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Abstract. We introduce a new, concretely efficient and transparent polynomial commit-
ment scheme with logarithmic verification time and communication cost that can run on
any group. Existing group-based polynomial commitment schemes must use less efficient
groups, such as class groups of unknown order [9] or pairing-based groups [16] to achieve
transparency (no trusted setup), making them expensive to adopt in practice.
We offer the first group based polynomial commitment scheme that can run on any group
s.t. it does not rely on expensive pairing operations or require class groups of unknown order
to achieve transparency while still providing logarithmic verifier time and communication
cost.
The prover work of our work is dominated by 4nG multi-exponentiations, the verifier work
is dominated by 4 log nG exponentiations, and the communication cost is 4 log nG. Since
our protocol can run on fast groups such as Curve25519, we can easily accelerate the multi-
exponentiations with Pippenger’s algorithm. The concrete performance of our work shows a
significant improvement over the current state of the art in almost every aspect.

1 Introduction

Zero-knowledge succinct arguments of knowledge (zkSNARK) is a subject of great research interest
in the field of cryptography, and the polynomial commitment scheme is the most important building
block of some of the most popular zero-knowledge systems deployed today. The construction of
some of the most popular zkSNARKs such as Groth16 [14], Sonic [17], PLONK [13], Marlin[10],
and more recently Spartan [18] and Gemini [6] can be generally described in two steps: first, reduce
a satisfying assignment to evaluation of a polynomial commitment. Second, apply some polynomial
commitment scheme to validate the soundness of the commitment created in step one.

Non-transparent polynomial commitment schemes such as KZG [15] offers great verifier perfor-
mance and low communication cost, making it the popular choice for many zkSNARK protocols
[13] [14]. Since the only reason popular SNARKs such as PLONK require trusted setup is because
KZG requires it, a lack of efficient transparent polynomial commitment solutions is one of the
biggest well-known setbacks of SNARKs protocols.

One class of transparent schemes is based on the use of Interactive Oracle Proofs on Reed-
Solomon codes (RS-IOP), such schemes are adopted by Ligero [1], Aurora [2], Virgo [20], Fractal
[11], and Orion [19]. RS-IOP schemes are plausible post-quantum and generally offer a decent prover
runtime cost, even though their asymptotic cost is less optimal. However, its communication cost
is expensive, and the soundness error is high. The performance advantage diminishes when running
the required number of repetitions to reach provable 120bit+ security [11].

Another popular class of transparent polynomial commitment schemes with logarithmic com-
munication complexity is the discrete log-based work (LCC-DLOG) developed by Bootle et al.
[5], which is the basis of many later works, including Bulletproofs [8], and is further optimized by
the likes of Spartan [18]. More recently, Halo [7] introduced the idea of amortization of verifier



computation through recursive composition of proof, which was later generalized by Bunz et al.
[3]. However, these group-based schemes generally require linear verifier work, leaving plenty of
room for improvement.

More recently, the development of DARK [9] and Dory [16] finally achieved logarithmic ver-
ifier work without trusted setup for group-based schemes. DARK is a new class of polynomial
commitment schemes based on groups of unknown order (DARK-GUO) and recently expanded by
[4]. Unfortunately, group operations on these types of groups are significantly slower than those
of curve-based implementation [12] [16]. On the other hand, Dory improved verifier work to log
n GT . However, the exponentiation operations on GT are more than 10X costlier than those on G,
and the communication cost of GT is 6X that of G, making them still less optimal in practice.

1.1 Summary of Contributions

We introduce a new transparent polynomial commitment scheme that offers linear prover work,
logarithmic verifier work, and logarithmic communication cost. Our protocol is the first group-based
polynomial commitment scheme with sub-linear verifier work and communication cost that does
not rely on expensive pairing or groups of unknown order, translating to significant performance
gains in practice.

We first introduce the base version of our protocol in Section 3 after a brief review of Bullet-
proofs’ inner product argument. The base version gives 4log n verifier work for group exponentia-
tion operations. This is achieved using a pair of transcripts in each round of the recursion: BL and
BδL, where BL is used by the prover to provide a pre-computed value and BδL is used to check if
the BL sent by the prover is valid. In Section 3, we show the algebraic equation to show each pair
of BL, BδL can’t both be right at the same time.

However, the base version of our protocol would still require linear O(n) field operations, which
is still efficient for small to medium sized polynomials but not so much for large polynomials.
In Section 4, we introduce a math trick to bring down the total verifier work to O(log n). In
summary, the prover work of our protocol is dominated by 4nG multi-exponentiations, the verifier
work is dominated by 4 log nG group exponentiations, and the communication cost is dominated
by 4 log nG.

2 Preliminaries

2.1 Assumptions

Definition 1. (Discrete Logarithmic Relation) For all PPT adversaries A and for all n ≥ 2 there
exists a negligible function negl(λ) s.t.

Pr

[G = Setup(1λ), g0, .., gn−1
$←− G ∃ ai 6= 0

a0, .., an−1 ∈ Zp ∧
∏n−1
i=0 g

ai
i = 1

← A(G, g0, ..., gn−1)

]
≤ negl(λ)

The Discrete Logarithmic Relation assumption states that an adversary can’t find a non-trivial
relation between the randomly chosen group elements g0, ..., gn−1 ∈ Gn, and that

∏n−1
i=0 g

ai
i = 1

is a non-trivial discrete log relation among g0, ..., gn−1. Please note the generators we use in this
paper are g, h, ~u ∈ G.
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2.2 Interactive Arguments

Interactive arguments are interactive proofs in which security holds only against computationally
bounded provers. In an interactive argument of knowledge for a relation R, a prover convinces a
verifier that it knows a witness w for a statement x s.t. (x,w) ∈ R without revealing the witness
itself to the verifier.

Let (P,V) denote a pair of PPT interactive algorithms, and Setup denotes a non-interactive
setup algorithm that outputs public parameters pp given a security parameter λ. Let 〈P(pp, x, w),V(pp, x)〉
denote the output of V on input x after its interaction with P, who has knowledge of witness w. The
triple (Setup,P,V) is called an argument for relation R if for all non-uniform PPT adversaries A
it satisfies completeness, soundness, and zero-knowledge definitions defined below:

Definition 2. (Perfect Completeness) The triple (Setup,P,V) satisfies perfect completeness if
for all PPT A:

Pr

[
(pp, x, w) /∈ R or pp← Setup(1λ)

〈P(pp, x, w),V(pp, x)〉 = 1 (x,w)← A(pp)

]
= 1

Definition 3. (Public Coin) All messages sent from V to P are chosen uniformly at random and
independently of P’s messages.

The soundness notion we consider in this work is computational witness-extended emulation.

Definition 4. (Computational Witness-Extended Emulation or CWEE) Given a public-coin inter-
active argument tuple (Setup,P,V) and arbitrary prover algorithm P∗, let Recorder (P∗, pp, x, s)
denote the message transcript between P∗ and V on shared input x, initial prover state s, and
pp generated by Setup. Furthermore, let E Recorder (P∗, pp, x, s) denote a machine E with a
transcript oracle for this interaction that can rewind to any round and run again with fresh ver-
ifier randomness. The tuple (Setup,P,V) has CWEE if for every deterministic polynomial time
P∗ there exists an expected polynomial time emulator E s.t. for all non-uniform polynomial time
adversaries A the following holds:∣∣∣∣∣Pr

[
pp← Setup(1λ)

A(tr) = 1 (x, s)← A(pp)
tr ← Recorder(P∗, pp, x, s)

]
−

Pr

[ A(tr) = 1∧ pp← Setup(1λ)
tr accepting (x, s)← A(pp)

=⇒ (x,w) ∈ R (tr, w)← ERecorder(P∗,pp,x,s)(pp, x)

]∣∣∣∣∣ ≤ negl(λ)

Note that there is also a probability aspect to our definition of CWEE (which can also be
called statistical-witness extended emulation in some places [5]). Informally, if an adversary can
produce an argument that satisfies the verifier with some probability, then there exists an emulator
producing an identically distributed argument with the same probability, as well as a witness. The
zero-knowledge property requires that the verifier doesn’t learn anything about the witness from
its interaction with an honest prover.

Generalized Special Soundness We follow the presentation first introduced in Bootle et al.
[5] and later enhanced by Bulletproofs [8] and also found in DARK [9] and Dory [16]. Consider a
public-coin interactive argument with f rounds and (n1, ..., nf ) tree of accepting transcripts with
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challenges sampled from a large message space. The tree has depth f with its root labelled with
the statement x. Each node at depth i < f has ni children, and each children is labelled with a
distinct value for the ith challenge. Every path from the root to a leaf corresponds to an accepting
transcript, and there are a total of

∏f
i=1 ni distinct accepting transcripts.

Lemma 1. (Generalized Forking Lemma) [8] [9] [5] Let (P,V) be an f -round public-coin inter-
active argument system for a relation R. Let T be a tree-finder polynomial time algorithm that
has access to a Recorder() with rewinding capabilities outputs an (n1, ..., nf )-tree of accepting
transcripts. Let X be a deterministic polynomial time extractor that use T ’s outputs compute a
witness w for the statement x with overwhelming probability. Then (P,V) has witness-extended
emulation.

Definition 5. (Perfect Special Honest Verifier Zero Knowledge for Interactive Arguments) An
interactive proof is (Setup,P,V) is a perfect special honest verifier zero knowledge (PHVZK)
argument of knowledge for R if there exists a probabilistic polynomial time simulator S such
that all pairs of interactive adversaries A1,A2 have the following property for every (x,w, σ) ←
A2(pp) ∧ (pp, x, w) ∈ R, where σ stands for verifier’s public coin randomness for challenges

Pr

[
A1(tr) = 1 pp← Setup(1λ),

tr ← 〈P(pp, x, w),V(pp, x)〉

]
=

Pr

[
A1(tr) = 1 pp← Setup(1λ),

tr ← S(pp, x, σ)

]

Above property states that the adversary chooses a distribution over statements x and witnesses w
but is not able to distinguish between the simulated transcripts and the honestly generated tran-
scripts for a valid statement/witnesses pair, and that the simulator has access to the randomness
used by the verifier.

2.3 Commitment Schemes

Our definitions are based on the polynomial commitments from [9].

Definition 6. (Commitment scheme) A commitment scheme C is a tuple C = (Setup,Commit,Open)
of PPT algorithms where:

• Setup(1λ) → pp generates public parameters pp.
• Commit(pp;x) → (C;φ) takes a secret message x and produces a public commitment C with

a secret opening hint φ.
• Open(pp, C, x, φ) → b ∈ {0, 1} verifies the opening of commitment C to the message x provided

with the opening hint φ.

Pr


pp← Setup(1λ)

b0 = b1 6= 0∧ : (P, x0, x1, φ0, φ1)← A(pp)
x0 6= x1 b0 ← Open(pp, P, x0, φ0)

b1 ← Open(pp, P, x1, φ1)

 ≤ negl(λ)

Definition 7. (Polynomial Commitment) A polynomial commitment scheme is a tuple of proto-
cols C = (Setup,Commit,Open,Eval) where (Setup,Commit,Open) is a binding commit-
ment scheme for a message space R[X] of polynomials over some ring R, and function Eval is
defined as:
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• Eval(pp, C, z, y, n; f(X), φ) → b ∈ {0, 1} is an interactive public-coin protocol between a PPT
prover P and verifier V. Both P and V have a input commitment C, points z, y ∈ Zp, and a
degree n ≥ deg(f(X)). The prover additionally knows the opening of C to a secret polynomial
f(X) ∈ R[X]. The protocol convinces the verifier that f(z) = y.

REval(pp) =

{
〈(C, z, y, n), (f(X), φ)〉 : f ∈ R[X] ∧ deg(f(X)) ≤ n ∧ f(z) = y

∧ Open(pp, C, f(X), φ) = 1

}

Knowledge Soundness : In the Eval protocol, provers must know a polynomial f(X) such that
f(z) = y and C is a commitment to f(X). Since Eval is a public-coin interactive argument, we
say this knowledge property as a special case of witness-extended emulation for Eval, and that a
commitment scheme C has witness-extended emulation if Eval has CWEE for REval(pp).

Zero Knowledge : tuple (Gen,Commit,Open,Eval) is a perfect special honest-verifier zero-
knowledge, extractable polynomial commitment scheme for polynomials f(X) ∈ R[X]. If (Gen,Commit,Open)
is a commitment scheme for f(X) ∈ R[X] then Eval is an PSHVZK interactive argument of
knowledge for REval(pp).

2.4 Notations

Let G denote any type of secure cyclic group of prime order p, and let Zp denote an integer field
modulo p. A commitment is a group element denoted by capital letters. e.g. C = ga11 ga22 ...gann hφ ∈ G
is a commitment committed to a vector ~a. A group element B ∈ G is also a group element denoted
by a capital letter. For generators used to compute other group elements in our protocol, such as
~g, h, u ∈ G, we use lower case letters to denote them. We also use bold letters to denote generators
created during the initialization phase, e.g. generator set ~g is the SRS of our protocol generated
during the initialization phase. Greek letters are used to label hidden key values. e.g. φ is the
blinding key for commitment C on generator h ∈ G.

We use standard vector notation ~v to denote vectors. i.e. ~a ∈ Znp is a list of n integers ai
for i = {1, 2, ..., n}. ~a ◦ ~z = (a1 · z1, ..., an · zn) ∈ Fn is a Hadamard product of two vectors.
〈~a · ~z〉 =

∑n
i=1 ai · zi ∈ Zp is the inner product of two vectors, and ~a · z = (a1 · z, ..., an · z) ∈ Znp

is the entry wise multiplication such that every element of the first vector ai is multiplied by the
second integer z.

Let ~a || b denote the concatenation of the second element to the first vector, which returns a
new vector with length |~a|+1. e.g. ~a || b→ (a1, ..., an, b). For 1 ≤ l ≤ n, we use the following format
to represent a vector divided into two slices:

~a[:l] = {a1, ..., al} ∈ Fl, ~a[l:] = {al, ..., an} ∈ Fl

Finally, ~0n indicates a vector with n zeros. e.g. ~0n = {01, ..., 0n}.

3 Transparent Polynomial Commitment Protocol That Supports Any
Group

In this section, we begin with a quick review of Bulletproofs’ inner product argument, then intro-
duce a new protocol that offers logarithmic verifier work for group exponentiation operations. In
Section 4, we will introduce a computation trick that allows our protocol to achieve total logarith-
mic verification work and communication cost. The interactive protocol we will introduce in this
section can be made non-interactive with the Fiat-Shamir transform.
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3.1 Bulletproofs’ Inner Product Argument Revisited

Let H denote a function that takes four vector inputs and outputs a single group element in G.
e.g.:

H(~v1, ~v2, ~v3, ~v4, y) = ~g ~v1[:n′]~g
~v2
[n′:]

~h~v3[:n′]
~h~v4[n′:] · u

y ∈ G

Before the protocol runs, the prover initializes P ∈ G using two committed vectors and their
inner product y s.t.:

P = H(~a[:n′],~a[n′:],~b[:n′],~b[n′:], y) = ~g
~a[:n′]
[:n′] ~g

~a[n′:]
[n′:]

~h
~b[:n′]
[:n′]

~h
~b[n′:]
[n′:] · u

y ∈ G

In each round of the recursion, the prover computes and sends L,R to the verifier so that the
verifier can logarithmically reduce the size of vector P :

L = H(~0, ~a[:n′], ~b[n′:], ~0, 〈~a[:n′],~b[n′:]〉) = ~g
~a[:n′]
[n′:]

~h
~b[n′:]
[:n′] · u

〈~a[:n′],~b[n′:]〉 ∈ G

R = H(~a[n′:], ~0, ~0, ~b[:n′], 〈~a[n′:],~b[:n′]〉) = ~g
~a[n′:]
[:n′]

~h
~b[:n′]
[n′:] · u

〈~a[n′:],~b[:n′]〉 ∈ G

The verifier computes P ′ (P for the next round) from L,R provided by the prover and the challenge
x chosen by the verifier s.t.

P ′ = Lx
2

· PRx
−2

= ~g ′~a
′~h ′

~b′ · uy
′
∈ G

Both the prover and the verifier compute ~g ′ and ~h ′ s.t. ~g ′ = ~g x
−1

[:n′] ◦~g
x
[n′:] and ~h ′ = ~h x[:n′] ◦~h

x−1

[n′:] .

Only the prover can compute ~a′ and ~b ′ s.t. ~a ′ = ~a[:n′] ·x+~a[n′:] ·x−1 and ~b ′ = ~b[:n′] ·x−1 +~b[n′:] ·x.
It is worth noticing that the challenge x introduced in each round makes the left and right slices,
or g, h different so that a malicious prover cannot cheat by swapping generators and coefficients.

We know for a fact that y′ = 〈~a ′,~b ′〉 = y + 〈~a[:n′],~b[n′:]〉 · x2 + 〈~a[n′:],~b[:n′]〉 · x−2. If the prover

can provide correct openings ~a ′,~b ′ on generators ~g ′,~h ′, then the verifier can validate the inner
product argument by checking whether P ′ computed from L,R, P can be opened with ~a ′,~b ′. In
Bulletproofs, the prover provides the openings when the size of group vectors (|~g ′| and |~h ′|) reaches
1.

One of the key contributions of bulletproofs’ recursion mechanism is that it offers a way to
achieve logarithmic communication cost. However, the verification cost is still linear due to the
expensive linear computations required to compute generators ~g,~h in each round.

3.2 A New Transparent Polynomial Commitment Scheme with Fixed Generators

In our protocol, coefficients a1, ..., an of a polynomial f(X) are committed into a group element
C = ga11 , ..., gann hφ. Upon providing z, y ∈ Zp the prover creates a proof for f(z) = y. Note that
g1, ..., gm ∈ Gm s.t. m ≥ n are public parameters generated when the system is initialized.

We now update the relationREval defined in definition 7 with the inputs we will be using to con-
struct our polynomial commitment scheme in the following format:R = {〈(Public Inputs) , (Witnesses)〉 :
Relation}.

{〈(~g, h, u, C ∈ G, z, y ∈ Zp), (~a ∈ Znp , φ ∈ Z)〉 : C = ~g ~ahφ ∧ f(z) = y} (1)

The most costly operation for verifiers in Bulletproofs’ inner product argument is the task of
computing base generators ~g ′,~h ′ in each round of a recursion. Although subsequent protocols such
as Halo [7] do not need the verifier to compute the second vector ~h ′, computing ~g ′ in each round is
still expensive and requires both the prover and the verifier to perform 2n group exponentiations.
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3.3 The Basic Idea

We first simplify how we compute the committed coefficients a′ and z′. Instead of multiplying
both left and right sets by the challenge xj and its inverse (subscript j means jth round in the
recursion), we only apply the challenge (or its inverse) to the right slice of each vector.

~a ′ = ~a[:n′] + ~a[n′:] · xj ∈ Zn
′

p (2)

~z ′ = ~z[:n′] + ~z[n′:] · x−1j ∈ Zn
′

p (3)

This simplification is safe since ~a ′ = ~a[:n′]xj +~a[n′:]x
−1
j in bulletproofs can be trivially factored to

~a ′ · x−1j = ~a[:n′] + ~a[n′:]x
−2
j by the verifier (the challenge is only applied to the right slice of ~a ′),

and the same applies to vector ~z ′.

This simplification also provides a marginal reduction of one group exponential operation when
computing g′i = gi · gx

−1

n′+i for i = {0, ..., n − 1} in our protocol instead of g′i = gx
−1

i · gxn′+i in that
of bulletproofs and its derivatives.

Still, even computing the simplified ~g′ in each round is still expensive. Instead, we want the
prover to do the bulk of the work for the verifier in a trustworthy way. We do this by introducing
a pair of transcripts BL and BδL in each round of the recursion.

BL is the transcript that allows the prover to perform the multi-exponentiation oper-

ations: BL is the product of the first half of generators BL =
∏n′−1

0 gi. The verifier can use BL to

get the product of the second half of generators BR =
∏n−1
n′ gi and then apply challenge x to BR

to get B′ s.t.
∏n′−1

0 g′i = BL · BxR. If this works, it would be a lot more efficient than computing
the whole ~g ′ in each round, because eventually we will shrink the vector to one single generator
B′ = BL ·BxR in the final round.

Unfortunately, it is easy for a dishonest prover to cheat if we just ask the dishonest prover to
provide either BL or BR because the generators in ~g are not binding. For example, assuming ~g
only has two generators gl, gr, we can find a pair of invalid BL, BR that are generators of a∗1 6= a1
and a∗2 6= a2 s.t.

BL
a∗1 (B/BL)a

∗
2 = P = ga1l g

a2
r

Note that BR = B/BL. Since B = glgr, the honest values are BL = gl, BR = gr. The dishonest
prover can use the algebraic formula below to find an invalid BL s.t. BL 6= gl:

P = BL
a∗1 · (glgr/BL)a

∗
2

Rewriting the equation above, we get the algebraic formula for finding the cheating BL 6= gl:

BL = (P/(glgr)
a∗2 )a

∗
2−a

∗
1 (4)

After the challenge x is available, both the prover and the verifier compute P ′ and B′ s.t. P ′ = B′
a′∗

where a′∗ 6= a′ and that:

B′ = BL · (B/BL)x
−1

(5)

This is not good, as there is a readily available formula for adversaries to cheat, because we
cannot check whether the BL value sent by the prover is legit or not.
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BδL is the transcript used to validate the legitimacy of BL: We can do that by making
the prover provide another transcript BδL on another product of generators Bδ s.t.

Bδ = glg
2
r (6)

The exponent of gr in the equation above doesn’t need to be 2, we pick 2 because it is the smallest
value that does the work. The algebraic formula to find BδL is P = BδL

a∗1 · (glg2r/BδL)a
∗
2 , which

reduces to:

BδL = (P/(glg
2
r)a
∗
2 )a
∗
2−a

∗
1 (7)

and the formula to compute B′ from Bδ and BδL is similar to that used to compute B′ from B
and BL, except we need to factor out the exponent 2 on gr :

B′ = BδL · (Bδ/BδL)x
−1/2 (8)

For B′ to be the product of generators of P ′ (e.g. B′ = glgr), BδL must be the same as BL
except for a negligible probability (correctly guess challenge x) so that both equations 5 and 8
compute the same generator B′:

If we replace BL with the right-hand side of the equation 4 and BδL with the right-hand side
of the equation 7 we get the following equality:

(P/(glgr)
a∗2 )a

∗
2−a

∗
1 = (P/(glg

2
r)a
∗
2 )a
∗
2−a

∗
1

After canceling out all common terms, we get the following equality, which is not possible unless
gr is 1:

gr = g2r

The above equality holds even for g∗l 6= gl and g∗r 6= gr. We can use the concept above to build
a polynomial evaluation protocol that can evaluate committed polynomials of any size.

3.4 Building the Protocol With Logarithmic Verification Cost on Group
Exponential Operations

Besides making provers do the work of computing generators for each round (which it has to do
anyway), we make two more simplifications to bulletproofs’ inner product protocol.

The first area is that we only recursively evaluate one set of generators ~g because only the vector
commitment that commits to the coefficients of the polynomial that we are evaluating needs to be
concealed. The powers of evaluation point z (e.g. 1, z, z1, z2, ..., zn) is public information.

Like that of Bulletproofs, our protocol defines and works on a new group element P ∈ G created
from the vector commitment C of the polynomial f(X) and the result y of the evaluation point z
s.t. f(z) = y.

P = C · uy // equivalent to ~g ~ahφuy (9)

To make the paper easier to follow, we also define a function H like that in Bulletproofs to help
explaining our protocol. H takes coefficients ~a and value y = f(z) as inputs and convert them into
a single group element as the following equation shows:

H(~a[:n′],~a[n′:], y) = ~g
~a[:n′]
[:n′] · ~g

~a[n′:]
[n′:] · u

y ∈ ~G (10)
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To make the paper easier to follow, we also define a function H like that in Bulletproofs to help us
explain our protocol. H takes coefficients ~a and value y = f(z) as inputs and converts them into
a single group element as the following equation shows:

L = H(~0n
′
, ~a[:n′], 〈~a[n′:], ~z[:n′]〉) (11)

R = H(~a[n′:], ~0n
′
, 〈~a[:n′], ~z[n′:]〉) (12)

P = H(~a[:n′], ~a[n′:], y ) · hφ // equivalent to C · uy (13)

Both the prover and the verifier use inputs C, y to compute P . L,R are computed by the prover
and sent to the verifier. Upon receiving L,R from the prover, the verifier will perform the following
steps to compute P ′:

1 The verifier generates a random challenge xj ← Zn′p and then send it to the prover

2 Prover computes ~a ′ = ~a[:n′] + ~a[n′:]xj ∈ Zn′p and sends ~a′ to the verifier

3 Both prover and verifier compute ~z ′ = ~z[:n′] + ~z[n′:]x
−1
j ∈ Zn′p

4 With L,R, ~z ′, the verifier can compute P ′ = Lx
−1
j PRxj , and outputs ”accept” if and only if:

P ′ = H(~a ′, ~a ′x−1, 〈~a ′, ~z ′〉) (14)

Note that P ′ is the P value in the next round of the recursion, which we will explain in the
next sub-section.

3.5 Recursive Evaluation

Similar to the inner product argument used in Bulletproofs, we can shrink the polynomial com-
mitment being evaluated here through recursion. Instead of sending ~a ′ ∈ Zn′ , the prover and the
verifier can engage in a recursive protocol to reduce the transcript size by half in each round, until
|~a| = 1 in the final round. The full recursion algorithm is shown in Protocol RecursiveEval. Note
that the right-hand side of equation 14 is the same as:

P ′ = ~g ~a
′

[:n′] · ~g
x−1
j ·~a

′

[n′:] · u〈~a
′,~z ′〉 · hφ = (~g[:n′] ◦ ~g

x−1
j

[n′:] )
~a ′ · uy · hφ (15)

(~g[:n′] ◦ ~g
x−1
j

[n′:] ) is a list of n′ base elements for round j + 1 in the recursion, and each a′i is the

exponent of base g′i = (~gi · ~g
x−1
j

n′+i) in the next round.

In the final round j = f , |~g| = 1 ∧ ~g = B, we have |~a| = 1, |~z| = 1, and P = Bahφua·z. We use
a generalized Shnorr’s protocol similar to that used in Halo [7] to perform the final check of the
protocol. That is, the verifier will validate the statement f(z) = y if the prover can prove it has
knowledge of the exponents of B, h, u in P . The final validation steps are described below:

1. The prover generates random secrets δ, ε ∈ Zp and computes R = (B · uz)δ · hε ∈ G
2. The prover sends R to the verifier, and upon receiving R, the verifier samples a random challenge

c and sends it back to the prover
3. The prover applies challenge c and witnesses a, φ to compute s1, s2 s.t. s1 = a · c + δ ∈ Zp,

s2 = φ · c+ ε ∈ Zp and sends s1, s2 to the verifier
4. The verifier uses committed values P,R, transcripts s1, s2, group bases B, h, u, and z to compute

the left and right hand sides of the equality below and passes the validation if the equality
holds

P c ·R ?
= (g · uz)s1 · hs2 ∈ G

Note that Bulletproofs’ inner product protocol requires verifiers to compute all base elements
~g ′ for every round, an expensive task and the primary reason why it would require O(n) group
exponential verifier cost.

9



3.6 Prover Assisted Logarithmic Computation of Base Element

The most costly operation for the verifier in Bulletproofs’ inner product argument is the task of
computing base elements ~g ′,~h ′ in each round of a recursion. Although the second vector ~h ′ is no
longer needed after “shrinking” it to a polynomial commitment evaluation protocol, computing ~g ′

in each round is still expensive and requires the verifier to perform n group exponential operations.

With the knowledge of Section 3.3 in mind, we define the following steps to reduce the verifier’s
computation cost to 4 log n group exponential operations:

1. During the setup phase, both the prover and the verifier compute B =
∏n−1
i=0 gi, Bδ =

∏n−1
i=0 g

ni

i .
Note that since gi for i = {0, ..., n− 1} is known during the protocol initialization phase, this
step should be performed before the protocol is put into use.

2. In round j, the prover computes BL =
∏n′−1
i=0 gi and BδL =

∏n′−1
i=0 gn

i

i and sends them to the
verifier.

3. In round j, the verifier computes B′ and B′δ for round j + 1 using challenge xj generated for
this round. For BR = (B/BL), we have:

B′ = BL · (B/BL)x
−1
j ∈ G (16)

B′δ = BδL · (B/BδL)x
−1
j ·/2

n′

(17)

4. In round j + 1, both the prover and the verifier set B,Bδ of round j + 1 to B′, B′δ of the earlier
round j, and restart from step 2.

The rational is that if we set each gδi = g2
i

i (which also implies g′δi = g′2
i

i ), then each ith
generator g′δi used to create B′δ can be expressed as:

g′δi = gδi · (gδn′+i)x
−1
j = g2

i

i · (g2
n′+i

n′+i )x
−1
j

If we factor out each g′δi by 2i power, we get g
′1/2i
δi , which can be written as:

g′i = gi · (g2
n′

n′+i)
x−1
j

The equality above is equivalent to the equality 6 explained in the earlier sub-section 3.2. Since the
multiplication order of generators in computing BL and BδL does not matter due to associativity,
we can also infer that both BL and BδL must be correctly computed as specified in step 2.

The protocol that satisfies the first relation defined in this section is illustrated in Protocol
PCEval, which calls Protocol RecursiveEval to recursively run down the statement until we get to
n = 1 (the number of degree terms in a polynomial), where the verifier will perform the final check
to decide whether the statement f(z) = y is valid or not.

10



Input : (~g, h, u, C ∈ G, z, y, n ∈ Zp;~a, φ ∈ Zp)
P ′s input : (~g, h, u, C, z, y, n;~a, φ)

V ′s input : (~g, h, u, C, z, y, n)

P,V Initialize : // setup phase, run only once

B =

n−1∏
i=0

gi ∈ G

Bδ =

n−1∏
i=0

gn
i

i ∈ G

V computes :

x
$←− Zp

V → P : x

P,V computes :

P = C · ux·y ∈ G
~z = z0, z1, ..., zn−1 ∈ Znp

call RecursiveEval (~g, h, ux, P,B,Bδ, ~z, y, n; ~a, φ)

Protocol PCEval

Protocol PCEval initializes all input parameters of our protocol and then calls Protocol Recur-
siveEval to recursively evaluate committed polynomial C.

Input : (~g, h, u, P,B,Bδ ∈ G, ~z ∈ Znp , y, n ∈ Zp;~a, φ ∈ Zp)
P ′s input : (~g, h, u, P,B,Bδ, ~z, y, n; ~a, φ)

V ′s input : (~g, h, u, P,B,Bδ, ~z, y, n)

if n = 1 :

V computes :

if ShnorrV erify(P,B, z; a, φ) ∧B ?
= Bδ : accept

else : reject

P computes :

n′ = n/2 ∈ Zp

cL =

n′−1∑
i=0

aizn′+i ∈ Zp, cR =

n′−1∑
i=0

an′+izi ∈ Zp

L =

n′−1∏
i=0

ga
i

n′+i · ucL ∈ G, R =

n′−1∏
i=0

ga
n′+i

i · ucR ∈ G

11



BL =

n′−1∏
i=0

gi ∈ G, BδL =

n′−1∏
i=0

gi
2i ∈ G

P → V : L,R,BL, BδL

V computes :

xj
$←− Zp

B′ = BL · (B/BL)x
−1
j ∈ G, B′δ = BδL · (B/BδL)x

−1
j /2n

′

∈ G
V → P : xj

P computes :

~g ′ = ~g[:n′] ◦ (~g[n′:])
x−1
j ∈ Gn

′

P,V computes :

P ′ = Lx
−1
j · P ·Rxj

~a ′ = ~a[:n′] + ~a[n′:] · xj ∈ Zn
′

p

call RecursiveEval(~g′, h, u, P,B,Bδ, P
′, U, ~z ′, y, n′; ~a, φ)

Protocol RecursiveEval

Protocol RecursiveEval calls protocol ShnorrCheck to perform the final check by validating knowl-
edge of exponents on B, h, u match those on P .

Input :(P,B ∈ G, z ∈ Zp; a, φ ∈ Zp)
P ′s input : (P,B ∈ G, z ∈ Zp; a, φ ∈ Zp)
V ′s input : (P,B ∈ G, z ∈ Zp)
P computes :

δ, ε
$←− Zp

R = (B · uz)δ · hε ∈ G
P → V : R

V computes :

c
$←− Zp

V → P : c

P computes :

s1 = a · c+ δ ∈ Zp
s2 = φ · c+ ε ∈ Zp

P → V : s1, s2

V validates :

if P c ·R ?
= (g · uz)s1 · hs2 ∈ G

return true

else return false

12



Protocol ShnorrCheck

Corollary 1. (Polynomial Commitment Evaluation). The scheme presented in Protocol PCEval
has perfect completeness, honest verifier zero knowledge, and witness-extended-emulation for either
extracting a non-trivial discrete logarithm relation between ~g, h, u or extracting a valid witness ~a.

The proof of corollary 1 is defined in theorem 1, which is an extension of corollary 1.

4 Full Protocol with Complete Logarithmic Verification Time

The protocol introduced in Section 3 achieved logarithmic verifier cost for group exponentiation
operations. However, the total asymptotic verification time is still linear because verifiers need to
compute ~z ′ for every iteration. Although field operations are usually considered cheap, they add
up when the polynomial gets large. In this section, we will introduce a computation trick that will
bring the asymptotic verification cost to O(log n).

4.1 Achieving Logarithmic Verifier for Field Operations

As the degree of a polynomial grows toward 220, the concrete verifier work will increasingly be
dominated by 1n + log n field multiplications and 1n field additions in protocol PVEval. Fur-
thermore, computing ~z from one z input would require another 1n field multiplication operations
in Zp, so there are a total of 2n + log n field multiplications the verifier needs to compute in
protocol PVEval. In this section we will introduce a computation trick to reduce the verifier field
computation cost from 2n+ log n in protocol PVEval to O(log n).

While our focus is on the univariate polynomial where the pattern is well known (the variable
in each term has one more degree than that of the previous term), similar techniques may exist
for other multi-variate polynomials that have an identifiable pattern.

In each round of the recursion, the verifier needs to compute z′i for i = {1, 2, ..., n′}. Computing
|~z ′| = n′ elements requires n′ field addition and n′ field multiplication operations. Each z′i is defined
as:

z′1 = z1 + zn′+1 · x−1j (18)

z′2 = z2 + zn′+2 · x−1j (19)

... (20)

... (21)

z′n′ = zn′ + zn · x−1j (22)

Break vector ~z ′ to left and right sets s.t. left set = z′1, ..., z
′
n′/2 and right set = z′n′/2+1, ..., z

′
n. We

can observe that the elements of the right set can be computed directly from the elements of the
left set by multiplying each element of the left set by zn′/2:

z′n′/2+1 = z′1 · zn′/2 (23)

z′n′/2+2 = z′2 · zn′/2 (24)

... (25)

... (26)

z′n′/2+n′/2 = z′n′/2 · zn′/2 (27)
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If this trick can be applied recursively, we can reduce the total field operations to O(log n). In our
new setting, we define zl, zr to represent the leading elements of the left set and the right set, such
that in round 1 we have:

zl = z0 (28)

zr = zl · zn/2 (29)

Note that z0 is “1”, which is the constant term in a polynomial f(x). In each of the subsequent
rounds, new z′l, z

′
r are computed from zl, zr of the previous round j − 1 s.t.:

z′l = zl + zr · x−1j (30)

z′r = z′l · zn
′/2 (31)

This approach allows the verifier to only compute two values in each round. We can visually observe
this process in table 1.

Instead of computing all zk values in f(X) for k = {z0, z1..., zn−1} as in Protocol PCE-
val/RecursiveEval, the updated protocol only needs verifiers to pre-compute zn

′/2 used in each
round, then store them in ~e during the initialization phase using equations below:

e1 = z ∈ Zp (32)

ei+1 = e2i ; for i = {1, ..., log n} ∈ Zlog n
p (33)

Using Table 1 we can visualize how the final z is computed from this recursion process: We use
the subscript j to indicate the round number s.t. zj,i is element zi in round j. Bold symbol zj,0 is
the z′l value of round j, and underlined zj,n′/2 is the z′r value of round j.

To make table 1 easier to discern, we don’t show the negative exponent on each xj (e.g. xj
means x−1j in table 1) for clarity reasons. In round j = 0, we have zi = zi−1 for i ∈ {1, ..., n}.

Table 1: Logarithmic Computation of z

Recursive Iterations to compute z

j = 1 j = 2 j = 3 j = 4

z′
1,1 = z1 + z9x1 z′

2,1 = z′
1,1 + z′

1,5x2 z′
3,1 = z′

2,1 + z′
2,3x3 z4,1 = z′

3,1 + z′
3,2x4

z′1,2 = z2 + z10x1 z′2,2 = z′1,2 + z′1,6x2 z′3,2 = z′2,2 + z′2,4x3

z′1,3 = z3 + z11x1 z′2,3 = z′1,3 + z′1,7x2

z′1,4 = z4 + z12x1 z′2,4 = z′1,4 + z′1,8x2
z′1,5 = z5 + z13x1

z′1,6 = z6 + z14x1
z′1,7 = z7 + z15x1
z′1,8 = z8 + z16x1

n′1 = 8 n′2 = 4 n′3 = 2 n′4 = 1

By observing table 1, we can visually see how “missing” values from round j = 0 are eventually
being captured in the final round:

In round j = 1, we only computed z′1,1 as z′l and z′1,5 as z′r (or z1,n′/2+1). However, the rest of the
uncomputed elements of this round z′1,2, z

′
1,3, z

′
1,4, z

′
1,6, z

′
1,7, z

′
1,8 will be counted to the computation

of the final value in subsequent rounds.
In round j = 2, computing z′r(z

′
2,3) from z′l(z

′
2,1) will count z′1,3, z

′
1,7 (z1,(n′2/2+1), z1,(n′2/2+1)+n′2

) to the computation.
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In round j = 3, computing z′r(z
′
3,2) will count z′1,2, z

′
1,4, z′1,6, z′1,8 (z1,(n′3/2+1), z1,(n′3/2+1)+1·n′3 ,

z1,(n′3/2+1)+2·n′3 , z1,(n′3/2+1)+3·n′3 ) to the recursive computation, which is then used to compute
z4,1 in the next round (j = 4). z4,1 is the final z we use in the protocol SchnorrCheck to validate
the relation y = f(z).

We are now ready to define the complete protocol in Protocol PCEvalFull/RecursiveEvalFull
in the next subsection, and define theorem 1 as follows:

4.2 Full Protocol with Complete Logarithmic Verification Cost

We now present the full protocol for polynomial evaluation with asymptotic logarithmic verifier
cost. Note that prover’s work is identical to that defined in protocol PCEval and protocol Recur-
siveEval.

Input : (~g, h, u, C ∈ G, z, y, n ∈ Zp;~a, φ ∈ Zp)
P ′s input : (~g, h, u, C, z, y, n;~a, φ)

V ′s input : (~g, h, u, C, z, y, n)

P,V Initialize : // setup phase, run only once

B =

n−1∏
i=0

gi ∈ G

Bδ =

n−1∏
i=0

gδi ∈ G

V computes :

e1 = z ∈ Zp
ei+1 = e2i ; for i = {1, ..., log n} ∈ Zlog n

p

zl = z ∈ Zp
zr = zl · ~e[log n] ∈ Zp

x
$←− Zp

V → P : x, zl, zr, ~e

P,V computes :

P = C · ux·y ∈ G
call RecursiveEvalFull(~g, h, ux, B,Bδ, P,~e, zl, zr, y, n, 1; ~a, φ)

Protocol PCEvalFull

Protocol PCEvalFull initializes parameters of our protocol using its inputs and then calls Pro-
tocol RecursiveEvalFull to recursively evaluate committed polynomial C at evaluation point z s.t.
y = f(z).
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Input : (~g, h, u,B,Bδ, P ∈ G, ~e, zl, zr, y, n, j ∈ Zp;~a, φ ∈ Zp)
P ′s input : (~g, h, u,B,Bδ, P,~e, zl, zr, y, n, j; ~a, φ)

V ′s input : (~g, h, u,B,Bδ, P,~e, zl, zr, y, n, j)

if n = 1 :

V computes :

if ShnorrV erify(P,B, z; a, φ) ∧B ?
= Bδ : accept

else : reject

P computes :

n′ = n/2 ∈ Zp

cL =

n′−1∑
i=0

aizn′+i ∈ Zp, cR =

n′−1∑
i=0

an′+izi ∈ Zp

L =

n′−1∏
i=0

ga
i

n′+i · ucL ∈ G, R =

n′−1∏
i=0

ga
n′+i

i · ucR ∈ G

BL =

n′−1∏
i=0

gi ∈ G, BδL =

n′−1∏
i=0

gi
2i ∈ G

P → V : L,R,BL, BδL

V computes :

xj
$←− Zp

B′ = BL · (B/BL)x
−1
j ∈ G, B′δ = BδL · (B/BδL)x

−1
j /2n

′

∈ G
z′l = zl + zr · x−1j ∈ G
if n′ 6= 1 :

z′r = z′l · ~e[log n−j] ∈ Zp
j′ = j + 1 ∈ Zp // keeping track of recursion rounds

V → P : xj

P computes :

~g ′ = ~g[:n′] ◦ (~g[n′:])
x−1
j ∈ Gn

′

~a ′ = ~a[:n′] + (~a[n′:])xj ∈ Zn
′

p

P,V computes :

P ′ = Lx
−1
j · P ·Rxj

call RecursiveEvalFull(~g ′, h, u,B′, B′δ, P
′, ~e, zl

′, zr
′, y, n′, j′; ~a, φ)

Protocol RecursiveEvalFull

Theorem 1. (Polynomial Commitment Evaluation with Logarithmic Verification Cost). The argu-
ment presented in Protocol PCEvalFull/RecursiveEvalFull has perfect completeness, perfect special
honest verifier zero knowledge, and witness-extended-emulation for either extracting a non-trivial
discrete logarithm relation between ~g, h, u or extracting a valid witness ~a.

The proof of theorem 1 is in Appendix A
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Multi-linear/multi-variate Polynomial: The trick we introduced in this section is only de-
signed to accelerate uni-variate polynomial commitment schemes which power most of the popular
SNARK protocols. Multi-linear and multi-variate polynomials can have many variable placement
patterns, and it is unlikely that one algorithm can fit them all. However, if the variable placement
pattern of a multi-linear or multi-variate polynomial can be identified, then there is a non-negligible
chance that a sub-linear computation trick can be found.

5 Complexity Analysis and Benchmark

The biggest advantage of our polynomial commitment scheme is that it does not need to use expen-
sive pairing-based or group-of-unknown-order groups to achieve transparency while still providing
logarithmic verifier cost and communication cost. While the asymptotic performance of our proto-
col is comparable to the current state of the art, its concrete verifier and communication costs are
almost one order of magnitude more efficient than the current state-of-the-art schemes.

Techniques we use can be easily configured to support batch proof, as mentioned earlier, and
can be used to improve the inner product argument in Bulletproofs’ Zero Knowledge Range Proof
and therefore significantly improve the verifier performance of Bulletproofs’ ZKRP.

Table 2: Performance Comparison with Other Polynomial Commitment Schemes
Scheme Transparent Prover Verfier Proof Size

DARK • O(n log n)Gu exp O(n log n)Gu exp O(log n)Gu

Bulletproofs • O(n)G exp O(n)G exp O(log n)G
KATE ◦ O(n)G1 exp 2 Pairing O (1)G1

RS-IOP • O (λn) H O (λ log2n) H O(λ log2n) H

Dory • O(n1/2)P O(log n)GT exp O (log n)GT

This Work • O(n)G exp O(log n)G exp O(log n)G

The symbol Gu denotes a group of unknown order, G1, G2, and GT are the first, second, and
third groups of a bilinear map (pairing), and H is either the size of a hash output, or the time
it takes to compute a hash based on context. Compared to the G (curve25519 implementation)
that our protocol uses, GT is approximately 6 times more expensive in size and 10 times more
expensive in group exponential operation, and GU is approximately 20+ times more expensive in
size and 600+ times more expensive in group exponential operation [16]. We neglect the impact of
Pippenger style savings in the comparison table.

The concrete cost of our protocol is dominated by 4nG exponential prover cost, 4 log nG
exponential verifier cost, and 4 log nG communication cost.
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Now we show the result of our benchmark testing. The test is performed on an Intel (R)
Core(TM) i7-9750H CPU @2.60GHz. We wanted to test against Dory (which we believe is the
current state of art), but we couldn’t find any open sourced code for Dory. Instead, we copied
the benchmark numbers from Dory paper and marked them with a red dashed line. While Dory’s
benchmark is performed on multilinear polynomials, the concrete cost is the same for both multi-
linear and univariate polynomials in Dory is 9m+O(1)GT s.t. m = 1

2 log n+O(1) in verifier cost

[16], communication cost is both at 6 log nGT [16], and prover cost is both dominated by n1/2P
[16].

Please note that since Dory’s benchmark numbers are presented in graphs, we have to do our
best approximation here, and we don’t believe the error gap is significant enough to impact our
analysis. Also note that Dory’s test is performed on an AMD Ryzen 5 3600 CPU @3.60Ghz. Since
both tests are run in single-threaded mode, we believe the differences in processing power should
be minor not impacting our analysis.

Our test shows our work (blue line) is better in almost all categories except the prover cost
for large circuits n > 212. This is expected since Dory offers square root asymptotic prover cost.
However, our potorocol offers consistent ≥6X improvement on verifier cost, ≈8X improvement on
communication cost, and ≈6X improvement on commitment size.
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≥6X improvement on verifier cost is comparable to the difference between 9m + O(1)GT of
Dory for univariate polynomial and 4 log n + 2G of our work. (assuming the group exponential
cost of GT is ≥ 10X the group exponential cost of G in curve25519, our protocol is about 16X
more efficient than Dory).
≈8X improvement on communication cost is strictly constant to the difference between (6m+

7)GT + (3m+ 3)(G2 +G1) + 8F of Dory for univariate polynomial and (3 log n+ 1)G+ 2F of our
work,

Finally, the ≈6X commitment size saving is exactly the size difference between G and Gt.
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Appendiex

A. Proof for Theorem 1

Proof. Perfect completeness follows because Protocol PCEvalFull is an instance for the relation
REval defined in definition 7 and refined in Section 3.2 that calls Protocol RecursiveEvalFull to
recursively process the polynomial f(z) and evaluation point z, which is trivially complete.

To prove PSHVZK, we define a simulator S to prove that it can simulate all transcripts indistin-
guishable from those created by a valid prover. We also define another simulator SDL to simulate
transcripts for the Proof of Discrete Log protocol, which we use Schnorr’s protocol to implement
in our system.

Once the recursion starts, simulator S randomly generates proof elements L,R,BLBδL ∈ G for
each round regardless of what challenge xj received from the verifier.

Once the process reaches the final round when n = 1, the simulator first sends some random R
to the verifier to receive the challenge c and then rewind. Using challenge c the simulator obtains
Rd, Re from randomly generated s1, s2 s.t.

Rd = (B · uz)s1/(B · uz)a·c ∈ G
Re = hs2/hφ·c ∈ G

Rd is equivalent to (B · uz)δ for some unknown δ and Re is equivalent to hε for some unknown ε.
The simulator then reconstructs new R∗ = Rd ·Re and send it to the verifier. The verifier then use
R∗ to pass the validation test since:

P c ·R∗ = (B · uz)ac+δ · hφc+ε ∈ G
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With challenge c known, we can simulate transcripts R∗, s1, s2 indistinguishable from any real
prover. We therefore conclude Protocol PCEvalFull/RecursiveEvalFull is PSHVZK.

To prove knowledge soundness, we first construct an extractor Xp for Protocol RecursiveEvalFull
and show that it either extracts witnesses ~a, φ or discovers a non-trivial discrete log relation among
~g, h, u. For each recursive step, we demonstrate that on inputs (~g, h, u, P, y, z, n), the extractor can
either efficiently extract witness ~a from the prover or show a non-trivial discrete log relation among
~g, h, u.

In the final round of the recursion, when |~g| = 1 ∧ n = 1, the process reaches protocol Shnor-
rVerify. After receiving R from the prover, the extractor Xp generates challenges c1 and gets the
first pair s11, s12 from the prover and then rewinds to get the second pair s21, s22 from the prover
using the second challenge c2. It is trivial to retrieve witness a using challenges c1, c2 and tran-
scripts s11, s21 since s11 − s21 = (ac1 + δ)− (ac2 + δ) = a(c1 − c2), and to extract witness φ from
c1, c2 and s12, s22 since s12 − s22 = (φc1 + ε)− (φc2 + ε) = φ(c1 − c2). With a, φ we can just check
if the equality holds:

P = Bahφua·z

If it is not true, then we get a non-trivial discrete log relation among B, h, u.
For each of the recursive steps, the extractor Xp communicates with the prover and gets L,R,BR

in each round. By rewinding the prover four times with four different challenges xj1, xj2, xj3, xj4
in which xji 6= xjk for 1 ≤ i < k ≤ 4, the extractor obtains four pairs of ~a ′i ∈ Zp that satisfies the
equation:

Lx
−1
ji · P ·Rxji =

n′−1∏
i=0

( gi · g
x−1
ji

n′+i )~a
′
· u〈~a, ~z〉 · hφ (34)

We can use the first three challenges xj1, xj2, xj3 to compute w1, w2, w3 ∈ Zp

v1 =

3∑
i=1

wi · x−1ji = 1, v2 =

3∑
i=1

wi = 0 v3 =

3∑
i=1

wi · xji = 0 (35)

Taking the linear combination of w1, w2, w3 and transcripts L,R received from the protocol, the
extractor can compute ~aL and cL s.t. L = ~g ~aLucL . From equation 11, we see that ~aL = (~0n

′ ||~a[:n′]).
With different choices of w1, w2, w3 for v1 = 0, v2 = 1, v3 = 0 and v1 = 0, v2 = 0, v3 = 1, the
extractor also gets ~aR, cR and ~aP , cP s.t. R = ~g ~aRucR , and P = ~g ~aP ucP hφ. With equation 11, we
see that:

~aL = ( ~0n
′
|| ~a[:n′] )

~aR = ( ~a[n′:] || ~0n
′

)

~aP = ( ~a[:n′] || ~a[n′:] )

We now rewrite the equation above to:

~g ~aL·x
−1
j +~aP+~aR·xj · ucL·x

−1
j +cP+cR·xj · hφ = ~g ~a

′

[:n′]~g
x−1
j ·~a

′

[n′:] · u〈~a
′, ~z ′〉 · hφ (36)

The exponents of the right-hand side of equation ?? is :

~a ′ = ~aL,[:n′] · x−1j + ~aP,[:n′] + ~aR,[:n′] · xj
~a ′ · x−1j = ~aL,[n′:] · x−1j + ~aP,[n′:] + ~aR,[n′:] · xj
〈~a ′, ~z ′〉 = cL · x−1j + cP + cR · xj

(37)
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The first line of equation ?? is the exponents of base ~g[:n′], the second line is the exponents

of base (~g[n′:])
x−1
ji , and the third line is the exponent of base u, all of which are the bases of the

equation on the right hand side of equality 36. If any of these equalities do not hold, then we obtain
a non-trivial discrete logarithm relation among generators (g0, ..., gn−1, u).

Since ~a′ is a shared exponent, we can rewrite the right-hand side of equality 36 to:

~g ′~a
′
· u〈~a

′, ~z ′〉 · hφ = (~g[:n′] ◦ ~g
x−1
ji

[n′:] )~a
′
· u〈~a

′, ~z ′〉 · hφ (38)

Where as each g′i = gi · gi+n′x
−1
ji for i ∈ {1, ..., n′}. The verifier must be able to compute (the

product of) generators ~g′ from transcript BL as equation 16 specified s.t.

n′−1∏
i=0

~g ′ = B′ = BL · (BR)x
−1
ji (39)

Rewriting the right hand side of the equality above, we can see each ith term in B′ is equivalent
to g′i as shown below.

n′−1∏
i=0

~g ′ =

n′−1∏
i=0

gi · gn′+ix
−1
ji (40)

Where each g ′i maps to the product of the ith item of ~g and n′+ ith of ~g, this implies the ith term
of BL must be gi and the ith term of BR is gn′+i:

g ′i = gi · (gn′+i)x
−1
ji (41)

However, this also implies that if the dishonest prover found a list ~g∗ that also satisfies the right-
hand side of equality 38, then setting the ith term of BL to g∗i and the ith term of BR to g∗n′+i

would also pass the validation.
The verifier computes B′δ from BδL according to equation 17 as follows:

n′−1∏
i=0

~g ′2
i

= B′δ = BδL · (Bδ/BδL)x
−1
ji /2

n′

(42)

Rewriting the right-hand side of the equality above, we can see each ith term in B′δ is equivalent

to g′2
i

i as shown below.
n′−1∏
i=0

~g ′2
i

=

n′−1∏
i=0

g2
i

i · (g2
n′+i

n′+i )x
−1
ji /2

n′

(43)

For each ith term, we factor out the exponent 2i to get the following:

g ′i = gi · (g2
n′

n′+i)
x−1
ji /2

n′

(44)

The only way for both the equality 41 and the equality 44 to compute to the same g′i is when
the ith term of both BL and BδL (after factoring out the exponent) is gi (not g∗i ) because such g∗i
cannot be found as we explained in Section 3.2. Since the multiplication order of generators in BL
and BδL does not matter due to associativity, we can also infer that both BL and BδL must be
legit for equalities 39 and 42 to be true.

From the first two lines of equations ??, we can conclude that for each challenge {xj1, xj2, xj3, xj4}
that:

~aL,[:n′] · x−1j + (~aR,[:n′] − ~aP,[n′:]) · xj + (~aP,[:n′] − ~aL,[n′:]) + ~aR,[n′:] · x2j = 0 (45)
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Here we can conclude that the only way for the equality in 36 to hold for all challenges xj1, xj2, xj3, xj4 ∈
Zp is if:

~aL,[:n′] = ~aR,[n′:] = 0

~aR,[:n′] = ~aP,[n′:]

~aP,[:n′] = ~aL,[n′:]

(46)

By applying the relations above to the first equality defined in 37 , we can see that for every
xj ∈ {xj1, xj2, xj3, xj4} that ~a ′ = ~aP,[:n′] + ~aP,[n′:] · xj .

Using these values, we see that the last equality of 37 can be represented as:

cL · x−1j + cP + cR · xj = 〈~a ′, ~z ′〉
=〈~aP,[:n′], ~z[:n′]〉+ 〈~aP,[n′:], ~z[n′:]〉+ x · 〈~aP,[n′:], ~z[:n′]〉

+ x−1j · 〈~aP,[:n′], ~z[n′:]〉
=〈~aP , ~z〉+ xj · 〈~aP,[n′:], ~z[:n′]〉+ x−1j · 〈~aP,[:n′], ~z[n′:]〉

This equation holds for all xj ∈ {xj1, xj2, xj3, xj4 }, and we can conclude that 〈~aP , ~z 〉 = cP =
〈~a, ~z 〉, or we obtain a non-trivial discrete logarithm relation among generators (g0, ..., gn−1, u).

Finally, after exiting recursion, we show that using Protocol PCEvalFull we can construct an
extractor X that uses the extractor Xp of Protocol RecursiveEvalFull. The behavior of X is similar
to that of Bulletproofs [?]. X runs the prover with a challenge x1 and then uses the extractor Xp to
extract witness ~a1, φ such that C·ux1·y = ~g ~a1hφux1·y. Rewinding the prover with a new challenge x2
and running the extractor Xp again to extract a second witness ~a2 such that C ·ux2·y = ~g ~a2hφux2·y.
The soundness implies that we can either compute u(x1−x2) ·y = ~g ~a1−~a2 ux1·y−x2·y, or we get a
non-trivial discrete logarithmic relation among ~g and u, or we get u(x1−x2)·y such that y = 〈~a, ~z〉.
Therefore, ~a is a valid witness to the relation. The extractor X is efficient because it only uses
extractor Xp twice, therefore, we can conclude that the protocol has witness-extended emulation
based on the forking lemma.
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