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Abstract. The One-Way to Hiding (O2H) theorem, first given by Unruh
(J ACM 2015) and then restated by Ambainis et al. (CRYPTO 2019), is a
crucial technique for solving the reprogramming problem in the quantum
random oracle model (QROM). It provides an upper bound d ·

√
ϵ for the

distinguisher’s advantage, where d is the query depth and ϵ denotes the
advantage of a one-wayness attacker. Later, in order to obtain a tighter
upper bound, Kuchta et al. (EUROCRYPT 2020) proposed the Measure-
Rewind-Measure (MRM) technique and then proved the Measure-Rewind-
Measure O2H (MRM-O2H) theorem, which provides the upper bound
d · ϵ. They also proposed an open question: Can we combine their MRM
technique with Ambainis et al.’s semi-classical oracle technique (CRYPTO
2019) or Zhandry’s compressed oracle technique (CRYPTO 2019) to prove
a new O2H theorem with an upper bound even tighter than d · ϵ?
In this paper, we give an affirmative answer for the above question.
We propose a new technique named Measure-Rewind-Extract (MRE) by
combining the MRM technique with the semi-classical oracle technique.
By using MRE technique, we prove the Measure-Rewind-Extract O2H
(MRE-O2H) theorem, which provides the upper bound

√
d · ϵ.

As an important application of our MRE-O2H theorem, for the FO/⊥,
FO/⊥

m, FO⊥ and FO⊥
m proposed by Hofheinz et al. (TCC 2017), i.e., the

key encapsulation mechanism (KEM) variants of the Fujisaki-Okamoto
transformation, we prove the following results in the QROM:
– Their IND-CCA security can be reduced to the IND-CPA security

of the underlying public key encryption (PKE) scheme without the
square-root advantage loss. In particular, compared with the IND-
CCA proof of FO/⊥ given by Kuchta et al. (EUROCRYPT 2020), ours
removes the injectivity assumption and has a tighter security bound.

– Under the assumption that the underlying PKE scheme is unique
randomness recoverable, we for the first time prove that their IND-
CCA security can be reduced to the OW-CPA security of the under-
lying PKE scheme without the square-root advantage loss.

Keywords: quantum random oracle model · security proof · Fujisaki-
Okamoto transformation · key encapsulation mechanism.
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1 Introduction

The Fujisaki-Okamoto (FO) transformation [13] is used to construct a public key
encryption (PKE) scheme that is secure against the indistinguishability under
chosen-ciphertext attacks (IND-CCA) in the random oracle model (ROM) [3]. The
PKE scheme constructed by FO is based on a weakly secure PKE scheme, which
can only be secure against the indistinguishability under chosen-plaintext attacks
(IND-CPA) or the one-wayness under one-way attacks (OW-CPA). Compared to
directly constructing an IND-CCA-secure PKE scheme, it is considered easier and
more efficient to first construct an IND-CCA-secure key encapsulation mechanism
(KEM) scheme and then derive an IND-CCA-secure PKE scheme via the KEM-
DEM paradigm [7]. Following this fact, Dent [9] designed the first KEM variant of
FO, which can be used to construct IND-CCA-secure KEM schemes in the ROM.
Further, Hofheinz et al. [15] designed some KEM variants of FO including FO/⊥,
FO/⊥

m, FO⊥ and FO⊥m. They proved that the KEM schemes constructed by these
variants are IND-CCA-secure in the ROM. Indeed, these variants are also called
the FO-like transformations, the /⊥ (resp. ⊥) indicates that the variant is implicit
(resp. explicit) rejection type, in which a pseudorandom value (resp. an abort
symbol ⊥) is returned if the ciphertext fails to decapsulate.

The FO-like transformations are widely adopted in the NIST post-quantum
cryptography standardisation process [29], and hence their post-quantum secu-
rity has received much attention. As argued by Boneh et al. [5], to fully assess
post-quantum security, the ROM should be lifted to the quantum random oracle
model (QROM). This means that having only ROM security proof of FO-like
transformations is not enough, and we also need QROM security proof.

Up to now, a long sequence of works [30,19,20,4,25,16] have provided the
QROM security proofs of FO-like transformations, they all focused on the widely
accepted IND-CCA security and gave different security bounds. Simultaneously,
all those works used the original One-Way to Hiding (O2H) theorem [31,1] (or
its variant) to solve the reprogramming problem in the QROM. Here the repro-
gramming problem can be described informally as follows.

• The reprogramming problem. To reprogram a random function G : X →
Y at a subset S ⊆ X is to replace G with a new function H, where H(x) is
resampled on x ∈ S and H(x) = G(x) on x /∈ S, i.e., G and H only differ
on S. The reprogramming problem is, for any distinguisher A making parallel
queries with depth d3, bound its distinguishing advantage

Adv(A) := |Pr[b = 1 : b← AG]− Pr[b = 1 : b← AH ]|. (1)

This problem is said to be in the QROM if A has quantum access to its oracle.

The original O2H theorem [31,1] designs a one-wayness attacker Bow, which has
oracle access to H and generates its output x by measuring A’s oracle query.
And Bow’s one-wayness advantage Adv(Bow) := Pr[x ∈ S : x ← BHow] satisfies
Adv(A) ≤ 2d ·

√
Adv(Bow), where d is the query depth of A.

3 See Supplementary Material A.1 for the introduction of parallel query.
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From the proof strategies of the long sequence of works [30,19,20,4,25,16],
one can find that the upper bound of Adv(A) influences the tightness of their
IND-CCA security proofs. Roughly speaking, the tighter the upper bound of
Adv(A), the tighter their IND-CCA security proofs. Since a tighter security proof
means more freedom in the parameter selection, many tighter O2H variants have
been proved and used in those long sequence of works, and three representative
variants are shown in Table 1. As we can see, these variants are all proved by
using some novel techniques and giving more "power" (i.e. oracle 1S or G) to
the one-wayness attacker Bow, and their upper bounds of Adv(A) are all indeed
tighter than the 2d ·

√
Adv(Bow) proved by the original O2H theorem [31,1].

Table 1. Three O2H variants. Here A makes parallel queries to its oracle with query
depth d. The |S| denotes the number of elements in set S. The 1S denotes the indicator
function of set S, i.e., 1S(x) = 1 if x ∈ S and 0 otherwise.

O2H theorem Proved by |S| Adv(A) ≤ Bow’s oracle

Original O2H [31,1] \ Arbitrary 2d ·
√

Adv(Bow) H

SC-O2H [1] semi-classical oracle
technique [1] Arbitrary 2

√
d ·Adv(Bow) H and 1S

a

DS-O2H [4] compressed oracle
technique [34] One 2

√
Adv(Bow) H and G

MRM-O2Hb [25] Measure-Rewind-Measure
(MRM) technique [25] Arbitrary 4d ·Adv(Bow) H and G

a The SC-O2H theorem actually requires that Bow has oracle access to H\S. Since H\S
can be implemented knowing H and 1S , we just write H and 1S here for simplicity.

b The MRM-O2H theorem additionally requires that the event used by A to distinguish
G and H is efficiently checkable by itself. In fact, as shown in Eq. (1), the distinguisher
A considered in our paper uses the event b = 1 to distinguish G and H, which must be
efficiently checkable by A. So we omit this requirement in this table for simplicity.

Although the three O2H variants shown in Table 1 all have tighter upper
bounds, there are extra restrictions during their application, respectively. In
more detail, the SC-O2H theorem needs the Bow to have oracle access to both H
and 1S , which means that when we try to use Bow to attack the underlying hard
problem, we need to find a way to simulate the additional 1S for Bow. In order
to achieve this, it seems that we need to clearly know the set S or at least some
values related to S4. For the DS-O2H and MRM-O2H theorem, the situation is
even worse, as their Bow even requires oracle access to both H and G. Indeed,
since G and H only differ on the set S, requiring oracle access to both H and G
seems stronger than to H and 1S , in the way that one can determine whether
x ∈ S by testing if G(x) = H(x).

4 E.g. S = {w} and we can get f(w), where f is a public one-way injective function.
At this point, we can compute 1S(x) as: 1S(x) = 1 if f(x) = f(w) and 0 otherwise.
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Fortunately, these restrictions of Bow are not completely unattainable, at
least they can be achieved when proving the IND-CCA security of FO-like trans-
formations in the QROM. Roughly speaking, in the security proof, due to the
special properties of the underlying PKE scheme and the structure of FO-like
transformations, one can successfully simulate (H and 1S)/(H and G) for Bow.
In fact, the (QROM) IND-CCA security proof of FO/⊥ provided by Kuchta et al.
[25] is done in that way: firstly use the MRM-O2H theorem to obtain the corre-
sponding Bow, then simulate H and G for Bow, and finally use Bow to attack the
OW-CPA security of the underlying PKE scheme. One thing we would like to
stress is that, since the upper bound provided by the MRM-O2H theorem avoids
the square-root advantage loss (see Table 1), Kuchta et al.’s security proof also
avoids the square-root advantage loss.

In short, after the long sequence of works [30,19,20,4,25,16], a tighter O2H
theorem seems necessary if we want to give tighter QROM security proofs of the
FO-like transformations. However, it is quite challenging to prove a tighter O2H
theorem, Kuchta et al. also proposed the following question in [25]:

Can we combine their MRM technique with the semi-classical oracle technique or
the compressed oracle technique to prove a new O2H theorem that is tighter

than their MRM-O2H theorem? And can we use this new O2H theorem to give
tighter IND-CCA security proofs of the FO-like transformations in the QROM?

1.1 Our Contribution

Our answer to the above question is yes. We propose a new technique named

Measure-Rewind-Extract (MRE)

by combining the MRM technique with the semi-classical oracle technique. Then,
by using our MRE technique, we prove a new O2H theorem (Theorem 4) named

Measure-Rewind-Extract O2H (MRE-O2H).

It shows that Adv(A) ≤ 4
√
d · Adv(Bow), where d is A’s query depth and Bow

has oracle access to H,G and 1S . Note that this upper bound is tighter than the
4d ·Adv(Bow) proved by the MRM-O2H theorem (see Table 1).

Remark 1. Compared with the MRM-O2H theorem, which only requires that
Bow has oracle access to H and G, our MRE-O2H theorem additionally requires
the oracle access to 1S . In fact, this additional requirement is not essential, as
we can simulate 1S by querying H and G: 1S(x) = 1 if H(x) ̸= G(x) and 0
otherwise. Intuitively speaking, this simulation is not problematic because G
and H only differ on the set S. Here we point out that our MRE-O2H theorem
still remains 1S because directly providing 1S would make the proof of this
theorem more concise and understandable. For completeness, in Supplementary
Material B, we (roughly) show that every previous work using the MRM-O2H
theorem also works with our MRE-O2H theorem. Therefore, compared with the
MRM-O2H theorem, there seems to be no more restrictions on the applicability
of our MRE-O2H theorem.
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In addition, by using our MRE-O2H theorem, we give tighter IND-CCA se-
curity proofs of the FO-like transformations FO/⊥, FO/⊥

m, FO⊥ and FO⊥m in the
QROM, and the detailed security bounds are shown in Table 2.

Table 2. Security bounds of FO-like transformations in the QROM. Here q is the total
number of queries to random oracles, d is the query depth of random oracles, and qD
is the total number of queries to the decapsulation oracle. The "Assumption" column
shows the property that needs to be satisfied by the underlying PKE scheme. δ and ϵ
respectively represent the correctness error and the security bound of the underlying
PKE scheme. Here we abbreviate unique randomness recoverable as URR for simplicity.

Transformation Underlying
security Assumption Achieved

security Security bound

FO
/⊥,FO

/⊥
m [21] IND-CPA \ IND-CCA

√
q · ϵ+ q ·

√
δ

FO
/⊥ [25] IND-CPA η-injective IND-CCA d2 · ϵ+ dq · δ + q

√
η

FO⊥m [18] IND-CPA γ-spread IND-CCA
√

(d+ qD) · ϵ+ q2 · δ + qqD ·
√
2−γ

FO
/⊥,FO

/⊥
m Cor. 1 IND-CPA \ IND-CCA d1.5 · ϵ+ q2 · δ

FO⊥,FO⊥m Cor. 2 IND-CPA γ-spread IND-CCA (d+ qD)
1.5 · ϵ+ q ·

√
δ + qD ·

√
2−γ

FO
/⊥,FO

/⊥
m Cor. 1 OW-CPA URR IND-CCA d0.5 · ϵ+ q2 · δ

FO⊥,FO⊥m Cor. 2 OW-CPA URR IND-CCA (d+ qD)
0.5 · ϵ+ q ·

√
δ

In more detail, our IND-CCA security proofs all avoid the square-root ad-
vantage loss incurred in [21,18]. For the FO

/⊥, when the underlying security is
IND-CPA, our security proof removes the η-injective assumption used in [25] and
achieves a tighter security bound. Moreover, we for the first time prove that the
IND-CCA security of FO/⊥, FO/⊥

m, FO⊥ and FO⊥m can be reduced to the OW-CPA
security of the underlying PKE scheme without the square-root advantage loss.
At this point, we introduce an additional assumption of unique randomness re-
coverable. Roughly speaking, for a public key pk, a plaintext m and a ciphertext
c, this assumption assumes that there exists an efficient algorithm Rec such that
Rec(pk,m, c) = r and the encryption of m with the randomness r is exactly c.

Remark 2. As shown in Table 2, compared with [21,18], although our bounds
avoid the square-root advantage loss, the loss related to the query times still ex-
ists. For example, if the underlying security is IND-CPA and d = q (i.e. each par-
allel invoking only makes one query), the security bound of FO/⊥, FO/⊥

m achieved
in [21] is

√
q · ϵ while ours is d1.5ϵ = q1.5ϵ (Cor. 1). At this point, it seems

that determining which bound is tighter depends on the actual query times and
the concrete underlying problem. Nevertheless, for the massively parallelized at-
tacks, which have low query depth and are the typical methods to deal with high
computation costs in practical cryptanalyses, our bound d1.5ϵ is nearly tight.
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1.2 Technique Overview

In this section, for the sake of clarity and understandability, we explain our
technique by the following three steps:

• We first introduce a simple distinguisher A as an example and define some
notations that will be used in later explanations.

• Then, based on A, we give a high-level explanation of our Measure-Rewind-
Extract (MRE) technique and how we used it to prove our MRE-O2H theorem.

• Finally, we explain how we use the MRE-O2H theorem to give tighter IND-
CCA security proofs of the FO-like transformations in the QROM.

A simple distinguisher with query depth 2 Recall that G,H : X → Y
are random functions such that G(x) = H(x) for all x /∈ S. For the sake of
simplicity, we let S = {m∗ ∈ X} in the following analysis. That is, there is only
one point m∗ where G and H differ.

Consider the following simple distinguisher AO (O ∈ {G,H}) that is aimed
to distinguish whether O is G or H:

AG : MA ◦U2OGU1OG|ψ⟩, AH : MA ◦U2OHU1OH |ψ⟩.

Here |ψ⟩ is the initial state of A, U1 and U2 are the unitary operations performed
by A between its oracle queries OG/OH , where OG|x, y⟩ = |x, y ⊕ G(x)⟩ and
OH |x, y⟩ = |x, y⊕H(x)⟩. MA := {MA0 ,MA1 } is the final projective measurement
performed by A, and its measurement result b (0 or 1) is A’s final output. Indeed,
AO considered here is a unitary quantum oracle algorithm that makes parallel
queries to O with query depth 2 and query width 15.

Before giving our explanation, we first perform some pretreatment. Define
two states

|ψH⟩ := U2OHU1OH |ψ⟩ and |ψG⟩ := U2OGU1OG|ψ⟩.

Then, the distinguishing advantage of A can be computed as follows.

Adv(A) =
∣∣Pr[b = 1 : b← AH ]− Pr[b = 1 : b← AG]

∣∣
=
∣∣∥MA1 |ψH⟩∥2 − ∥MA1 |ψG⟩∥2∣∣

≤
∣∣(MA1 (|ψH⟩ − |ψG⟩),MA1 (|ψH⟩+ |ψG⟩))∣∣ (By Lemma 3)

=
∣∣∣(|ψH⟩ − |ψG⟩, (MA1 )†MA1 (|ψH⟩+ |ψG⟩))∣∣∣ (

Basic property
of inner product

)
=
∣∣(|ψH⟩ − |ψG⟩,MA1 (|ψH⟩+ |ψG⟩))∣∣ . (

MA1 is hermitian
and idempotent

)
(2)

Let Mm∗ := |m∗⟩⟨m∗| be a projector on the oracle’s input register, and let I
denotes the identity operator.
5 See Supplementary Material A.1 for the introduction of unitary quantum oracle

algorithm and parallel query.
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High-level explanation of our MRE technique Essentially, in order to com-
pute the upper bound of Adv(A), our MRE technique performs the following
three steps:

• MRE-Step-1: In this step, we use the projector Mm∗ = |m∗⟩⟨m∗| to divide
the state |ψH⟩ − |ψG⟩. For the state |ψH⟩, we have

|ψH⟩ = U2OHU1OH |ψ⟩
= U2OH(Mm∗ + I−Mm∗)U1OH |ψ⟩
= U2OHMm∗U1OH |ψ⟩+U2OH(I−Mm∗)U1OH |ψ⟩
= U2OHMm∗U1OH |ψ⟩+U2OH(I−Mm∗)U1OH(Mm∗ + I−Mm∗)|ψ⟩
= U2OHMm∗U1OH |ψ⟩+U2OH(I−Mm∗)U1OHMm∗ |ψ⟩

+U2OH(I−Mm∗)U1OH(I−Mm∗)|ψ⟩.

One can see that the main idea of the above partition is to sequentially insert
(Mm∗ +I−Mm∗) before the query OH , and then divide the entire state into two
parts "· · ·Mm∗ · · · |ψ⟩" and "· · · (I −Mm∗) · · · |ψ⟩" by the distributive law. For
the first part, we keep it unchanged, and for the second part, we divide it again
by inserting (Mm∗ +I−Mm∗) before the query OH . Similarly, for the state |ψG⟩,
we have

|ψG⟩ = U2OGMm∗U1OG|ψ⟩+U2OG(I−Mm∗)U1OGMm∗ |ψ⟩
+U2OG(I−Mm∗)U1OG(I−Mm∗)|ψ⟩.

Since G and H only differ on the set S = {m∗}, the operation OG(I−Mm∗)
must be identical with the operation OH(I−Mm∗). Based on this property,

|ψH⟩ − |ψG⟩ = U2OHMm∗U1OH |ψ⟩+U2OH(I−Mm∗)U1OHMm∗ |ψ⟩
+U2OH(I−Mm∗)U1OH(I−Mm∗)|ψ⟩

−U2OGMm∗U1OG|ψ⟩ −U2OG(I−Mm∗)U1OGMm∗ |ψ⟩
−U2OG(I−Mm∗)U1OG(I−Mm∗)|ψ⟩

= U2OHMm∗U1OH |ψ⟩ −U2OGMm∗U1OG|ψ⟩
+U2OH(I−Mm∗)U1OHMm∗ |ψ⟩ −U2OG(I−Mm∗)U1OGMm∗ |ψ⟩

= U2 (OHMm∗U1OH |ψ⟩ −OGMm∗U1OG|ψ⟩)
+ U2OH(I−Mm∗)U1 (OHMm∗ |ψ⟩ −OGMm∗ |ψ⟩)

(a)
= U2Mm∗ (OHU1OH |ψ⟩ −OGU1OG|ψ⟩)
+ U2OH(I−Mm∗)U1Mm∗ (OH |ψ⟩ −OG|ψ⟩) .

Here (a) uses the fact that OG and OH commute with Mm∗ , which is obvious
since OG and OH do not change the state on the oracle’s input register.

• MRE-Step-2: Define two states |ψ1⟩ := OHU1OH |ψ⟩ − OGU1OG|ψ⟩ and
|ψ0⟩ := OH |ψ⟩ − OG|ψ⟩. One can see that the first step of our MRE technique
actually shows that |ψH⟩ − |ψG⟩ = U2Mm∗ |ψ1⟩ + U2OH(I −Mm∗)U1Mm∗ |ψ0⟩.
Combine this equation with Eq. (2), we get
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Adv(A) =
∣∣(|ψH⟩ − |ψG⟩,MA1 (|ψH⟩+ |ψG⟩))∣∣

=

∣∣∣∣∣
(
U2Mm∗ |ψ1⟩,MA1 (|ψH⟩+ |ψG⟩)

)
+
(
U2OH(I−Mm∗)U1Mm∗ |ψ0⟩,MA1 (|ψH⟩+ |ψG⟩)

)∣∣∣∣∣
(a)
=

∣∣∣∣∣
(
Mm∗ |ψ1⟩,Mm∗(U2)

†MA1 (|ψH⟩+ |ψG⟩)
)

+
(
Mm∗ |ψ0⟩,Mm∗(U1)

†(I−Mm∗)OH(U2)
†MA1 (|ψH⟩+ |ψG⟩)

)∣∣∣∣∣ .
Here (a) follows from the basic property of inner product and the fact that Mm∗

is hermitian and idempotent.
Then, by applying Lemma 4, which guarantees that |(|α⟩, |β⟩) + (|γ⟩, |δ⟩)| ≤√
∥|α⟩∥2 + ∥|γ⟩∥2 ·

√
∥|β⟩∥2 + ∥|δ⟩∥2 for any states |α⟩, |β⟩, |γ⟩, |δ⟩, we rewrite

Adv(A) shown in the above equation into

Adv(A) ≤
√
∥Mm∗ |ψ1⟩∥2 + ∥Mm∗ |ψ0⟩∥2

·

√√√√ ∥∥Mm∗(U2)
†MA1 (|ψH + |ψG⟩)

∥∥2
+
∥∥Mm∗(U1)

†(I−Mm∗)OH(U2)
†MA1 (|ψH⟩+ |ψG⟩)

∥∥2 .
(a)
=
√
∥Mm∗ |ψ1⟩∥2 + ∥Mm∗ |ψ0⟩∥2

·

√√√√ ∥∥Mm∗OH(U2)
†MA1 (|ψH + |ψG⟩)

∥∥2
+
∥∥Mm∗OH(U1)

†(I−Mm∗)OH(U2)
†MA1 (|ψH⟩+ |ψG⟩)

∥∥2 .

(3)

Here (a) uses the fact that OH is a unitary operation and it commutes with Mm∗ .

• MRE-Step-3: Here, we will relate the above two sum of square norms with
the success probabilities of two one-wayness attackers, that is, Eq. (4) and Eq.
(5). For the ∥Mm∗ |ψ1⟩∥2 + ∥Mm∗ |ψ0⟩∥2, by the superposition oracle trick6 given
in [4], we can construct two one-wayness attackers B1 and B2 such that

4 · Pr[m∗ ← BG,H1 ] = ∥Mm∗ |ψ1⟩∥2 = ∥Mm∗(OHU1OH |ψ⟩ −OGU1OG|ψ⟩)∥2,

4 · Pr[m∗ ← BG,H2 ] = ∥Mm∗ |ψ0⟩∥2 = ∥Mm∗(OH |ψ⟩ −OG|ψ⟩)∥2.

Note that there is an extra constant factor "4" due to the using of superposition
oracle trick. Now we can merge B1 and B2 into B3, which uniformly chooses i
from {1, 2}, runs Bi and outputs its final output. Obviously, Pr[m∗ ← BG,H3 ] is
equal to 1/2 · Pr[m∗ ← BG,H1 ] + 1/2 · Pr[m∗ ← BG,H2 ]. Hence we obtain

4 · 2 · Pr[m∗ ← BG,H3 ] = ∥Mm∗ |ψ1⟩∥2 + ∥Mm∗ |ψ0⟩∥2. (4)
6 Roughly speaking, this trick first performs OG,H := (OH ⊗ |+⟩⟨+|)+ (OG⊗ |−⟩⟨−|)

on |ψ⟩|0⟩ to obtain the state 1/2(OH |ψ⟩−OG|ψ⟩)|1⟩+1/2(OH |ψ⟩+OG|ψ⟩)|0⟩, and
then measures the last qubit with the desired measurement result 1, which makes
the whole state to collapse into OH |ψ⟩ −OG|ψ⟩ (non-normalized).
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For the another sum of the square norms ∥Mm∗(U2)
†MA1 (|ψH⟩ + |ψG⟩)∥2 +

∥Mm∗(U1)
†(I−Mm∗)OH(U2)

†MA1 (|ψH⟩+ |ψG⟩)∥2, we first define a one-wayness
attacker as:

BG,H,1S4 : Given oracle access to G, H and 1S , it works as follows. Here 1S is the
indicator function of S = {m∗}, that is, 1S(x) = 1 if x = m∗ and 0 otherwise.

1. Prepare |ψH⟩+ |ψG⟩ by using the superposition oracle trick [4].
2. Perform the measurement MA = {MA0 ,MA1 } with the desired measurement

result 1, if the measurement result is 0, abort and output ⊥.
3. Apply OH(U2)

†, then perform projective measurement Mm∗ := {χ0, χ1} on
the oracle’s input register by querying 1S . Here χ0 = I−Mm∗ and χ1 = Mm∗7.

(a) If the measurement result is 1, measure the oracle’s input register to get
m∗, then abort and output m∗.

(b) If the measurement result is 0, apply OH(U1)
† and then perform the

measurement Mm∗ on the oracle’s input register again.
i. If the second measurement Mm∗ has measurement result 1, measure

the oracle’s input register to get m∗, then abort and output m∗.
Otherwise, abort and output ⊥.

Let E1 be the classical event that the measurement MA has result 1 and the
next first measurement Mm∗ also has result 1. Let E2 be the classical event that
the measurement MA has result 1, then the first measurement Mm∗ has result
0 and the next second measurement Mm∗ has result 1.

At this point, we have a crucial observation that events E1 and E2 are mu-
tually exclusive and

∥Mm∗OH(U2)
†MA1 (|ψH⟩+ |ψG⟩)∥2 = 4 · Pr[E1 : BG,H,1S4 ],

∥Mm∗OH(U1)
†(I−Mm∗)OH(U2)

†MA1 (|ψH⟩+ |ψG⟩)∥2 = 4 · Pr[E2 : BG,H,1S4 ].

Here we have an extra constant factor "4" since our B4 uses the superposition or-
acle trick. Indeed, by the definition, E1 and E2 are obviously mutually exclusive.
For the ∥Mm∗OH(U2)

†MA1 (|ψH⟩+ |ψG⟩)∥2, the MA1 and Mm∗ actually represent
that the measurement MA and the first measurement Mm∗ both have result 1,
i.e. E1 occurs. For the ∥Mm∗OH(U1)

†(I−Mm∗)OH(U2)
†MA1 (|ψH⟩+ |ψG⟩)∥2, the

MA1 represents that the measurement MA has result 1, the subsequent (I−Mm∗)
represents that the first measurement Mm∗ has result 0, and the final Mm∗ rep-
resents that the second measurement Mm∗ has result 1, i.e. E2 occurs. Conse-
quently, we can compute

7 Roughly speaking, to perform {I−Mm∗ ,Mm∗} on a state |ϕ⟩ :=
∑

x,y |x, y⟩, we first
query the oracle 1S to obtain

∑
y |m

∗, y⟩|1⟩ +
∑

x ̸=m∗,y |x, y⟩|0⟩, and then measure
the last qubit. If the measurement result is 1, the state |ϕ⟩ collapses into Mm∗ |ϕ⟩ =∑

y |m
∗, y⟩(non-normalized), and we can further measure the first register to get m∗.
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4 · Pr[m∗ ← BG,H,1S4 ]
(a)
= 4 · Pr[E1 ∨ E2 : BG,H,1S4 ]

(b)
= 4 · Pr[E1 : BG,H,1S4 ] + 4 · Pr[E2 : BG,H,1S4 ]

= ∥Mm∗OH(U2)
†MA1 (|ψH⟩+ |ψG⟩)∥2+

∥Mm∗OH(U1)
†(I−Mm∗)OH(U2)

†MA1 (|ψH⟩+ |ψG⟩)∥2.

(5)

Here (a) follows from the definition of our one-wayness attacker B4, (b) uses the
fact that events E1 and E2 are mutually exclusive. Now, by Eq. (4) and Eq. (5),
we can rewrite the Adv(A) shown in Eq. (3) into

Adv(A) ≤
√
4 · 2 · Pr[m∗ ← BG,H3 ] ·

√
4 · Pr[m∗ ← BG,H,1S4 ].

Let B be a one-wayness attacker that runs both B3 and B4, outputs m∗ if ei-
ther of these two outputs m∗, and outputs ⊥ otherwise. Obviously, we have
max{Pr[m∗ ← BG,H3 ],Pr[m∗ ← BG,H,1S4 ]} ≤ Pr[m∗ ← BG,H,1S ], thus

Adv(A) ≤ 4 ·
√
2 · Pr[m∗ ← BG,H,1S ].

That is to say, for the distinguisher A with query depth d = 2, our MRE tech-
nique provides an upper bound of Adv(A) as 4 ·

√
d · Adv(B), where Adv(B) is

the probability that BG,H,1S successfully finds an element in S = {m∗}.

Note that B4 constructed above has a special structure that first measures
(i.e. performs MA), then rewinds and extracts (i.e. performs rewinding oper-
ations OH(U2)

†, OH(U1)
† and measurement Mm∗ to extract m∗). The same

structure is inherited by the final B since it directly runs B4. Actually, that is
precisely why we call our technique described above the Measure-Rewind-Extract
(MRE) technique. In addition, when describing our contribution in Section 1.1,
we mentioned that MRE technique is a combination of the MRM technique [25]
and the semi-classical oracle technique [1]. Here, we explain this statement.
• Firstly, our MRE technique follows the framework of MRM technique, which

first divides the state |ψH⟩ − |ψG⟩, then rewrites Adv(A) into a product of
some square norms like Eq. (3), and finally designs a one-wayness attacker
B based on these square norms such that Adv(A) can be upper bounded by
utilizing Adv(B). However, different from the MRM technique which uses a
hybrid argument to divide |ψH⟩−|ψG⟩, our MRE technique uses the projector
Mm∗ to directly divide |ψH⟩ − |ψG⟩. Note that in the MRM technique, it is
this hybrid argument that inevitably introduce a loss of query depth d.

• Secondly, due to using Mm∗ to divide |ψH⟩ − |ψG⟩, we have to construct a
one-wayness attacker that performs the measurement Mm∗ on the oracle’s
input register, aiming at extracting m∗ from A’s oracle query. In fact, Mm∗

is the "semi-classical oracle OSC{m∗}" designed in [1], and the core idea of the
semi-classical oracle technique is exactly to extract m∗ from A’s oracle query
by performing OSCm∗ (i.e. the Mm∗).

Hence, our MRE technique can be viewed as a combination of the MRM technique
[25] and the semi-classical oracle technique [1].
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Remark 3 (Concern about the measurement Mm∗). Roughly speaking, by using
the semi-classical oracle technique, [1] constructed a one-wayness attacker B and
proved that |Pr[1 ← AO] − Pr[1 ← AO\S ]| ≤

√
O(d) ·Adv(B). In our setting,

O\S actually the oracle that first performs the measurement Mm∗ on the or-
acle’s input register and then queries O. So this inequality shows that using
Mm∗ to measure A’s oracle query will disrupt A’s computation, resulting in a
probability difference of

√
O(d) ·Adv(B). Note that our one-wayness attacker B4

constructed above rewound A and performed Mm∗ , so one might be concerned
that B4 disrupts A’s computation and hence will inevitably introduce a loss of√
O(d) ·Adv(B). Here, we emphasize that we do not have to concern about this.

• Firstly, our construction of B4 does not directly convert AO into AO\S . It
first runs AO, performs AO’s final measurement and then rewinds AO, and the
measurement Mm∗ (or O\S, intuitively speaking) is only performed during the
rewinding. So the inequality |Pr[1← AO]−Pr[1← AO\S ]| ≤

√
O(d) ·Adv(B)

cannot be directly applied.
• Secondly, what our MRE technique does is, first derive the value

p :=∥Mm∗OH(U2)
†MA1 (|ψH⟩+ |ψG⟩)∥2+

∥Mm∗OH(U1)
†(I−Mm∗)OH(U2)

†MA1 (|ψH⟩+ |ψG⟩)∥2,

then construct B4 and clearly prove that its success probability Pr[m∗ ← B4]
equals to 1/4 ·p (i.e. Eq. (5)), and finally use this property to prove Adv(A) ≤
4 ·
√
d · Adv(B). That is to say, for our B4, we actually do not care about

the "probability difference" between AO calculated by B4 and the original
AO, but only focus on whether its success probability Pr[m∗ ← B4] equals
to 1/4 · p. In fact, in Eq. (5), we have clearly calculated that the success
probability Pr[m∗ ← B4] of B4 is equal to 1/4 · p, and this calculation, which
only utilizes the structure of B4 and some basic quantum computation, is
actually independent of whether Mm∗ disrupts A’s computation.

Therefore, for our MRE technique, we do not have to concern about performing
measurement Mm∗ introducing an additional loss of

√
O(d) ·Adv(B).

Use MRE technique to prove our MRE-O2H theorem Although the
above explanation of the MRE technique only considers the case where the query
depth d is 2, we can directly lift it through induction to account for the case with
arbitrary query depth d. Hence, the above explanation of the MRE technique has
proved the following fixed version of MRE-O2H theorem.

Theorem 1 (Fixed O2H with MRE, informal). For a fixed tuple (G,H, S)
and a quantum distinguisher A that makes parallel queries with query depth d,
we can construct a quantum one-wayness attacker BG,H,1S such that

|Pr[b = 1 : b← AG]− Pr[b = 1 : b← AH ]| ≤ 4 ·
√
d ·Adv(B). (6)

Here Adv(B) is the probability that BG,H,1S successfully finds an element in S.

For the random version, where (G,H, S) is sampled from an arbitrary joint
distribution D, we can prove it by averaging over (G,H, S)← D in Eq. (6).
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QROM security proofs of FO-like transformations Note that [4, Theorem
5] has shown that FO/⊥ (resp. FO⊥) is as secure as FO/⊥

m (resp. FO⊥m) and vice
versa. Hence, in our paper, for the FO-like transformations FO/⊥, FO/⊥

m, FO⊥ and
FO⊥m, we only consider the the IND-CCA security of FO/⊥ and FO⊥m in the QROM.

Our proof outline is shown in Fig. 1. In this outline, we utilize the property
that FO/⊥ = U/⊥ ◦ T and FO⊥m = U⊥m ◦ T introduced in [15]. Here, T transforms
a randomized PKE (rPKE) scheme into a deterministic PKE (dPKE) scheme,
U/⊥ and U⊥m both transform a dPKE scheme into a KEM scheme.

OW-CPA
URR rPKE

T, Lemma 8
============⇒
Proved by DS-O2H

IND-CPA
rPKE

T−−−−−−−−−→
[4, Theorem 1]

OW-CPA
dPKE

U/⊥, Theorem 6−−−−−−−−−→
Proved by our

MRE-O2H

IND-CPA
KEM

FO
/⊥(= U/⊥ ◦ T)

Theorem 5
=======⇒ IND-CCA

KEM
FO

/⊥

OW-CPA
URR rPKE

T, Lemma 8
============⇒
Proved by DS-O2H

IND-CPA
rPKE

T−−−−−−−−−→
[4, Theorem 1]

OW-CPA
dPKE

U⊥
m, Theorem 9−−−−−−−−−−→

Proved by our

MRE-O2H

IND-CPA
KEM

FO⊥m(= U⊥m ◦ T)

[14, Theorem 2]
==========⇒

IND-CCA
KEM
FO⊥m

Fig. 1. Proof outline of FO/⊥ and FO⊥
m in the QROM. All the security proofs shown

in this outline avoid the square-root advantage loss. The double arrow indicates a
tight security proof, while the single arrow indicates a non-tight security proof. In this
outline, we abbreviate unique randomness recoverable as URR for the sake of simplicity.

As shown in Fig. 1, by using the DS-O2H theorem [4], we prove that T can
tightly transform a OW-CPA-secure and unique randomness recoverable rPKE
scheme into a OW-CPA-secure dPKE scheme in the QROM. Based on this proof,
we give an IND-CCA security proof of FO/⊥ and FO⊥m from the OW-CPA security,
while avoiding the square-root advantage loss.

In addition, we emphasize that our security proof of U/⊥ shown in Fig. 1
(i.e. Theorem 6) does not rely on the η-injective assumption used in [25]. Our
observation is that, it is not necessary to require the encryption algorithm dEnc
of the underlying dPKE scheme to be nearly injective, we can only need dEnc
to satisfy the following weaker property:

For a m∗ uniformly sampled from the message space and (pk, sk) generated by
the key generation algorithm, there does not exist m ̸= m∗ such that

dEncpk(m) = dEncpk(m
∗).

Indeed, according to [26, Lemma 4], the probability that the underlying dPKE
scheme of U/⊥ does not satisfy this property is negligible. Hence, we can remove
the η-injective assumption in our security proof of U/⊥.
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1.3 Related Work

There are also some O2H variants that involve Zhandry’s compressed oracle tech-
nique [34]. For example, the [8, Theorem 10], the [23, Theorem C.5], the [16,
Theorem 6] and the [14, Theorem 1]. Intuitively speaking, these O2H variants
are all obtained by generalizing the SC-O2H theorem [1] to work with the com-
pressed oracle technique. However, they all have a drawback: their final upper
bound suffers from the square-root advantage loss.

We note that in [30,32], the authors proved that the IND-CCA security of
the transformation SXY (also known as U/⊥

m) can be tightly reduced to the DS-
IND security of the underlying dPKE scheme in the QROM, where DS-IND
is a non-standard security assumption. Indeed, although they provided a tight
QROM security proof of U/⊥

m, which is used to construct the FO-like transfor-
mation FO

/⊥
m(= U/⊥

m ◦ T) [15], the cost is that they used a non-standard security
assumption and the underlying PKE scheme is restricted to a dPKE scheme.

In our QROM security proofs of the FO-like transformations, when the se-
curity of the underlying PKE scheme is OW-CPA, we introduce an addition
assumption named unique randomness recoverable. This assumption is actually
a stronger variant of the assumption named randomness recoverable, which, as
far as we know, was first introduced in [27,12] to achieve a tight ROM security
proof of the transformation T. According to the definition of unique randomness
recoverable given in Definition 6, we find that it is not a security assumption
but just a constraint on the encryption algorithm. Meanwhile, we find that the
NTRU-based PKE schemes generally satisfy the assumption of unique random-
ness recoverable, and we also provide a rough explanation in Supplementary
Material C for completeness.

In a concurrent work, under the assumption that the underlying PKE scheme
is unique randomness recoverable, Bao et al. [2] introduced a variant of the DS-
O2H theorem [4] and then used it to give a tight security proof of T in the
QROM. Their security bound 4 · ϵ is even tighter than the security bound 10 · ϵ
achieved by our security proof of T (Lemma 8) in the QROM. Here ϵ is the
security bound of the underlying PKE scheme.

2 Preliminaries

2.1 Notation

By [[x = y]] we denote a bit that is 1 if x = y and otherwise 0. For a finite
set S, x $←− S denotes that x is an element uniformly sampled from set S. For
a distribution D, x ← D denotes that x is chosen according to distribution
D. For a game G in the security proof, 1 ← G denotes that G finally returns
1. Pr [A : B,C] (or PrC [A : B], PrB,C [A] for short) is the probability that the
predicate A keeps true where all variables in A are conditioned according to
predicates B and C. For an algorithm A, we use TA to denote its running time.
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2.2 Quantum Background

We refer to [28] for detailed basics of quantum computation. In Supplementary
Material A.1, we introduce some important quantum notions used in this paper.

2.3 Quantum Random Oracle Model

The random oracle model (ROM) is an ideal model in which a uniformly ran-
dom function H is selected, and all parties have access to H. In real schemes, the
random oracle is implemented using a suitable hash function. In the quantum set-
ting, the ROM should be lifted into the quantum random oracle model (QROM)
[5], where all parties have quantum access to the random oracle. In the QROM,
we take the random oracle H as a unitary operation OH : |x, y⟩ 7→ |x, y⊕H(x)⟩.

Here, we state the following two lemmas that are used throughout this paper.

Lemma 1 (Simulate the QROM [33, Theorem 6.1]). Let O be a random
oracle, H be a function uniformly sampled from the set of 2q-wise independent
functions. For any algorithm A that makes at most q quantum queries, we have

Pr[b = 1 : b← AH ] = Pr[b = 1 : b← AO].
Remark 4. This lemma shows that we can use a 2q-wise independent function
to perfectly simulate a quantum accessible random oracle with query bound q.
Indeed, as stated in [30, Section 2.2], this simulation has an O(q2) running time
increase since it has to compute a 2q-wise independent function for each query.

Lemma 2 (Generic quantum distinguishing problem with bounded
probabilities [17, Lemma 2.9]). Let δ ∈ [0, 1] and M be a finite set. Let
N1 :M→ {0, 1} be a random function such that, for each m ∈ M, N1(m) = 1
with probability δm (δm ≤ δ), and N1(m) = 0 with probability 1 − δm. Let
N2 :M → {0, 1} be a constant function such that N2(m) = 0 for all m ∈ M.
For any algorithm A that makes at most q quantum queries, we have∣∣Pr [b = 1 : b← AN1

]
− Pr

[
b = 1 : b← AN2

]∣∣ ≤ 8(q + 1)2 · δ.

Now, we recall the Measure-Rewind-Measure One-Way to Hiding (MRM-
O2H) theorem introduced in [25].

Theorem 2 (MRM-O2H [25, Lemma 3.3]). Let G,H : X → Y be random
functions, S ⊆ X be a random set and z ∈ Z be a random bitstring. The tuple
(G,H, S, z) may have arbitrary joint distribution D and satisfies that ∀x /∈ S,
G(x) = H(x). Let AO (O ∈ {G,H}) be a quantum oracle algorithm that makes
parallel queries with query depth d and query width n. Define

Pleft := Pr
(G,H,S,z)←D

[b = 1 : b← AH(z)], Pright := Pr
(G,H,S,z)←D

[b = 1 : b← AG(z)].

Then, we can construct an algorithm DG,H(z) such that
– Let Adv(D) := Pr

[
TD ∩ S ̸= ∅ : TD ← DG,H(z), (G,H, S, z)← D

]
, then

|Pleft − Pright| ≤ 4d ·Adv(D).
– DG,H(z) makes parallel queries to G and H both with query depth at most

3d and query width n. Its running time can be bounded as TD ≲ 3 · TA.
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3 O2H with Measure-Rewind-Extract (MRE)

In this section, we focus on the tuple (G,H, S, z), where G,H are functions with
domain X and codomain Y , S is a subset of X and G,H, S satisfy that ∀x /∈ S,
G(x) = H(x), z ∈ Z is a bitstring that can depend on G,H, S. Let 1S denote
the indicator function of the set S, that is, 1S(x) = 1 if x ∈ S and 0 otherwise.

Here we introduce the following two lemmas that will be used in later proofs,
and their proofs can be found in Supplementary Material A.3.

Lemma 3 ([25, Lemma 3.1]). For any states |ϕ1⟩ and |ϕ2⟩, we have∣∣∥|ϕ1⟩∥2 − ∥|ϕ2⟩∥2∣∣ ≤ |(|ϕ1⟩ − |ϕ2⟩, |ϕ1⟩+ |ϕ2⟩)|.
Lemma 4. For any states |φ1⟩, . . . , |φn⟩ and |ϕ1⟩, . . . , |ϕn⟩, we have

n∑
i=1

|(|φi⟩, |ϕi⟩)| ≤

√√√√ n∑
i=1

∥|φi⟩∥2 ·

√√√√ n∑
i=1

∥|ϕi⟩∥2.

Now we prove our new O2H theorem. Same as [25], we first prove the fixed
version, where the tuple (G,H, S, z) is fixed. Then, we extend it to the random
version, where the tuple (G,H, S, z) can have an arbitrary joint distribution.

Theorem 3 (Fixed O2H with MRE). Let G,H : X → Y be fixed functions,
S ⊆ X be a fixed set and z ∈ Z be a fixed bitstring. The tuple (G,H, S, z) satisfies
that ∀x /∈ S, G(x) = H(x). Let AO (O ∈ {G,H}) be a quantum oracle algorithm
that makes parallel queries with query depth d and query width n. Define

PGHSzleft := Pr[b = 1 : b← AH(z)], PGHSzright := Pr[b = 1 : b← AG(z)].

Then, we can construct an algorithm DG,H,1S (z) which has the following two
properties:

– Let Adv(D) := Pr[TD ∩ S ̸= ∅ : TD ← DG,H,1S (z)], then∣∣PGHSzleft − PGHSzright

∣∣ ≤ 4
√
d ·Adv(D). (7)

– DG,H,1S (z) makes parallel queries to G, H and 1S all with query depth at
most 3d and query width n. Its running time can be bounded as TD ≲ 3 · TA.

Proof. Following the proof of [25, Lemma 3.2], we denote O⊗nG (resp. O⊗nH ) as
the n-width parallel quantum oracle for G (resp. H). Then, we define a new
quantum oracle

O⊗nG,H := (O⊗nH ⊗ |+⟩⟨+|) + (O⊗nG ⊗ |−⟩⟨−|).

Here |+⟩ := (|0⟩ + |1⟩)/
√
2 and |−⟩ := (|0⟩ − |1⟩)/

√
2. Indeed, the oracle O⊗nG,H

uses an auxiliary single quantum bit as the controlling bit: if the state of this
controlling bit is |+⟩ (resp. |−⟩), the oracle O⊗nH (resp. O⊗nG ) will be queried. As
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analyzed in [4,25], O⊗nG,H can be efficiently implemented by applying a Hadamard
gate before and after a conditional operation, which queries O⊗nH (resp. O⊗nG ) if
the controlling bit is in the state |0⟩ (resp. |1⟩).

Based on the above notations, we introduce the following lemma that will be
used later. It shows that we can use O⊗nG,H to get a uniform superposition of the
sum and difference of the state generated by O⊗nG and O⊗nH , and those states are
entangled with the controlling bit of O⊗nG,H . This lemma can be easily proved by
induction, and we omit the detailed proof for the sake of simplicity.

Lemma 5. Let V1, . . . , Vt (t ∈ N+) be any unitary operation that can be ap-
plied between O⊗nG /O⊗nH queries and |ϕ⟩ be any appropriate initial state. Let the
controlling bit of O⊗nG,H be in the initial state |0⟩. Then

t∏
i=1

[ViO
⊗n
G,H ](|ϕ⟩|0⟩) =1

2

(
t∏
i=1

[ViO
⊗n
H ]|ϕ⟩+

t∏
i=1

[ViO
⊗n
G ]|ϕ⟩

)
⊗ |0⟩

+
1

2

(
t∏
i=1

[ViO
⊗n
H ]|ϕ⟩ −

t∏
i=1

[ViO
⊗n
G ]|ϕ⟩

)
⊗ |1⟩.

Here
∏t
i=1[ViO

⊗n
G,H ](|ϕ⟩|0⟩) := VtO

⊗n
G,HVt−1O

⊗n
G,H . . . V2O

⊗n
G,HV1O

⊗n
G,H(|ϕ⟩|0⟩), and

analogously for
∏t
i=1[ViO

⊗n
H ]|ϕ⟩ and

∏t
i=1[ViO

⊗n
G ]|ϕ⟩.

Since any quantum oracle algorithm can be efficiently transformed into a uni-
tary quantum oracle algorithm with the same query times and query depth (i.e.
Fact 1 in Supplementary Material A.1), we assume AO(z) to be unitary without
loss of generality. Now, for O ∈ {G,H}, denote |ψz⟩ as the initial state of AO(z),
and denote U1, . . . , Ud as the unitary operations performed by AO(z) between
its (parallel) oracle queries. Then, the joint state of AH(z) (resp. AG(z)) just
before performing the final binary projective measurement MA := {MA0 ,MA1 }
can be written as

|ψH⟩ :=
d∏
i=1

[UiO
⊗n
H ]|ψz⟩ (resp. |ψG⟩ :=

d∏
i=1

[UiO
⊗n
G ]|ψz⟩). (8)

Since the measurement result of MA is the final output of A, we can compute∣∣PGHSzleft − PGHSzright

∣∣ = ∣∣Pr[b = 1 : b← AH(z)]− Pr[b = 1 : b← AG(z)]
∣∣

=
∣∣∥MA1 |ψH⟩∥2 − ∥MA1 |ψG⟩∥2∣∣

(a)

≤
∣∣(MA1 (|ψH⟩ − |ψG⟩),MA1 (|ψH⟩+ |ψG⟩))∣∣

(b)
=
∣∣∣(|ψH⟩ − |ψG⟩, (MA1 )†MA1 (|ψH⟩+ |ψG⟩))∣∣∣

(c)
=
∣∣(|ψH⟩ − |ψG⟩,MA1 (|ψH⟩+ |ψG⟩))∣∣ .

(9)

Here (a) is obtained by using Lemma 3. (b) uses the fact that (A|ϕ1⟩, B|ϕ2⟩) =
(|ϕ1⟩, A†B|ϕ2⟩) for any operators A, B and states |ϕ1⟩, |ϕ2⟩. (c) uses the fact
that the projector MA1 is Hermitian and idempotent.
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Next, we focus on the states |ψH⟩ and |ψG⟩. We will give them a decompo-
sition (i.e., the following Eq. (13) and Eq. (14)) according to a projector on the
oracle’s input register. In the following, we first define this projector which we
denote as MS⊕n , and then introduce some properties of it.

– The definition of projector MS⊕n . Since A makes parallel queries with
query width n, the query state of A can be written as

|query⟩ :=
∑

in,out,aux

αout
in,aux|in1⟩|out1⟩ · · · |inn⟩|outn⟩|aux⟩.

Here in := (in1, . . . , inn) ∈ X⊗n, out := (out1, . . . , outn) ∈ Y ⊗n and aux ∈
{0, 1}∗. |in1⟩ · · · |inn⟩ (resp. |out1⟩ · · · |outn⟩) is the basis state of the oracle’s
input register IN (resp. oracle’s output register OUT ), |aux⟩ is the basis
state of some auxiliary registers that may be entangled with IN and OUT .
Furthermore, we have

O⊗nG |query⟩ =
∑

in,out,aux

αout
in,aux|in1⟩|out1 ⊕G(in1)⟩ · · · |inn⟩|outn ⊕G(inn)⟩|aux⟩,

O⊗nH |query⟩ =
∑

in,out,aux

αout
in,aux|in1⟩|out1 ⊕H(in1)⟩ · · · |inn⟩|outn ⊕H(inn)⟩|aux⟩.

Define set

S⊕n := {(in1, . . . , inn)|in1, . . . , inn ∈ X,∃i ∈ {1, . . . , n} s.t. ini ∈ S}.

Then, we define a projector on the oracle’s input register IN as

MS⊕n :=
∑

(in1,...,inn)∈S⊕n

|in1⟩ · · · |inn⟩⟨in1| · · · ⟨inn|. (10)

Let IIN be the identity operator on the oracle’s input register IN , we have

IIN −MS⊕n =
∑

(in1,...,inn)/∈S⊕n

|in1⟩ · · · |inn⟩⟨in1| · · · ⟨inn|.

– Properties satisfied by MS⊕n , O⊗nG and O⊗nH . Using the fact that G(x) =
H(x) for all x /∈ S, it is easy to see that

O⊗nH (IIN −MS⊕n)|query⟩ = O⊗nG (IIN −MS⊕n)|query⟩. (11)

Note that querying the oracles O⊗nG and O⊗nH does not change the state on
the oracle’s input register IN , we also have

O⊗nG MS⊕n = MS⊕nO⊗nG , O⊗nH MS⊕n = MS⊕nO⊗nH . (12)

That is, O⊗nG and O⊗nH both commute with MS⊕n .

17



In particular, we introduce the following lemma about MS⊕n . It shows that we
can implement the projective measurement {IIN −MS⊕n ,MS⊕n} on the oracle’s
input register IN by quantum querying the 1S . The proof of this lemma is very
simple and is given in Supplementary Material A.4.

Lemma 6. Recall that 1S is the indicator function of the set S, that is, 1S(x) =
1 if x ∈ S and 0 otherwise. Let χ0 := IIN −MS⊕n and χ1 := MS⊕n . Then, the
binary projective measurement MS⊕n := {χ0, χ1} on the oracle’s input register
IN can be implemented by making two parallel queries to 1S with query width n.

Now, we define the following states

|ψjH⟩ :=
j∏
i=1

[UiO
⊗n
H ]|ψz⟩ (1 ≤ j ≤ d) and |ψ0

H⟩ := |ψz⟩.

Let
∏0
i=1[UiO

⊗n
H ] := IA, where IA denotes the identity operator on A’s whole

register. Then, for 1 ≤ j ≤ d, we can compute

|ψjH⟩ =
j∏
i=1

[UiO
⊗n
H ]|ψz⟩ = UjO

⊗n
H (MS⊕n + IIN −MS⊕n)

j−1∏
i=1

[UiO
⊗n
H ]|ψz⟩

= UjO
⊗n
H (MS⊕n + IIN −MS⊕n)|ψj−1H ⟩

= UjO
⊗n
H MS⊕n |ψj−1H ⟩+ UjO

⊗n
H (IIN −MS⊕n)|ψj−1H ⟩.

Hence, by induction, it is not hard to obtain

|ψH⟩ = |ψdH⟩ =
d∏
i=1

[
UiO

⊗n
H (IIN −MS⊕n)

]
|ψz⟩+ UdO

⊗n
H MS⊕n |ψd−1H ⟩

+
d−1∑
k=1

d∏
j=k+1

[
UjO

⊗n
H (IIN −MS⊕n)

] (
UkO

⊗n
H MS⊕n

)
|ψk−1H ⟩.

(13)

Similarly, for |ψG⟩, we can derive the following equation using the definitions
|ψjG⟩ :=

∏j
i=1[UjO

⊗n
G ]|ψz⟩ (1 ≤ j ≤ d) and |ψ0

G⟩ := |ψz⟩.

|ψG⟩ = |ψdG⟩ =
d∏
i=1

[
UiO

⊗n
G (IIN −MS⊕n)

]
|ψz⟩+ UdO

⊗n
G MS⊕n |ψd−1G ⟩

+

d−1∑
k=1

d∏
j=k+1

[
UjO

⊗n
G (IIN −MS⊕n)

] (
UkO

⊗n
G MS⊕n

)
|ψk−1G ⟩.

(14)

Note that IIN denotes the identity operator on the oracle’s input register
IN , and IA denotes the identity operator on A’s whole register. Then, based
on the states |ψjH⟩ and |ψjG⟩ (0 ≤ j ≤ d) defined above, we define the following
notations that will be used later:
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χ0 := IIN −MS⊕n , χ1 := MS⊕n ,

|ψH+G⟩ := MA1 (|ψH⟩+ |ψG⟩),
|ψiH−G⟩ := O⊗nH |ψ

i−1
H ⟩ −O⊗nG |ψ

i−1
G ⟩ (1 ≤ i ≤ d),

|ψS,iH−G⟩ := O⊗nH MS⊕n |ψi−1H ⟩ −O⊗nG MS⊕n |ψi−1G ⟩
(a)
= MS⊕nO⊗nH |ψ

i−1
H ⟩ −MS⊕nO⊗nG |ψ

i−1
G ⟩ (1 ≤ i ≤ d),

Unon-S
d←k+1 :=

d∏
j=k+1

[
UjO

⊗n
H (IIN −MS⊕n)

]
(1 ≤ k ≤ d− 1),

Unon-S
d←d+1 := IA.

(15)

Here (a) follows from Eq. (12).
By using Eq. (11), it is not hard to check that

d∏
i=1

[
UiO

⊗n
H (IIN −MS⊕n)

]
|ψz⟩ =

d∏
i=1

[
UiO

⊗n
G (IIN −MS⊕n)

]
|ψz⟩. (16)

Then, combining Eq. (11) with Eq. (13) to Eq. (16), we obtain |ψH⟩ − |ψG⟩ =∑d
k=1 U

non-S
d←k+1Uk|ψ

S,k
H−G⟩. Combine this equation with Eq. (9), we can compute∣∣PGHSzleft − PGHSzright

∣∣
≤
∣∣(|ψH⟩ − |ψG⟩,MA1 (|ψH⟩+ |ψG⟩))∣∣ (a)= |(|ψH⟩ − |ψG⟩, |ψH+G⟩)|

=

∣∣∣∣∣
d∑
k=1

(
Unon-S
d←k+1Uk|ψ

S,k
H−G⟩, |ψH+G⟩

)∣∣∣∣∣
(b)

≤
d∑
k=1

∣∣∣(Unon-S
d←k+1Uk|ψ

S,k
H−G⟩, |ψH+G⟩

)∣∣∣
(c)
=

d∑
k=1

∣∣∣(|ψS,kH−G⟩, (Uk)† (Unon-S
d←k+1

)† |ψH+G⟩
)∣∣∣

(d)
=

d∑
k=1

∣∣∣(χ1|ψS,kH−G⟩, (Uk)
† (Unon-S

d←k+1

)† |ψH+G⟩
)∣∣∣

(e)
=

d∑
k=1

∣∣∣(χ1|ψS,kH−G⟩, χ1(Uk)
† (Unon-S

d←k+1

)† |ψH+G⟩
)∣∣∣

(f)
=

d∑
k=1

∣∣∣(|ψS,kH−G⟩, χ1(Uk)
† (Unon-S

d←k+1

)† |ψH+G⟩
)∣∣∣

(g)

≤

√√√√ d∑
k=1

∥|ψS,kH−G⟩∥2 ·

√√√√ d∑
k=1

∥∥∥χ1(Uk)†
(
Unon-S
d←k+1

)† |ψH+G⟩
∥∥∥2.

(17)
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Here (a) follows the definition of |ψH+G⟩ given in Eq. (15). (b) uses the triangle
inequality. (c) uses the basic property of inner product. (d) and (f) use the fact
that |ψS,iH−G⟩ defined in Eq. (15) satisfies |ψS,iH−G⟩ = χ1|ψS,iH−G⟩ for 1 ≤ i ≤ d. (e)
uses the fact that χ1 is Hermitian and idempotent. (g) uses Lemma 4.

Recall that |ψz⟩ is the initial state of AO(z) (O ∈ {G,H}), U1, . . . , Ud are the
unitary operations performed by AO(z) between its parallel oracle queries, and
MA = {MA0 ,MA1 } is the final projective measurement performed by AO(z). Now,
we define the following algorithms BG,Hi (z) (1 ≤ i ≤ d), BG,H(z), CG,H,1S (z) and
DG,H,1S (z), all with the aim to extract an element from the set S:

– Algorithm BG,Hi (z) (1 ≤ i ≤ d). This algorithm has initial pure state |ψz⟩|0⟩,
where |0⟩ is the state of the controlling bit of O⊗nG,H . As mentioned earlier, this
controlling bit is used by O⊗nG,H to determine whether to query O⊗nG or O⊗nH .
BG,Hi (z) first applies O⊗nG,H

∏i−1
j=1[UjO

⊗n
G,H ] (here we let

∏0
j=1[UjO

⊗n
G,H ] = IA),

then measures the controlling bit of O⊗nG,H in the computational basis:
1. If the measurement result is 1, BG,Hi (z) measures the oracle’s input register
IN in the computational basis, and outputs the result TBi

.
2. If the measurement result is 0, BG,Hi (z) outputs ⊥.

– Algorithm BG,H(z). This algorithm first uniformly chooses i from {1, . . . , d},
and then runs BG,Hi (z) directly. BG,H(z) finally outputs BG,Hi (z)’s output and
we denote it as TB if it is not ⊥.

– Algorithm CG,H,1S (z). This algorithm has initial pure state |ψz⟩|0⟩, where |0⟩
is the state of the controlling bit of O⊗nG,H . CG,H,1S (z) first applies the operation∏d
i=1[UiO

⊗n
G,H ], then performs the projective measurement MA = {MA0 ,MA1 }

and measures the controlling bit of O⊗nG,H in the computational basis:
1. If the measurement result of MA is 0 or the measurement result of the

controlling bit is 1, CG,H,1S (z) outputs ⊥.
2. If the measurement result of MA is 1 and the measurement result of the

controlling bit is 0, CG,H,1S (z) performs the following operations:
(a) Initially, let i = d.
(b) Apply (rewinding operation) O⊗nH (Ui)

†, then perform the projective
measurement MS⊕n = {χ0, χ1} on the oracle’s input register IN by
querying 1S (Lemma 6). If the measurement result of MS⊕n is 1, abort,
measure IN in the computational basis and output the result TC .

(c) If the measurement result of MS⊕n is 0 and i > 1, let i = i − 1 and
repeat the above step. If the measurement result of MS⊕n is 0 and
i = 1, abort and output ⊥.

– Algorithm DG,H,1S (z). This algorithm runs BG,H(z) and CG,H,1S (z), and it
outputs ⊥ if they both outputs ⊥. Otherwise, DG,H,1S (z) outputs TD, where
• TD = TB if BG,H(z) outputs TB and CG,H,1S (z) outputs ⊥.
• TD = TC if BG,H(z) outputs ⊥ and CG,H,1S (z) outputs TC .
• TD = TB ∪ TC if BG,H(z) outputs TB and CG,H,1S (z) outputs TC .

20



As for the running time, one can easily check that TB ≲ TA and BG,H(z) makes
parallel queries to G and H both with query depth at most d and query width
n. Since CG,H,1S (z) performs the rewinding operations, we have TC ≲ 2 · TA and
CG,H,1S (z) makes parallel queries to G, H and 1S all with query depth at most
2d and query width n. By the definition of DG,H,1S (z), we can conclude that
TD ≲ 3 · TA, and DG,H,1S (z) makes parallel queries to G, H and 1S all with
query depth at most 3d and query width n.

We define

Adv(Bi) := Pr[TBi ∩ S ̸= ∅ : TBi ← B
G,H
i (z)] i ∈ {1, . . . , d},

Adv(B) := Pr[TB ∩ S ̸= ∅ : TB ← BG,H(z)],

Adv(C) := Pr[TC ∩ S ̸= ∅ : TC ← CG,H,1S (z)],
Adv(D) := Pr[TD ∩ S ̸= ∅ : TD ← DG,H,1S (z)].

For the algorithm BG,Hi (z) (i ∈ {1, . . . , d}), since we let
∏0
j=1[UjO

⊗n
G,H ] := IA,

by Lemma 5 and the definition of states |ψiH−G⟩ and |ψS,iH−G⟩ given in Eq. (15),
it is not hard to check that

Adv(Bi) =

∥∥∥∥∥ |ψ
S,i
H−G⟩∥∥|ψiH−G⟩∥∥

∥∥∥∥∥
2

·
∥∥∥∥12 |ψiH−G⟩

∥∥∥∥2 =
1

4
· ∥|ψS,iH−G⟩∥

2.

Then, by the definition of algorithm BG,H(z), we have

Adv(B) =
d∑
i=1

1

d
Adv(Bi) =

d∑
i=1

1

4d
· ∥|ψS,iH−G⟩∥

2. (18)

For the algorithm CG,H,1S (z), by Lemma 5 and the definition of |ψH⟩ and
|ψG⟩ given in Eq. (8), we can write the state of CG,H,1S (z) just before performing
the MA = {MA0 ,MA1 } and the measurement of the controlling bit of O⊗nG,H as

1

2
(|ψH⟩+ |ψG⟩)⊗ |0⟩+

1

2
(|ψH⟩ − |ψG⟩)⊗ |1⟩.

The right half, |0⟩ and |1⟩, is the state of the controlling bit of O⊗nG,H . Since
|ψH+G⟩ := MA1 (|ψH⟩+ |ψG⟩) (i.e. Eq. (15)), the probability that MA has result
1 and the measurement of the controlling bit of O⊗nG,H has result 0 is 1

4∥|ψH+G⟩∥2.
Further, the state of CG,H,1S (z) will collapse into |ψH+G⟩/∥|ψH+G⟩∥8.

After MA obtains result 1 and the measurement of the controlling bit of O⊗nG,H
obtains result 0, CG,H,1S (z) will rewind U1, . . . , Ud and perform MS⊕n = {χ0, χ1}
to extract an element from the set S. We refer to this step of CG,H,1S (z) as
the "rewind-extract" process, and in fact, we can restate the "rewind-extract"
process as:

MS⊕nO⊗nH (U1)
†MS⊕n

←−−−
O⊗nH (U2)

† · · ·MS⊕n

←−−−
O⊗nH (Ud−1)

†MS⊕n

←−−−
O⊗nH (Ud)

† |ψH+G⟩
∥|ψH+G⟩∥

.

8 In this notation, we omit the state of the controlling bit of O⊗n
G,H , since this bit is no

longer used by the subsequent operations of CG,H,1S (z).
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Here |ψH+G⟩/∥|ψH+G⟩∥ is the initial pure state just before the "rewind-extract"
process, and MS⊕n

←−−−
denotes the following conditional operation:

Perform MS⊕n on the oracle’s input register IN . If the measurement result is
1, measure IN in the computational basis and output the result TC. If the

measurement result is 0, proceed with the subsequent operations.

MS⊕n is the same as MS⊕n

←−−−
, except that it directly outputs ⊥ if the measurement

result of MS⊕n is 0. Obviously, CG,H,1S (z) performs MS⊕n at most d times.
Recall that χ1 := MS⊕n (i.e. Eq. (15)). By the definition of the projector

MS⊕n given in Eq. (10), we can conclude that TC must satisfy TC ∩ S ̸= ∅ if TC
is obtained by measuring the oracle’s input register IN (in the computational
basis) under the condition that the measurement result of MS⊕n just performed
was 1. This means that, as long as one of the MS⊕n performed by CG,H,1S (z)
in the "rewinding-extract" process yields a measurement result of 1, CG,H,1S (z)
will output a set TC such that TC ∩ S ̸= ∅.

Now, we define the following mutually exclusive events that may be occurred
in the "rewinding-extract" process of CG,H,1S (z):
Ei: The measurement result of the first i− 1 measurements MS⊕n are all 0,
and the measurement result of the i-th measurement MS⊕n is 1. (1 ≤ i ≤ d)

According to the definition of the operation Unon-S
d←k+1 (1 ≤ k ≤ d) given in Eq.

(15), one can check that

Pr[Ei] =
∥∥∥χ1O

⊗n
H (Uk)

† (Unon-S
d←k+1

)† |ψH+G⟩
∥∥∥2 1
∥|ψH+G⟩∥2 (1 ≤ i ≤ d, i+ k = d+ 1).

Then, we can compute

Adv(C) = 1

4
· ∥|ψH+G⟩∥2 ·

d∑
i=1

Pr[Ei]

=
1

4
· ∥|ψH+G⟩∥2 ·

∑d
k=1

∥∥∥χ1O
⊗n
H (Uk)

† (Unon-S
d←k+1

)† |ψH+G⟩
∥∥∥2

∥|ψH+G⟩∥2

(a)
=

1

4
·
d∑
k=1

∥∥∥O⊗nH χ1(Uk)
† (Unon-S

d←k+1

)† |ψH+G⟩
∥∥∥2

(b)
=

1

4
·
d∑
k=1

∥∥∥χ1(Uk)
† (Unon-S

d←k+1

)† |ψH+G⟩
∥∥∥2 .

(19)

Here (a) follows from the fact that χ1 = MS⊕n and MS⊕n commutes with O⊗nH
(i.e. Eq. (12)), (b) uses the fact that O⊗nH is a unitary operation.

Combine Eq. (17), Eq. (18) with Eq. (19), we get∣∣PGHSzleft − PGHSzright

∣∣ ≤√4d ·Adv(B) ·
√
4 ·Adv(C).

Since we have Adv(D) ≥ max{Adv(B),Adv(C)} by the definition of the algo-
rithm DG,H,1S (z), we finally obtain |PGHSzleft − PGHSzright | ≤ 4

√
d ·Adv(D). ⊓⊔
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Theorem 4 (Random O2H with MRE). Let G,H : X → Y be random
functions, S ⊆ X be a random set and z ∈ Z be a random bitstring. The tuple
(G,H, S, z) may have arbitrary joint distribution D and satisfies that ∀x /∈ S,
G(x) = H(x). Let AO (O ∈ {G,H}) be a quantum oracle algorithm that makes
parallel queries with query depth d and query width n. Define

Pleft := Pr
(G,H,S,z)←D

[b = 1 : b← AH(z)], Pright := Pr
(G,H,S,z)←D

[b = 1 : b← AG(z)].

Then, we can construct an algorithm DG,H,1S (z) which has the following two
properties:

– Let Adv(D) := Pr[TD ∩ S ̸= ∅ : TD ← DG,H,1S (z), (G,H, S, z)← D], then

|Pleft − Pright| ≤ 4
√
d ·Adv(D).

– DG,H,1S (z) makes parallel queries to G, H and 1S all with query depth at
most 3d and query width n. Its running time can be bounded as TD ≲ 3 · TA.

Proof. Based on Eq. (7) in Theorem 3, we can directly prove this theorem by
averaging over (G,H, S, z)← D. ⊓⊔

Remark 5. In the proof of Theorem 3, we assume that A is a unitary quantum
oracle algorithm by the well-known fact Fact 1 in Supplementary Material A.1,
which shows that any quantum oracle algorithm can be efficiently transformed
into a unitary one with the same query times and query depth. However, as
mentioned in [22,35], that transformation has a linear space9 expansion with
the running time of the quantum oracle algorithm, since we need to use unitary
operations to simulate the non-unitary computations. Indeed, both the MRM-
O2H theorem [25] and our MRE-O2H theorem (Theorem 4) involve this linear
space expansion. In our paper, we stress that we do not view the space expansion
as a dominant factor since it is only linear and not exponential, and we only view
the advantage loss and the running time as crucial factors.

4 Tighter IND-CCA Proofs of FO-like Transformations

In this section, we consider the IND-CCA security of FO-like transformations
FO/⊥, FO/⊥

m, FO⊥ and FO⊥m in the QROM. Note that [4, Theorem 5] has shown
that FO/⊥ (resp. FO⊥) is as secure as FO/⊥

m (resp. FO⊥m) and vice versa. Hence,
we only prove the IND-CCA security of FO/⊥ and FO⊥m in the QROM. Our proof
idea consists of the following two steps:

1. We first prove that the IND-CCA security of FO/⊥ and FO⊥m can be reduced
to its IND-CPA security.

9 Here the "space" refers to the number of quantum bits used by an algorithm.
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2. Then, by using our MRE-O2H theorem (Theorem 4), we prove that the
IND-CPA security of FO/⊥ and FO⊥m can be reduced to the IND-CPA/OW-
CPA security of the underlying PKE scheme.

The advantage of our proof idea is that, for the FO/⊥, the additional injectivity
assumption assumed in the proof of [25, Theorem 4.6] can be removed. All the
relevant security notions can be found in Supplementary Material A.2.

Before proving our results, we first review the transformation T designed in
[15] and introduce three lemmas about T that will be used later.

Transformation T: Let P = (Gen,Enc,Dec) be a randomized PKE (rPKE)
scheme with message space M and randomness space R. Let H : M → R be
a hash function. We associate deterministic PKE (dPKE) scheme T[P, H] :=
(Gen,Enc′,Dec′). The constituting algorithms of T[P, H] are shown in Fig. 2.

Gen

1 : (pk, sk)← Gen

2 : return (pk, sk)

Enc′pk(m ∈M)

1 : c := Encpk(m;H(m))

2 : return c

Dec′sk(c)

1 : m′ := Decsk(c)

2 : if m′ = ⊥ ∨ c ̸= Encpk(m
′;H(m′))

3 : return ⊥
4 : else return m′

Fig. 2. Deterministic Public Key Encryption T[P, H].

Lemma 7 (Security of T from IND-CPA [4, Theorem 1]). Let P be an
rPKE scheme with message space M. Let A be a OW-CPA adversary against
T[P, H], making parallel quantum queries to the random oracle H with query
depth dH and query width n. Let qH := dH · n.

Then, we can construct an IND-CPA adversary B against P such that

AdvOW-CPA
T[P,H] (A) ≤ (dH + 2) ·

(
AdvIND-CPA

P (B) + 8(qH + 1)

|M|

)
and TB ≈ TA +O(q2H).

Remark 6. The [4, Theorem 1] actually claims TB ≈ TA. In the above lemma,
we give a more detailed running time of B as TB ≈ TA +O(q2H). The additional
O(q2H) is because B needs to use a 2qH -wise independent function to simulate a
quantum accessible random oracle with query bound qH .

The following lemma also focuses on the OW-CPA security of T in the QROM,
but the difference is that the following lemma does not require the underlying
rPKE scheme to be IND-CPA-secure.
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Lemma 8 (Security of T from OW-CPA). Let P = (Gen,Enc,Dec) be a δ-
correct rPKE scheme, and assume P is unique randomness recoverable with the
recover algorithm Rec. Let A be a OW-CPA adversary against T[P, H], making
parallel quantum queries to the random oracle H with query depth dH and query
width n. Let qH := dH · n.

Then, we can construct a OW-CPA adversary B against P such that

AdvOW-CPA
T[P,H] (A) ≤ 10 ·AdvOW-CPA

P (B) + 16 · δ

and TB ≈ TA +O(q2H) +O(qH) · (TEnc + TRec).

Proof. See Supplementary Material A.5. ⊓⊔

Lemma 9 ([26, Lemma 4]). Let P = (Gen,Enc,Dec) be an rPKE scheme with
message spaceM and randomness space R. Define a set w.r.t fixed (pk, sk) and
function H :M→R as

Scollisionpk,sk,H := {m ∈M|∃m′ ̸= m s.t. Encpk(m′;H(m′)) = Encpk(m;H(m))}.

Let ΩH be the set of all functions H :M→R. Then, if P is δ-correct, we have

Pr
[
m∗ ∈ Scollisionpk,sk,H : (pk, sk)← Gen, H $←− ΩH ,m∗

$←−M
]
≤ 2 · δ.

4.1 FO-like transformation FO/⊥

FO-like transformation FO/⊥. Let P = (Gen,Enc,Dec) be an rPKE scheme
with message spaceM, randomness space R and ciphertext space C. For a given
set K, let H :M→R, G :M×C → K be hash functions, let F : Kprf ×C → K
be a pseudorandom function (PRF) with key space Kprf . We associate KEM
scheme

KEM/⊥ := FO/⊥[P, H,G,F] = (Gen/⊥,Enca,Deca/⊥)

that has key space K. The constituting algorithms of KEM/⊥ are given in Fig. 3.

Gen
/⊥

1 : (pk, sk)← Gen

2 : s
$← Kprf

3 : sk′ := (sk, s)

4 : return (pk, sk′)

Enca(pk)

1 : m
$←M

2 : c := Encpk(m;H(m))

3 : K := G(m, c)

4 : return (K, c)

Deca
/⊥(sk′ = (sk, s), c)

1 : m′ := Decsk(c)

2 : if m′ = ⊥ ∨ c ̸= Encpk(m
′;H(m′))

3 : return K := F(s, c)

4 : else return K := G(m′, c)

Fig. 3. Key Encapsulation Mechanism KEM/⊥.

We first prove the following theorem. It shows that in the QROM, the IND-
CPA security of KEM/⊥ implies its IND-CCA security.
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Theorem 5 (IND-CPA of KEM
/⊥ QROM⇒ IND-CCA of KEM

/⊥). Let rPKE scheme
P = (Gen,Enc,Dec) be δ-correct. Let A be an IND-CCA adversary against KEM/⊥

=FO
/⊥[P, H,G,F], making qD classical queries to the decapsulation oracle, mak-

ing parallel quantum queries to the random oracle H (resp. G) with query depth
dH (resp. dG) and query width n. Let qH := dH · n and qG := dG · n.

Then, we can construct the following two adversaries:

– A PRF-adversary B1 against F making at most qD classical queries. The
running time of B1 is TB1

≈ TA + qD · (TEnc + TDec) +O(q2H + q2G).
– An IND-CPA adversary B2 against KEM/⊥ in the QROM. B2 makes parallel

quantum queries to the random oracle H (resp. G) with query depth at most
dH + dG (resp. dG) and query width n. The running time of B2 is TB2

≈
TA +O(qG) · TEnc +O(q2G + q2D).

Adversaries B1 and B2 satisfy the following:

AdvIND-CCA
KEM/⊥ (A) ≤ AdvPRFF (B1) + AdvIND-CPA

KEM/⊥ (B2) + 16(2qH + 2qG + 1)2 · δ.

Proof. The proof of this theorem is similar with the proof of [19, Theorem 1],
and we present it in Supplementary Material A.6. ⊓⊔

Next, we focus on the IND-CPA security of KEM/⊥ in the QROM. As intro-
duced in [15], the KEM

/⊥ satisfies that

KEM/⊥ = FO/⊥[P, H,G,F] = U/⊥[T[P, H], G,F]. (20)

Here transformation U/⊥ transforms a dPKE scheme into a KEM scheme. For
the U/⊥, we can prove the following theorem, which shows that in the QROM,
the IND-CPA security of U/⊥ can be reduced to the OW-CPA security of the
underlying dPKE scheme without the square-root advantage loss.

Theorem 6 (OW-CPA of dPKE
QROM⇒ IND-CPA of U/⊥[dPKE, G,F]). For a

dPKE scheme dPKE = (Gen, dEnc, dDec) with message space M, let A be an
IND-CPA adversary against U/⊥[dPKE, G,F], making parallel quantum queries to
the random oracle G with query depth dG and query width n. Let qG := dG · n.

Then, we can construct a OW-CPA adversary A1 against dPKE such that

AdvIND-CPA
U/⊥[dPKE,G,F](A) ≤ 2

√
dG ·AdvOW-CPA

dPKE (A1) + 2
√
dG · Pr[EdPKE]

and TA1 ≲ 3 · TA +O(qG) · TdEnc +O(q2G). Here EdPKE is the following event:

(pk, sk)← Gen, m∗ $←−M, ∃m ̸= m∗ such that dEncpk(m) = dEncpk(m∗).

Proof. We prove this theorem by directly applying our MRE-O2H theorem (The-
orem 4), and we present the detailed proof in Supplementary Material A.8. ⊓⊔

Combining Theorem 6 with Lemma 7 and Lemma 8, we can prove the fol-
lowing result for the IND-CPA security of KEM/⊥ in the QROM.
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Theorem 7 (IND-CPA/OW-CPA of P
QROM⇒ IND-CPA of KEM

/⊥). Let P =
(Gen,Enc,Dec) be a δ-correct rPKE scheme with message spaceM. Let A be an
IND-CPA adversary against KEM/⊥ = FO

/⊥[P, H,G,F], making parallel quantum
queries to the random oracle H (resp. G) with query depth dH (resp. dG) and
query width n. Let qH := dH · n and qG := dG · n.

Then, we can construct an IND-CPA adversary B against P such that

AdvIND-CPA
KEM/⊥ (A) ≤2

√
dG(6dG + dH + 3) ·AdvIND-CPA

P (B) + 4
√
dG · δ

+ 16
√
dG(6dG + dH + 3)

(6qG + 2qH + 1)

|M|
.

and TB ≲ 3 · TA + O(q2G + q2H) + O(qG) · TEnc. If P is also unique randomness
recoverable with the recover algorithm Rec, we can also construct a OW-CPA
adversary B1 against P such that

AdvIND-CPA
KEM/⊥ (A) ≤ 20

√
dG ·AdvOW-CPA

P (B1) + 36
√
dG · δ

and TB1
≲ 3 · TA +O(q2G + q2H) +O(qG + qH) · (TEnc + TRec).

Proof. This theorem can be easily proved by utilizing Eq. (20) and Lemma 9,
and we present the detailed proof in Supplementary Material A.9. ⊓⊔

Combine Theorem 5 with Theorem 7, we finally obtain the following corollary.
It shows that, in the QROM, the IND-CCA security of KEM

/⊥ can be reduced
to the IND-CPA/OW-CPA security of the underlying rPKE scheme without the
square-root advantage loss.

Corollary 1 (IND-CPA/OW-CPA of P
QROM⇒ IND-CCA of KEM

/⊥). Let P =
(Gen,Enc,Dec) be a δ-correct rPKE scheme with message space M. Let A be
an IND-CCA adversary against KEM/⊥ = FO

/⊥[P, H,G,F], making qD classical
queries to the decapsulation oracle, making parallel quantum queries to the ran-
dom oracle H (resp. G) with query depth dH (resp. dG) and query width n. Let
qH := dH · n and qG := dG · n.

Then, we can construct the following two adversaries:

– A PRF-adversary B1 against F making at most qD classical queries. The
running time of B1 is TB1

≲ TA + qD · (TEnc + TDec) +O(q2H + q2G).
– An IND-CPA adversary B2 against P. The running time of B2 is TB2

≲
3 · TA +O(qG) · TEnc +O(q2G + q2H + q2D).

Adversaries B1 and B2 satisfy the following:

AdvIND-CCA
KEM/⊥ (A) ≤ AdvPRFF (B1) + 2

√
dG(7dG + dH + 3) ·AdvIND-CPA

P (B2)

+ 16(2qH + 2qG + 1)2 · δ + 4
√
dG · δ

+ 16
√
dG(7dG + dH + 3)

(8qG + 2qH + 1)

|M|
.

If P is also unique randomness recoverable with the recover algorithm Rec, we
can also construct following adversary:
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– A OW-CPA adversary B3 against P. The running time of B3 is TB3
≲ 3 ·

TA +O(q2G + q2H + q2D) +O(qG + qH) · (TEnc + TRec).

Adversaries B1 and B3 satisfy the following:

AdvIND-CCA
KEM/⊥ (A) ≤ AdvPRFF (B1) + 20

√
dG ·AdvOW-CPA

P (B3) + 36
√
dG · δ

+ 16(2qH + 2qG + 1)2 · δ.

4.2 FO-like transformation FO⊥
m

Similar to Section 4.1, we use the following two steps to prove the IND-CCA
security of FO⊥m in the QROM:

1. First, we introduce [14, Theorem 2], which shows that the IND-CCA security
of FO⊥m can be reduced to its IND-CPA security.

2. Then, by using our MRE-O2H theorem (Theorem 4), we prove that the IND-
CPA security of FO⊥m can be reduced to the IND-CPA/OW-CPA security of
the underlying PKE scheme.

We present the detailed proofs in Supplementary Material A.10.
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A Supplementary Material

A.1 Quantum Background

A quantum system (register) Q is a complex Hilbert space HQ with an inner
product ⟨·|·⟩, and notation like ’|·⟩’ or ’⟨·|’ is called the Dirac notation. We denote
HQ = C[X] if Q is defined over a finite set X. The orthonormal basis of C[X]
is {|x⟩}x∈X , where the basis state |x⟩ is labeled by the element x of X. We also
refer to {|x⟩}x∈X as the computational basis. The norm of a state |ψ⟩ is defined
as ∥|ψ⟩∥ :=

√
⟨ψ|ψ⟩, and we say |ψ⟩ is a unit vector if ∥|ψ⟩∥ = 1.

Composite quantum system. Given quantum systems Q1 and Q2, we call
tensor product Q1⊗Q2 is the composite quantum system and the product state
is |ψ1⟩ ⊗ |ψ2⟩ ∈ Q1 ⊗ Q2, where |ψ1⟩ ∈ Q1, |ψ2⟩ ∈ Q2. We sometimes also
abbreviate |ψ1⟩ ⊗ |ψ2⟩ into |ψ1⟩|ψ2⟩ for simplicity. If the composite quantum
system Q1 ⊗ Q2 is in the state |ψ⟩, we say that the systems Q0 and Q1 are
entangled if |ψ⟩ can not be written as a product state |ψ1⟩⊗|ψ2⟩ (here |ψ1⟩ ∈ Q1,
|ψ2⟩ ∈ Q2). Otherwise, we say that the systems Q0 and Q1 are un-entangled.

A single qubit is a quantum system defined over {0, 1}. A single qubit in su-
perposition is a linear combination vector |b⟩ = α|0⟩+β|1⟩ of two computational
basis states |0⟩ and |1⟩ with α, β ∈ C2 and |α|2 + |β|2 = 1, α, β are the proba-
bility amplitudes of |b⟩. An n-qubit system isQ⊗n whereQ is single qubit system.

Evolution of quantum systems. A pure state |ψ⟩ can be manipulated by
performing a unitary operation U , and the resulting state can be denoted as
|ψ′⟩ = U |ψ⟩. For any unitary operation U , we have UU† = I, where U† is the
Hermitian transpose of U and I is the identity operator.

Projector on the quantum system. We introduce a special operation called
projector. For the state |ψ⟩ of a quantum system defined over finite set X, a
projector My (y ∈ X) applies the operation |y⟩⟨y| to |ψ⟩ to get the new state
|y⟩⟨y|ψ⟩. My can also be generalized to a new projector MS (S ∈ X) which
applies the operation

∑
y∈S |y⟩⟨y|. We stress that any projector M is Hermitian

(i.e., we have M† = M) and idempotent (i.e., we have M2 = M).

Basic measurement. The state |ψ⟩ in a quantum system can be measured in
the computational basis. For example, suppose |ψ⟩ =

∑
x∈X αx|x⟩ (

∑
x∈X |αx|2 =

1) with computational basis {|x⟩}x∈X , if we measure |ψ⟩ in basis {|x⟩}x∈X , we
obtain the measurement result x with probability |⟨x|ψ⟩|2 = |αx|2. Given that
result x obtained, the state |ψ⟩ collapses to the state |x⟩. Moreover, we explain
an important special class of measurements known as projective measurement.
Indeed, a projective measurement M is defined by a set of projectors M1, . . . ,Mn

where Mi are mutually orthogonal and
∑n
i=1 Mi = I. Upon measuring the

state |ψ⟩, the probability of obtaining measurement result i (i ∈ {1, . . . , n})
is ⟨ψ|Mi|ψ⟩ (= ∥Mi|ψ⟩∥2). Given that result i obtained, the state |ψ⟩ collapses
to the state Mi|ψ⟩/

√
⟨ψ|Mi|ψ⟩.
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Quantum oracle algorithm and parallel query. A quantum oracle algo-
rithm A is an algorithm that has quantum access to oracles, and that can per-
form a mix of classical and quantum unitary algorithms. In this paper, without
loss of generality, we default that A’s final output is a single bit b ∈ {0, 1}.

Following [1], we allow the quantum oracle algorithm AH(z) to make parallel
queries to its oracleH, where z is the input of A. We say Amakes parallel queries
to H with query depth d and query width n if A satisfies the following property:

– A splits its queries into d bunches, each bunch contains n queries and are
queried in parallel (counting this parallel queries as one invoking).

That is, A invokes H d times and queries H with times n in each invoking. It is
also obvious to see that A makes in total d · n queries to oracle H if we count
parallel queries as separate queries.

Unitary quantum oracle algorithm. We say a quantum oracle algorithm
AH(z) is a unitary quantum oracle algorithm if its entire execution can be de-
scribed as:

MAUqOHUq−1OH . . . U2OHU1OH |ψz⟩.

Here |ψz⟩ is an initial pure state that may depend on input z, U1, . . . , Uq are
the fixed unitary operations applied between oracle queries, OH is the unitary
operation used to implement the oracle H. MA := {MA0 ,MA1 } is the final bi-
nary projective measurement performed by A on its quantum register, and the
measurement result of MA (0 or 1) is the final output of A.

In addition, We say a unitary quantum oracle algorithmAH(z) makes parallel
queries to H with query depth d and query width n if its entire execution can
be described as:

MAUd(OH)⊗nUd−1(OH)⊗n . . . U2(OH)⊗nU1(OH)⊗n|ψz⟩.

Compared with the non-parallel case, the only two differences are that the
unitary operation (OH)⊗n is used to implement the n-width parallel quan-
tum oracle for H, and the fixed unitary operations applied between the ora-
cle queries is replaced into U1, . . . , Ud. Here (OH)⊗n maps the oracle’s input
state of n pairs of input/output registers |in1⟩|out1⟩ · · · |inn⟩|outn⟩ to the state
|in1⟩|out1 ⊕H(in1)⟩ · · · |inn⟩|outn ⊕H(inn)⟩.

Next, we introduce the following well-known fact about the quantum oracle
algorithm.

Fact 1. Any quantum oracle algorithm can be transformed into a unitary quan-
tum oracle algorithm with constant factor computational overhead and the same
query times and query depth/width.

The above fact implies that, without loss of generality, we can directly assume
the quantum oracle algorithms to be unitary.
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A.2 Cryptographic Primitives and Security Definitions

Definition 1 (Public key encryption). A public key encryption (PKE) scheme
P = (Gen,Enc,Dec) consists of three polynomial time algorithms (in the security
parameter λ) with a finite message space M such that

1. Gen, the key generation algorithm, is a probabilistic algorithm that on input
1λ outputs a public/secret key pair (pk, sk).

2. Enc, the encryption algorithm, on input pk and a message m ∈M, it chooses
r

$←− R (R is the randomness space), computes Encpk(m; r) ∈ C (C is the
ciphertext space) and outputs ciphertext c := Encpk(m; r). If Enc does not
use randomness r to compute c, Enc is a deterministic algorithm and outputs
c := Encpk(m).

3. Dec, the decryption algorithm, is a deterministic algorithm that on input
ciphertext c ∈ C outputs a message m := Decsk(c), or a special symbol
⊥ /∈M to indicate that c is not a valid ciphertext.

We say P is a randomized PKE (rPKE) scheme if Enc uses randomness r to com-
pute ciphertext c. Otherwise, we say P is a deterministic PKE (dPKE) scheme.

Definition 2 (Correctness error [15]). We say a randomized PKE scheme
P = (Gen,Enc,Dec) with message/randomness space M/R is δ-correct if

E
(pk,sk)←Gen

[
max
m∈M

Pr
[
Decsk(c) ̸= m : c = Encpk(m; r), r

$←− R
]]
≤ δ.

Definition 3 (η-injective [25]). Let η ≥ 0. We say a deterministic PKE
scheme P = (Gen, dEnc, dDec) is η-injective if

Pr[dEncpk(·) is not injective : (pk, sk)← Gen, H ← ΩH ] ≤ η.

Here the H ← ΩH represents the random oracle that may be used by P.

Definition 4 (Weakly γ-spread [10]). We say a randomized PKE scheme
P = (Gen,Enc,Dec) with message/ciphertext space M/C is weakly γ-spread if

E
(pk,sk)←Gen

[
max

m∈M,c∈C
Pr[c = Encpk(m)]

]
≤ 2−γ ,

where the probability is over the randomness of the encryption.

Definition 5 (Randomness recoverable [12]). We say a randomized PKE
scheme P = (Gen,Enc,Dec) with message/randomness space M/R is random-
ness recoverable if there exists a deterministic (recover) algorithm Rec such that
for all m ∈M and r ∈ R,

Pr[∀m′ ∈ Preimg(pk, c),Encpk(m
′;Rec(pk,m′, c)) ̸= c | c := Encpk(m; r)] = 0,

where Preimg(pk, c) := {m ∈ M | ∃r ∈ R : Encpk(m; r) = c} and the probability
above is taken over (pk, sk) ← Gen. Additionally, we require that Rec(pk,m, c)
returns the symbol ⊥ /∈ R if m /∈ Preimg(pk, c).
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Definition 6 (Unique randomness recoverable). We say a randomized PKE
scheme P = (Gen,Enc,Dec) with message/randomness space M/R is unique
randomness recoverable if there exists a deterministic (recover) algorithm Rec
such that for all m ∈M and r ∈ R,

Pr[Rec(pk,m, c) ̸= r | c := Encpk(m; r)] = 0,

where the probability is taken over (pk, sk)← Gen. For the pair (m, c), if ∄r ∈ R
such that c = Encpk(m; r), Rec(pk,m, c) returns the symbol ⊥ /∈ R.

Remark 7. Since Rec is a deterministic algorithm, a unique randomness recover-
able PKE scheme must satisfy that, for any (m, r) ∈M×R, there does not exist
r′ ̸= r such that Encpk(m; r) = Encpk(m; r′). This is why we call this property
as unique randomness recoverable.

Definition 7 (Security notions for PKE scheme). For any polynomial time
quantum adversary A, we define its OW-CPA and IND-CPA advantage against
PKE scheme P = (Gen,Enc,Dec) as follows:

AdvOW-CPA
P (A) := Pr[1← GOW-CPA

A,P ],

AdvIND-CPA
P (A) :=

∣∣∣∣Pr[1← GIND-CPA
A,P ]− 1

2

∣∣∣∣ .
Here games GOW-CPA

A,P and GIND-CPA
A,P are shown in Fig. 4. We say scheme P is

OW-CPA-secure/ IND-CPA-secure, if for any polynomial time quantum adversary
A, the AdvOW-CPA

P (A)/AdvIND-CPA
P (A) is negligible.

GOW-CPA
A,P

1 : (pk, sk)← Gen

2 : m∗ $←−M
3 : c∗ := Encpk(m

∗)

4 : m′ ← A(pk, c∗)
5 : return [[m′ = m∗]]

GIND-CPA
A,P

1 : (pk, sk)← Gen

2 : b
$←− {0, 1}

3 : (m∗
0,m

∗
1)← A(pk)

4 : c∗ := Encpk(m
∗
b)

5 : b′ ← A(pk, c∗)
6 : return [[b′ = b]]

Fig. 4. Games GOW-CPA
A,P and GIND-CPA

A,P .

Definition 8 (Key encapsulation mechanism). A key encapsulation mech-
anism KEM = (Gen,Enca,Deca) consists of three polynomial time algorithms
with the key space K and the ciphertext space C such that

1. Gen, the key generation algorithm, is a probabilistic algorithm that on input
1λ outputs a public/secret key pair (pk, sk).
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2. Enca, the encapsulation algorithm, is a probabilistic algorithm that on input
pk outputs a key k ∈ K and a ciphertext c ∈ C.

3. Deca, the decapsulation algorithm, is a deterministic algorithm that on input
ciphertext c outputs a key k := Deca(sk, c) or a special symbol ⊥ /∈ K to
indicate that c is not a valid ciphertext.

Definition 9 (Security notions for KEM scheme). For any polynomial
time quantum adversary A, we define its IND-CPA and IND-CCA advantage
against KEM scheme KEM = (Gen,Enca,Deca) as follows:

AdvIND-CPA
KEM (A) :=

∣∣∣∣Pr[1← GIND-CPA
A,KEM ]− 1

2

∣∣∣∣ ,
AdvIND-CCA

KEM (A) :=
∣∣∣∣Pr[1← GIND-CCA

A,KEM ]− 1

2

∣∣∣∣ .
Here games GIND-CPA

A,KEM and GIND-CCA
A,KEM are shown in Fig. 5. We say scheme KEM is

IND-CPA-secure/IND-CCA-secure, if for any polynomial time quantum adversary
A, the advantage AdvIND-CPA

KEM (A)/AdvIND-CCA
KEM (A) is negligible.

GIND-CPA
A,KEM

1 : (pk, sk)← Gen

2 : b
$← {0, 1}

3 : (k0, c
∗)← Enca(pk)

4 : k1
$← K

5 : b′ ← A(pk, c∗, kb)
6 : return [[b′ = b]]

GIND-CCA
A,KEM

1 : (pk, sk)← Gen

2 : b
$← {0, 1}

3 : (k0, c
∗)← Enca(pk)

4 : k1
$← K

5 : b′ ← AoDeca(pk, c∗, kb)

6 : return [[b′ = b]]

oDeca(c)

1 : if c = c∗

2 : return ⊥
3 : else return Deca(sk, c)

Fig. 5. Games GIND-CPA
A,KEM and GIND-CCA

A,KEM .

We also define OW-CPA/IND-CPA security of PKE schemes and IND-CPA/IND-
CCA security of KEM schemes in the QROM, where the adversary A can make
quantum queries to random oracles.

A.3 Proof of Lemma 3 and Lemma 4

Lemma 3 ([25, Lemma 3.1]). For any states |ϕ1⟩ and |ϕ2⟩, we have∣∣∥|ϕ1⟩∥2 − ∥|ϕ2⟩∥2∣∣ ≤ |(|ϕ1⟩ − |ϕ2⟩, |ϕ1⟩+ |ϕ2⟩)|.
Proof. We have∣∣∥|ϕ1⟩∥2 − ∥|ϕ2⟩∥2∣∣ = |(|ϕ1⟩, |ϕ1⟩)− (|ϕ2⟩, |ϕ2⟩)|

(a)

≤ |(|ϕ1⟩, |ϕ1⟩)− (|ϕ2⟩, |ϕ2⟩) + (|ϕ1⟩, |ϕ2⟩)− (|ϕ2⟩, |ϕ1⟩)|
= |(|ϕ1⟩ − |ϕ2⟩, |ϕ1⟩+ |ϕ2⟩)|.
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Here (a) follows from the fact that (|ϕ1⟩, |ϕ1⟩), (|ϕ2⟩, |ϕ2⟩) ≥ 0 and (|ϕ1⟩, |ϕ2⟩)−
(|ϕ2⟩, |ϕ1⟩) is a complex number with real part 0. ⊓⊔

Lemma 4. For any states |φ1⟩, . . . , |φn⟩ and |ϕ1⟩, . . . , |ϕn⟩, we have

n∑
i=1

|(|φi⟩, |ϕi⟩)| ≤

√√√√ n∑
i=1

∥|φi⟩∥2 ·

√√√√ n∑
i=1

∥|ϕi⟩∥2.

Proof. We have

n∑
i=1

|(|φi⟩, |ϕi⟩)|
(a)

≤
n∑
i=1

∥|φi⟩∥ · ∥|ϕi⟩∥
(b)

≤

√√√√ n∑
i=1

∥|φi⟩∥2 ·

√√√√ n∑
i=1

∥|ϕi⟩∥2.

Here (a) and (b) both use the Cauchy-Schwarz inequality. ⊓⊔

A.4 Proof of Lemma 6

Lemma 6. Recall that 1S is the indicator function of the set S, that is, 1S(x) =
1 if x ∈ S and 0 otherwise. Let χ0 := IIN −MS⊕n and χ1 := MS⊕n . Then, the
binary projective measurement MS⊕n := {χ0, χ1} on the oracle’s input register
IN can be implemented by making two parallel queries to 1S with query width n.

Proof. We first define an operation E1S that acts on the register IN as:

1. Initialize a single qubit register L with |0⟩.
2. Apply unitary operation US⊕n on registers IN and L, where

US⊕n : |in1⟩ · · · |inn⟩|l⟩ 7→ (χ1|in1⟩ · · · |inn⟩)|l ⊕ 1⟩+ (χ0|in1⟩ · · · |inn⟩)|l⟩.

3. Measure L in the computational basis and output the measurement result.

Note that χ0 = IIN −MS⊕n and χ1 = MS⊕n . By the definition of MS⊕n given
in Eq. (10), it is obvious that US⊕n can be efficiently implemented by making
two parallel queries to 1S with input register IN . Thus, E1S can be efficiently
implemented by making two parallel queries to 1S with query width n.

Indeed, if the (unit) state of register IN is |ϕ⟩, the detailed quantum state
transformation process when we apply E1S on register IN can be described as:

1. Initialize a single qubit register L with |0⟩. At this point we get state |ϕ⟩|0⟩.
2. Based on the state |ϕ⟩|0⟩, apply unitary operation US⊕n on registers IN and
L. After this application, we get the state

US⊕n |ϕ⟩|0⟩ = χ1|ϕ⟩|1⟩+ χ0|ϕ⟩|0⟩.

3. Measure L in the computational basis and output the measurement result.
Obviously, this measurement has result 0 (resp. 1) with probability ∥χ0|ϕ⟩∥2
(resp. ∥χ1|ϕ⟩∥2), and next the state of register IN will collapse into χ0|ϕ⟩/∥χ0|ϕ⟩∥
(resp. χ1|ϕ⟩/∥χ1|ϕ⟩∥).
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In other words, if the (unit) state of register IN is |ϕ⟩, E1S outputs the mea-
surement result 0 (resp. 1) with probability ∥χ0|ϕ⟩∥2 (resp. ∥χ1|ϕ⟩∥2), and the
state of register IN after E1S outputs this result will collapse into χ0|ϕ⟩/∥χ0|ϕ⟩∥
(resp. χ1|ϕ⟩/∥χ1|ϕ⟩∥). This means that we can implement the binary projective
measurement MS⊕n := {χ0, χ1} on the register IN by performing E1S . ⊓⊔

A.5 Proof of Lemma 8

Before proving Lemma 8, we first introduce the following two lemmas that will
be used later.

Lemma A1 (Double-Sided O2H [4, Lemma 5]) Let G,H : X → Y be ran-
dom functions, S := {w∗} (w∗ ∈ X) be a random set and z ∈ Z be a random
bitstring. The tuple (G,H, S, z) may have arbitrary joint distribution D and sat-
isfies that ∀x /∈ S, G(x) = H(x). Let AO (O ∈ {G,H}) be a quantum oracle
algorithm that makes parallel queries with query depth d and query width n. Let
Ev be an arbitrary classical event. Define

Pleft := Pr
(G,H,S,z)←D

[Ev : AH(z)], Pright := Pr
(G,H,S,z)←D

[Ev : AG(z)].

Then, we can construct an algorithm BG,H(z) which has the following two
properties:

– Let Adv(B) := Pr[w = w∗ : w ← BG,H(z), (G,H, S, z)← D], then

|Pleft − Pright| ≤ 2
√

Adv(B),
∣∣∣√Pleft −

√
Pright

∣∣∣ ≤ 2
√

Adv(B).

– BG,H(z) makes parallel queries to G and H both with query depth d and
query width n. Its running time can be bounded as TB ≈ TA.

Lemma A2 Let P = (Gen,Enc,Dec) be a δ-correct rPKE scheme with mes-
sage space M and randomness space R, and assume P is unique randomness
recoverable. Then we have

Pr [∃(m ̸= m∗, r) ∈M×R, Encpk(m; r) = Encpk(m
∗; r∗)] ≤ 2 · δ,

where the probability is taken over (pk, sk)← Gen, m∗ $←−M and r∗ $←− R.

Proof. The proof of this lemma is similar with the proof of [26, Lemma 4]. After
proving Lemma 8, we will give a detailed proof of this lemma. ⊓⊔

Now, we prove our Lemma 8.

Lemma 8 (Security of T from OW-CPA). Let P = (Gen,Enc,Dec) be a δ-
correct rPKE scheme, and assume P is unique randomness recoverable with the
recover algorithm Rec. Let A be a OW-CPA adversary against T[P, H], making
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parallel quantum queries to the random oracle H with query depth dH and query
width n. Let qH := dH · n.

Then, we can construct a OW-CPA adversary B against P such that

AdvOW-CPA
T[P,H] (A) ≤ 10 ·AdvOW-CPA

P (B) + 16 · δ

and TB ≈ TA +O(q2H) +O(qH) · (TEnc + TRec).

Proof. Let ΩH be the set of all functions H :M→R, whereM/R is the mes-
sage/randomness space of P. We introduce two games as shown in Fig. 6.

GAMES G0-G1

1 : (pk, sk)← Gen, H1
$← ΩH //G0-G1

2 : m∗ $←M, r
$← R //G0-G1

3 : c∗ := Encpk(m
∗;H(m∗)) //G0-G1

4 : m′ ← AH(pk, c∗) //G0

5 : m′ ← AG(pk, c∗) //G1

6 : return [[m′ = m∗]] //G0-G1

H(m) //G0-G1

1 : return H1(m)

G(m) //G1

1 : if m = m∗

2 : return r

3 : else return H1(m)

Fig. 6. Games G0-G1 for the proof of Lemma 8. Note that the oracles G,H can both be
quantum accessed in those games. In this figure, we just write the classical descriptions
of G,H for brevity.

Game G0: This is the OW-CPA game of T[P,H ] with adversary A in the QROM.

AdvOW-CPA
T[P,H] (A) = Pr[1← G0]. (21)

Game G1: In this game, the oracle H is changed into G, where G is identical
with H except that G(m∗) is a fresh random value uniformly sampled from R.

Let D be a joint distribution of the tuple (G,H, {m∗}, pk, c∗), where H = H1

(H1
$←− ΩH), G is identical with H except that G(m∗) is a fresh random value

uniformly sampled from R, m∗ $←− M, pk is sampled by (pk, sk) ← Gen and
c∗ := Encpk(m

∗;H(m∗)). By using Lemma A1 with the joint distribution D, we
can construct an algorithm A1 such that∣∣∣√Pr[1← G0]−

√
Pr[1← G1]

∣∣∣
≤ 2

√
Pr

(G,H,{m∗},pk,c∗)←D

[
m′ = m∗ : m′ ← AG,H1 (pk, c∗)

]
.

(22)

Here A1 makes parallel quantum queries to G and H both with query depth dH
and query width n. The running time of A1 is TA1

≈ TA.
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Now, by using the recover algorithm Rec of P, we construct a OW-CPA ad-
versary B1 against P as:

1. B1 gets the challenge ciphertext c∗ := Encpk(m
∗; r∗) and public key pk, where

m∗ is the challenge plaintext uniformly sampled fromM by the challenger,
r∗

$←− R and pk is sampled by (pk, sk)← Gen.

2. B1 chooses r $←− R and a 2qH -wise independent function H1 :M→R.
3. B1 runs the algorithm A1 and simulates oracles G and H for A1 as follows10.

(a) Simulation of G: If the input m satisfies Encpk(m;Rec(pk,m, c∗)) = c∗,
the r will be returned. Otherwise, H1(m) is returned.

(b) Simulation of H: If the input m satisfies Encpk(m;Rec(pk,m, c∗)) = c∗,
the Rec(pk,m, c∗) will be returned. Otherwise, H1(m) is returned.

4. B1 finally outputs A1’s output.

Since A1’s running time is almost the same as A, one can easily check that the
running time of OW-CPA adversary B1 is TB1 ≈ TA+O(q2H)+O(qH)·(TEnc+TRec).

By the definition of unique randomness recoverable given in Definition 6, it
is obvious that Rec(pk,m∗, c∗) = r∗, and hence Encpk(m

∗;Rec(pk,m∗, c∗)) = c∗.
For the challenge plaintext m∗ of the OW-CPA adversary B1 defined above, let
Bad be the following event:

Bad: ∃m ∈M, r ∈ R s.t. m ̸= m∗ and Encpk(m; r) = c∗ (c∗ = Encpk(m
∗; r∗)).

If the event Bad does not occur, we can conclude that Encpk(x;Rec(pk, x, c∗)) =
c∗ iff x = m∗ since Encpk(m

∗;Rec(pk,m∗, c∗)) = c∗. That is to say, if the event
Bad does not occur, the OW-CPA adversary B1 defined above perfectly11 simu-
lates G and H for A1. Thus,

Pr
(G,H,{m∗},pk,c∗)←D

[
m′ = m∗ : m′ ← AG,H1 (pk, c∗)

]
≤ AdvOW-CPA

P (B1) + Pr[Bad].

(23)
Since P is unique randomness recoverable and δ-correct, by using Lemma A2, it
is easy to see that

Pr[Bad] ≤ 2 · δ. (24)

Combining Eq. (21) to Eq. (24), we obtain

AdvOW-CPA
T[P,H] (A) ≤

(√
Pr[1← G1] + 2

√
AdvOW-CPA

P (B1) + 2 · δ
)2

≤ 2 · Pr[1← G1] + 8 ·AdvOW-CPA
P (B1) + 16 · δ.

10 Note that A1 actually makes parallel quantum queries to G and H. Here we just
explain their simulations in the classical manner for brevity.

11 Here the "perfectly" means that, in A1’s view, the oracle G (resp. H) simulated by
B1 is perfectly indistinguishable with the oracles G (resp. H) obtained by sampling
(G,H, {m∗}, pk, c∗) according to the distribution D.
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For the Pr[1← G1], since the oracle G in game G1 is independent with the c∗ =
Encpk(m

∗;H(m∗)), one can easily construct a OW-CPA adversary B2 against P
by running A such that

Pr[1← G1] = AdvOW-CPA
P (B2)

and TB2 ≈ TA + O(q2H). Combine the above two equations and fold B1 and B2
into one single OW-CPA adversary B against P yields

AdvOW-CPA
T[P,H] (A) ≤ 10 ·AdvOW-CPA

P (B) + 16 · δ.

Here TB ≈ TA +O(q2H) +O(qH) · (TEnc + TRec). ⊓⊔

Proof of Lemma A2

Proof. For fixed (pk, sk), we define the two following subsets of M×R:

Scollpk,sk := {(m, r) | ∃(m′ ̸= m, r′) ∈M×R, Encpk(m′; r′) = Encpk(m; r)},
Serrorpk,sk := {(m, r) | Decsk(Encpk(m; r)) ̸= m}.

According to the definition of δ-correct, we have

Pr[(m, r) ∈ Serrorpk,sk | (pk, sk)← Gen,m
$←M, r

$← R] ≤ δ. (25)

Denote the ciphertext space of P as C. Then for c ∈ C, define the set

Scollpk,sk,c := {(m, r) | ∃(m′ ̸= m, r′) ∈M×R, Encpk(m′; r′) = Encpk(m; r) = c}.

By the definition of Scollpk,sk given above, there must exist a subset C ⊆ C such
that Scollpk,sk =

⋃
c∈C S

coll
pk,sk,c. That is, we separate Scollpk,sk into several disjoint sets

through the corresponding encryption value of (m, r) ∈ Scollpk,sk.
By the definition of unique randomness recoverable given in Definition 6 and

the next Remark 7, one can easily check that for any m ∈ M, r ∈ R and
(pk, sk) sampled by Gen, there does not exist r′ ∈ R such that r′ ̸= r and
Encpk(m; r) = Encpk(m; r′). Based on this property, for the set Scollpk,sk,c with
c ∈ C, we can conclude that there exists at most one pair in Scollpk,sk,c which does
not belong to Serrorpk,sk since the decryption algorithm Dec must be deterministic.
That is to say, the other pairs in Scollpk,sk,c must belong to Scollpk,sk,c ∩ Serrorpk,sk . Note
that |Scollpk,sk,c| ≥ 2 for any c ∈ C, hence we can obtain∣∣Scollpk,sk,c\Serrorpk,sk

∣∣ ≤ ∣∣Scollpk,sk,c ∩ Serrorpk,sk

∣∣ .
Since Scollpk,sk =

⋃
c∈C S

coll
pk,sk,c and Scollpk,sk,c are disjoint for different c ∈ C, we have∣∣Scollpk,sk\Serrorpk,sk

∣∣ ≤ ∣∣Scollpk,sk ∩ Serrorpk,sk

∣∣ . (26)
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Then, for (pk, sk)← Gen, m∗ $←−M, and r∗ $←− R, we can compute

Pr [∃(m ̸= m∗, r) ∈M×R, Encpk(m; r) = Encpk(m; r∗)]

= Pr[(m∗, r∗) ∈ Scollpk,sk]

= Pr[(m∗, r∗) ∈ Scollpk,sk\Serrorpk,sk ] + Pr[(m∗, r∗) ∈ Scollpk,sk ∩ Serrorpk,sk ]

(a)

≤ 2 · Pr[(m∗, r∗) ∈ Scollpk,sk ∩ Serrorpk,sk ]

≤ 2 · Pr[(m∗, r∗) ∈ Serrorpk,sk ]
(b)

≤ 2 · δ.

Here (a) and (b) use Eq. (26) and Eq. (25), respectively. ⊓⊔

A.6 Proof of Theorem 5

Theorem 5 (IND-CPA of KEM
/⊥ QROM⇒ IND-CCA of KEM

/⊥). Let rPKE scheme
P = (Gen,Enc,Dec) be δ-correct. Let A be an IND-CCA adversary against KEM/⊥

=FO
/⊥[P, H,G,F], making qD classical queries to the decapsulation oracle, mak-

ing parallel quantum queries to the random oracle H (resp. G) with query depth
dH (resp. dG) and query width n. Let qH := dH · n and qG := dG · n.

Then, we can construct the following two adversaries:

– A PRF-adversary B1 against F making at most qD classical queries. The
running time of B1 is TB1

≲ TA + qD · (TEnc + TDec) +O(q2H + q2G).
– An IND-CPA adversary B2 against KEM/⊥ in the QROM. B2 makes parallel

quantum queries to the random oracle H (resp. G) with query depth at most
dH + dG (resp. dG) and query width n. The running time of B2 is TB2 ≲
TA +O(qG) · TEnc +O(q2G + q2D).

Adversaries B1 and B2 satisfy the following:

AdvIND-CCA
KEM/⊥ (A) ≤ AdvPRFF (B1) + AdvIND-CPA

KEM/⊥ (B2) + 16(2qH + 2qG + 1)2 · δ.

Proof. For a fixed (pk, sk) pair sampled by Gen and m ∈M, we define sets

Rbad(pk, sk,m) := {r ∈ R : Decsk(Encpk(m; r)) ̸= m} (27)

and
Rgood(pk, sk,m) := R\Rbad(pk, sk,m). (28)

HereM/R is the message/randomness space of P. Then, we define two values

δ(pk, sk,m) :=
|Rbad(pk, sk,m)|

|R|
and δ(pk, sk) := max

m∈M
δ(pk, sk,m). (29)

By the definition of δ-correct given in Definition 2, we have E(pk,sk)←Gen[δ(pk, sk)]
≤ δ since P is δ-correct.

Let ΩH , ΩG, ΩR be the set of all functions H :M→ R, G :M× C → K,
R : C → K, respectively. Here C is the ciphertext space of P, K is the key space
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of KEM
/⊥. Let Hgood : M → R be a random function such that Hgood(m) is

uniformly sampled from Rgood(pk, sk,m) for any m ∈ M. Now we introduce a
sequence of hybrid games as shown in Fig. 7.

Game G0: This is the IND-CCA game of KEM/⊥ with adversary A in the QROM.

AdvIND-CCA
KEM/⊥ (A) =

∣∣∣∣Pr[1← G0]−
1

2

∣∣∣∣ . (30)

GAMES G0-G8

1 : (pk, sk)← Gen //G0-G8

2 : s
$←− Kprf //G0

3 : sk′ := (sk, s) //G0

4 : H
$←− ΩH //G0-G8

5 : G1
$←− ΩG //G0-G8

6 : R
$←− ΩR //G1-G8

7 : H := Hgood //G2-G6

8 : R1
$←− ΩR //G3-G8

9 : G2
$←− ΩG //G5-G8

10 : m∗ $←−M, b
$←− {0, 1} //G0-G8

11 : c∗ := Encpk(m
∗;H(m∗)) //G0-G8

12 : k∗0 := G(m∗, c∗), k∗1
$←− K //G0-G8

13 : b′ ← AH,G,Deca(pk, c∗, k∗b ) //G0-G7

14 : b′ ← BH,G(pk, c∗, k∗b ) //G8

15 : return [[b′ = b]] //G0-G8

G(m, c) //G0-G2,G8

1 : return G1(m, c) //G0-G2

2 : return G2(m, c) //G8

G(m, c) //G3-G4

1 : if Encpk(m;H(m)) = c

2 : return R1(c)

3 : else return G1(m, c)

G(m, c) //G5-G7

1 : if m = m∗ ∧ c = c∗ //G5

2 : if Encpk(m;H(m)) = c∗ ∧ c = c∗ //G6 −G7

3 : return G2(m, c)

4 : else if Encpk(m;H(m)) = c

5 : return R1(m, c)

6 : else return G1(m, c)

Deca(c ̸= c∗) //G0-G3

1 : parse sk′ = (sk, s)

2 : m′ := Decsk(c)

3 : if m′ ̸= ⊥ ∧ Encpk(m
′;H(m′)) = c

4 : return K := G(m′, c)

5 : else return K := F(s, c) //G0

6 : else return K := R(c) //G1-G3

Deca(c ̸= c∗) //G4-G8

1 : return K := R1(c)

Fig. 7. Games G0-G8 for the proof of Theorem 5. Note that the oracle G can be
parallel quantum accessed in those games. In this figure, we just write the classical
description of G for brevity.

Game G1 (PRF is random): In this game, the PRF F used in the decapsulation
oracle Deca is changed into a random function R $←− ΩR.

We construct a PRF adversary BO1 against F as:
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1. By using a 2qH -wise (resp. 2qG-wise) independent function to simulate H
(resp. G), B1 runs the adversary A in game G0. If A makes a query c to
Deca that failed to decapsulate, B1 returns O(c) to A by querying O with
input c. B1 finally outputs 1 if game G0 returns 1 and 0 otherwise.

Here O can be F(s, ·) with s
$←− Kprf or a uniformly random function R

$←−
ΩR. Since the PRF F is only used by Deca in game G0, B1 makes at most
qD classical queries to its oracle O and its running time can be bounded as
TB1
≈ TA + qD · (TEnc + TDec) +O(q2H + q2G).
According to the above definition of adversary B1, it is easy to check that

Pr[1← BF(s,·)1 ] = Pr[1← G0] and Pr[1← BR(·)
1 ] = Pr[1← G1]. Thus

|Pr[1← G0]− Pr[1← G1]| = AdvPRFF (B1). (31)

Game G2: This game is the same as game G1, except that H is replaced by
Hgood. Recall that Hgood :M→R is a random function such that Hgood(m) is
uniformly sampled from Rgood(pk, sk,m) for any m ∈M.

For H $←− ΩH and a fixed (pk, sk), we construct the following algorithm
BH(pk, sk) with quantum oracle access to H that plays game G1:

1. BH(pk, sk) simulates G (resp. R) by using a 2qG-wise (resp. 2qD-wise) inde-
pendent function, replaces the calls to H in game G1 by calls to its oracle
and simulates the decapsulation oracle Deca by using (pk, sk). BH(pk, sk)
finally outputs 1 if game G1 returns 1 and 0 otherwise.

Obviously, BH(pk, sk) makes qH quantum queries to its oracle H and

Pr [1← G1 : (pk, sk)] = Pr
[
1← BH(pk, sk) : H

$←− ΩH
]
. (32)

Since game G2 is the same as game G1 except that H is changed into Hgood,
we have

Pr [1← G2 : (pk, sk)] = Pr
[
1← BHgood(pk, sk)

]
. (33)

Let N1 : M → {0, 1} be a random function such that Pr[N1(m) = 1] =
δ(pk, sk,m) and Pr [N1(m) = 0] = 1 − δ(pk, sk,m) for any m ∈ M. Here the
value δ(pk, sk,m) is defined in Eq. (29). Let N2 : M → {0, 1} be a constant
function such that N2(m) = 0 for any m ∈M.

Then, by running BH(pk, sk), we construct a quantum oracle algorithm
CN (pk, sk) (N ∈ {N1, N2}) as shown in Fig. 8. Here CN (pk, sk) introduces a
new quantum oracle K relates to its quantum oracle N and replaces H into K.
In Supplementary Material A.7, we show that CN (pk, sk) answers one query to
K by querying N twice12. That is to say, our construction of CN (pk, sk) shown
in Fig. 8 is well-defined and CN (pk, sk) makes 2qH quantum queries to N .

12 We actually construct a quantum circuit that answers one query to K by querying
N twice in Supplementary Material A.7.
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CN (pk, sk)

1 : H
$←− ΩH

2 : H := K

3 : b← BH(pk, sk)

4 : return b

K(m)

1 : if N(m) = 0

2 : return r
$←− Rgood(pk, sk,m)

3 : if N(m) = 1

4 : return r
$←− Rbad(pk, sk,m)

Fig. 8. Quantum oracle algorithm CN (pk, sk) for the proof of Theorem 5.

Since Hgood :M→R is a random function such that Hgood(m) is uniformly
sampled from Rgood(pk, sk,m) for any m ∈ M, it is easy to check that Pr[1←
CN1(pk, sk)] = Pr[1 ← BH(pk, sk) : H

$←− ΩH ] and Pr[1 ← CN2(pk, sk)] =
Pr[1 ← BHgood(pk, sk)]. Then, by Lemma 2 and the fact that CN (pk, sk) (N ∈
{N1, N2}) makes 2qH quantum queries to N , we can obtain∣∣∣Pr [1← BH(pk, sk) : H

$←− ΩH
]
− Pr

[
1← BHgood(pk, sk)

]∣∣∣
=
∣∣Pr [1← CN1(pk, sk)

]
− Pr

[
1← CN2(pk, sk)

]∣∣
≤ 8(2qH + 1)2 · max

m∈M
δ(pk, sk,m)

(a)
= 8(2qH + 1)2 · δ(pk, sk).

Here (a) uses the definition of δ(pk, sk) shown in Eq. (29). Combine the above
equation with Eq. (32) and Eq. (33), we get

|Pr [1← G1 : (pk, sk)]− Pr [1← G2 : (pk, sk)]| ≤ 8(2qH + 1)2 · δ(pk, sk).

By averaging over (pk, sk)← Gen, we finally obtain

|Pr[1← G1]− Pr[1← G2]| ≤ 8(2qH + 1)2 · δ. (34)

Game G3: Based on game G2, in this new game, we sample R1
$←− ΩR and let

G(m, c) = R1(c) if Encpk(m;H(m)) = c.

Obviously, games G2 and G3 have completely the same distribution if the
following event does not occur:

∃m1,m2 ∈M such that m1 ̸= m2 and Encpk(m1;H(m1)) = Encpk(m2;H(m2)).

Note that H has replaced by Hgood in game G2 and G3, where Hgood(m) is uni-
formly sampled from Rgood(pk, sk,m) for any m ∈M. Hence, by the definition
of Rgood(pk, sk,m) given in Eq. (28), we can conclude that the function

g(·) := Encpk(·;H(·))

is an injective function and thus the above event can not occur. Therefore,

Pr[1← G2] = Pr[1← G3]. (35)
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Game G4: This game is the same as game G3, except that the decapsulation
oracle Deca is changed as it returns K := R1(c) for c ̸= c∗. That is, the answer
of Deca in this game no longer uses the secret key sk′.

We consider the following cases for the input c of Deca in games G3 and G4:

– Decsk(c) = m′∧m′ ̸= ⊥∧Encpk(m′;H(m′)) = c. In this case, Deca in games
G3 and G4 return the same value G(m′, c) = R1(c).

– Decsk(c) = ⊥ or Decsk(c) = m′ ∧ m′ ̸= ⊥ ∧ Encpk(m
′;H(m′)) ̸= c. In

this case, uniformly random value R(c) is returned in game G3 and ran-
dom value R1(c) is returned in game G4. Indeed, for the adversary A
of game G4, besides obtaining R1(c) through querying Deca, the R1(c)
can only be obtained if it queries G with an input (m1 ̸= ⊥, c) satisfy-
ing Encpk(m1;H(m1)) = c. However, since H has replaced by Hgood in game
G4 and Hgood(m) ∈ Rgood(pk, sk,m) for any m ∈ M, such (m1, c) pair
does not exist. The reason is that, if such (m1, c) pair exists, we must have
Encpk(m1;H(m1)) = c and Decsk(c) ̸= m1

13, which means that H(m1) =
Hgood(m1) /∈ Rgood(pk, sk,m1) by the definition of Rgood(pk, sk,m) shown
in Eq. (28), and this is contradictory with Hgood(m) ∈ Rgood(pk, sk,m) for
any m ∈ M. Therefore, the random value R1(c) returned by Deca in game
G4 is also uniform, which means that the output distributions of Deca in
game G3 and G4 are identical in A’s view.

According to the above analysis, we have

Pr[1← G3] = Pr[1← G4]. (36)

Game G5: Based on game G4, in this new game, we sample G2
$←− ΩG and let

G(m, c) = G2(m, c) if m = m∗ and c = c∗.

According to the analysis to obtain Eq. (35), we know g(·) := Encpk(·;H(·))
is an injective function. Therefore, the adversary A in game G4 can only obtain
R1(c

∗) by querying G with (m∗, c∗)14, which means that the distributions of
G(m∗, c∗) in game G4 and G5 are both uniformly random in A’s view. Hence

Pr[1← G4] = Pr[1← G5]. (37)

Game G6: This game is the same as game G5, except that we let G(m, c) =
G2(m, c) if Encpk(m;H(m)) = c∗ and c = c∗.

Similarly, since g(·) := Encpk(·;H(·)) is an injective function and c∗ :=
Encpk(m

∗;H(m∗)), we know Encpk(m;H(m)) = c∗ is equivalent with m = m∗.
Hence,

Pr[1← G5] = Pr[1← G6]. (38)
13 If Decsk(c) = ⊥, we obviously have Decsk(c) ̸= m1. If Decsk(c) = m′ ∧ m′ ̸=
⊥ ∧ Encpk(m

′;H(m′)) ̸= c, we have m′ ̸= m1 since Encpk(m1;H(m1)) = c.
14 Although the decapsulation oracle Deca in game G4 is also answered by querying
R1, A is not allowed to query Deca by the challenge ciphertext c∗.
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Game G7: In game G2 to G6, we note that H has replaced by Hgood, in this
new game, we remove this replacement. That is, the H in this new game is uni-
formly sampled from ΩH .

With the similar analysis in the game hop between games G1 and G2, we
can first convert the distinguishing problem between games G6 and G7 to the
distinguishing problem between Hgood and H, and then use the Lemma 2 to
upper bound the corresponding distinguishing advantage. But one thing to note
is that the answer of G(m, c) in game G6 and G7 also needs to query H, which
results in the total query times of H in game G6 (resp. G7) being qH + qG
instead of the qH in game G1 (resp. G2). Overall, we have

|Pr[1← G6]− Pr[1← G7]| ≤ 8(2(qH + qG) + 1)2 · δ. (39)

Game G8: This game is the same as game G7, except that we let G = G2 and
replace AH,G,Deca(pk, c∗, k∗b ) by a new adversary BH,G2 (pk, c∗, k∗b ) defined as:

1. Choose a 2qG-wise (resp. 2(qG+ qD)-wise) independent function to simulate
the random oracle G1 (resp. R1).

2. Run the adversary AH,G,Deca(pk, c∗, k∗b ) in game G7 and finally output A’s
single bit output b′.
(a) When A queries its oracle H, B2 answers it by querying its oracle H.
(b) When A queries its oracle G with (m, c), B2 computes Encpk(m,H(m))

by querying its oracle H and does:
i. if Encpk(m,H(m)) = c∗∧ c = c∗, B2 answers G(m, c) by querying its

oracle G.
ii. else if Encpk(m,H(m)) = c, B2 answers R1(c).
iii. else if Encpk(m,H(m)) ̸= c, B2 answers G1(m, c).

(c) When A queries its oracle Deca with input c (̸= c∗), B2 answers R1(c).

Obviously, B2 makes parallel quantum queries to its oracle H (resp. G) with
query depth at most dH + dG (resp. dG) and query width n. The running time
of B2 can also be bounded as TB2 ≈ TA +O(qG) · TEnc +O(q2G + q2D).

It is easy to check that the change in game G8 compared with game G7 is
only conceptual, and B2 actually an IND-CPA adversary against KEM

/⊥ in the
QROM. Hence, we have

Pr[1← G7] = Pr[1← G8] and Pr[1← G8] = AdvIND-CPA
KEM/⊥ (B2). (40)

Combine Eq. (30), Eq. (31) with Eq. (34) to Eq. (40), we finally obtain

AdvIND-CCA
KEM/⊥ (A) ≤ AdvPRFF (B1) + AdvIND-CPA

KEM/⊥ (B2) + 16(2qH + 2qG + 1)2 · δ.

⊓⊔
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A.7 Quantum Circuit to Answer the Quantum Oracle K

In this section, based on a quantum oracle N : M → {0, 1}, we construct a
quantum circuit to answer the quantum oracle K : M → R defined in Fig. 9.
Here the definition of the set Rbad(pk, sk,m) and Rgood(pk, sk,m) is shown in
Eq. (27) and Eq. (28), respectively.

K(m ∈M)

1 : if N(m) = 0

2 : return y
$←− Rgood(pk, sk,m)

3 : if N(m) = 1

4 : return y
$←− Rbad(pk, sk,m)

Fig. 9. Quantum oracle K. Here we just write the classical description of K for brevity.

Let H0 : M → R be a random function such that H0(m) is uniformly
sampled from Rgood(pk, sk,m) for any m ∈ M. Let H1 :M→ R be a random
function such that H1(m) is uniformly sampled from Rbad(pk, sk,m) for each
m ∈M. Then, we define unitary operation

UH0
: |m, r⟩ 7→ |m, r ⊕H0(m)⟩ and UH1

: |m, r⟩ 7→ |m, r ⊕H1(m)⟩,

where m ∈ M and r ∈ R. Let M/R be the input/output register of the quan-
tum oracle K. Now, we construct the following quantum circuit to answer the
quantum oracle K:

– Initialize a single qubit register L with |0⟩.
– Query N by registers M and L, where L is the output register.
– Apply the following conditional operation:
• The controlling register is L, and apply UH1

on registers M and R (R is
the output register) if the state on L is |1⟩.

– Apply unitary operation X on register L, where X|0⟩ = |1⟩ and X|1⟩ = |0⟩.
– Apply the following conditional operation:
• The controlling register is L, and apply UH0

on registers M and R (R is
the output register) if the state on L is |1⟩.

– Apply unitary operation X on register L again.
– Query N by registers M and L again, where L is the output register. At this

point the register L is guaranteed to be in state |0⟩, so it can be discarded.

By utilizing the above circuit, CN (pk, sk) defined in Fig. 8 can answer once
query to K by querying N twice. Note that the above circuit needs to apply uni-
tary operation UH0

and UH1
. Indeed, by samplingH0 andH1 directly, CN (pk, sk)

can perform these two unitary operations. We stress that there is no problem
asking CN (pk, sk) to sample H0 and H1 directly, because C has input (pk, sk)
and we do not limit C to be polynomial time, it can be unbounded.
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A.8 Proof of Theorem 6

Transformation U/⊥: Let dPKE = (Gen, dEnc, dDec) be a dPKE scheme with
message spaceM and ciphertext space C. For a given set K, let G :M→K be
a hash function, and let F : Kprf × C → K be a pseudorandom function (PRF)
with key space Kprf . We associate KEM scheme

U/⊥[dPKE, G,F] := (Gen′,Enca′,Deca′).

The constituting algorithms of U/⊥[dPKE, G,F] are given in Fig. 10. Here the key
space of U/⊥[dPKE, G,F] is K.

Gen′

1 : (pk, sk)← Gen

2 : s
$← Kprf

3 : sk′ := (sk, s)

4 : return (pk, sk′)

Enca′(pk)

1 : m
$←M

2 : c := dEncpk(m)

3 : K := G(m, c)

4 : return (K, c)

Deca′(sk′ = (sk, s), c)

1 : m′ := dDecsk(c)

2 : if m′ = ⊥
3 : return K := F(s, c)

4 : else return K := G(m′, c)

Fig. 10. Key Encapsulation Mechanism U/⊥[dPKE, G,F].

Theorem 6 (OW-CPA of dPKE
QROM⇒ IND-CPA of U/⊥[dPKE, G,F]). For a

dPKE scheme dPKE = (Gen, dEnc, dDec) with message space M, let A be an
IND-CPA adversary against U/⊥[dPKE, G,F], making parallel quantum queries to
the random oracle G with query depth dG and query width n. Let qG := dG · n.

Then, we can construct a OW-CPA adversary A1 against dPKE such that

AdvIND-CPA
U/⊥[dPKE,G,F](A) ≤ 2

√
dG ·AdvOW-CPA

dPKE (A1) + 2
√
dG · Pr[EdPKE]

and TA1 ≲ 3 · TA +O(qG) · TdEnc +O(q2G). Here EdPKE is the following event:

(pk, sk)← Gen, m∗ $←−M, ∃m ̸= m∗ such that dEncpk(m) = dEncpk(m∗).

Proof. Let ΩG be the set of all functions G : M × C → K, where C is the
ciphertext space of dPKE and K is the key space of U/⊥[dPKE, G,F]. Let D
be a joint distribution of the tuple (G,H, {(m∗, c∗)}, pk, c∗), where G $←− ΩG,
m∗

$←−M, c∗ := dEncpk(m
∗) and pk is sampled by (pk, sk)← Gen; H is identical

with G except that H(m∗, c∗) is a fresh value uniformly sampled from K.
Then, we introduce two games GIND-CPA

U/⊥,b=0
and GIND-CPA

U/⊥,b=1
as shown in Fig. 11,

and it is easy to check that

AdvIND-CPA
U/⊥[dPKE,G,F](A) =

1

2

∣∣∣Pr [1← GIND-CPA
U/⊥,b=0

]
− Pr

[
1← GIND-CPA

U/⊥,b=1

]∣∣∣ . (41)
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GIND-CPA
U/⊥,b=0

1 : (G,H, {(m∗, c∗)}, pk, c∗)← D

2 : b := 0

3 : k∗0 := G(m∗, c∗), k∗1
$←− K

4 : b′ ← AG(pk, c∗, k∗b )

5 : return b′

G0

1 : (G,H, {(m∗, c∗)}, pk, c∗, k)← D1

2 : b′ ← AG(pk, c∗, k)

3 : return b′

GIND-CPA
U/⊥,b=1

1 : (G,H, {(m∗, c∗)}, pk, c∗)← D

2 : b := 1

3 : k∗0 := G(m∗, c∗), k∗1
$←− K

4 : b′ ← AG(pk, c∗, k∗b )

5 : return b′

G1

1 : (G,H, {(m∗, c∗)}, pk, c∗, k)← D1

2 : b′ ← AH(pk, c∗, k)

3 : return b′

Fig. 11. Games for the proof of Theorem 6.

Next, we rewrite game GIND-CPA
U/⊥,b=0

(resp. GIND-CPA
U/⊥,b=1

) to a new game G0 (resp.
G1) as shown in Fig. 11. The distribution D1 involved in games G0 and G1

is a joint distribution identical with D, except that an additional value k :=
G(m∗, c∗) is sampled. Obviously,

Pr
[
1← GIND-CPA

U/⊥,b=0

]
= Pr[1← G0] = Pr

(G,H,{(m∗,c∗)},pk,c∗,k)←D1

[1← AG(pk, c∗, k)],

Pr
[
1← GIND-CPA

U/⊥,b=1

]
= Pr[1← G1] = Pr

(G,H,{(m∗,c∗)},pk,c∗,k)←D1

[1← AH(pk, c∗, k)].

Let S := {(m∗, c∗)} and z := (pk, c∗, k), the above equation actually implies
that ∣∣∣Pr [1← GIND-CPA

U/⊥,b=0

]
− Pr

[
1← GIND-CPA

U/⊥,b=1

]∣∣∣
=

∣∣∣∣ Pr
(G,H,S,z)←D1

[1← AG(z)]− Pr
(G,H,S,z)←D1

[1← AH(z)]

∣∣∣∣ . (42)

Then, by applying Theorem 4 with the distribution D1, we can construct an
adversary DG,H,1S (z) such that∣∣∣∣ Pr

(G,H,S,z)←D1

[1← AG(z)]− Pr
(G,H,S,z)←D1

[1← AH(z)]

∣∣∣∣
≤ 4
√
dG · Pr

(G,H,S,z)←D1

[T ∩ S ̸= ∅ : T ← DG,H,1S (z)].
(43)

Here 1S is the indicator function of S, that is, 1S(x) = 1 if x = (m∗, c∗) and
0 otherwise. D makes parallel quantum queries to G, H and 1S all with query
depth at most 3dG and query width n. The running time of D is TD ≲ 3 · TA.

Now, we construct a OW-CPA adversary A1 against dPKE as:
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1. A1 gets the challenge ciphertext c∗ := dPKEpk(m∗) and public key pk, where
m∗ is the challenge plaintext uniformly sampled from M by the challenger
and pk is sampled by (pk, sk)← Gen.

2. A1 samples k uniformly from K and chooses a 12qG-wise function f :M×
C → K.

3. A1 uses z = (pk, c∗, k) as input to run the adversary DG,H,1S (z) and simu-
lates the oracles G, H and 1S for D15:
(a) When D queries G with input (m, c):

i. If dPKEpk(m) = c∗ and c = c∗, A1 answers k.
ii. If dPKEpk(m) ̸= c∗ or c ̸= c∗, A1 answers f(m, c).

(b) When D queries H with input (m, c), A1 answers f(m, c).
(c) When D queries 1S with input (m, c):

i. If dPKEpk(m) = c∗ and c = c∗, A1 answers 1.
ii. If dPKEpk(m) ̸= c∗ or c ̸= c∗, A1 answers 0.

4. After D returns set T , A1 searches in T for the m satisfying ∃c ∈ C s.t.
(m, c) ∈ T and dPKEpk(m) = c∗. A1 finally outputs the minimum m satisfies
that property. If such m does not exist, A1 outputs ⊥.

One can check that the running time of A1 is TA1
≲ 3·TA+O(qG)·TdEnc+O(q2G).

In the above construction, since A1 can not get the challenge plaintext m∗
directly, it checks if m equals m∗ by testing if dPKEpk(m) equals c∗ during the
simulation of oracles G and 1S for D. Indeed, since m∗ is uniformly sampled from
M by the challenger, A1 simulates the oracles G, H and 1S for D perfectly16 if
the following event does not occur:

(pk, sk)← Gen, m∗ $←−M, ∃m ̸= m∗ such that dEncpk(m) = dEncpk(m∗).

The reason is that, if the above event does not occur, dEncpk(m) = dEncpk(m∗)
is equivalent with m = m∗. Note that the above event is exactly the EdPKE, thus
we have

Pr
(G,H,S,z)←D1

[T ∩ S ̸= ∅ : T ← DG,H,1S (z)] ≤ AdvOW-CPA
dPKE (A1) + Pr[EdPKE]. (44)

Finally, combine Eq. (41) to Eq. (44), we obtain

AdvIND-CPA
U/⊥[dPKE,G,F](A) ≤ 2

√
dG ·AdvOW-CPA

dPKE (A1) + 2
√
dG · Pr[EdPKE].

⊓⊔

15 Note that D actually makes parallel quantum queries to G, H and 1S . Here we just
explain their simulations in the classical manner for brevity.

16 Here the "perfectly" means that, in D’s view, the oracles G, H and 1S simulated by
A1 is perfectly indistinguishable with the oracles G, H and 1S obtained by sampling
(G,H, {(m∗, c∗)}, pk, c∗, k) according to the distribution D1.
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A.9 Proof of Theorem 7

Before proving, we first count that how many times the A1 constructed in the
proof of Theorem 6 has computed the encryption algorithm dEnc of the dPKE
scheme dPKE. This value will be used in the proof of Theorem 7.

Remark 8. Indeed, the computation of dEnc performed by A1 contains the fol-
lowing three parts:

1. The first part derived from the simulation of oracle G for DG,H,1S (z). Since
DG,H,1S (z) makes parallel quantum queries to G with query depth at most
3dG and query width n, A1 needs to compute dEnc also in parallel with
depth 3dG and width n to simulate oracle G for DG,H,1S (z).

2. The second part derived from the simulation of oracle 1S for DG,H,1S (z).
Since DG,H,1S (z) makes parallel quantum queries to 1S with query depth
at most 3dG and query width n, A1 needs to compute dEnc also in parallel
with depth 3dG and width n to simulate oracle 1S for DG,H,1S (z).

3. The third part derived from the the final check ofA1 after DG,H,1S (z) returns
the set T . By the detailed construction of DG,H,1S (z) given in the proof of
Theorem 4, we know that T is a set with |T | = n, where n is the query width
of oracles G and H. Hence, without loss of generality, we can say that A1

compute dEnc in parallel with depth 1 and width n in this final check.

In summary, A1 needs to compute dEnc in parallel with depth in total 6dG + 1
and width n.

Theorem 7 (IND-CPA/OW-CPA of P
QROM⇒ IND-CPA of KEM

/⊥). Let P =
(Gen,Enc,Dec) be a δ-correct rPKE scheme with message spaceM. Let A be an
IND-CPA adversary against KEM/⊥ = FO

/⊥[P, H,G,F], making parallel quantum
queries to the random oracle H (resp. G) with query depth dH (resp. dG) and
query width n. Let qH := dH · n and qG := dG · n.

Then, we can construct an IND-CPA adversary B against P such that

AdvIND-CPA
KEM/⊥ (A) ≤2

√
dG(6dG + dH + 3) ·AdvIND-CPA

P (B) + 4
√
dG · δ

+ 16
√
dG(6dG + dH + 3)

(6qG + 2qH + 1)

|M|
.

and TB ≲ 3 · TA + O(q2G + q2H) + O(qG) · TEnc. If P is also unique randomness
recoverable with the recover algorithm Rec, we can also construct a OW-CPA
adversary B1 against P such that

AdvIND-CPA
KEM/⊥ (A) ≤ 20

√
dG ·AdvOW-CPA

P (B1) + 36
√
dG · δ

and TB1
≲ 3 · TA +O(q2G + q2H) +O(qG + qH) · (TEnc + TRec).

Proof. Since FO/⊥[P, H,G,F] = U/⊥[T[P, H], G,F] (i,e, Eq. (20)), we can compute

AdvIND-CPA
KEM/⊥ (A) = AdvIND-CPA

U/⊥[T[P,H],G,F](A)
(a)

≤ 2
√
dG ·AdvOW-CPA

T[P,H] (A1) + 2
√
dG · Pr

[
ET[P,H]

]
.

(45)
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Here (a) follows form Theorem 6. Note that in Fig. 2, the encryption algorithm
Enc′ of dPKE scheme T[P, H] satisfies that TEnc′ ≈ TEnc. Hence, the running
time of adversary A1 is TA1 ≲ 3 · TA +O(qG) · TEnc +O(q2G).

Now, let’s count that how many times the adversary A1 obtained in Eq. (45)
queried the random oracle H. Firstly, the inequality (a) of Eq. (45) uses the
Theorem 6, which, in essence, only considers the random oracle G queries of the
adversary A. Consequently, A1 inherits the H queries of A, meaning that A1

needs to make parallel quantum queries to H with query depth dH and query
width n. Additionally, based on the analysis of Remark 8, A1 needs to compute
Enc′17 in parallel with depth in total 6dG + 1 and width n. As shown in Fig.
2, the computation of Enc′ needs to query H once, which means that A1 also
needs to make parallel quantum queries to H with query depth 6dG + 1 and
query width n. In summary, A1 needs to make parallel quantum queries to H
with query depth 6dG + dH + 1 and query width n.

Then, by using Lemma 7, we can construct an IND-CPA adversary B against
P such that

AdvOW-CPA
T[P,H] (A1) ≤ (6dG + dH + 3) ·

(
AdvIND-CPA

P (B) + 8(6qG + qH + n+ 1)

|M|

)
(46)

and TB ≈ TA1
+O(q2G+q2H). As for the probability Pr[ET[P,H]], by the definition

of the event EdPKE, ET[P,H] actually denotes the following event:

(pk, sk)← Gen, H $←− ΩH , m∗ $←−M, ∃m ̸= m∗ such that
Encpk(m;H(m)) = Encpk(m∗;H(m∗)).

Here ΩH is the set of all functions H :M→ R, and the H $←− ΩH stems from
the fact that we consider H as a random oracle. Obviously, by using Lemma 9,

Pr
[
ET[P,H]

]
≤ 2 · δ. (47)

Combine Eq. (45) to Eq. (47) and use the fact that n ≤ qH , we finally obtain

AdvIND-CPA
KEM/⊥ (A) ≤2

√
dG(6dG + dH + 3) ·AdvIND-CPA

P (B) + 4
√
dG · δ

+ 16
√
dG(6dG + dH + 3)

(6qG + 2qH + 1)

|M|
.

The running time of B is TB ≲ 3 · TA +O(q2G + q2H) +O(qG) · TEnc.
If P is also unique randomness recoverable with the recover algorithm Rec,

by using Lemma 8, we can also construct a OW-CPA adversary B1 against P
such that

AdvOW-CPA
T[P,H] (A1) ≤ 10 ·AdvOW-CPA

P (B1) + 16 · δ (48)

and TB1
≈ TA1

+ O(q2G + q2H) + O(qG + qH) · (TEnc + TRec). Combine Eq. (45),
Eq. (47) with Eq. (48), we finally obtain

AdvIND-CPA
KEM/⊥ (A) ≤ 20

√
dG ·AdvOW-CPA

P (B1) + 36
√
dG · δ

and TB1
≲ 3 · TA +O(q2G + q2H) +O(qG + qH) · (TEnc + TRec). ⊓⊔

17 Since we consider T[P, H], the dEnc involved in Remark 8 actually the Enc′.
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A.10 Tighter IND-CCA Security Proof of FO⊥
m in the QROM

FO-like transformation FO⊥m: Let P = (Gen,Enc,Dec) be an rPKE scheme
with message spaceM and randomness space R. For a given set K, let H :M→
R, G :M→K be hash functions. We associate KEM scheme

KEM⊥m := FO⊥m[P, H,G] = (Gen,Enca,Deca⊥m)

that has key space K. The constituting algorithms of KEM⊥m are given in Fig. 12.

Gen

1 : (pk, sk)← Gen

2 : return (pk, sk)

Enca(pk)

1 : m
$←M

2 : c := Encpk(m;H(m))

3 : K := G(m)

4 : return (K, c)

Deca⊥m(sk, c)

1 : m′ := Decsk(c)

2 : if m′ = ⊥ ∨ c ̸= Encpk(m
′;H(m′))

3 : return ⊥
4 : else return K := G(m′)

Fig. 12. Key Encapsulation Mechanism KEM⊥
m.

We first introduce the following theorem. It shows that in the QROM, the
IND-CPA security of KEM⊥m implies its IND-CCA security.

Theorem 8 (IND-CPA of KEM⊥m
QROM⇒ IND-CCA of KEM⊥m [14, Theorem 2]).

Let rPKE scheme P = (Gen,Enc,Dec) be δ-correct and weakly γ-spread. Let A
be an IND-CCA adversary against KEM⊥m =FO⊥m[P, H,G], making qD classical
queries to the decapsulation oracle, making parallel quantum queries to the ran-
dom oracle H (resp. G) with query depth dH (resp. dG) and query width n. Let
qH := dH · n and qG := dG · n.

Then, we can construct an IND-CPA adversary B (in the QROM) against
KEM⊥m such that

AdvIND-CCA
KEM⊥

m
(A) ≤ AdvIND-CPA

KEM⊥
m

(B)+8
√
qH(qH + 1) · δ+(64qH+2)·δ+40qD ·2−γ/2.

The adversary B makes parallel quantum queries to the random oracle H (resp.
G) with query depth 2dH (resp. dG + qD) and query width n. The running time
of adversary B is TB ≈ TA +O(qHqD + q2H).

Next, we focus on the IND-CPA security of KEM⊥m in the QROM. As intro-
duced in [15], the KEM⊥m satisfies that

KEM⊥m = FO⊥m[P, H,G] = U⊥m[T[P, H], G]. (49)

Here transformation U⊥m transforms a dPKE scheme into a KEM scheme. For
the U⊥m, we can prove the following theorem, which shows that in the QROM,
the IND-CPA security of U⊥m can be reduced to the OW-CPA security of the
underlying dPKE scheme without the square-root advantage loss.
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Theorem 9 (OW-CPA of dPKE
QROM⇒ IND-CPA of U⊥m[dPKE, G]). For a

dPKE scheme dPKE = (Gen, dEnc, dDec) with message space M, let A be an
IND-CPA adversary against U⊥m[dPKE, G], making parallel quantum queries to
the random oracle G with query depth dG and query width n. Let qG := dG · n.

Then, we can construct a OW-CPA adversary A1 against dPKE such that

AdvIND-CPA
U⊥

m[dPKE,G,F](A) ≤ 2
√
dG ·AdvOW-CPA

dPKE (A1) + 2
√
dG · Pr[EdPKE]

and TA1
≲ 3 · TA +O(qG) · TdEnc +O(q2G). Here EdPKE is the following event:

(pk, sk)← Gen, m∗ $←−M, ∃m ̸= m∗ such that dEncpk(m) = dEncpk(m∗).

Proof. Since we only consider the IND-CPA security, where the adversary can
not query the decapsulation oracle, the proof of this theorem is almost the same
as Theorem 6 and we omit it. ⊓⊔

Combining Theorem 9 with Lemma 7 and Lemma 8, we can prove the fol-
lowing result for the IND-CPA security of KEM⊥m in the QROM.

Theorem 10 (IND-CPA/OW-CPA of P
QROM⇒ IND-CPA of KEM⊥m). Let P =

(Gen,Enc,Dec) be a δ-correct rPKE scheme with message spaceM. Let A be an
IND-CPA adversary against KEM⊥m = FO⊥m[P, H,G], making parallel quantum
queries to the random oracle H (resp. G) with query depth dH (resp. dG) and
query width n. Let qH := dH · n and qG := dG · n.

Then, we can construct an IND-CPA adversary B against P such that

AdvIND-CPA
KEM⊥

m
(A) ≤2

√
dG(6dG + dH + 3) ·AdvIND-CPA

P (B) + 4
√
dG · δ

+ 16
√
dG(6dG + dH + 3)

(6qG + 2qH + 1)

|M|
.

and TB ≲ 3 · TA + O(q2G + q2H) + O(qG) · TEnc. If P is also unique randomness
recoverable with the recover algorithm Rec, we can also construct a OW-CPA
adversary B1 against P such that

AdvIND-CPA
KEM⊥

m
(A) ≤ 20

√
dG ·AdvOW-CPA

P (B1) + 36
√
dG · δ

and TB1
≲ 3 · TA +O(q2G + q2H) +O(qG + qH) · (TEnc + TRec).

Proof. Similar to Theorem 7, this theorem can be easily proved by utilizing Eq.
(49) and Lemma 9. As for the detailed proof, we omit it since it is almost the
same as the proof of Theorem 7. ⊓⊔

Combine Theorem 8 with Theorem 10, we finally obtain the following corol-
lary. It shows that, in the QROM, the IND-CCA security of KEM⊥m can be reduced
to the IND-CPA/OW-CPA security of the underlying rPKE scheme without the
square-root advantage loss.
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Corollary 2 (IND-CPA/OW-CPA of P
QROM⇒ IND-CCA of KEM⊥m). Let rPKE

scheme P = (Gen,Enc,Dec) with message space M be δ-correct and weakly γ-
spread. Let A be an IND-CCA adversary against KEM⊥m = FO⊥m[P, H,G], making
qD classical queries to the decapsulation oracle, making parallel quantum queries
to the random oracle H (resp. G) with query depth dH (resp. dG) and query
width n. Let qH := dH · n and qG := dG · n.

Then, we can construct an IND-CPA adversary B1 against P such that

AdvIND-CCA
KEM⊥

m
(A) ≤ 2

√
dG + qD(6dG + 2dH + 6qD + 3) ·AdvIND-CPA

P (B1)

+ 4
√
dG + qD · δ + 8

√
qH(qH + 1) · δ

+ (64qH + 2) · δ + 40qD · 2−γ/2

+ 16
√
dG + qD(6dG + 2dH + 6qD + 3)

(8qG + 8qD + 4qH + 1)

|M|

and TB1
≲ 3 · TA + O(qG) · TEnc + O(q2G + q2H + qHqD). If P is also unique

randomness recoverable with the recover algorithm Rec, we can also construct an
OW-CPA adversary B2 against P such that18

AdvIND-CCA
KEM⊥

m
(A) ≤ 20

√
dG + qD ·AdvOW-CPA

P (B2) + 36
√
dG + qD · δ

+ 8
√
qH(qH + 1) · δ + (64qH + 2) · δ + 40qD · |R|−1/2

and TB2
≲ 3 · TA +O(q2G + q2H + qHqD) +O(qG + qH) · (TEnc + TRec).

18 Here, we implicitly use a property that P must be weakly log2 |R|-spread if P is
unique randomness recoverable.
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B Using Our MRE-O2H Theorem Instead

We recall that G,H are oracles with domain X and codomain Y , S is a subset
of X and G,H, S satisfy G(x) = H(x) for all x /∈ S.

Table 3. Comparison of MRM-O2H and MRE-O2H. Here A makes parallel queries to
its oracle with query depth d. The |S| denotes the number of elements in set S. The
1S denotes the indicator function of set S, i.e., 1S(x) = 1 if x ∈ S and 0 otherwise.

O2H theorem Proved by |S| Adv(A) ≤ Bow’s oracle
access

MRM-O2H [25] Measure-Rewind-Measure
(MRM) technique [25] Arbitrary 4d ·Adv(Bow) H and G

MRE-O2H Th. 4 Measure-Rewind-Extract
(MRE) technique Arbitrary 4

√
d ·Adv(Bow) H, G and 1S

The comparison of MRM-O2H theorem and our MRE-O2H theorem is shown
in Table 3. It seems that our MRE-O2H theorem is more restrictive since it
additionally requires the oracle access to 1S . However, for the existing series
of works used the MRM-O2H theorem [25,26,24,6,11,14], we observe that their
proofs can also use our MRE-O2H theorem. In the following, we give a high-level
explanation of this observation for each work in [25,26,24,6,11,14].

• Work [25]. The proof of Theorem 4.6 in this work uses the MRM-O2H the-
orem. In that proof, the set S is defined as {(m, c∗) : Encr(pk,m) = c∗},
where c∗ is the challenge ciphertext and Encr is the encryption algorithm of
the underlying deterministic PKE scheme. Obviously, the function 1S can be
computed by computing Encr, thus one can simulate the oracle 1S by com-
puting Encr. Therefore, the proof of Theorem 4.6 in [25] can also use our
MRE-O2H theorem.

• Work [26]. The proof of Theorem 1 in this work uses the MRM-O2H theorem.
In that proof, the set S is defined as {m : Enc(pk,m) = c∗}, where c∗ is the
challenge ciphertext and Enc is the encryption algorithm of the underlying
deterministic PKE scheme. Similar with the proof of Theorem 4.6 in [25], one
can simulate the oracle 1S by computing Enc, which means that the proof of
Theorem 1 in [26] can also use our MRE-O2H theorem.

• Work [24]. The proof of Theorem 4.2 in this work uses the MRM-O2H theorem.
In that proof, the set S is defined as {x : ∃j ∈ [i∗], dEnc(pkkj , x) = ctj}, where
ctj is the challenge ciphertext and dEnc is the encryption algorithm of the
underlying deterministic PKE scheme. Similar to the proof of Theorem 4.6 in
[25], one can simulate the oracle 1S by computing dEnc, which means that the
proof of Theorem 4.2 in [24] can also use our MRE-O2H theorem.
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• Work [6]. The proof of Theorem 2 in this work uses the MRM-O2H theorem.
In that proof, the set S is defined as {(m, c∗) : Pco(m, c∗) = 1}, where c∗ is the
challenge ciphertext and Pco is the plaintext checking oracle of the underlying
PKE scheme. Since the underlying security considered in that proof is the OW-
qPCA security and Pco can be quantum accessed in the OW-qPCA game, one
can simulate the (quantum accessible) oracle 1S by querying Pco. Therefore,
the proof of Theorem 2 in [6] can also use our MRE-O2H theorem.

• Work [11]. The proof of Theorem 3 in this work uses the MRM-O2H theorem.
In that proof, the set S is defined as {(c∗, r ⋆ pk)}, where c∗ is the challenge
ciphertext, r is the randomness used to generate c∗, "⋆" is the group action
of the underlying group. In fact, in order to transform Bow, which is obtained
by using the MRM-O2H theorem, into an algorithm that attacks the under-
lying hard problem, the proof of Theorem 3 introduces a (publicly quantum
accessible) oracle GA-DDHg. We observe that this oracle can also be used to
check whether an element (c1, c2) belongs to the set S, that is, if c1 = c∗ and
GA-DDHg(c1, c2) = 1, we have (c1, c2) ∈ S and (c1, c2) /∈ S otherwise. This
means that one can simulate the oracle 1S by querying GA-DDHg. Hence, the
proof of Theorem 3 in [11] can also use our MRE-O2H theorem.

• Work [14]. The proof of Theorem 3 in this work uses the MRM-O2H theorem.
In that proof, the set S is defined as {m∗}, where m∗ is the challenge plaintext
uniformly sampled by the challenger. We note that the following classical event
is introduced in that proof:

EdPKE : m∗
$←−M, ∃m ̸= m∗, dEncpk(m) = dEncpk(m∗).

Here dEnc is the encryption algorithm of the underlying deterministic PKE
scheme, dEncpk(m∗) actually the challenge ciphertext c∗. Obviously, if the
event EdPKE does not occur, we can conclude that dEncpk(x) = c∗ iff x ∈ S.
Since [14] has proved that the probability Pr[EdPKE] is negligible, one can
simulate the oracle 1S by computing dEnc with an negligible error probability.
Hence, the proof of Theorem 3 in [14] can also use our MRE-O2H theorem.

In summary, the proofs of [25,26,24,6,11,14] that used the MRM-O2H theorem
can also use our MRE-O2H theorem.
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C Why NTRU-based Encryption Is Usually Unique
Randomness Recoverable

Here we roughly explain why NTRU-based PKE schemes generally satisfy the
assumption of unique randomness recoverable.

Consider a typical NTRU-based PKE scheme P = (Gen,Enc,Dec) as:

1. Gen, the key generation algorithm. Choose f ′,g ← Zq[X]/ ⟨f(X)⟩ and com-
pute f := pf ′ + 1, where p is a small integer relatively-prime to q. If f is not
invertible in Zq[X]/ ⟨f(X)⟩, restart. Otherwise, return (pk, sk) := (pgf−1, f).

2. Enc, the encryption algorithm. For a plaintext m belong to the message space
M, choose a randomness r from the randomness space R(⊆ Zq[X]/ ⟨f(X)⟩).
Then, compute and return the ciphertext c := Encpk(m; r), where Encpk(m; r)
= pgf−1r+ Encode(m).

Since the assumption of unique randomness recoverable does not involve the
decryption algorithm Dec, in the above, we omit the description of Dec.

As stated in [27], with a overwhelming probability, the element g that used
to generate the public key pk is invertible in Zq[X]/ ⟨f(X)⟩. Note that p is
relatively-prime to q. Hence, without loss of generality, we can consider the
public key pk = pgf−1 of P to be invertible in Zq[X]/ ⟨f(X)⟩ as well.

Now, for all plaintext m ∈ M and all randomness r ∈ R, we can construct
the following recover algorithm Rec to recover r from the ciphertext c:

Rec: Given input pk(= pgf−1), m and c, it works as:

1. Compute the value r′ := (pgf−1)−1(c − Encode(m)). If r′ ∈ R, return r′.
Otherwise, return ⊥. Here R is the randomness space of P.

Since Encpk(m; r) = pgf−1r+Encode(m), one can easily check that Rec(pk,m, c)
must have output r if c = Encpk(m; r). According to the definition of unique
randomness recoverable given in Definition 6, this means that P is unique ran-
domness recoverable with the recover algorithm Rec.
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