is always assumed that the input to each Iℓ(x) is nonzero.

Dealing with the first round. Let us consider the case of the sponge con-
struction where the rate part and truncated part are both composed of h state
words. The generic preimage attack on such a sponge-based hash function has
time complexity min(2hℓ, 2

(s−h)ℓ
2 ).

For the preimage attack, we can simply skip the first Iℓ(x) layer and the
B−1

3 (x) layer, and only introduce h variables (w1,1, . . . , w1,h). For the second
Iℓ(x) layer, we still introduce variables (z1,1, . . . , z1,s) to denote the output. In
this way, we can set up s equations derived from the second Iℓ(x) layer at the
1st round.

∀k ∈ [1, s] : z1,k · (
h∑

j=1
M [k][j] · w1,j + σ1,k + β3,k

)
= 1, (13)

where (β3,1, . . . , β3,s) are known constants computed from the capacity part of
the input.

Equations to match the hash value. In addition to the above equations, we
will also have h equations to match the hash value denoted by (ι1, . . . , ιh), as
shown below:

∀k ∈ [1, h] :
s∑

j=1
M [k][j] · B3(zr,j) + ϵr,k = ιk. (14)

Total number of equations and variables. In total, we have introduced
2s(r − 1) + h + s variables, and set up 2s(r − 1) + s + h equations.

16



5.3 Overdefining the Polynomial System for Vision

According to the above analysis, we mainly have the two forms of equations
when describing the last r − 1 rounds of Vision with a system of equations in
intermediate variables (wi,k, zi,k, zi−1,k) where 1 ≤ k ≤ s, as shown in Equation 11
and Equation 12, respectively.

Dealing with Equation 11. For Equation 11, it can be written in the following
form:

B3(v1) ·
(

α1B3(u1) + . . . + αsB3(us) + β4

)
= 1, (15)

where v1, u1, . . . , us are variables, and β4, α1, . . . , αs are known constants. There-
fore, we can introduce the following intermediate variables:

v1,i = v2i

1 , uk,i = u2i

k , for ∀k ∈ [1, s], i ∈ [0, iℓ].

Let iℓ = 2, according to the definition of B3(x), Equation 15 can be written
as

(λ3v1,2 + λ2v1,1 + λ1v1,0 + λ0)(
s∑

j=1

2∑
i=0

λj,iuj,i + β5) = 1,

where λj , λj,i, β5 are known constants. Similar to the case in Friday, it is impossible
to overdefine this quadratic equation without increasing iℓ. However, in the case
of Vision, we show that even with iℓ = 2, it is still possible to construct an
overdefined polynomial system, which comes from Equation 12.

Dealing with Equation 12. Abusing notation, for Equation 12, it can be
written in the following form:

u1 ·
(

α1v1 + . . . + αsvs + β6

)
= 1,

where u1, v1, . . . , vs are variables, and β6, α1, . . . , αs are known constants. Hence,
we also have

u1 · (α1v1,0 + . . . + αsvs,0 + β6) = 1,

u2
1 · (α1v1,0 + . . . + αsvs,0 + β6)2 = 1,

u4
1 · (α1v1,0 + . . . + αsvs,0 + β6)4 = 1,

u2
1 · (α1v1,0 + . . . + αsvs,0 + β6) = u1,

u4
1 · (α1v1,0 + . . . + αsvs,0 + β6)2 = u2

1,

u1 · (α1v1,0 + . . . + αsvs,0 + β6)2 = α1v1,0 + . . . + αsvs,0 + β6,

u2
1 · (α1v1,0 + . . . + αsvs,0 + β6)4 = (α1v1,0 + . . . + αsvs,0 + β6)2,

u4
1 · (α1v1,0 + . . . + αsvs,0 + β6) = u2

1 · u1,

u1 · (α1v1,0 + . . . + αsvs,0 + β6)4 = (α1v1,0 + . . . + αsvs,0 + β6)2+1.

(16)
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Let us introduce the following intermediate variables:

u1,i = u2i

1 , vk,i = v2i

k , for ∀k ∈ [1, s], i ∈ [0, 2].

According to

∀i ∈ [0, 2] : u1,i = u2i

1 , (α1v1,0 + . . .+αsvs,0 +β6)2i

= α2i

1 v1,i + . . .+α2i

s vs,i +β2i

6 .

Equation 16 indeed is a system of 9 quadratic equations in the introduced
intermediate variables: (u1,0, u1,1, u1,2, v1,0, v1,1, v1,2, . . . , vs,0, vs,1, vs,2).

Putting all together. According to the above analysis, if we introduce 6s(r −1)
intermediate variables (wi,k,j , zi,k,j) as follows:

∀i ∈ [2, r], ∀k ∈ [1, s], ∀j ∈ [0, 2] : wi,k,j = w2j

i,k, zi,k,j = z2j

i,k,

there will be (9 + 1)(r − 1)s = 10s(r − 1) quadratic equations to describe the last
r − 1 rounds, as well as the following 4s(r − 1) quadratic equations by definition:

∀i ∈ [2, r], ∀k ∈ [1, s], ∀j ∈ [0, 1] : wi,k,j+1 = w2
i,k,j , zi,k,j+1 = z2

i,k,j .

Moreover, for the first round, we only introduce h+3s variables (w1,1, . . . , w1,h)
and (z1,1,0, . . . , z1,s,2) where

∀k ∈ [1, s], ∀j ∈ [0, 1] : z1,k,j+1 = z2
1,k,j , z1,k,0 = z1,k,

i.e., by definition, there are 2s quadratic equations. Then, we can generate 3s
quadratic equations in these variables from Equation 13 as follows:

z1,k · (
h∑

j=1
M [k][j] · w1,j + σ1,k + β3,k) = 1,

z2
1,k · (

h∑
j=1

M [k][j] · w1,j + σ1,k + β3,k) = z1,k,

z4
1,k · (

h∑
j=1

M [k][j] · w1,j + σ1,k + β3,k) = z2
1,k · z1,k.

(17)

At last, we need to consider h equations specified in Equation 14 to match
the hash value, which now becomes h linear equations in the introduced variables
(zr,1,0, . . . , zr,s,2).

Total number of quadratic equations and variables. According to the
above analysis, finding the preimage of r rounds of Vision can be modelled as
solving 10s(r −1)+4s(r −1)+2s+3s quadratic equations and h linear equations
in 6s(r − 1) + h + 3s variables. This is equivalent to solving 5s + 14s(r − 1)
quadratic equations in 3s + 6s(r − 1) variables.
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Remark 2. It should be noted that the main reason why we could overdefine
the polynomial system for Vision with only 3s + 6s(r − 1) variables are due to
its special structure. More specifically, with these variables, we indeed cannot
overdefine the equations describing the first inverse function in the round function,
while it becomes feasible for the second inverse function. Hence, this may be an
exploitable weakness for attackers to devise advanced attacks on Vision in the
future.

5.4 Complexity Analysis and Experiments

Our algebraic modelling method becomes less effective if s is too large as there
will be too many variables. Hence, we only focus on the small s = {2, 4} and
h = s

2 . For this sponge construction, the generic time complexity to find the
preimage is 2 sℓ

2 . The time complexity to compute the Gröbner basis for our
modelling method is shown in Table 3. Note that the estimated complexity is
still a lower bound.

New insight into the security margin of Vision. The designers of Vision
choose the secure number of rounds providing l bits of security based on the
following formula:

max(10, 2 × ⌈ l + s + 8
8s

⌉),

which provides 100% security margin. Indeed, the number l+s+8
8s is related to

their estimation of the time complexity of the Gröbner basis attack under ω = 2,
i.e., the minimal number of rounds9 that can resist the Gröbner basis attack
under ω = 2. Note that in the hash function Rescue-Prime [42], the security
margin is reduced to only 50%, though nothing was mentioned for Vision in [42].

If the lower bound is tight, we shed new insight into the security margin
of Vision. For (l, s) = (128, 2), we could break up to 10 rounds under the same
assumption that ω = 2, while the claimed secure number of rounds is 18. For
(l, s) = (256, 2), we could break up to 24 rounds, while the claimed secure number
of rounds is 34. In particular, for the instance with (l, s) = (256, 2), if we consider
only 50% security margin, the secure number of rounds will be 17 + 9 = 26, while
we could attack 24 out of 26 rounds. These results have significantly advanced
the understanding of the security of the Vision, and have also demonstrated the
effectiveness of our new algebraic modelling method.

Experimental verification. Our experimental results verify the correctness
of Table 3 for s = 2 and r ∈ {2, 3}. Note that 1 round of Vision is almost equal to
2 rounds of Friday, and hence we could only practically verify the Gröbner basis
attack on up to 3 rounds of Vision due to the limitations on the computational
resources. The results of the experiments are summarized in Table 4. These
experimental data indicate that the estimated lower bound is tight.
9 Note that there is not a matching attack as the designers also made a conjecture on

the solving degree according to their experimental results.
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Table 3: The time complexity (# field operations in logarithm base 2) of
Gröbner basis attacks on Vision using ω = 2, where those marked with “−” are
less interesting as the corresponding time complexity is too high.

s N 2 4 6 8 10 12 14 16 18 20 22 24 26

2
#variables 18 42 66 90 114 138 162 186 210 234 258 282 306
#equations 38 94 150 206 262 318 374 430 486 542 598 654 710

Dreg 5 7 9 11 13 15 17 19 21 23 25 26 28
Complexity 31 53 74 95 115 136 156 176 197 217 237 250 271

4
#variables 36 84 132 180 228 276 324 − − − − − −
#equations 76 188 300 412 524 636 748 − − − − − −

Dreg 7 11 15 19 22 26 30 − − − − − −
Complexity 50 93 134 175 208 249 289 − − − − − −

Table 4: Experimental verification of the Gröbner basis attack on Vision, where
the complexity (# field operations in logarithm base 2) is calculated with ω = 2.

Rounds (N) s #variables #equations Dsol Dreg Time(s) Complexity

2 2 18 38 5 5 1.38 31
3 2 30 66 6 6 100311 42

6 Gröbner Basis Attack on 3-Round RAIN

RAIN [24] is a symmetric-key primitive proposed at ACM CCS 2022, and it is
tailored to the post-quantum signature scheme called Rainier constructed with
the MPC-in-the-head technique [33]. To improve the performance of Rainier, the
designers made an aggressive choice of the secure number of rounds for RAIN,
i.e., 3 or 4 rounds. Specifically, it is claimed that 3 rounds are sufficient to resist
algebraic attacks, and 4 rounds can be used to further increase the security
margin.

It should be emphasized that the security of Rainier is based on the difficulty
to recover the secret key of RAIN from a single known plaintext-ciphertext pair.
In this attack setting, 2 rounds of RAIN have been shown to be insecure in [39,43].
In this section, we present new attacks on 3-round RAIN with our algebraic
modelling method.

Iℓ M1
+
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e1

+

κ

e0

+

κ

e3

Iℓ
x0 x3M2

+

κ

e2

Iℓ

x1 x2

Fig. 3: Illustration of 3-round RAIN
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6.1 Description of 3-Round RAIN
Similar to Friday, the RAIN state is simply one word over F2ℓ . As shown in
Figure 3, we denote the input and output of 3-round RAIN by (x0, x3). Moreover,
we denote the output of the first Iℓ(x) and the input of the last Iℓ(x) by x1 and
x2, respectively. In addition, the secret key is denoted by κ ∈ F2ℓ , and the round
constants are denoted by e0, . . . , e3 ∈ F2ℓ . For the two linear transformations
denoted by M1(x) and M2(x), abusing notation, they are defined as follows:

M1(x) =
ℓ−1∑
j=0

λ1,jx2j

, M2(x) =
ℓ−1∑
j=0

λ2,jx2j

,

where λ1,j ̸= 0, λ2,j ̸= 0 are known constants for 0 ≤ j ≤ ℓ − 1. Hence, both
M1(x) and M2(x) can also be viewed as multiplying a binary matrix of size ℓ × ℓ
with x⃗.

By these notations, 3-round RAIN can be described with the following 3
equations: 

x1 = Iℓ(x0 + κ + e0),

x2 = M2

(
Iℓ

(
(M1(x1) + κ + e1)

))
+ κ + e2,

x3 = Iℓ(x2) + κ + e3.

If all inputs to Iℓ(x) are nonzero, these 3 equations can also be rewritten as
x1 · (x0 + κ + e0) = 1,

M−1
2 (x2 + κ + e2) · (M1(x1) + κ + e1) = 1,

x2 · (x3 + κ + e3) = 1,

(18)

where M−1
2 (x) is the inverse of M2(x).

6.2 Direct Application of Existing Modelling Methods
A direct application of Courtois-Pieprzyk’s modelling method. Using
Courtois-Pieprzyk’s observation on xy = 1 over F2ℓ , we can directly set up in total
3·5ℓ = 15ℓ quadratic Boolean equations in 3ℓ Boolean unknowns (−→κ , −→x1, −→x2) ∈ F3ℓ

2
according to Equation 18.

A direct application of Murphy-Robshaw modelling method. If we want
to construct a polynomial system directly over F2ℓ as in our attacks on Friday
and Vision, we can introduce the following 3ℓ intermediate variables:

∀i ∈ [0, ℓ − 1] : x1,i = x2i

1 , x2,j = x2i

2 , κi = κ2i

,

Then, based on Equation 9, we can set up 3 · 5ℓ = 15ℓ quadratic equations over
F2ℓ according to Equation 18. In addition, there are 3ℓ quadratic equations over
F2ℓ by definition:

∀i ∈ [0, ℓ − 1] : x1,(i+1)%ℓ = x2
1,i, x2,(i+1)%ℓ = x2

2,i, κ(i+1)%ℓ = κ2
i .

Hence, we have in total 18ℓ quadratic equations in 3ℓ variables over F2ℓ .
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Do we really have advantages using equations over F2ℓ? At the first
glance, there seem to be 3ℓ more quadratic equations if we overdefine Equation 18
directly over F2ℓ . However, in the case of Gröbner basis attack, the field equations
are also useful if they are of low degree. For Courtois-Pieprzyk’s method, as
they are over F2, there are indeed 3ℓ quadratic field equations neglected, i.e., the
field equation for a Boolean variable x ∈ F2 is x2 = x. In the case of Murphy-
Robshaw’s method, although the field equation x2ℓ = x for a variable x ∈ F2ℓ is
of high degree, it has been implicitly used. Specifically, we have implicitly used

x1,i = x2ℓ

1,i = (x2ℓ−1

1,i )2 = x2
1,(ℓ−1+i)%ℓ = x2

1,(i−1)%ℓ,

x2,i = x2ℓ

2,i = (x2ℓ−1

2,i )2 = x2
2,(ℓ−1+i)%ℓ = x2

2,(i−1)%ℓ,

κi = κ2ℓ

i = (κ2ℓ−1

i )2 = κ2
(ℓ−1+i)%ℓ = κ2

(i−1)%ℓ.

In other words, if we include the field equations for Courtois-Pieprzyk’s method,
the two constructed polynomial systems are of the same scale, i.e., the same
number of variables and equations. However, one field operation over F2ℓ is much
more expensive than that over F2 for large ℓ. For this perspective, it seems that
using Boolean equations for RAIN is a better choice. In our experiments, we have
also confirmed this.

Gröbner basis attack on 3-round RAIN. Indeed, the application of Courtois-
Pieprzyk’s method to RAIN has been observed by the designers of AIM, another
symmetric-key primitive tailored for the post-quantum signature scheme AIMer
proposed at ACM CCS 2023 [34]. By including all field equations, i.e., in total
15ℓ + 3ℓ quadratic equations in 3ℓ variables, they have given the corresponding
time complexity to attack different parameters of 3-round RAIN, as shown in
Table 5. Note that the complexity is not necessarily accurate, as the modelling
method suffers a similar problem, i.e., the polynomial system cannot be viewed
as semi-regular. However, these numbers are still valuable for designers, as they
could even claim the security or do comparisons under an optimistic assumption.

Table 5: The time complexity (# field operations in logarithm base 2) of the
Gröbner basis attack on 3-round RAIN under ω = 2 given in in [34]

ℓ #variables #equations Dreg Complexity

128 384 2304 14 169
192 576 3456 19 236
256 768 4608 24 304

6.3 Finding More Quadratic Equations Exploiting the Structure
We still follow Courtois-Pieprzyk’s method for 3-round RAIN. However, we show
that 5ℓ quadratic Boolean equations have been completely neglected if we only
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focus on equations from Iℓ(x). Indeed, it will be clear that these 5ℓ additional
equations are indeed caused by the special structure of 3-round RAIN, i.e., there
is no linear transform before the first Iℓ(x) nor after the last Iℓ(x).

Specifically, let us consider the first and last equations in Equation 18:

x1 · (x0 + κ + e0) = 1, x2 · (x3 + κ + e3) = 1.

It is easy to deduce the following equation only in the unknowns (x1, x2):
1
x1

+ x0 + e0 = 1
x2

+ x3 + e3.

Let
θ = x0 + e0 + x3 + e3,

which is a known constant to attackers, and we will have

x1 + x2 + θx1x2 = 0. (19)

Similar to Courtois-Pieprzyk’s idea, Equation 19 can be overdefined as follows:{
x2

1 + x1x2 + θx2
1x2 = 0,

x1x2 + x2
2 + θx1x2

2 = 0.
(20)

In this way, we can obtain 3ℓ new quadratic Boolean equations only in (−→x1, −→x2),
which have been neglected if only focusing on equations from Iℓ(x).

One may observe that we do not multiply the cubic monomial x3
1 or x3

2 with
x1 + x2 + θx1x2 as in Courtois-Pieprzyk’s idea. The reason is simple. If doing so,
the term x3

1x2 or x1x3
2 will appear, and the corresponding equation can only be

converted into cubic Boolean equations in (−→x1, −→x2), while we only need quadratic
Boolean equations. To obtain more quadratic equations, our crucial observation is
that we can multiply a more complex polynomial with both sides of Equation 19
such that the terms like x3

1x2 or x1x3
2 can be eliminated. With this idea in mind,

we find the following 2 new equations:{
(θx3

1 + x2
1)(x1 + x2 + θx1x2) = θx4

1 + θ2x4
1x2 + x3

1 + x2
1x2 = 0,

(θx3
2 + x2

2)(x1 + x2 + θx1x2) = θx4
2 + θ2x1x4

2 + x1x2
2 + x3

2 = 0.
(21)

Hence, the 2 new equations can be converted into 2ℓ new quadratic Boolean
equations in (−→x1, −→x2).

In summary, compared with the direct application of Courtois-Pieprzyk’s
method, we can set up 5ℓ more quadratic Boolean equations. Hence, recovering
the secret key κ from (x0, x3) is reduced to solving in total 15ℓ + 3ℓ + 5ℓ = 23ℓ
quadratic equations in 3ℓ variables with Gröbner basis.
Remark 3. Note that the 5 new equations in Equation 19, Equation 20, Equa-
tion 21 can be easily overdefined to 5ℓ quadratic equations over F2ℓ if we similarly
introduce variables

∀i ∈ [0, ℓ − 1] : x1,i = x2i

1 , x2,j = x2i

2 , κi = κ2i

.

Specifically, for each such equation f(x1, x2) = 0, we can have f2i(x1, x2) = 0
for i ∈ [0, ℓ − 1].
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A trivial extension to 4-round RAIN. The 4 rounds of RAIN simply appends
another linear transform M3(x) and In(x), as well as another key addition
and round constant addition to 3 rounds of RAIN. Our analysis can thus be
trivially applied. Specifically, there are always 5ℓ new quadratic Boolean equations
compared with the direct usage of Courtois-Pieprzyk’s method. Hence, recovering
the secret key is reduced to solving 20ℓ + 4ℓ + 5ℓ = 29ℓ quadratic equations in 4ℓ
variables with Gröbner basis.

6.4 Experiments and Discussions

For 3 rounds of RAIN, the key-recovery attack is equivalent to solving 23ℓ Boolean
equations in 3ℓ Boolean variables for ℓ ∈ {128, 192, 256}. We have verified that
these 23ℓ quadratic equations are linearly independent for ℓ ≤ 20, and hence there
should be no structural linear dependency. With this polynomial system, our
estimation of the time complexity of the Gröbner basis attack on 3 rounds of RAIN
is shown in Table 6. In Table 10 of Appendix B, we also give the solving degree
estimated with a different Hilbert series dedicated to Boolean polynomials [6],
and find that the time complexity of our attacks on 3-round RAIN remains the
same. As already stated, we conjecture that it is a lower bound on the actual
complexity. Based on these results, using 3 rounds for 256-bit security may be
too aggressive, though the complexity 2252 is just a lower bound. However, such
a method cannot attack 4-round RAIN according to our calculations.

Table 6: The time complexity of Gröbner basis attacks on 3-round RAIN, where
the time complexity (# field operations in logarithm base 2) is estimated under
ω ∈ {2.8, 2} and the complexity with ω = 2.8 is given in parenthesis.

Rounds (N) ℓ #variables #equations Dreg Complexity

3
128 384 2944 11 139 (195)
192 576 4416 15 196 (274)
256 768 5888 19 252 (352)

Experimental verification. To verify our estimation of the time complexity
of the 3-round Gröbner basis attack using 23ℓ quadratic equations, we have
performed experiments for ℓ ≤ 20, as shown in Table 7. For comparison, we also
performed the experiments for the Gröbner basis attack using only 18ℓ quadratic
equations by excluding our newly observed 5ℓ quadratic equations, as shown in
Table 7. It is interesting to observe from Table 7 the following facts:

1. The actual solving degree is always the same under the same ℓ in the two
experiments, which indicates that the performance of the actual 3-round
Gröbner basis attack using 18ℓ and 23ℓ quadratic equations may be the
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same. A possible explanation is that the additional 5ℓ quadratic equations
can be automatically discovered when computing the Gröbner basis of the
18ℓ quadratic polynomials. However, this also indicates that there will be a
degree fall when computing the Gröbner basis of the 18ℓ quadratic equations,
and the solving degree will become smaller than that derived from the Hilbert
series S18ℓ,3ℓ(z) shown in Equation 2, which will result in an over-estimation
of the complexity of the attack and wrong security claims.

2. As ℓ increases, the solving degree derived from the Hilbert series S23ℓ,3ℓ(z)
becomes tighter. For example, when ℓ = 20, we have Dsol = Ddeg = 4 for 23ℓ
equations, while it is Dsol = 4 < Dreg = 5 for 18ℓ equations. In some sense, it
supports the above conclusion i.e., the actual solving degree is over-estimated
using only 18ℓ quadratic equations.

3. In the cases ℓ ∈ {13, 14}, it supports our claim that Dreg computed from the
Hilbert series is a lower bound on the actual solving degree Dsol.

Since it is unclear when cases like ℓ ∈ {13, 14} will happen again, we cannot
conclude that our estimated time complexity of the Gröbner basis attack on
3-round RAIN must be correct by using 23ℓ quadratic equations. However, our
experiments also indicate that the time complexity must be underestimated as ℓ
increases if only considering 18ℓ quadratic equations. We thus believe that the
newly observed 5ℓ quadratic equations do help better estimate the actual solving
degree, though finding a theoretic tight upper bound on the actual solving degree
looks challenging.

Table 7: Experimental results for the Gröbner basis attack on 3-round RAIN,
where we choose ω = 2 to estimate the time complexity (# field operations in
logarithm base 2).

(a) (23ℓ equations, 3ℓ variables)

ℓ Dreg Dsol Time(s) Complexity

12 3 3 0.99 27

13 3 4 4.72 34

14 3 4 9.9 35

15 4 4 17.09 36

16 4 4 33.26 37

17 4 4 62.59 37

18 4 4 121.57 38

19 4 4 262.76 38

20 4 4 2625 39

(b) (18ℓ equations, 3ℓ variables)

ℓ Dreg Dsol Time(s) Complexity

12 4 3 1.06 27

13 4 4 5.88 34

14 4 4 10.8 35

15 4 4 18.75 36

16 4 4 34.56 37

17 4 4 64.02 37

18 4 4 125.44 38

19 4 4 640.27 38

20 5 4 2911 45
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7 New Algebraic Modelling Method for Biscuit

Biscuit [10] is a post-quantum signature scheme proposed at ACNS 2024, and it
is also one candidate in NIST PQC Round 1 Additional Signatures. Similar to
Rainier and AIMer, Biscuit is built with the MPC-in-the-head technique. However,
its security relies on the hardness of the so-called powAff2 problem defined below,
which is a structured variant of the MQ problem.

Definition 2 (PowAff2 Problem). Let di, ai,j , bi,j , ci,j be known elements over
Fq where i ∈ [1, m] and j ∈ [1, n]. Given m quadratic equations {f1(x1, . . . , xn) =
0, . . . , fm(x1, . . . , xn) = 0} in n variables (x1, . . . , xn) ∈ Fn

q , where each fi is of
the following form:

fi(x1, . . . , xn) = di +
n∑

j=1
ai,jxj +

n∑
j=1

bi,jxj ×
n∑

j=1
ci,jxj ,

find the solution of (x1, . . . , xn).

Specifically, if the attacker can solve the powAff2 problem, the secret key of
Biscuit will be recovered and Biscuit will become insecure. In particular, q = 28 is
chosen in Biscuit. We should mention that q = 24 was used in its first version, but
it soon got broken by a guess-and-determine (GnD) attack with time complexity
O(n3qn/2) [13]. In this work, we only consider the later version, i.e., q = 28.

Parameters for Biscuit. Biscuit can provide 128, 192, and 256 bits of security,
respectively. The choices of (n, m) for 128/192/256-bit security can be referred
to Table 8. In particular, the designers have checked that these parameters are
secure against the Gröbner basis attack under ω = 2 and the GnD attack in [13].

7.1 New Insight into the PowAff2 Problem over F2ℓ

Let us introduce intermediate variables xi+n to represent x2
i , i.e., xi+n = x2

i for
i ∈ [1, n]. In this way, we can overdefine each fi (1 ≤ i ≤ m) with 4 quadratic
equations in (x1, . . . , x2n), as shown below:

di +
n∑

j=1
ai,jxj +

n∑
j=1

bi,jxj ×
n∑

j=1
ci,jxj = 0,

(di +
n∑

j=1
ai,jxj) ×

n∑
j=1

bi,jxj +
n∑

j=1
b2

i,jxj+n ×
n∑

j=1
ci,jxj = 0,

(di +
n∑

j=1
ai,jxj) ×

n∑
j=1

ci,jxj +
n∑

j=1
bi,jxj ×

n∑
j=1

c2
i,jxj+n = 0,

d2
i +

n∑
j=1

a2
i,jxj+n +

n∑
j=1

b2
i,jxj+n ×

n∑
j=1

c2
i,jxj+n = 0.

(22)
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By the definition that xi+n = x2
i for i ∈ [1, n], we have n quadratic equations

in (x1, . . . , x2n). Moreover, from each fi = 0, we can derive 4 quadratic equations
in (x1, . . . , x2n). As there are m equations fi = 0, we can set up in total 4m + n
quadratic equations in 2n variables. In other words, solving PowAff2 over F2ℓ is
reduced to solving 4m + n quadratic equations in 2n variables over F2ℓ .

To verify that the polynomials are indeed linearly independent, we performed
experimental verification. We sampled 50 different polynomial systems with
(n, m) = (50, 52), and formed the system with 2n variables and 4m + n equations.
In all 50 cases, the polynomials are indeed linearly independent. The same also
holds for the parameters (n, m) = (89, 92) and (n, m) = (127, 130).

Complexity and experiments. Similarly, we rely on the Hilbert series to
compute the time complexity to solve 4m + n quadratic equations in 2n with
Gröbner basis, as shown in Table 8. As already stated, it is conjectured that the
estimated time complexity is a lower bound. However, we also emphasize that
in our experiments on small (n, m), the solving degree computed from Hilbert
series S4m+n,2n(z) is tight. Since 1 field multiplication over F2ℓ is roughly equal
to ℓ2 bit operations, according to Table 8, we claim that the lower bounds are
2104/2159/2221 bits operations for 128/192/256-bit security levels, respectively.

Table 8: The time complexity (# field operations in logarithm base 2) of Gröbner
basis attacks on Biscuit, which is estimated under ω = 2.

Security (n, m) #variables #equations Dsol Complexity
128 (50, 52) 100 258 11 98
192 (89, 92) 178 457 16 153
256 (127, 130) 254 647 22 215

In Table 9, the experimental result for computing the Gröbner basis for toy
parameters is depicted. These experimental data indicate that Dsol ≤ Dreg for
all cases, and hence our time complexity evaluation is tight for the small-scale
powAff2 problem. Moreover, the running time of our experiments also indicates
that using ω = 2 is reasonable.

8 Conclusion

This study aims to deepen the understanding of how to overdefine a polynomial
system with Courtois-Pieprzyk’s and Murphy-Robshaw’s ideas. In particular, it
is found that the polynomial systems for Friday, Vision, RAIN and Biscuit can
all be overdefined for different reasons. For Friday and Vision, it is mainly due
to the low-degree F2-linearized affine polynomial. For RAIN, the system can be
much more overdefined for its special structure, i.e., no linear mixing layers exist
before the first nonlinear layer and after the last nonlinear layer defined by the
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Table 9: Experimental results for Biscuit over F28 , where the time complexity (#
field operations in logarithm base 2) is computed under ω = 2. The complexity of
our approach is compared with the complexity of solving the polynomial system
with n variables and m equations described in [10]

n m #variables #equations Dsol Dreg Complexity Complexity [10] Time(s)

11 13 22 63 4 4 28 27 2.03
12 14 24 68 4 4 29 31 19.4
13 15 26 73 5 5 35 34 471.8
14 16 28 78 5 5 36 34 3034.2
15 17 30 83 5 5 37 38 12530
16 18 32 88 5 5 37 39 48562

inverse function over F2ℓ . For Biscuit, by exploiting the special structure of the
powAff2 problem over F2ℓ , i.e., all quadratic terms in each quadratic equation
are produced by the multiplication of two linear polynomials, an overdefined
polynomial system can be efficiently set up by introducing additional variables.
However, how to estimate the time complexity to solve these polynomial systems
is challenging, since they are not semi-regular. We leave this as an open problem,
and believe that it will have many applications in algebraic attacks.
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A Direct Preimage Attack on Friday [2]

For the preimage attack on one block of r rounds of Friday, the attacker is given
(h0, h1), and the goal is to recover x such that h1 = Per(, h0) + x + h0. In the
naive algebraic modelling method of [2], the intermediate variable xi is introduced
to represent the input of C(x) at the i-th round. In this way, there is

(C(xi) + ki) · B(xi+1) = 1.

However, this model is inefficient as it requires to introduce too many variables
x1, . . . , xr. To overcome this obstacle, they observed that

B(xi) = 1
C(xi−1) + ki−1

, C(xi) = 1
B(xi+1) + ki.

In addition, they also proved that there always exist F2-linearized affine
polynomials

B′(x) = x4 + b′
2x2 + b′

1x + b′
0, C ′(x) = x4 + c′

2x2 + c′
1x + c′

0

such that
B′(B(x)) = C ′(C(x)).

This will result in the following equation:

B′( 1
C(xi−1) + ki−1

) = C ′( 1
B(xi+1) + ki), (23)

which is of degree 36 by clearing all denominators.
For convenience, let the total number of rounds r of Friday be an even number.

Then, only the variables x2, x4, · · · , xr are needed. In other words, there are r
2

variables and r
2 − 1 equations of degree 36 according to Equation 23. Moreover,

to capture the relation inside the input and output of the compression function,
an additional equation specified below is needed:

B(x1) · (C(xr) + kr + h1) = 1.

To cancel x1, the relation C(x1) = 1
B(x2) + k1 can be used. Specifically, the

following equation can be set up to cancel x1:

B′( 1
C(xr) + kr + h1

) = C ′( 1
B(x2) + k1),

which is also of degree 36. In this way, finding the preimage of one block of Friday
is reduced to solving r

2 equations of degree 36 in r
2 variables over F2ℓ .
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B Computing Gröbner Basis for Polynomials over F2

To compute the Gröbner basis for polynomials

{f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)}

over F2, the field equations, x2
i = xi for ∀i ∈ [1, n], should also be consid-

ered. In our paper, for m quadratic Boolean equations in n Boolean variables,
by including the n field equations, we indeed consider m + n polynomials
{f1, . . . , fm, fm+1, . . . , fm+n} where fm+i = x2

i − xi for i ∈ [1, n], and estimate
Dsol as the first non-positive coefficient in the following Hilbert series:

(1 − z2)m+n

(1 − z)n
.

As explained before, this holds only when trivial syzygies are caused by fi · fj =
fj · fi where i, j ∈ [1, m + n]. However, for polynomials over F2, including the
field equations implies new syzygies, i.e., there will be new syzygies caused by
f2

i = fi for i ∈ [1, m]. Hence, the assumption that only trivial syzygies exist for
this polynomial system does not hold in practice. If taking such new syzygies
into account, it has been studied in [6] that the solving degree to compute the
Gröbner basis of {f1, . . . , fm} over F2 can be estimated as the first non-positive
coefficient in the following new Hilbert series:

(1 + z)n

(1 + z2)m
.

For convenience, we call the first method to compute Dsol Method 1 where
only trivial syzygies fi · fj = fj · fi are considered and call the second method
Method 2 where new syzygies formed by field equations are also considered.
We tested the degree of regularity using both Method 1 and Method 2 for all
n < m < 500 and observed that 1) the two methods give the same Dsol when
the system does not involve too many variables; 2) the difference between Dsol

obtained with the two methods tends to be the same if the system is much
overdefined; 3) the gap is still small, i.e., 1 or 2, when the two methods give
different Dsol. These may be evidence that the gap will be smaller as the system
becomes much more overdefined. The difference of the degree of regularity for
the two different methods is depicted in Figure 4. Additionally, We tested (m, n)
for different parameters and the corresponding Dsol computed with Method 1
and Method 2 are described in Table 10. Note that those in bold in Table 10
correspond to the parameters used to attack 3 and 4 rounds of RAIN.

The motivation to explain the above fact is to analyze the impact of newly
defined syzygy relations on the solving degree of the polynomial system, as in
our constructed overdefined polynomial systems (not necessarily over F2), there
are also many new syzygies. A natural question is when the estimated solving
degree Dsol based on the assumption that the system is semi-regular will be
much larger than the actual solving degree. This is difficult to verify in practice
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Fig. 4: The difference of Dsol using Method 1 and Method 2. The green points
show a difference of 1, while the red points show a difference of 2. The white area
represents the points with the same solving degree using both methods.

as computing the actual solving degree is equivalent to computing the Gröbner
basis. By the above fact, we may see the evidence that even if there are some new
syzygies, estimating the solving degree based on the assumption that the system
is semi-regular is still reliable because the difference in the estimated solving
degree using the semi-regularity assumption, and the actual solving degree of the
system is small, or even zero, for the polynomial systems that we study.
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Table 10: Estimating Dsol with Method 1 and Method 2 for various (m, n).

n m m + n
Method 1 Method 2

Dsol Dsol

128 128 256 17 17
128 192 320 13 13
128 256 384 11 11

256 256 512 29 30
256 384 640 22 23
256 512 768 19 19

384 384 768 41 42
384 768 1152 26 26
384 2560 2944 11 11

512 512 1024 52 54
512 1024 1536 33 33
512 3200 3712 15 15

576 576 1152 58 60
576 1152 1728 37 37
576 3840 4416 15 15

768 1536 2304 47 48
768 2304 3072 35 35
768 5120 5888 19 19
768 4800 5568 20 20

1024 2048 3072 61 61
1024 6144 7168 26 26
1024 6400 7424 25 26
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