Instance-Hiding Interactive Proofs

Changrui Mu* Prashant Nalini Vasudevan†

Abstract

In an Instance-Hiding Interactive Proof (IHIP) [BFS90], an efficient verifier with a private input x interacts with an unbounded prover to determine whether x is contained in a language L. In addition to completeness and soundness, the instance-hiding property requires that the prover should not learn anything about x in the course of the interaction. Such proof systems capture natural privacy properties, and may be seen as a generalization of the influential concept of Randomized Encodings [IK00, AIK04, AIKPC15], and as a counterpart to Zero-Knowledge proofs [GMR89].

We investigate the properties and power of such instance-hiding proofs, and show the following:

1. Any language with an IHIP is contained in $AM/poly \cap coAM/poly$.
2. If an average-case hard language has an IHIP, then One-Way Functions exist.
3. There is an oracle with respect to which there is a language that has an IHIP but not an SZK proof.
4. IHIP’s are closed under composition with any efficiently computable function.

We further study a stronger version of IHIP (that we call Strong IHIP) where the view of the honest prover can be efficiently simulated. For these, we obtain stronger versions of some of the above:

5. Any language with a Strong IHIP is contained in $AM \cap coAM$.
6. If a worst-case hard language has a Strong IHIP, then One-Way Functions exist.

*Department of Computer Science, National University of Singapore. Email: changrui.mu@u.nus.edu
†Department of Computer Science, National University of Singapore. Email: prashant@comp.nus.edu.sg
Contents

1 Introduction ... 1
 1.1 Our Results ... 1
 1.2 Technical Overview ... 3
 1.3 Related Work .. 8
 1.4 Discussion and Open Problems 8

2 Instance-Hiding Interactive Proofs 9
 2.1 Closure Properties and Amplification 10

3 Tools ... 12
 3.1 AM Proofs and Advice Oracles 12
 3.2 Weighted Set Lower Bound Protocol 14

4 Upper Bounds .. 16
 4.1 Constant-Round Proofs from Strong Instance-Hiding 18
 4.2 Constant-Round Non-Uniform Proofs from Instance-Hiding 27

5 Implications for One-Way Functions 32
 5.1 OWFs from Average-Case Hard IHIP 32
 5.2 Explicit OWFs from Worst-Case Hard Strong IHIP 38

6 Oracle Separation from SZK 43

7 Instance-Hiding Delegation Schemes 47
 7.1 Verifiable IHD from IHD 49
 7.2 Closure Properties ... 52

A Examples of Instance-Hiding Proofs 57

B Parallel Repetition of Interactive Proofs 60

C Randomized Encodings and Input-Hiding IP 62
 C.1 IHIP/Inp-HIP from SRE 64
 C.2 IHIP from Inp-HIP ... 70
1 Introduction

An Interactive Proof system (IP) [BM88, GMR89] for a language L is an interactive protocol between a polynomial-time verifier V and a computationally unbounded prover P where both are given as input a string x, and the prover tries to prove to the verifier that $x \in L$. Such proofs are required to be complete – if $x \in L$, the verifier will accept at the end of the interaction – and sound – if $x \notin L$, no prover strategy P^* can make the verifier accept with large probability. Such proofs are very powerful and have been shown to exist for all languages computable with polynomial space (PSPACE) [LFKN92, Sha92].

Often in applications of interactive proof systems, one or both of the parties may hold some secret that they do not want the other to learn in the course of the interaction. For instance, the prover P may hold a secret key and wish to prove to the verifier something about a ciphertext encrypted using that key, without revealing the key itself. A powerful general formalization of a property that enables this is Zero-Knowledge (ZK) [GMR89]. This requires that there be a computationally efficient simulator that, for any $x \in L$, can simulate the entire view of the verifier V interacting with P on input x. This ensures that the verifier learns nothing from the interaction other than the membership of x in L.

This simulation may be perfect (PZK), statistically close to (SZK), or computationally indistinguishable from (CZK) the actual view. In contrast to general interactive proofs, it is known that languages that have PZK or SZK proofs are contained in $\text{AM} \cap \text{coAM}$ [For87, AH91]. Using computational assumptions, however, one can again construct CZK proofs for all languages in PSPACE [GMW91, BGG+88]. ZK proofs have been and continue to be the subject of extensive research, have found numerous applications in practice, and we understand them quite well (see, e.g., references in [Vad99, Tha22]).

Instance-Hiding Interactive Proofs. Whereas Zero-Knowledge provides security for the prover, Instance-Hiding Interactive Proofs (IHIP) [BFS90] provide a similar security guarantee for the verifier. In an IHIP, the input x is given only to the verifier V. Apart from completeness and soundness as in an IP, it is required that the protocol be instance-hiding – for any prover strategy P^*, there should exist a simulator (computationally unbounded) that, given just the length of the input, can simulate the view of P^* when interacting with V on any input x. This ensures that the prover cannot learn anything about the input except at most its length.

In other words, the prover proves to the verifier that $x \in L$ without knowing anything at all about x. Seemingly paradoxical, such proof systems can, in fact, be constructed for several structured languages, such as those that have certain random self-reduction properties [AFK89, FO91]. Nevertheless, a theorem of Abadi et al. [AFK89] implies that any language that has an IHIP in which the simulation of the prover’s view is perfect is contained in $\text{NP}/\text{poly} \cap \text{coNP}/\text{poly}$. In particular, this implies that NP-hard languages do not have perfect IHIP protocols unless the polynomial hierarchy collapses [BH287].

Despite the fact that they capture this fundamental cryptographic property of protocols, not much else is known about the complexity of IHIP’s today, decades after they were first defined. Further, even the aforementioned results do not hold if even a negligible amount of statistical error is allowed in the hiding property – that is, when the prover’s view corresponding to any instance can have non-zero but negligibly small statistical distance from the simulator’s output. In this paper, we undertake a systematic study of the complexity of such general imperfect IHIP’s, with the objective of understanding what properties they have, how powerful they are, what kinds of structure they create, and how they compare to other cryptographic protocols like ZK proofs.

1.1 Our Results

In the rest of the paper, we simply use IHIP to denote instance-hiding IP’s that have a negligible statistical hiding error as described above. We also study a strengthening of these proofs where the simulator that simulates the honest prover’s view is required to be efficient; we refer to these as Strong IHIP’s. A number of natural constructions of IHIP’s do, in fact, have this stronger property (see, e.g., Appendix A). We show a collection of results about various aspects of these proof systems, some of which follow from techniques common in the study of Secure Multi-Party Computation (MPC) and SZK proofs, while others require the
development of new methods. We define these proof systems in Section 2, and in Appendix A we present examples of non-trivial languages that have such proof systems, including one that seems to require multiple rounds of interaction.

Power of Instance-Hiding Proofs. We start by asking which languages can possibly have IHIP’s. The results of Abadi et al. [AFK89] imply that languages that have perfect IHIP’s are contained in $\text{NP}/\text{poly} \cap \text{coNP}/\text{poly}$. However, their techniques stop working if there is even a small amount of error in the hiding property. Using some carefully designed interactive proofs, we show that any language that has an IHIP with small enough hiding error is still contained in $\text{AM}/\text{poly} \cap \text{coAM}/\text{poly}$. Further, we can get rid of the non-uniformity in this conclusion if the IHIP has an efficient simulator for the honest prover.

Informal Theorem 1.1 (Theorems 4.1 and 4.3). *If a language L has an IHIP, then both L and its complement \bar{L} have constant-round public-coin interactive proofs with non-uniform verifiers. Further, if L has a strong IHIP, this conclusion holds with uniform verifiers.*

This too implies that NP-hard problems do not have such proofs unless the polynomial hierarchy collapses [BHZ87]. This upper bound on the power of such proofs is complemented by the existence a number of interesting non-trivial languages do have instance-hiding interactive proofs – see the examples in Appendix A and the connections to Randomized Encodings described below.

Implications for One-Way Functions. Investigating further the implications of non-trivial languages having instance-hiding proofs, we show that the existence of hard languages with such proofs implies the existence of One-Way Functions (OWF’s).

Informal Theorem 1.2 (Theorems 5.3 and 5.9). *One-Way Functions are implied by the existence of either of the following:

- An average-case hard language that has an IHIP
- A worst-case hard language that has a strong IHIP*

The proof of the first statement in the theorem above is non-constructive – we prove that an OWF exists, but given an explicit average-case hard language with an IHIP, our proof does not construct an explicit function that is one-way. The proof of the second statement is constructive, and the constructed OWF is related to the simulator for the honest prover.

Relationship with SZK. Both the above properties – membership in $\text{AM} \cap \text{coAM}$ [For87, AH91] and the implication of OWFs from average-case hardness [Ost91] – are shared by the class SZK of languages that have Statistical Zero Knowledge proofs. Intuitively, SZK proofs and IHIP’s seem to rely on different properties of the underlying language, and it seems unlikely that one is contained in the other. We provide some evidence for this in the form of an oracle separation between SZK and Strong-IHIP, the class of languages that have strong IHIP’s.

Informal Theorem 1.3 (Theorem 6.4). *There exists an oracle O such that $\text{Strong-IHIP}^O \nsubseteq \text{SZK}^O$.*

We essentially prove this statement in the Generic Group Model [Sho97] – we show a group problem that cannot be decided by SZK protocols that treat the group in a certain “generic” manner, but can be decided by a similarly generic IHIP protocol. Showing an oracle separation in the other direction is an interesting open problem here.

Closure Properties. Finally, we show that IHIP’s have rather strong closure properties – that they are closed under composition with any efficiently computable function. For any language L, and functions $f : \{0, 1\}^* \to \{0, 1\}$ and $k : \mathbb{N} \to \mathbb{N}$, consider the “composed” language $f \circ L \circ \{0, 1\}^k$, in which an instance consists of $k = k(n)$ strings x_i of length n, which is in the language if and only if $f(L(x_1), \ldots, L(x_k)) = 1$. That is, given these k strings x_i, first check whether each of these is in L, and then compute the function f on the result of these checks.
Informal Theorem 1.4 (Theorem 2.7). Consider any language L that has an IHIP protocol, and any efficiently computable function $f : \{0,1\}^d \rightarrow \{0,1\}$. For any polynomial $k : \mathbb{N} \rightarrow \mathbb{N}$, the composed language $f \circ L^{\otimes k}$ also has an IHIP protocol.

Similar properties for SZK are only known to hold for composition with polynomial-sized formulas (or NC1) [SV97], whereas the above corresponds to polynomial-sized circuits (or P). This is another indication that this class is likely to be different from SZK.

The above theorem implies, in particular, that IHIP is closed under complement. While not directly implied by the theorem, our proof also shows that the OR or AND of two languages that have IHIP’s also has an IHIP. This extends to the statement that for any constant k and languages L_1, \ldots, L_k that all have IHIP’s, any language expressible as a function of membership in these languages also has an IHIP.

Our proof of this theorem goes through Instance-Hiding Delegation Schemes [FO91], which are an alternative formulation of instance-hiding protocols that are interesting in their own right. See Section 7 for details.

Useful Tools. In the course of our constructions and proofs, we also show two lemmas that are meaningful outside this context – a protocol for proving lower bounds on a weighted sum of the sizes of sets (Lemma 3.6), and an equivalence between randomized and deterministic advice for AM proofs (Lemma 3.4).

1.2 Technical Overview

We now present an overview of the proofs of Theorems 1.1 to 1.3. The proof of Theorem 1.4 follows from a straightforward extension of existing work together with some standard transformations, so we leave its details to the relevant section.

1.2.1 Instance-Hiding to AM Proofs

Suppose a language L has an instance-hiding IP with prover P and verifier V – denoted $\langle P, V \rangle$. We will use this to construct a constant-round interactive proof $\langle M, A \rangle$ with non-uniform verifier A for L. We will then show how to remove the non-uniformity if there is an efficient simulator for the honest prover.

Denote by $r \in \mathcal{R}_V$ the random string used by the verifier. For any input x, denote by S_x the distribution over the transcript s generated by the execution of the protocol $\langle P, V(x; r) \rangle$. For simplicity, assume that P is deterministic1. Given input x, our approach is to have M prove to A that the probability that $\langle P, V(x; r) \rangle$ accepts is large. Towards discussing this, we define the following two sets for any x and transcript s:

$$\beta_x^r = \{r \mid s \text{ is the transcript of } \langle P, V(x; r) \rangle\}$$
$$\alpha_x^r = \{r \mid r \in \beta_x^r \text{ and } \langle P, V(x; r) \rangle \text{ accepts} \}$$

We start with the observation that the probability of acceptance may be expressed as follows:

$$\Pr_r [\langle P, V(x; r) \rangle \text{ accepts}] = \sum_s |\alpha_x^r| / |\mathcal{R}_V| = \sum_s |\beta_x^r| / |\mathcal{R}_V| \cdot |\alpha_x^r| / |\beta_x^r| = \mathbb{E}_{s \leftarrow S_x} \left[|\alpha_x^r| / |\beta_x^r| \right] \quad (1)$$

So it is sufficient to construct a sound protocol where, for the given input x, M proves to A that the above expectation is large. Notice that for any s, the membership of a string r in the set α_x^r can be efficiently verified. This means that we can use the Goldwasser-Sipser set lower bound protocol [GS86] to prove lower bounds on the size of α_x^r. Now suppose the following three conditions were satisfied:

1. A has the ability to sample transcripts s from the distribution S_x

1In general interactive proofs, this assumption is without loss of generality. It is not clear that this is the case with instance-hiding interactive proofs without some worsening of parameters. In our actual proof, we do not need this assumption and the randomness of the prover is easy to deal with.
2. For \(s \) sampled as above, \(A \) can find out the value of \(|\beta^x_s| \), and,

3. With high probability over \(s \) sampled from \(S_x \), the value of \(|\alpha^x_s|/|\beta^x_s| \) is close to its expectation.

Then, we can construct the required protocol as follows:

- \(A \) samples an \(s \leftarrow S_x \), and computes \(|\beta^x_s| \)
- \(M \) and \(A \) run the GS protocol where \(M \) proves that \(|\alpha^x_s| \gg |\beta^x_s|/2 \)

If \(x \in L \), then with high probability over \(s \), the condition involved in the GS protocol above is true, and \(A \) will accept with high probability. Similarly, if \(x \notin L \), this condition is false and \(A \) will reject with high probability.

If the protocol \(\langle P, V \rangle \) were perfectly instance-hiding, then the distribution \(S_x \) is the same for any \(x \) of a given length, as is the size of the set \(\beta^x_s \) for any \(s \) – call this common distribution \(S \) and the common set size \(b_s \). Then, we can handle the first two conditions above by providing to \(A \) a sample \(s \) from \(S \) and the corresponding value \(b_s \) as non-uniform advice (these are now independent of \(x \)). One catch here is that the completeness and soundness would then only hold for such randomly sampled advice. We show that an AM protocol with this property can be derandomized to a standard AM protocol with deterministic non-uniform advice (Lemma 3.4).

However, our protocol is only statistically instance-hiding, and so there may be no such common distribution. So we instead pick some canonical instance \(x_0 \), and use a sample \(s \) from the distribution \(\pi_{x_0} \) and the quantity \(|\beta^0_{x_0}| \) as advice instead. Then we show that the instance-hiding property implies that the quantities

\[
\mathbb{E}_{s \leftarrow S_x} \left[\frac{\alpha^0_s}{|\beta^0_s|} \right] \quad \text{and} \quad \mathbb{E}_{s \leftarrow S_{x_0}} \left[\frac{\alpha^0_s}{|\beta^0_s|} \right]
\]

are close for any \(x \). We use this to then show that using \(x_0 \) instead of \(x \) in the sampling of the advice will not affect the protocol by much.

All that is left is to ensure that the third condition above holds – that with high probability \(|\alpha^x_s|/|\beta^x_s| \) is close to its expectation. But it very well might not be. We deal with this by using instead the sum of many independent copies of this random variable: \(\sum_{i \in [r]} \left(|\alpha^0_s|/|\beta^0_{s_i}| \right) \), where each \(s_i \) is sampled independently. By the Hoeffding bound, this sum is indeed close to its expectation with high probability. Now, instead of proving a lower bound on the size of a single set, \(M \) needs to prove that the weighted sum of the sizes of a number of sets is large. We design an AM protocol for this by extending the Goldwasser-Sipser protocol (Lemma 3.6).

Overall, the final constant-round protocol with randomized advice is as follows on input \(x \):

- \(A \) receives as advice several samples \(s_1, \ldots, s_g \leftarrow S_{x_0} \), and the quantities \(|\beta^x_{s_1}|, \ldots, |\beta^x_{s_g}| \)
- \(M \) and \(A \) run our weighted set-lower-bound protocol where \(M \) proves that: \(\sum_{i} \frac{|\alpha^0_{s_i}|}{|\beta^0_{s_i}|} \gg \frac{g}{2} \)

An AM protocol can be obtained from this constant-round IP following standard transformations [GS86].

Uniform Verifier from strong-IHIP. Midway through the argument above, we observed that it is sufficient for the verifier to be able to obtain a number of samples \(s \) from \(S_x \), together with the values \(|\beta^x_s| \). Above, we resolved this by providing approximations of these as non-uniform advice. If we have an efficient simulator \(\text{Sim} \) (that only takes the size of the instance as input) for the view of the honest prover, however, we can compute these in the protocol itself, without needing such advice. The first part is clear – if we sample \(s \) from \(\text{Sim}(n) \), its distribution is guaranteed to be close to \(S_x \) for any \(x \), by the instance-hiding property.

What remains is to arrange for the verifier to learn the (approximate) value of \(|\beta^x_s| \) for such \(s \). We do this by taking advantage of the fact that for any \(x \) and \(s \), by the instance-hiding property, the probability that \(\text{Sim}(n) \) outputs \(s \) is a reasonably good approximation of the probability that the protocol with verifier input \(x \) results in the transcript \(s \). To be more specific, define the following quantity for any \(s \):

\[
\zeta_s = \{ r_{\text{Sim}} \mid s \text{ is the transcript of } \text{Sim}(n; r_{\text{Sim}}) \}
\]
Let the randomness space of the simulator be \(R_{\text{Sim}} \). Then, we show that the simulator’s output being negligibly close to the actual transcript implies the following for any \(x, \) with high probability over \(s \) sampled from either \(S_\epsilon \) or \(\text{Sim}(n) \):

\[
\frac{1}{2} \frac{|\zeta_s|}{|R_{\text{Sim}}|} \leq \frac{|\beta^x_s|}{|R_{\text{V}}|} \leq 2 \frac{|\zeta_s|}{|R_{\text{Sim}}|}
\]

Thus, if \(M \) can prove good bounds on the size of \(\zeta_s \) to \(A \), these would also imply good bounds on the size of \(\beta^x_s \), and we can the proceed with the protocol as before. Notice that membership in \(\zeta_s \) is again efficiently testable. So a lower-bound on \(|\zeta_s| \) can again be proven using the GS protocol.

To prove an upper bound, we use the set upper-bound protocol of Fortnow \[For87\]. This protocol requires, in addition to membership in the set being testable, that the verifier privately obtain a uniformly random element from the set. This is easy for us to arrange – the verifier \(A \) simply samples a random \(r \in R_{\text{Sim}} \), runs \(\text{Sim}(n; r) \) to obtain \(s \), sends \(s \) to the prover \(M \) and keeps \(r \) private. Here, according to \(M \), \(r \) is indeed a uniformly random element in \(\zeta_s \).

The entire protocol is now roughly as follows on input \(x \):

- \(A \) samples \(\{s_i \leftarrow \text{Simp}(n; r_i)\}_{i \in [n]} \), and sends the \(s_i \)’s to \(M \)
- \(M \) and \(A \) run upper and lower bound protocols for \(A \) to obtain an approximation of each \(|\zeta_{s_i}| \)
- \(A \) assumes that \(|\beta^x_{s_i}| = |\zeta_{s_i}| \cdot (|R_{\text{V}}| / |R_{\text{Sim}}|) \), using the values obtained above for the right-hand side
- \(M \) and \(A \) run our weighted set-lower-bound protocol where \(M \) proves that:

\[
\sum_i |\alpha_{s_i}^x| \cdot \frac{|\beta^x_{s_i}|}{|R_{\text{V}}|} \geq \frac{\epsilon}{2}
\]

The actual protocol is slightly different because the set upper-bound protocol’s guarantees are a bit weaker than ideal, but in essence it is as above. We refer the reader to Section 4.1 for details.

1.2.2 One-Way Functions from IHIP for Hard Problems

Recall that Theorem 1.2 shows that if a worst-case hard (resp. average-case hard) problem has a strong-IHIP (resp. IHIP), then there is explicit constructions of one-way functions (resp. non-explicit construction). The proofs assume, for the sake of contradiction, the non-existence of one-way function, and then use the efficient inverter algorithm for efficient functions guaranteed by the assumption to decide the problem.

Specifically, we assume the non-existence of distributional one-way function, which is implied by the non-existence of one-way functions \[IL89\]. If an efficient function \(f \) is not distributionally one-way, then there exists an efficient inverter \(A \), which takes a random image of \(f \) as input, and samples preimages almost-uniformly. For the overview, we assume that the inverters work perfectly and sample uniformly random preimages\(^2\), and also will focus on perfect-hiding protocols, and later describe how to make everything work with errors.

Non-Explicit OWFs from Average-Case Hard IHIP.

Consider any language \(\mathcal{L} \) that has a \(q \)-round strong-IHIP with prover \(P \) and verifier \(V \), with a computationally unbounded simulator \(\text{Sim} \) for the honest prover’s view. Further, there is an efficiently sampleable distribution \(X \) over which it is hard. We will work with \(q = 2 \) for this overview, which is sufficient to demonstrate the ideas behind the proof. Denote the algorithm of the verifier that computes the next message at any point in the protocol using random string \(r \) by \(V(x, u_1, \ldots, y_q; r) \). As before, for any (possibly partial) transcript \(s \), denote by \(\beta^x_s \) the set of random strings \(r \) consisted with \(s \), and by \(\alpha^x_s \) the set of \(r \) that lead to \(V \) accepting with transcript \(s \).

We observe that if \((P, V) \) is a one-round (two-message) protocol, then it is easy to show that \(F_1(x, r_1) = (x, V(x; r_1)) \) must be an distributional one-way function. Suppose not, there must exist an efficient inverter

\(^2\)This assumption clearly loses generality. If it were true, then one would obtain OWF’s from worst-case hard problems in SZK and IHIP rather than needing average-case hardness.
A₁, that on a random image \((x, u₁)\) as input, samples \(r₁^*\) uniformly over \(β_{u₁}^x\). Now consider a non-uniform adversary \(B^*\) that has as advice a random transcript \(s = (u₁, y₁)\) sampled according to the simulation \(Sim(n)\), and works as follows on input \(x\):

- \(B^*(x)\) runs \(A₁(x, u₁)\) to obtain a random \(r₁^* ∈ β_{u₁}^x\) and accepts iff \(V(x, u₁, y₁; r₁^*)\) accepts.

This last event above happens with probability \(|α⁺_{x}| / |β_{x}^x|\). So in expectation over \(s\), by (1), the probability that \(B^*\) accepts will be large if \(x\) is in \(L\) and small otherwise. The fact that the advice \(s\) is random in this algorithm is not a concern – by taking multiple \(s\) and repeating \(B^*\) several times, one can then show that there is a single set of transcripts \(s\) that works well as advice for all possible instances of size \(n\). This gives us a non-uniform algorithm for \(L\), which is a contradiction, so \(F₁\) must be a distributional OWF.

In general, if we can set up an efficiently computable function such that inverting it lets us sample a random element of \(β_{x}^x\) given \(x\) and \(s\), we can repeat the above argument. When the protocol \((P, V)\) is more than one round (even just two rounds), however, this approach is not straightforward. This is because the messages of the verifier starting from the second round are dependent on prover’s messages and are in general not guaranteed to be efficiently sampleable in the way the first message is. For instance, a natural candidate for such a function might be defined as \(F_2^{(u₁, y₁)}(x, r) = V(x, u₁, y₁; r)\). However, we are only interested in inverses of this function where the \(r\) is consistent with the first message \(u₁\), and this might not be efficiently sampleable.

Instead, we define a different function inductively as follows. First, if \(F₁\) is already a distributional OWF, we are done with our proof. If not, consider a (perfect) inverter \(A₁\) for \(F₁\). Let \(C₁(x, u₁)\) be the algorithm that computes \((x, r₁) ← A(x, u₁)\), and just outputs \(r₁\). We define the function \(F_2^{(u₁, y₁)}\) for any \((u₁, y₁)\) as follows:

\[
F_2^{(u₁, y₁)}(x, r₂) = (x, V(x, u₁, y₁; C₁(x, u₁; r₂)))
\]

That is, \(F_2^{(u₁, y₁)}(x, r₂)\) first runs \(C₁\) with randomness \(r₂\) to sample an \(r₁\) that is contained in \(β_{u₁}^x\), and then runs \(V\) on the partial transcript \((u₁, y₁)\) with that \(r₁\) to produce the next verifier message \(u₂\) in the protocol. If \(C₁\) is perfect, this achieves what the earlier attempt at defining \(F₂\) did not – any output of \(C₁(x, u₁)\) is a random element of \(β_{u₁}^x\), so we are never in a situation where we have in hand a verifier random string \(r\) that is not consistent with the partial transcript so far.

Let us look at the property of random inverses of \(F₂\) more closely. First, given a random \(r₂\), \(C₁(x, u₁; r₂)\) is a random element of \(β_{u₁}^x\), and so also of \(β_{u₁, y₁}^x\). So a random inverse of \(F_2^{(u₁, y₁)}\) on output \((x, u₂)\) is a random \((x, r₂)\) such that \(C₁(x, u₁; r₂)\) is also contained in \(β_{(u₁, y₁, u₂)}^x\). So given a random inverse \((x, r₂)\) of \(F_2^{(u₁, y₁)}\) on output \((x, u₂)\), the output of \(C₁(x, u₁; r₂)\) is distributed uniformly over \(β_{(u₁, y₁, u₂)}^x\), and thus also \(β_{s}^x\) for \(s = (u₁, y₁, u₂, y₂)\) for any \(y₂\). So given a random such \(s = (u₁, y₁, u₂, y₂)\) from the simulator \(Sim(n)\) along with a perfect distributional inverter for \(F_2^{(u₁, y₁)}\), we can efficiently sample from \(β_{x}^x\), which is exactly what we needed! So unless \(F_2^{(u₁, y₁)}\) is distributionally one-way for such an \(s\), we can decide \(L\).

There are two remaining issues here – one is that we do not actually have a perfect distributional inverter, only a very good one; the other is the question of where the distributional inverters come from for the eventual algorithm we construct for \(L\). The solution to the latter is non-uniform advice. As before, we can argue that there is a set of transcripts \(s\) that work for all instances, and then if the \(F_i\)’s are defined with those transcripts are not distributionally one-way, their inverters can be provided as non-uniform advice. The former issue can again be dealt with using standard techniques to carefully account for the inversion (and also hiding) errors and show that it remains small enough to not matter.

This process can then be inductively carried out for every round of the protocol if there are more rounds. Finally note that the reason this does not extend to being able to use the worst-case hardness of \(L\) is that the functions \(F₁\), etc., that we construct take \(x\) as an input. So inverting them on random outputs cannot give guarantees for every possible \(x\).

Explicit OWFs from Worst-Case Hard strong-IHIP. Consider any language \(L\) that has a \(q\)-round strong-IHIP with prover \(P\), verifier \(V\) and efficient honest-prover simulator \(Sim\). Our approach is to use the
posibility of inverting any efficiently computable function to efficiently implement the “simulation-based prover” [AH91] for this interactive proof for any instance. This proof is almost the same as the proof that average-case hardness of SZK implies OWF’s [Ost91], though see below for further discussion.

The simulation-based prover P_{Sim} is defined to behave as follows on interaction with verifier V: at any point in the protocol, if the current transcript is $(u_1^*, \ldots, u_{i-1}^*, u_i^*)$, it samples an $s = (u_1, \ldots, u_i, y_i)$ from $Sim(n)$ conditioned on $u_j = u_j^*$ for $j \leq i$ and $y_j = y_j^*$ for $j < i$, and then responds to V with the message y_i. By the instance-hiding property, the view of the verifier generated by V interacting with P_{Sim} is statistically close to that when interacting with the honest verifier P. Thus, due to the completeness and soundness of the protocol, if P_{Sim} can be implemented efficiently, the language can also be decided efficiently.

For each $i \in [q]$, define the efficiently computable function $Sim_i(n; r)$ that runs $Sim(n; r)$ (with randomness r), and outputs the first $(2i - 1)$ messages (u_1, y_1, \ldots, u_i). If each Sim_i had a perfect distributional inverter, then given (u_1^*, \ldots, u_q^*), the inverter can be used to sample a uniformly random r that when used by $Sim(n; r)$ as randomness produces this partial transcript. Then computing $Sim(n; r)$ can be used to sample the y_i that is exactly as required by the simulation-based prover. So if every efficiently computable function can be perfectly distributionally inverted, then the simulation-based prover can be implemented efficiently, giving us the contradiction we want. If the distributional inverter available is not perfect, there are some errors that come up throughout this process, but they can be handled using standard techniques.

This proof is very similar to the proof that average-case hardness of SZK implies OWF’s [Ost91]. In the SZK case, the simulator also takes as input the instance x, and therefore being able to invert the simulator does not necessarily imply that the language can be decided for all instances x, which is why average-case hardness is needed. In this case, however, the simulator works for all instances x, and so inverting it gives an algorithm for all instances x, and worst-case hardness is sufficient.

1.2.3 Oracle Separation from SZK

To demonstrate an oracle separation between IHIP and SZK, we construct an oracle language for which these two protocols have different query complexities. This separation in query complexity can then be translated into an oracle separation using standard diagonalization techniques.

Our language is defined using the Discrete Log problem with a generic group oracle [Sho97]. For any $n \in \mathbb{N}$, and a prime number $N \approx 2^n$, given any bijection $\sigma : \mathbb{Z}_N \to [N]$, the generic group oracle G_σ encodes the group \mathbb{Z}_N using otherwise meaningless labels from $[N]$. Given inputs $g, h \in [N]$, $G_\sigma(g, h)$ is equal to $\sigma(\sigma^{-1}(g) + \sigma^{-1}(h))$. Consider in addition to this another oracle $I : \mathbb{Z}_N \to \{0, 1\}$. We define our language (technically, promise problem) as:

$$L^{I, \sigma} = \{ (\sigma(1), \sigma(x)) \mid I(x) = 1 \}$$

This language has an IHIP for any σ and I when the parties are given access to I and G_σ as oracles. This is as follows: given input $(\sigma(1), \sigma(x))$, compute $y = \sigma(x + r)$ for a random $r \in \mathbb{Z}_N$, send y to the prover, who is supposed to return $r' \leftarrow \sigma^{-1}(y)$. Check that $\sigma(r') = y$, and if so output $I(r' - r)$. The efficiency of the verifier here relies on the fact that $\sigma(r)$ for any r can be computed using poly(n) calls to G_σ using repeated doubling. Completeness and soundness follow from the fact that (r, r') is an NP witness for the instance, and strong instance-hiding follows from the fact that the prover only sees a uniformly random element of $[N]$.

On the other hand, it is known from generic lower-bounds for the Discrete Log problem [Sho97, CGK18] that no algorithm can compute x given $(\sigma(1), \sigma(x))$ and oracle access to G_σ for a random σ with substantially fewer than \sqrt{N} queries. This implies that any candidate efficient SZK simulator would, with very high probability, not query oracle I on x given input $(\sigma(1), \sigma(x))$ and oracle access to G_σ. The simulation property then implies that if $I(x) = 1$, then the verifier for the corresponding protocol, with high probability, would not query I on x either. If this happens, then the outcome of the protocol would have been the same irrespective of whether $I(x)$ was 0 or 1. This shows that at least one of zero-knowledge, completeness, or soundness breaks at such an input x. This shows the required query complexity lower bound.
1.3 Related Work

The concept of instance-hiding proof systems was first introduced, albeit in the multi-prover setting, by Beaver et al. [BFS90]. Their definition was based on that of instance-hiding schemes as defined by Abadi et al. [AFK89], which may be seen as honest-prover instance-hiding proofs without the soundness property. The latter also showed that any language that has a perfect instance-hiding scheme (which is implied by a proof) is contained in \(\text{NP/poly} \cap \text{coNP/poly} \). The former showed that a language has a multi-prover instance-hiding proof iff it is contained in \(\text{NEXP/\text{coNEXP}} \), further that such a proof could be made zero-knowledge.

Feigenbaum and Ostrovsky [FO91] and Beaver et al. [BFOS93] showed further connections between (single-prover) instance-hiding schemes and proofs assuming the existence of one-way permutations. To be more accurate, most of these papers consider instance-hiding proofs for certifying the evaluations of functions and discuss the feasibility of such proofs based on the complexity of these functions. Multi-prover instance-hiding schemes were also studied by Beaver and Feigenbaum [BF90], who showed that they exist for all functions.

Randomized Encodings. Randomized Encodings are closely related to instance-hiding proofs. The properties we show for IHIP – membership in \(\text{AM/\text{coAM}} \) and the implication of OWFs from worst-case hardness [AR16] – are also shared by the class of languages that have Statistical Randomized Encodings (SRE) [IK00, AIK04, AIKPC15]. An SRE for a language \(L \) is a randomized function whose output on an input \(x \) reveals whether \(x \in L \) and nothing else about \(x \), in a statistical sense. Randomized encodings with very low complexity have been used extensively in construcing MPC protocols [Yao86, Kil88, IK00, FKN03, AIK04, ...]. Agrawal et al. [AIKPC15] showed examples of languages that have SREs that, under reasonable computational assumptions, are not efficiently computable.

It is known that languages that have an SRE also have SZK proofs [App14a] (and the above oracle separation also carries over). Techniques from the literature also show that any language that has an SRE also has an IHIP (see e.g. [AIK10], and references in Section 1.1 therein). For completeness, we include a self-contained proof of this statement in Appendix C.1. These techniques can further be extended to show that an interactive version of Randomized Encodings (as defined by Applebaum et al. [AIK10]) is equivalent to IHIP.

1.4 Discussion and Open Problems

There are number of fundamental questions about the properties and power of instance-hiding proofs that are yet to be answered. We list a few of these below.

1. Are there natural complete problems for the class of languages that have instance-hiding proofs?

2. What is the relationship between this class and SZK? Both of them are contained in \(\text{AM/poly} \cap \text{coAM/poly} \), but is one contained in the other? In this work, we provide an oracle separation \(\text{IHIP}^O \not\subseteq \text{SZK}^O \); can we show one in the other direction?

3. Is Strong-IHIP closed under complement?

4. Are there other cryptographic consequences of the existence of hard problems in this class, beyond one-way functions?

5. Can worst-case hard IHIP imply one-way function? This question is also open for SZK.

6. Can the instance-hiding error be amplified? Note that this question is also open for SRE.

7. Is there a separation between perfect and imperfect instance-hiding proofs?

8. What is the power of computational instance-hiding proofs? What assumptions are needed for these to be constructed for all of \(\text{NP} \)?
9. Similarly, what is the power of instance-hiding argument systems, which have efficient provers (given, say, an \textbf{NP} witness) and only computational soundness? How do we even define these, given that the witness might already reveal information about the witness?

There is also a looming non-technical question here that it would be useful to know the answer to. Instance-hiding proofs and zero-knowledge proofs were defined at around the same time. The initial results regarding these – multi-prover constructions for large classes of languages, limitations of perfect single-prover constructions, etc. – seem to have been similar. In strong contrast to zero-knowledge proofs, however, research on instance-hiding proofs (at least explicitly) has been very sparse after a brief period following their definition. Why is this the case? Could it be because we succeeded in constructing computational ZK proofs for all of \textbf{NP} shortly thereafter, whereas similar results for instance-hiding proofs were lacking? Given the more advanced cryptographic toolkit available to us today, can we construct computational instance-hiding proofs for large classes of languages? Would they be as useful as ZK proofs?

\section{Instance-Hiding Interactive Proofs}

In this section, we define Instance-Hiding Interactive Proofs, and prove closure and amplification properties for such proof systems. We demonstrate some examples of such proofs for non-trivial problems in Appendix A. We start by setting up notation that we will use for the rest of the paper.

\textbf{Notation.} Throughout this paper, for an interactive proof involving a prover \(P \) and a verifier \(V \), we use \(\text{VIEW}_P(P,V) \) to represent the prover’s view during an execution (this includes the prover’s random coins, if any, and the set of messages in the execution). Similarly, \(\text{VIEW}_P(P,V) \) and \(\text{VIEW}_{pub}(P,V) \) denote the verifier’s view and public view (that is, the transcript of messages) during execution, respectively. The private inputs of provers and verifier, which can include elements such as private coins and instances, are associated with the respective parties. For instance, \(\text{VIEW}_P(P(|x|;r_P),V(x;r_V)) \) denotes the prover’s view when the verifier, receiving private instance \(x \), uses randomness \(r_V \), and the prover, given only length of instance \(|x|\), uses randomness \(r_P \). For conciseness, some private and public inputs may be omitted when they are evident from context. Moreover, we naturally associate the verifier accepting with an output of 1, and rejection with 0.

Our various results involve both uniform and non-uniform algorithms. Unless otherwise specified, algorithms in our discussion are uniform. Further, unless otherwise specified, the transformations (between protocols or algorithms) in statements of our results preserve uniformity. For any probabilistic algorithm \(A \) that samples its randomness uniformly, we denote its randomness space by \(\mathcal{R}_A \).

We consider interactive proofs for promise problems, rather than languages. A promise problem is a pair \(\Pi = (\text{Yes}, \text{No}) \) of disjoint sets. We say that \(x \) satisfies the promise for \(\Pi \), or is an instance of \(\Pi \), if \(x \in \text{Yes} \cup \text{No} \). We denote by \(\text{Yes}(\Pi) = \text{Yes} \) and refer to \(x \in \text{Yes}(\Pi) \) as “Yes” instances of \(\Pi \) and \(x \in \text{No}(\Pi) = \text{No} \) as “No” instances of \(\Pi \). We employ \(\Pi_n \) (similarly \(\text{Yes}_n \), \(\text{No}_n \)) as shorthand for the set of instances of \(\Pi \) contained in \(\{0,1\}^n \). For any instance \(x \) of \(\Pi \), we overload the notation \(\Pi(x) \) as:

\[
\Pi(x) = \begin{cases}
1, & \text{if } x \in \text{Yes}(\Pi), \\
0, & \text{if } x \in \text{No}(\Pi).
\end{cases}
\]

For any set \(S \), \(U_S \) denotes a uniformly random sample from \(S \), and \(U_\ell \) denotes a uniformly random sample from the set of \(\ell \)-bit strings. We use \(\negl(n) \) to denote a negligible function in \(n \) and \(\phi \) to denote empty string.

\textbf{Definition 2.1 (Statistical Distance).} The \textit{statistical distance} between two distributions \(X \) and \(Y \) over a finite set \(\mathcal{X} \) is defined as:

\[
\Delta(X,Y) = \max_{S \subseteq \mathcal{X}} |\Pr[X \in S] - \Pr[Y \in S]| = \frac{1}{2} \sum_{u \in \mathcal{X}} |\Pr[X = u] - \Pr[Y = u]|,
\]
Definition 2.2 (Instance-Hiding Interactive Proof (IHIP) [BFS90]). Consider a promise problem \(\Pi = (\text{Yes}, \text{No}) \), and functions \(\delta, \epsilon : \mathbb{N} \rightarrow [0, 1] \). A \((\delta, \epsilon)\)-\textit{Instance-Hiding Interactive Proof} (IHIP) for \(\Pi \) is a protocol \((P, V)\) in which a probabilistic polynomial-time verifier \(V \) interacts with a computationally unbounded prover \(P \). For some \(n \in \mathbb{N} \), the verifier gets a private input \(x \in \text{Yes}_n \cup \text{No}_n \), while the prover only gets the input length \(n \). At the end of the interaction, \(V \) outputs either 1 (Accept) or 0 (Reject). The protocol is required to satisfy the following properties for all large enough \(n \in \mathbb{N} \):

- **Completeness:** For any input \(x \in \text{Yes}_n \):
 \[
 \Pr [(P(n), V(x)) = 1] \geq 1 - \delta(n).
 \]

- **Soundness:** For any input \(x \in \text{No}_n \), and any prover \(P^* \):
 \[
 \Pr [(P^*(n), V(x)) = 1] \leq \delta(n).
 \]

- **Hiding:** For any prover \(P^* \), there exists a computationally unbounded randomized algorithm \(\text{Sim}_{P^*} \), called a simulator, such that for any input \(x \in \{0, 1\}^n \),
 \[
 \Delta(\text{Sim}_{P^*}(n), \text{VIEW}_{P^*}(P^*(n), V(x))) \leq \epsilon(n).
 \]

If the simulator corresponding to the honest prover runs in polynomial time in \(n \), we say the protocol is \textit{Strong-Instance-Hiding} (Strong-IHIP). The protocol is \textit{perfectly-hiding} IHIP if \(\epsilon(n) = 0 \) for all \(n \). If a simulator is only guaranteed to exist only for the honest prover \(P \), the protocol is \textit{honest-prover} IHIP.

Definition 2.3 (Class IHIP, IHIP/poly). The class IHIP consists of all promise problems that have a \((\delta, \epsilon)\)-IHIP with uniform verifier protocol for some negligible \(\delta(n) \) and \(\epsilon(n) \). For concrete functions \(\delta, \epsilon \), we denote by \((\delta, \epsilon)\)-IHIP the class of problems possessing \((\delta, \epsilon)\)-IHIP. Similarly, IHIP/poly denotes the class of promise problems that have a \((\delta, \epsilon)\)-IHIP with non-uniform verifier protocol for some negligible \(\delta(n) \) and \(\epsilon(n) \).

Remark 2.4. Prior work in this area, such as Beaver et al. [BFS90], defined instance-hiding proof systems for function delegation rather than promise problem decision. For a function \(f \), at the end of the protocol, completeness required that the verifier learn \(f(x) \) when interacting with the honest prover; and soundness required that no prover could convince the verifier of an incorrect value of \(f(x) \). Definition 2.2 is weaker than just the restriction of this to Boolean functions, in that we only require completeness guarantees to hold for YES instances (\(\Pi(x) = 1 \)), and soundness guarantees for NO instances (\(\Pi(x) = 0 \)). This relaxed definition is still meaningful, and lets us compare IHPs directly to IPs, ZK proofs, etc., that are also similarly defined. The relaxation also makes it harder to prove our containment results and closure properties. Some of our results also extend to the definition involving function delegation – see Section 7 for this definition and further details.

Remark 2.5. Earlier definitions of instance-hiding proof systems only considered \textit{perfect} instance-hiding. This made showing containment of problems with such proofs in \textbf{NP} and \textbf{coNP} considerably simpler than our proofs showing containment of problems with imperfect instance-hiding proofs in \textbf{AM} and \textbf{coAM}.

Remark 2.6. As we show in Appendix C, instance-hiding IPs are closely related to the notion of Randomized Encodings (RE) of promise problems [AIK04] (see also [AIK05]). In fact, using the techniques in that section, instance-hiding IPs (for non-negligible values of the hiding error) can be shown to be equivalent to an interactive version of RE as defined by Applebaum et al. [AIK10].

2.1 Closure Properties and Amplification

Since their inception, the composition properties of zero-knowledge proofs have been extensively studied. It is established that Statistical Zero-Knowledge (SZK) is preserved under sequential repetition, and that the existence of an SZK proof is preserved under composition with arbitrary polynomial-sized formulas.
function, and not just polynomial-sized formulas. We show that the existence of such proofs is preserved under composition with any efficiently computable function, and not just polynomial-sized formulas.

For any promise problem \(\Pi = (\text{Yes}, \text{No}) \), we also denote by \(\Pi : \{0,1\}^n \rightarrow \{0,1,\perp\} \) its characteristic function, which outputs 1 on any input \(x \in \text{Yes}, 0 \) on any \(x \in \text{No} \), and \(\perp \) on all other inputs. Similarly, given any function \(f : \{0,1\}^* \rightarrow \{0,1,\perp\} \), we define the corresponding promise problem \(\Pi_f \) whose characteristic function it is. Consider any function \(f : \{0,1,\perp\}^n \rightarrow \{0,1,\perp\} \) satisfying the property that its output is \(\perp \) whenever any of its inputs is \(\perp \). For any function \(k : \mathbb{N} \rightarrow \mathbb{N} \), we define the composed promise problem \(f \circ \Pi \otimes_k \) as follows:

\[
\begin{align*}
 \text{YES}_n(f \circ \Pi \otimes_k) &= \{(x_1, \ldots, x_{k(n)}) \mid \forall i : |x_i| = n \land f(\Pi(x_1), \ldots, \Pi(x_{k(n)})) = 1\}, \\
 \text{NO}_n(f \circ \Pi \otimes_k) &= \{(x_1, \ldots, x_{k(n)}) \mid \forall i : |x_i| = n \land f(\Pi(x_1), \ldots, \Pi(x_{k(n)})) = 0\}.
\end{align*}
\]

Theorem 2.7 (Closure under Composition with Efficient Functions). Consider any promise problems \(\Pi \) that has an IHIP protocol, and any efficiently computable function \(f : \{0,1,\perp\}^n \rightarrow \{0,1,\perp\} \) whose output is \(\perp \) whenever any of its inputs is \(\perp \). For any polynomial \(k : \mathbb{N} \rightarrow \mathbb{N} \), the composed promise problem \(f \circ \Pi \otimes_k \) also has an IHIP protocol.

The full proof of this theorem needs tools that we develop in Section 7, and so we defer the proof to Section 7.2. An important special case of this theorem, which we use in its proof, is the closure of IHIP under complementation. This is stated in the following lemma, which is also proven in Section 7.2. The transformation we use to prove this lemma does not preserve the efficiency of the simulator, and so it does not carry over to strong IHIP. This happens to be the missing piece in extending Theorem 2.7 to strong IHIP as well.

Lemma 2.8 (Closure under Complementation). Suppose, for some negligible functions \(\delta, \epsilon \), that a problem \(\Pi \) has a \((\delta, \epsilon)\)-IHIP (possibly with a non-uniform verifier). Then the complement of \(\Pi \) has a \((\delta', \epsilon')\)-IHIP (resp. with a non-uniform verifier if starting with a non-uniform verifier), where \(\delta', \epsilon' \) are also negligible.

Corollary 2.9. IHIP/poly = colHIP/poly and IHIP = colH.

Another component of the proof of Theorem 2.7 is the following lemma regarding the behavior of instance-hiding proofs under repetition in parallel that is significant on its own. In contrast to zero-knowledge proofs, instance-hiding proofs show robustness under parallel repetition.

Lemma 2.10 (Preservation of Instance-Hiding Under Parallel Repetition). For any functions \(k : \mathbb{N} \rightarrow \mathbb{N} \) and \(\epsilon : \mathbb{N} \rightarrow [0,1] \), consider the protocol \(\langle \tilde{P}, \tilde{V} \rangle \) where \(\tilde{V} \) takes as input \(n \) instances/inputs \(x_1, \ldots, x_{k(n)} \), each of size \(n \), and executes \((P_1(n), V_1(x_1)), \ldots, (P_k(n), V_k(x_k)) \) independently in parallel, where each \(\langle P_i, V_i \rangle \) is \(\epsilon \)-instance-hiding. Then \(\langle \tilde{P}, \tilde{V} \rangle \) is \((k \cdot \epsilon)\)-instance-hiding.

We prove this lemma later in this section. This gives us a round-efficient way to strongly amplify the completeness and soundness in an instance-hiding proof at a small cost in the instance-hiding error.

Lemma 2.11 (Amplifying IHIP by Parallel Repetition). For functions \(\delta, \epsilon \) such that \(\delta(n) < 1/2 - \Omega(1) \) for all \(n \), consider a \((\delta, \epsilon)\)-IHIP \(\langle P, V \rangle \) for a promise problem \(\Pi \). For any polynomial \(k \), let \(\langle P \otimes_k, V \otimes_k \rangle \) be the protocol where \(V \otimes_k \), on input \(x \), runs \(k(n) \) executions of \(P(n), V(x) \) independently with \(P \otimes_k \), and outputs the majority of the results. Then, \(\langle P \otimes_k, V \otimes_k \rangle \) is a \((2^{-\Omega(k)}, k \cdot \epsilon)\)-IHIP for \(\Pi \).

Proof of Lemma 2.11. The \((k \cdot \epsilon)\)-hiding of the repeated protocol follows directly from Lemma 2.10. Amplification of completeness and soundness follows from Lemma B.1, which asserts the amplification of general interactive proofs by parallel repetition. For completeness, we include a self-contained proof of this lemma in Appendix B.
Proof of Lemma 2.10. Assume for contradiction that there exists a prover \vec{P}^* and infinitely many n for which there exists $\vec{x}, \vec{y} \in \{0, 1\}^n$ such that:

\[
\Delta \left(\text{VIEW}_{\vec{P}^*}, (\vec{P}^*, \vec{V}(\vec{x})), \text{VIEW}_{\vec{P}^*}, (\vec{P}^*, \vec{V}(\vec{y})) \right) > k(n) \cdot \epsilon(n).
\]

We derive a contradiction by constructing a sequence of provers $P_0^*, P_1^*, \ldots, P_k^*$, with P_i^* interact with V_i, and proceed to argue that there exists P_j^*, x, y such that:

\[
\Delta \left(\text{VIEW}_{P_j^*} (P_j^*(x)), \text{VIEW}_{P_j^*} (P_j^*(y)) \right) > \epsilon(n).
\]

For each $i \in [k]$, we define machine P_i^* that simulates the \vec{P}^* and $V_1(x_1), \ldots, V_{i-1}(x_{i-1}), V_{i+1}(y_{i+1}), \ldots, V_k(y_k)$ and interacts with V_i on input x in parallel. The prover P_i^* writes the simulated $k - 1$ interactions on the communication tape in position so that the distribution on communication tape after the interaction is the same to that during the interaction between \vec{P}^* and \vec{V} on input $(x_1, \ldots, x_{i-1}, x, y_{i+1}, \ldots, y_k)$. We define $D(\vec{z})$ as the shorthand of the distribution of prover’s view $\text{VIEW}_{\vec{P}^*}, (\vec{P}^*, \vec{V}(\vec{z}))$ on instances \vec{z} and construct $k + 1$ hybrid distributions:

- $H_0 = D(y) = \text{VIEW}_{\vec{P}^*}, (\vec{P}^*, \vec{V}(y))$.
- $H_i = D(x_1, \ldots, x_i, y_{i+1}, \ldots, y_k)$, for $i \in [k - 1]$.
- $H_k = D(\vec{x}) = \text{VIEW}_{\vec{P}^*}, (\vec{P}^*, \vec{V}(\vec{x}))$.

We notice that, for $i \in [k]$, the distribution of P_i^*’s view on input x_i (denoted as $\text{VIEW}_{P_i^*} (\langle P_i^*, V(x_i) \rangle)$) is identical to H_i, and identical to $\text{VIEW}_{P_{i+1}^*} (\langle P_{i+1}^*, V(y_{i+1}) \rangle)$. By triangle inequality, we have that:

\[
\sum_{i \in [k]} \Delta \left(\text{VIEW}_{P_i^*} (\langle P_i^*, V(y_i) \rangle), \text{VIEW}_{P_i^*} (\langle P_i^*, V(x_i) \rangle) \right) = \sum_{i \in [k]} \Delta(H_{i-1}, H_i)
\]

\[
= \Delta(H_0, H_k),
\]

\[
\geq \Delta \left(\text{VIEW}_{P_1^*} (\vec{P}^*, \vec{V}(\vec{x})), \text{VIEW}_{P_k^*} (\vec{P}^*, \vec{V}(\vec{y})) \right)
\]

\[
\geq k(n) \cdot \epsilon(n).
\]

By pigeonhole principle, there must exists some $j \in [k]$ such that

\[
\Delta \left(\text{VIEW}_{P_j^*} (\langle P_j^*, V_j(x_j) \rangle), \text{VIEW}_{P_j^*} (\langle P_j^*, V_j(y_j) \rangle) \right) \geq \epsilon(n).
\]

This contradicts the assumption and the lemma follows.

3 Tools

In this section, we define terms and prove lemmas that will be useful in other parts of the paper. This section may be read on its own, and the results here might find use in other contexts as well.

3.1 AM Proofs and Advice Oracles

We leave out standard definitions of interactive proofs and their properties. An AM proof is a constant-round public-coin interactive proof. In our study, we will concern certain scenarios where the verifier in such proofs is non-uniform. In such cases, the verifier receives polynomial-sized advice that is a function of the input length. We define the following related complexity classes and state some relevant facts about them.
Definition 3.1 (AM/poly). The class AM/poly consists of all promise problems that have a constant-round public-coin interactive proof with a non-uniform polynomial-time verifier and unbounded prover. The class coAM/poly consists of promise problems whose complements have such proofs.

Lemma 3.2 ([BH87]). If coNP \(\subseteq\) AM/poly, then the polynomial hierarchy collapses to the third level.

In the constructions of AM proof systems, it is advantageous to consider the verifier’s non-uniform advice as a sample from a advice distribution outputed by an advice oracle \(O(n)\) instead of merely a string determined by the input length. This shift allows for a nuanced analysis on the completeness and soundness of the protocol, considering the inherent randomness of this advice oracle.

We define this type of proof system below and demonstrate that it is equivalent to those with standard non-uniform verifiers. We denote by \(\langle P, V \rangle^O\) the execution of the protocol with \(V\) given as advice and apply \(\langle P, V \rangle^{O(n)}\) as shorthand of that samples \(a \leftarrow O(n)\) and apply \(a\) as the non-uniform advice \(\langle P, V \rangle^a\).

Definition 3.3. An interactive proof with randomized advice oracle for a promise problem \(\Pi\) is described by a pair of Turing machines \((P, V)\) and an advice oracle \(O\). An execution of this protocol on input \(x\) is denoted by \(\langle P, V \rangle^O(x)\), and consists of sampling a string \(a \leftarrow O(n)\), and running the protocol on input \(x\) with \(a\) as the advice string for \(V\). It is required to have the following properties:

- **Completeness:** For any input \(x \in \text{YES}(\Pi_n)\):
 \[
 \Pr_{O,P,V} \left[(P, V)^O(x) = 1 \right] \geq \frac{2}{3}.
 \]

- **Soundness:** For any input \(x \in \text{NO}(\Pi_n)\), and any prover \(P^*\):
 \[
 \Pr_{O,P,V} \left[(P^*, V)^O(x) = 1 \right] \leq \frac{1}{3}.
 \]

Lemma 3.4. Suppose a promise problem \(\Pi\) has a constant-round public-coin interactive proof with a randomized advice oracle. Then \(\Pi \in\) AM/poly.

Proof of Lemma 3.4. Let \((M, A)\) be such a constant-round public-coin interactive proof system with advice oracle \(O\). We define \((M', A')\) as the AM protocol that runs \((M, A)\) for some polynomial \(t(n)\) repetitions in parallel\(^3\) with the advice strings drawn independently from the advice oracle \(O\), and takes the majority result as the output. We have the following using standard arguments about the parallel composition of interactive proofs:

- If \(x \in \text{YES}(\Pi_n)\):
 \[
 \Pr_{M', A', a \leftarrow O^t} \left[(M', A')^a(x) = 1 \right] \geq 1 - e^{-t(n)}.
 \]

- If \(x \in \text{NO}(\Pi_n)\), for any \(M^*\):
 \[
 \Pr_{M^*, A', a \leftarrow O^t} \left[(M^*, A')^a(x) = 1 \right] < e^{-t(n)}.
 \]

We call advice \(\bar{a} = (a_1, \ldots, a_t)\) “bad” if there exists an instance \(x \in \text{YES}(\Pi_n) \cup \text{NO}(\Pi_n)\) such that \((M', A')^a\) incurs a soundness and completeness error greater than \(2^{-n}\) on \(x\). Set \(t(n)\) such that \(e^{-t(n)} \leq 2^{-3n}\), ensuring that for any instance \(x\), there are at most a \(2^{-2n}\) fraction of possible advice \(\bar{a}\), sampled by \(O^t\), will lead to a scenario where \((M', A')^a\) has a soundness and completeness error greater than \(2^{-n}\). Apply an union bound over all \(n\)-bit strings we have

\[
\Pr_{\bar{a} \leftarrow O^t} \left[\text{\bar{a} is “bad”} \right] \leq 2^n \cdot 2^{-2n} \leq 2^{-n}.
\]

Consequently, there must exist at least one “good” advice \(\bar{a}\), generated by \(O^t\), with which \((M', A')^a\) exhibits negligible completeness/soundness error for all instances, leading to the conclusion of the theorem.\(^\square\)

\(^3\)We remark that the lemma can be extended to AM protocol with special properties such as obliviousness, provided that these properties are preserved under parallel repetition. It’s important to note, however, that certain properties like zero-knowledge, might not be maintained through this process.
3.2 Weighted Set Lower Bound Protocol

In this section, we construct a protocol that, given some sets S_1, \ldots, S_g, and corresponding positive numbers c_1, \ldots, c_g, can prove that the sum $\sum_i c_i \cdot |S_i|$ is larger than some specified threshold. This is an extension of a similar protocol of Goldwasser and Siper [GS86] for a single set.

The input to [GS86] protocol includes a set $S \subseteq \{0,1\}^m$ defined using a “membership oracle” $O_S : \{0,1\}^m \rightarrow \{0,1\}$. That is $O_S(x) = 1$ if $x \in S$, and $O_S(x) = 0$ otherwise. Both the verifier and the prover in the protocol have access to this oracle.

Lemma 3.5 (Goldwasser-Sipser Lower Bound Lemma [GS86]). For any $m,t \in \mathbb{N}$, there is a 2-message public-coin interactive protocol that, given access to the membership oracle for any $S \subseteq \{0,1\}^m$ and an input $K \in \mathbb{N}$, has the following properties:

- If $|S| \geq K$, the verifier accepts with probability at least $1 - 2^{-t}$ when interacting with the honest prover.
- If $|S| \leq K/2$, the verifier accepts with probability at most 2^{-t} when interacting with any prover.

Further, the number of verifier’s oracle calls is $O(t)$, its running time is $(t \cdot \text{poly}(m))$, and the protocol has $(t \cdot \text{poly}(m))$ bits of communication.

Lemma 3.6 (Weighted Set-Lower-Bound Lemma). For any $m,g,t \in \mathbb{N}$, there is a 3-message public-coin interactive protocol such that, given access to the membership oracles for any $S_1, \ldots, S_g \subseteq \{0,1\}^m$, and inputs $c_1, \ldots, c_g \in (0,1]$, and $K > 0$:

- If $\sum_i c_i \cdot |S_i| \geq K$, the verifier accepts with probability at least $1 - g \cdot 2^{-t}$ when interacting with the honest prover.
- If $\sum_i c_i \cdot |S_i| \leq K/4$, the verifier accepts with probability at most 2^{-t} when interacting with any prover.

Further, the verifier makes $O(t)$ calls to each oracle, has running time $O(g \cdot t \cdot \text{poly}(m))$, and the protocol has $(g \cdot t \cdot \text{poly}(m))$ bits of communication.\(^4\)

Proof of Lemma 3.6. Let LBP be the set lowerbound protocol from Lemma 3.5. We construct a public-coin interactive protocol that satisfies Lemma 3.6 as shown in Figure 1.

Completeness: The completeness of the protocol follows from the completeness of LBP. For a scenario where $\sum_i c_i \cdot |S_i| \geq K$, the prover M sets assigns $y_i = |S_i|$. We define an event E_i to represent the occurrence of “$b_i = 1$ in ith iteration of WSLBP”. Leveraging Lemma 3.5, we have:

$$
Pr[A \text{ accepts}] \geq Pr[\bigwedge_{i \in [g]} E_i] \\
\geq \prod_{i \in [g]} (1 - 2^{-t}) \\
= (1 - 2^{-t})^g, \\
\geq (1 - g \cdot 2^{-t}).
$$

Soundness: Let y_i^* represent the values received by A in the first message. For any set of y_i^*’s sent by a prover M^* in the first message. We observe that for each $i \in [g]$:

- If $|S_i| \geq y_i^*$:

 \[Pr[b_i = 1] \geq 1 - 2^{-t}.\]

\(^4\)Here we assume that K and the coefficients c_1, \ldots, c_g are encoded using $\text{poly}(m)$ bits.
Weighted Set-Lower-Bound Protocol (WSLBP): \((M, A)O^{S}(\vec{c}, K)\)

Parameters: \(m\) (set size), \(g\) (number of sets), \(t\) (threshold parameter).

Inputs:
- Coefficients Vector: \(\vec{c} = (c_1, \ldots, c_g)\) with each \(c_i \in (0, 1]\).
- Threshold: A positive number \(K \in \mathbb{R}\).
- Sets: Oracle access to \(O_S = (O_{S_1}, \ldots, O_{S_g})\), where \(O_{S_1}, \ldots, O_{S_g}\) are membership oracles for \(S_1, \ldots, S_g \subseteq \{0, 1\}^m\) respectively.

Outputs: A binary decision \(b \in \{0, 1\}\), indicating the outcome of the lower-bound assessment.

Ingredients:
- \(LBP^{O_{S}}(K)\) is [GS86] protocol with parameters \(m\) and \(t\) given oracle access \(O_{S}\) for some set \(S\), as promised by Lemma 3.5.

Protocol:
1. The prover \(M\):
 - If \(\sum_{i \in [g]} c_i \cdot |S_i| \geq K\):
 - Send to the verifier \(A\) the values \(y_1, \ldots, y_g\), where \(y_i = |S_i|\).
 - Else: Abort.
2. For \(i \leftarrow 1\) to \(g\):
 - Both \(A\) and \(M\) run the protocol \(LBP\) with membership oracle \(O_{S_i}\) and input \(y_i\), obtaining the output \(b_i\).
 - if \(b_i = 0\), the verifier \(A\) outputs 0 and aborts.
3. The verifier \(A\) computes \(z = \sum_{i \in [g]} c_i \cdot y_i\).
4. The verifier \(A\) outputs 1 if \(z \geq K\); otherwise, outputs 0.

Figure 1: Weighted Sets Lower-Bound Protocol (WSLBP)

- If \(|S_i| \leq \frac{y_i^*}{2}\):
 \[
 \Pr[b_i = 1] \leq 2^{-t}.
 \]
- If \(\frac{y_i^*}{2} < |S_i| < y_i^*\):
 \[
 \Pr[b_i = 1] \leq 1.
 \]

Thus, if for any \(i \in [g]\), \(y_i^* \geq 2 \cdot |S_i|\), the verifier’s probability of acceptance is bounded by \(2^{-t}\). Conversely, if \(y_i^* \leq 2 \cdot |S_i|\) for all \(i\), and \(\sum_{i \in [g]} c_i \cdot y_i^* \leq \sum_{i \in [g]} 2c_i \cdot |S_i| \leq \frac{K}{2}\) and verifier will always reject in the last step.

Hence the soundness error of the protocol in Figure 1 is bounded by \(2^{-t}\).

Efficiency: Both the prover \(M\) and verifier \(A\) execute \(LBP\) for \(g\) times. Each execution entails a computational cost of \(O(t \cdot poly(m))\) for verifier. Furthermore, the operation to compare \(\sum_{i \in [g]} c_i \cdot y_i\) against \(z\) is bounded by \(poly(m)\). Consequently, the total running time for verifier is \(O(g \cdot t \cdot poly(m))\).

The communication cost in the protocol is determined by the vector \(y_1, \ldots, y_g\) transmitted by \(M\), along with the \(g\) rounds of \(LBP\). Since \(y_i \leq 2^m\) for each \(i \in [g]\), each \(y_i\) can be encoded in \(m\) bits. Consequently the overall communication cost is \(g \cdot t \cdot poly(m)\) bits.
4 Upper Bounds

While the existence of IHIP is noteworthy, it is also important to explore the limitations of such constructions. Abadi et al. [AFK89] established an upperbound for perfect instance-hiding proofs, showing that problems that have such proofs are contained in \(\text{NP/Poly} \cap \text{coNP/Poly}\).

Our work in this section extends these results by showing that every promise problem that has a \((\delta, \epsilon)\)-IHIP, even with \(\delta, \epsilon\) as large as some small constant, is still contained in \(\text{AM/poly} \cap \text{coAM/poly}\).

Theorem 4.1. Consider functions \(\delta, \epsilon : \mathbb{N} \rightarrow [0, 1]\) such that for all sufficient large \(n\), we have \(\delta(n), \epsilon(n) < \frac{1}{\sqrt{n}}\). If a promise problem \(\Pi\) possesses an honest-prover \((\delta, \epsilon)\)-IHIP, where the verifier can be non-uniform, then both \(\Pi\) and its complement \(\overline{\Pi}\) have constant-round public-coin interactive proofs with a non-uniform verifier (that is, an AM/poly proof system).

Corollary 4.2. IHIP/poly \(\subseteq \text{AM/poly} \cap \text{coAM/poly}\).

Further, we show that if the proof is strongly instance-hiding (that is, with an efficient simulator for the honest prover), then the problem is contained in \(\text{AM} \cap \text{coAM}\). Here we need the errors to be negligible, though.

Theorem 4.3. For any negligible functions \(\delta, \epsilon\), if a promise problem \(\Pi\) has a strong honest-prover \((\delta, \epsilon)\)-IHIP, then both \(\Pi\) and its complement \(\overline{\Pi}\) have constant-round public-coin interactive proofs with uniform verifiers (that is, an AM proof system).

Corollary 4.4. Strong-IHIP \(\subseteq \text{AM} \cap \text{coAM}\).

Remark 4.5. Theorems 4.1 and 4.3 can in fact be extended to similar but stronger statements with the hypothesis only requiring protocols that have \(\epsilon\)-hiding, completeness, and soundness against the honest prover, because our proofs don’t depend on the protocols’ behavior with malicious provers.

Showing an upper bound for the strong-IHIP, where the simulator is efficient, is relatively more straightforward. This efficiency allows the simulator to be used directly in verifying or recognizing the promising problem. Simulators are often used in this manner in efficient reductions when studying concepts like Zero-Knowledge Proof and Randomized Encoding, where a simulator is defined to capture the desired privacy (see, e.g. [BMO90, Vad99, App07]). An upperbound for strong-IHIP can leverage this intuition to construct a constant-round public-coin verifier to recognize the language. In the case of general IHIP, however, the simulator is inefficient, necessitating new techniques (and non-uniformity) to establish the bound.

Setup. Before proceeding to the proof of Theorem 4.1 and Theorem 4.3, we set up some notation for IHIP and strong-IHIP proofs and prove some useful preliminary statements. Suppose \((\mathcal{P}, \mathcal{V})\) is a \(q\)-round \((\delta, \epsilon)\)-IHIP (or \((\delta, \epsilon)\)-strong-IHIP) for a promise problem \(\Pi\), and for any prover \(\mathcal{P}^*\) denote by \(\text{Sim}_\mathcal{P}\) the corresponding simulator of the prover’s view. The only difference between IHIP and strong-IHIP is the efficiency of \(\text{Sim}_\mathcal{P}\) on simulating the view of honest prover. The \((\mathcal{P}, \mathcal{V})\) can be viewed as two deterministic algorithms on the input, random seed, and public view (transcript) of the protocol:

- \(\mathcal{V} : \mathcal{X} \times \mathcal{R}_\mathcal{V} \times \Sigma^* \rightarrow \mathcal{U} \cup \{0, 1\}\),
- \(\mathcal{P} : \mathcal{R}_\mathcal{P} \times \Sigma^* \rightarrow \mathcal{Y}\),

where \(\mathcal{X}, \mathcal{R}_\mathcal{V}\) (resp., \(\mathcal{R}_\mathcal{P}\)) are the space of possible input instances and verifier’s (resp., prover’s) random seed respectively, and \(\Sigma^*\) is the space of the public view of the protocol. \(\mathcal{U}\) and \(\mathcal{Y}\) are verifier’s and prover’s message space respectively. The outputs \(\{0, 1\}\) represent the verifier accepting or rejecting at the end of the interaction. Let \(u_i \in \mathcal{U}, y_i \in \mathcal{Y}\) be the messages of verifier and prover at round \(i\) respectively, and denote by \(s^{(i)} = (u_1, y_1, \ldots, u_i, y_i)\) the public view up to the end of \(i^{th}\) round \((\bar{s}_0 = \cdots)\). We denote \(\mathcal{V}(x, r_\mathcal{V}, (u_1, y_1, \ldots, u_i, y_i)) = u_{i+1}\) that \(\mathcal{V}\) on input instance \(x\), with random seed \(r_\mathcal{V}\), and current public
view \(\hat{s}^{(i)} \) produces the next message \(u_{i+1} \in U \). Let \(r_V \in \mathcal{R}_V, r_p \in \mathcal{R}_p \) be the randomness of \(V/P \) respectively. For \(i \in [q] \), we have:

- \(V(x, r_V, \hat{s}^{(i)}) = u_{i+1} \).
- \(P \left(r_p, (\hat{s}^{(i)}, u_{i+1}) \right) = y_{i+1} \).

For conciseness, we denote by \(\hat{S}_x(r_V, r_p) \) the public view in the protocol \((P, V)\) when the instance is \(x \) and random seeds are \(r_V, r_p \) respectively (i.e. \(\text{VIEW}_P((P(n; r_p), V(x; r_V))) = (r_p, \hat{S}_x(r_V, r_p)) \)). Abusing notation, \(\hat{S}_x \) also represents the output distribution of \(\hat{S}_x(U_{\mathcal{R}_V}, U_{\mathcal{R}_p}) \). Let \(S \) be the union of supports of \(\hat{S}_x \) for all \(x \), and for any \(x \) and \(\hat{s} \in S \), define:

- \(\beta_x^\hat{s} = \{ r_V \in \mathcal{R}_V \mid \forall i \in [q] : V(r_V, x, \hat{s}_{i-1}) = u_i \} \).
- \(\alpha_x^\hat{s} = \{ r_V \in \mathcal{R}_V \mid V(x, r_V, \hat{s}) = 1 \} \).
- \(\gamma_x = \{ r_p \in \mathcal{R}_p \mid \forall i \in [q] : P \left(r_p, (\hat{s}_{i-1}, u_i) \right) = y_i \} \).

Intuitively, \(\beta_x^\hat{s} \) (resp. \(\gamma_x \)) is the set of \(V \)'s (resp. \(P \)'s) randomnesses that, when instance is \(x \), makes \(V \) (resp. \(P \)) behave as in view \(\hat{s} \). \(\alpha_x^\hat{s} \) is a subset of \(\beta_x^\hat{s} \) with which \(V \) accepts in the end seeing the instance \(x \), randomness \(r_V \) and public view \(\hat{s} \). The following claims apply to any instance-hiding protocol \((P, V)\).

Claim 4.5.1. For any \(\hat{s} \in S \) and any \(x \),

\[
\Pr_{(r_V, r_p) \leftarrow \mathcal{R}_V \times \mathcal{R}_p} \left[\hat{S}_x(r_V, r_p) = \hat{s} \right] = \frac{|\beta_x^\hat{s}|}{|\mathcal{R}_V|} \cdot \frac{|\gamma_x|}{|\mathcal{R}_p|}.
\]

Proof of Claim 4.5.1. An important observation here is that the randomnesses of \(P \) and \(V \) are independent given the public view \(\hat{s} \).

\[
\Pr_{(r_V, r_p) \leftarrow \mathcal{R}_V \times \mathcal{R}_p} \left[\hat{S}_x(r_V, r_p) = \hat{s} \right] = \Pr_{(r_V, r_p) \leftarrow \mathcal{R}_V \times \mathcal{R}_p} \left[r_V \in \beta_x^\hat{s} \land r_p \in \gamma_x \right]
= \Pr_{r_V \leftarrow \mathcal{R}_V} \left[r_V \in \beta_x^\hat{s} \right] \cdot \Pr_{r_p \leftarrow \mathcal{R}_p} \left[r_p \in \gamma_x \right]
= \frac{|\beta_x^\hat{s}|}{|\mathcal{R}_V|} \cdot \frac{|\gamma_x|}{|\mathcal{R}_p|}. \]

\(\square \)

Claim 4.5.2. For any \(x \),

\[
\Pr_{(r_V, r_p) \leftarrow \mathcal{R}_V \times \mathcal{R}_p} \left[(P, V(x)) = 1 \right] = \mathbb{E}_{\hat{s} \leftarrow \hat{S}_x} \left[\frac{|\alpha_x^\hat{s}|}{|\beta_x^\hat{s}|} \right].
\]

Proof of Claim 4.5.2. Given a public view \(\hat{s} \in S \), the verifier’s randomness \(r_V \) and prover’s randomness \(r_p \)
are independent. By the definition of β^2_x, α^2_x and γ_x, we have:

$$\Pr_{rv, rp} [(P, V(x)) = 1] = \Pr_{rv, rp} \left[V(rv, r) = 1 \right]$$

$$= \sum_{x \in S} \Pr_{(rv, rp) \sim \mathcal{R}_v \times \mathcal{R}_p} \left[S_x(rv, rp) = \bar{s} \land V(x, rv, r) = 1 \right]$$

$$= \sum_{x \in S} \Pr \left[\bar{S}_x = \bar{s} \right] \cdot \Pr_{(rv, rp) \sim \mathcal{R}_v \times \mathcal{R}_p} \left[V(x, rv, r) = 1 \right]$$

Claim 4.5.3.

$$\left| \mathbb{E}_{\bar{s} \sim S} \left[\frac{\alpha^2_x}{\beta^2_x} \right] - \mathbb{E}_{\bar{s} \sim \text{Sim}_p(n)} \left[\frac{\alpha^2_x}{\beta^2_x} \right] \right| \leq 2 \cdot \epsilon.$$

Proof of Claim 4.5.3.

$$\left| \mathbb{E}_{\bar{s} \sim S} \left[\frac{\alpha^2_x}{\beta^2_x} \right] - \mathbb{E}_{\bar{s} \sim \text{Sim}_p(n)} \left[\frac{\alpha^2_x}{\beta^2_x} \right] \right| = \sum_{x \in S} \left| \frac{\alpha^2_x}{\beta^2_x} \right| \cdot \Pr \left[\bar{S}_x = \bar{s} \right] - \Pr \left[\text{Sim}_p = (*, \bar{s}) \right]$$

$$\leq \sum_{x \in S} \left| \Pr \left[\bar{S}_x = \bar{s} \right] - \Pr \left[\text{Sim}_p = (*, \bar{s}) \right] \right|$$

$$\leq 2 \epsilon.$$

where the first inequality follows the fact that $\left| \frac{\alpha^2_x}{\beta^2_x} \right| \leq 1$ for all x, \bar{s}.

4.1 Constant-Round Proofs from Strong Instance-Hiding

Theorem 4.3. For any negligible functions δ, ϵ, δ, if a promise problem Π has a strong honest-prover (δ, ϵ)-IHIP, then both Π and its complement $\overline{\Pi}$ have constant-round public-coin interactive proofs with uniform verifiers (that is, an AM proof system).

Proof of Theorem 4.3. Given that (P, V) is a honest-prover (δ, ϵ)-strong-IHIP for a promise problem Π, Claim 4.5.2 suggests that $\Pr_{rv, rp} [(P, V(x)) = 1] = \mathbb{E}_{\bar{s} \sim S_x} \left[\frac{\alpha^2_x}{\beta^2_x} \right]$. By the correctness of the honest prover, for any instance $x \in \text{Yes}(\Pi_n) \cup \text{No}(\Pi_n)$:

- If $x \in \text{Yes}(\Pi_n)$:
 $$\mathbb{E}_{\bar{s} \sim S_x} \left[\frac{\alpha^2_x}{\beta^2_x} \right] \geq 1 - \delta(n).$$

- If $x \in \text{No}(\Pi_n)$:
 $$\mathbb{E}_{\bar{s} \sim S_x} \left[\frac{\alpha^2_x}{\beta^2_x} \right] \leq \delta(n).$$
We will prove the theorem by constructing a constant-round interactive protocol to prove that \[\mathbb{E}_{\vec{x} \sim \tilde{S}_x} \left[\frac{\alpha_x}{|\beta_x|} \right] \]
is large. Such a protocol can be made if (1) The distribution \(\tilde{S}_x \) can be sampled by verifier; (2) There is a constant-round interactive protocol protocol, for a given \(\vec{x} \), to prove that \(\frac{|\alpha_x|}{|\beta_x|} \) is large. Although the distribution \(\tilde{S}_x \) may not be efficiently sampleable, the simulation \(\mathsf{Sim}_p \) in strong-IHIP is efficient, and thus verifier can call \(\mathsf{Sim}_p(n) \) to sample a distribution that is \(\epsilon \)-close to \(\tilde{S}_x \). For condition (2), we note that both \(\alpha_x \) and \(\beta_x \) are efficiently verifiable, and thus we can use [GS86] to prove a lowerbound for \(|\alpha_x|^2 \). To complete the proof, the protocol should also prove an upperbound for \(|\beta_x|^2 \). [For87] proposed a set upperbound protocol, which require the verifier being able to sample a private uniform random element from the set. Here, however, we don’t know how to sample a random private element from \(\beta_x \) efficiently. In fact suppose we can, the promise problem will collapse to \(\mathsf{BPP} \) because the verifier’s view can be efficiently sampled, and thus this is unlikely.

We do, however, know how to upperbound the probability \(\Pr[\mathsf{Sim}_p(n) = (r, \vec{s})] \) for a random \((r, \vec{s}) \). This is achieved by running [For87]’s upperbound protocol, as described in Lemma 4.6, on the set of simulator’s random seeds that produce \((r, \vec{s}) \). Specifically, we denote by \(\mathcal{R}_{\mathsf{Sim}_p} \) the simulator’s random space and let \(\zeta_{r, \vec{s}} = \{ r_{\mathsf{Sim}} | \mathsf{Sim}_p(n, r_{\mathsf{Sim}}) = (r, \vec{s}) \} \). On a random drawn \(r_{\mathsf{Sim}} \leftarrow \mathcal{R}_{\mathsf{Sim}_p} \), let \((r, \vec{s}) \leftarrow \mathsf{Sim}_p(n, r_{\mathsf{Sim}}) \) be the simulated view. The used random seed \(r_{\mathsf{Sim}} \) for sampling \((r, \vec{s}) \) can be kept in private as the random element of \(\zeta_{r, \vec{s}} \) in the upper-bound protocol. The probability that the simulator simulates the view \((r, \vec{s}) \) is \(\Pr[\mathsf{Sim}_p(n) = (r, \vec{s})] = \frac{|\zeta_{r, \vec{s}}|}{|\mathcal{R}_{\mathsf{Sim}_p}|} \), where the value \(|\mathcal{R}_{\mathsf{Sim}_p}| \) is efficiently computable because \(\mathsf{Sim}_p \) is a uniform efficient algorithm. Furthermore, for any two randomness \(r, r' \in \zeta_{r, \vec{s}} \):

\[
\Pr_{r_{\mathsf{Sim}}} [r_{\mathsf{Sim}} = r | \mathsf{Sim}_p(n) = (r, \vec{s})] = \Pr_{r_{\mathsf{Sim}}} [r_{\mathsf{Sim}} = r' | \mathsf{Sim}_p(n) = (r, \vec{s})] = \frac{1}{|\zeta_{r, \vec{s}}|}.
\]

Thus, on a random simulated view \(\vec{s} \) sampled with randomness \(r_{\mathsf{Sim}} \), given only \(\vec{s} \), the private \(r_{\mathsf{Sim}} \) is a random element from set \(\zeta_{r, \vec{s}} \). Similarly, define \(\zeta_r = \{ r_{\mathsf{Sim}} | \mathsf{Sim}_p(n, r_{\mathsf{Sim}}) = (r, \vec{s}) \} \), that is the set of simulator’s randomness with which the simulated prover’s randomness is \(r \). We estimate \(\frac{|\beta_x|^2}{|\mathcal{R}|} \) by establishing an upper bound for \(\frac{|\zeta_r|}{|\zeta_r|} \). This involves executing a [GS86] lower-bound protocol on \(|\zeta_r| \) and a [For87] upper-bound protocol on \(|\zeta_r| \).

Lemma 4.6 (Set Upper-Bound Protocol [For87]). For any \(m \in \mathbb{N} \) and set \(S \subseteq \{0, 1\}^m \), there is a 2-message public-coin interactive protocol where the prover and verifier are given access to the membership oracle for \(S \) and an public input \(K \in \mathbb{N} \), and the verifier is additionally given a random element of \(S \) as private input, which has the following properties:

- **When interacting with the honest prover:** \(\Pr[\text{verifier accepts}] \geq 1 - \frac{|S|-1}{K} \).
- **When interacting with any prover:** \(\Pr[\text{verifier accepts}] \leq \frac{6.6K}{|S|-1} \).

Given the necessary tools, we construct our constant-round IP protocol as shown in Figure 2.
Constant-round IP for II: \((M,A)(x)\)

Parameters: Input length \(n\), amplification parameter \(g\).

Inputs: A promise instance \(x\) of \(\Pi_n\).

Outputs: Verifier’s decision \(d \in \{0,1\}\)

Ingredients:
- \((P,V)\): An \((\delta,\epsilon)\)-strong instance-hiding interactive proof for \(\Pi\).
- For any transcript \(\vec{s} \in S\), we define the efficient membership oracle for set \(\alpha_{\vec{s}}\) as follows:

 Algorithm \(O_{\alpha_{\vec{s}}}(r)\):
 1. Interpret \(\vec{s}\) as \((u_1,y_1,\ldots,u_q,y_q)\)
 2. Denote by \(\vec{s}_i\) the prefix \((u_1,y_1,\ldots,u_i,y_i)\), with \(\vec{s}_0\) being the empty string.
 3. For \(j \leftarrow 1\) to \(q\)
 - Check \(V(x,r,\vec{s}_{i-1}) = u_j\), if not output 0.
 4. If \(V(x,r,\vec{s}) = 1\) output 1; Else output 0.

- For any \(\vec{s} \in S\) and \(r_p \in R_p\), define the efficient membership oracles for sets \(\zeta_{r_p,\vec{s}}\) and \(\zeta_{r_p}\) as:

 Algorithm \(O_{\zeta_{r_p,\vec{s}}}(r)\):
 1. If \(\text{Sim}_p(n;r) = (r_p,\vec{s})\) output 1; Else output 0.

 Algorithm \(O_{\zeta_{r_p}}(r)\):
 1. \((r_p',\vec{s}) \leftarrow \text{Sim}_p(n;r).
 2. If \(r_p' = r_p\) output 1; Else output 0.

- \(\text{LBP}^{O_{\alpha_{\vec{s}}}}(K)\): Set Lower-Bound protocol from Lemma 3.5 for the set \(S\), with input \(K\), and errors negligible in \(n\).
- \(\text{UBP}^{O_{\zeta_{r_p,\vec{s}}}}(K,r)\): Set Upper-Bound protocol from Lemma 4.6 for the set \(S\), with public input \(K\), and verifier’s private input \(r\).

Protocol:

For \(i \leftarrow 1\) to \(g\), in parallel:

1. A samples \(r_i \leftarrow R_{\text{Sim}}\), computes \((r_p^{(i)},\vec{s}^{(i)}) \leftarrow \text{Sim}_p(n;r_i)\) and sends \((r_p^{(i)},\vec{s}^{(i)})\) to prover \(M\).
2. \(M\) sets proposed lower bound \(k_{\alpha_i} = |\alpha_{\vec{s}^{(i)}}|\) (for size of \(\alpha_{\vec{s}^{(i)}}\)), and \(k_{\zeta_{r_p,\vec{s}^{(i)}}} = |\zeta_{r_p,\vec{s}^{(i)}}|\), and upper bound \(k_{r_p^{(i)},\vec{s}^{(i)}} = 4 \cdot g \cdot |\zeta_{r_p,\vec{s}^{(i)}}|\) (for size of \(\zeta_{r_p,\vec{s}^{(i)}}\)), and sends \(k_{\alpha_i}, k_{r_p^{(i)},\vec{s}^{(i)}}, k_{r_p^{(i)},\vec{s}^{(i)}}, k_{r_p^{(i)},\vec{s}^{(i)}}\) to verifier \(A\).
3. A and \(M\) run lowerbound protocol on \(\alpha_{\vec{s}^{(i)}}\): \(d_{\alpha_i} \leftarrow \text{LBP}^{O_{\alpha_{\vec{s}^{(i)}}}}(k_{\alpha_i}).\)
4. A and \(M\) run lowerbound protocol on \(\zeta_{r_p,\vec{s}}\): \(d_{r_p,i} \leftarrow \text{LBP}^{O_{\zeta_{r_p,\vec{s}^{(i)}}}}(k_{r_p^{(i)}})\).
5. A and \(M\) run upperbound protocol on \(\zeta_{r_p^{(i)},\vec{s}^{(i)}}\) with private input \(r_i\):
 \(d_{r_i} \leftarrow \text{UBP}^{O_{\zeta_{r_p^{(i)},\vec{s}^{(i)}}}}(k_{r_p^{(i)},\vec{s}^{(i)}},r_i).\)
6. If \(d_{\alpha_i} = 0\), or \(d_{\zeta_i} = 0\), or \(d_{r_p,i} = 0\): A outputs 0 (Reject).

Let \(t_V = |R_V|\) be the size of verifier’s random space. A computes \(\hat{k} \leftarrow \frac{1}{g} \cdot \sum_{i \in [g]} k_{r_p^{(i)},\vec{s}^{(i)}} \cdot k_{\alpha_i} \cdot k_{r_p^{(i)},\vec{s}^{(i)}}\).

If \(\hat{k} \geq \frac{1}{10g}\), A outputs 1 (Accept); Otherwise Reject.

Figure 2: Constant-Round IP from \((\delta,\epsilon)\)-IHIP
We would like to get an estimated upperbound $k_{\beta_x^{(i)}}$ for $|\beta_x^{(i)}|$ by bounding $\frac{|\text{Kappa}|}{|\text{Beta}|}$ for random r_p. Ideally, we require the estimated upperbound $k_{\beta_x^{(i)}}$ be ceiled by $p(|\beta_x^{(i)}|)$ for some polynomial $p(\cdot)$, which is enough for us to differentiate the super-polynomial gap of $E[|\beta_x^{(i)}|]$. Let β_j be the distribution that samples (r_p, s_t) from \mathcal{S}. Consider the following random process on input r_p: For any choice of r_p, let $\mathcal{S}(r_p)$ denote the simulated public view conditioned on the fixed randomness r_p. We notice that, with high probability over a simulated prover’s randomness r_p, the simulated public view conditioned on the fixed randomness r_p is statistically close to the protocol public view conditioned on the fixed r_p.

To formalize the intuition, for any $r_p \in \mathcal{R}_p$, denote the set of possible public views produced by the simulator and protocol conditioned on r_p by $\mathcal{S}_{\text{Sim}, r_p} = \left\{ {\bar{s}} \in \mathcal{S} : \Pr[\mathcal{S}(n) = (r_p, \bar{s})] > 0 \right\}$ and $\mathcal{S}(P, V, r_p) = \left\{ {\bar{s}} \in \mathcal{S} : \Pr[\text{VIEW}(P(n; r_p), V(x)) = (r_p, \bar{s})] > 0 \right\}$ respectively. It’s worth noticing that \mathcal{S}_{Sim} can possibly output (r_p, \bar{s}) that never appears in the real protocol due to its hiding error, in which case $\mathcal{S}_{\text{Sim}, r_p} \setminus \mathcal{S}(P, V, r_p)$ is non-empty. Define R_p-BAD $\{ r_p \mid \sum_{\bar{s} \in \mathcal{S}(P, V, r_p)} \left| \frac{|\text{Kappa}|}{|\text{Beta}|} - \frac{|\beta_x^{(i)}|}{|\text{Beta}|} \right| > \sqrt{\epsilon} \}$. Note that $\mathcal{S}_{\text{Sim}, r_p}$ and $\mathcal{S}(P, V, r_p)$ can possibly output (r_p, \bar{s}) that never appears in the real protocol due to its hiding error.

Claim 4.6.1.

\[
\Pr_{(r_p, \bar{s}) \leftarrow \text{Sim}(n)} \left[r_p \in R_p$-BAD $\right] \leq 4\sqrt{\epsilon},
\]

where $\{ r_p, \bar{s} \}$ denotes views with prover’s randomness being r_p.

Proof of Claim 4.6.1.

Fact 4.7 (See e.g., [KR21, Fact 2.6]). For any jointly distributed X_0, X_1, Y it holds that

\[
\Delta((X_0, Y), (X_1, Y)) = \mathbb{E}_{y \in \mathcal{Y}} \left[\Delta(X_0|Y = y, X_1|Y = y) \right].
\]

Fact 4.8 (See e.g. [KR21, Fact 2.3]). Let (X_0, Y_0) and (X_1, Y_1) be two pairs of jointly distributed random variables s.t. $\text{supp}(X_0) = \text{supp}(X_1)$ and for every $x \in \text{supp}(X_0)$, the distributions $Y_0|X_0 = x, Y_1|X_1 = x$ are identically distributed. Then,

\[
\Delta((X_0, Y_0), (X_1, Y_1)) = \Delta(X_0, X_1).
\]

Denote by R_0 the uniform distribution over \mathcal{R}_p, and let R_1 be the distribution that samples $(r_1, \bar{s}) \leftarrow \text{Sim}(n)$, outputting r_p. For any choice of r_p, let $\bar{S}_t(r_p)$ denote the simulated public view conditioned on simulated prover randomness being r_p. Thus $(R_1, \bar{S}_t(R_1))$ represent the output distribution of $\text{Sim}(n)$. Consider the following random process on input r_p:

\[
\bar{S}_0(r_p) : (r_p, \bar{s}) \leftarrow \text{VIEW}(P(n; r_p), V(x)), \text{outputs } \bar{s}.
\]

Because of ϵ-hiding, the distance between R_0 and R_1 is bounded:

\[
\Delta(R_0, R_1) \leq \Delta\left((R_0, \bar{S}_0(R_0)), (R_1, \bar{S}_1(R_1)) \right) = \Delta(\text{VIEW}(P(n; r_p), V(x)), \text{Sim}(n)) \leq \epsilon.
\]

Follows Fact 4.8, we have:

\[
\Delta\left((R_0, \bar{S}_0(R_0)), (R_1, \bar{S}_1(R_1)) \right) = \Delta(R_0, R_1) \leq \epsilon.
\]

Therefore, from triangle inequality, the distance $\Delta((R_1, \bar{S}_0(R_1)), (R_1, \bar{S}_1(R_1))) < 2\epsilon$ and by Fact 4.7 we have:
Apply Markov bound and the claim follows.

This observation is important because in the protocol we first sample and fix prover’s randomness \(r_p \) in order to estimate \(|\vec{s} \|_R \). A random string \(r_p \) is \(R_p \text{-good} \) if \(r_p \notin R_p \text{-BAD} \). For any \(r_p \), denote by \(\zeta_{r_p} \text{-BAD} \) the set of \(\vec{s} \in \mathcal{S}_{(P,V),r_p} \) such that

\[
\frac{|\zeta_{r_p,\vec{s}}|}{|\zeta_{r_p}|} - \frac{|\beta_{r_p,\vec{s}}|}{|R_V|} > \frac{|\zeta_{r_p,\vec{s}}|}{|\zeta_{r_p}|}.
\]

Claim 4.8.1. For any \(r_p \) that is \(R_p \text{-good} \),

\[
\Pr_{(r_p^*,\vec{s}^*) \leftarrow \text{Sim}_p(n)} \left[\vec{s}^* \in \zeta_{r_p} \text{-BAD} \mid r_p^* = r_p \right] \leq \sqrt{\epsilon}.
\]

Proof.

\[
\Pr_{(r_p^*,\vec{s}^*) \leftarrow \text{Sim}_p(n)} \left[\vec{s}^* \in \zeta_{r_p} \text{-BAD} \mid r_p^* = r_p \right] \leq \sum_{\vec{s} \in \zeta_{r_p} \text{-BAD}} \frac{|\zeta_{r_p,\vec{s}}|}{|\zeta_{r_p}|} \leq \sum_{\vec{s} \in \zeta_{r_p} \text{-BAD}} \left| \frac{|\zeta_{r_p,\vec{s}}|}{|\zeta_{r_p}|} - \frac{|\beta_{r_p,\vec{s}}|}{|R_V|} \right| \leq \sqrt{\epsilon}.
\]

where the first inequality follows definition of conditional probability, the second inequality from the definition of \(\zeta_{r_p} \text{-BAD} \), and the last inequality follows the fact that \(r_p \) is \(r_p \text{-good} \) and \(\zeta_{r_p} \text{-BAD} \subseteq \mathcal{S}_{(P,V),r_p} \).

Similarly, let \(\beta_{r_p} \text{-BAD} \) denote the set of \(\vec{s} \in \mathcal{S}_{(P,V),r_p} \) such that

\[
\frac{|\zeta_{r_p,\vec{s}}|}{|\zeta_{r_p}|} - \frac{|\beta_{r_p,\vec{s}}|}{|R_V|} > \frac{|\zeta_{r_p,\vec{s}}|}{|\zeta_{r_p}|}.
\]

Claim 4.8.2. For any \(r_p \) that is \(R_p \text{-good} \),

\[
\Pr_{(r_p^*,\vec{s}^*) \leftarrow \text{HWP}_p(P,V(x))} \left[\vec{s}^* \in \beta_{r_p} \text{-BAD} \mid r_p^* = r_p \right] \leq 2 \cdot \sqrt{\epsilon}.
\]

Proof.

\[
\Pr_{(r_p^*,\vec{s}^*) \leftarrow \text{HWP}_p(P,V(x))} \left[\vec{s}^* \in \beta_{r_p} \text{-BAD} \mid r_p^* = r_p \right] = \sum_{\vec{s} \in \beta_{r_p} \text{-BAD}} \frac{|\beta_{r_p,\vec{s}}|}{|R_V|} \leq \sum_{\vec{s} \in \beta_{r_p} \text{-BAD}} \left| \frac{|\zeta_{r_p,\vec{s}}|}{|\zeta_{r_p}|} - \frac{|\beta_{r_p,\vec{s}}|}{|R_V|} \right| \leq \sqrt{\epsilon}.
\]
Define $\bar{S}_0(\cdot), \bar{S}_1(\cdot)$ as in the proof of Claim 4.6.1, given that r_P is R_P-good, the distance between $\bar{S}_0(r_P)$ and $\bar{S}_1(r_P)$ is bounded:

$$\Delta \left(\bar{S}_0(r_P), \bar{S}_1(r_P) \right) = \frac{1}{2} \left(\sum_{\zeta \in S(P,V) \setminus r_P} \left| \frac{\zeta_{r_P,0}}{||\zeta_{r_P}||} - \frac{\beta_2^x}{||R_V||} \right| \right) + \frac{1}{2} \left(\sum_{\zeta \in S_{SimP}(r_P), S(P,V) \setminus r_P} \left| \frac{\zeta_{r_P,0}}{||\zeta_{r_P}||} \right| \right)$$

$$\leq \frac{1}{2} \cdot \sqrt{\epsilon} + \frac{1}{2} \epsilon$$

$$\leq \sqrt{\epsilon}.$$

Following triangle inequality and data processing inequality,

$$\Pr \left[(r_P, \bar{s}) \in SimP(n) \right] \left[\bar{s} \in \beta_{r_P}-BAD \, \mid r_P = r_P \right] \leq \Pr \left[(r_P, \bar{s}) \in SimP \left(\left\{ \langle P, V(x) \rangle \right\} \right) \right] \left[\bar{s} \in \beta_{r_P}-BAD \, \mid r_P = r_P \right] + \Delta \left(\bar{S}_0(r_P), \bar{S}_1(r_P) \right)$$

$$\leq 2 \cdot \sqrt{\epsilon}.$$

Thus the proof is completed. \hfill \Box

We say (r_P, \bar{s}) is $VIEWP$-good if $r_P \notin R_P$-BAD, conditioned on which $\bar{s} \notin \beta_{r_P}$-BAD $\cup \zeta_{r_P}$-BAD.

$$\Pr \left[(r_P, \bar{s}) \in SimP(n) \right] \left[(r_P, \bar{s}) \text{ is $VIEWP$-good} \right] = \Pr \left[r_P \notin R_P$-BAD $\right] \cdot \Pr \left[\bar{s} \notin \beta_{r_P}$-BAD $\cup \zeta_{r_P}$-BAD $\mid r_P \notin R_P$-BAD $\right] \geq (1 - 4\sqrt{\epsilon})(1 - 2\sqrt{\epsilon} - \sqrt{\epsilon})$$

$$\geq 1 - 7\sqrt{\epsilon}.$$

\textbf{Claim 4.8.3.} For any (r_P, \bar{s}) that is $VIEWP$-good:

$$\frac{1}{2} \left\| \beta^x \right\| \frac{1}{\left\| \zeta_{r_P,0} \right\|} \leq 2 \left\| \frac{\beta^x}{\left\| R_V \right\|} \right\| \leq 2 \left\| \frac{\beta^x}{\left\| R_V \right\|} \right\|.$$

\textbf{Claim 4.8.4.}

- If $x \in Yes(P(n))$:

$$\mathbb{E}_{(r_P, \bar{s}) \in SimP(n)} \left[\frac{\left\| \alpha^x \right\| \cdot \left\| \zeta_{r_P} \right\|}{\left\| \zeta_{r_P,0} \right\|} \right] \left[(r_P, \bar{s}) \text{ is $VIEWP$-good} \right] \cdot \frac{1}{\left\| R_V \right\|} \geq \frac{1}{3}.$$

- If $x \in No(P(n))$:

$$\mathbb{E}_{(r_P, \bar{s}) \in SimP(n)} \left[\frac{\left\| \alpha^x \right\| \cdot \left\| \zeta_{r_P} \right\|}{\left\| \zeta_{r_P,0} \right\|} \right] \left[(r_P, \bar{s}) \text{ is $VIEWP$-good} \right] \cdot \frac{1}{\left\| R_V \right\|} \leq 4 \cdot (\delta + 2 \cdot \epsilon).$$

\textbf{Proof of Claim 4.8.4.} Denote by G the event that (r_P, \bar{s}) is $VIEWP$-good. On YES instance $x \in Yes(P(n))$,

$$\mathbb{E}_{(r_P, \bar{s}) \in SimP(n)} \left[\frac{\left\| \alpha^x \right\| \cdot \left\| \zeta_{r_P} \right\|}{\left\| \zeta_{r_P,0} \right\|} \right] \left[(r_P, \bar{s}) \text{ is $VIEWP$-good} \right] \cdot \frac{1}{\left\| R_V \right\|} \geq \frac{1}{2} \cdot \mathbb{E}_{(r_P, \bar{s}) \in SimP(n)} \left[\frac{\left\| \alpha^x \right\|}{\left\| \beta^x \right\|} \right] \left[G \right]$$

$$= \frac{1}{2} \cdot \left(\mathbb{E}_{(r_P, \bar{s}) \in SimP(n)} \left[\frac{\left\| \alpha^x \right\|}{\left\| \beta^x \right\|} \right] - \mathbb{E}_{(r_P, \bar{s}) \in SimP(n)} \left[\frac{\left\| \alpha^x \right\|}{\left\| \beta^x \right\|} \right] \left[\bar{G} \right] \cdot \Pr_{(r_P, \bar{s}) \in SimP(n)} \left[\bar{G} \right] \cdot \left(\frac{1}{\Pr_{(r_P, \bar{s}) \in SimP(n)} \left[G \right]} \right) \right)$$

$$\geq \frac{1}{2} \cdot \left(\mathbb{E}_{(r_P, \bar{s}) \in SimP(n)} \left[\frac{\left\| \alpha^x \right\|}{\left\| \beta^x \right\|} \right] - \Pr_{(r_P, \bar{s}) \in SimP(n)} \left[\bar{G} \right] \cdot \left(\frac{1}{\Pr_{(r_P, \bar{s}) \in SimP(n)} \left[G \right]} \right) \right)$$

$$\geq \frac{1}{2} \cdot (1 - \delta - 2\epsilon - 7\sqrt{\epsilon}) \cdot \frac{1}{1 - 7\sqrt{\epsilon}} > \frac{1}{3}.$$
where the line (1) follows Claim 4.8.3, line (2) follows conditional expectation, line (3) follows from Claim 4.5.3, and the line (4) follows Eq. (10).

Similarly, for NO instance \(x \in \text{No}(\Pi_n) \):

\[
\mathbb{E}_{(r_p, \bar{s}) \leftarrow \text{Simp}} \left[\frac{\alpha_{r_p}^2 r_p}{|\bar{s}r_p|} \right] \left(r_p, \bar{s} \right) \text{ is VIEWp-good} \left[\frac{1}{|\bar{s}|} \right] \leq 2 \cdot \mathbb{E}_{(r_p, \bar{s}) \leftarrow \text{Simp}} \left[\frac{\alpha_{r_p}^2 r_p}{|\bar{s}r_p|} \right] G
\]

\[
\leq 2 \cdot \frac{1}{(|\bar{s}|)} \cdot (\frac{1}{\Pr_{(r_p, \bar{s}) \leftarrow \text{Simp}}[G])}
\]

\[
\leq 2 \cdot (\delta + 2 \cdot \epsilon) \cdot \frac{1}{1 - 7\sqrt{\epsilon}}
\]

\[
\leq 4 \cdot (\delta + 2 \cdot \epsilon)
\]

where line (1) follows Claim 4.8.3, line (2) follows conditional expectation and line (3) follows Claim 4.5.3 and triangle inequality.

Overall, we get a large gap on \((r_p, \bar{s}^{(1)}), \ldots, (r_p, \bar{s}^{(g)}) \) sampled in Figure 2, on the sampled views \((r_p, \bar{s}^{(1)}), \ldots, (r_p, \bar{s}^{(g)}) \):

Claim 4.8.5.

- **If** \(x \in \text{Yes}(\Pi_n) \):

\[
\Pr \left[\frac{1}{g} \frac{1}{|\bar{s}|} \sum_{i \in [g]} \left(\frac{\alpha_{r_p}^2 r_p}{|\bar{s}r_p|} \right) \left(r_p, \bar{s} \right) \text{ is VIEWp-good} \left[\frac{1}{6} \right] \right] \leq \text{negl}(n).
\]

- **If** \(x \in \text{No}(\Pi_n) \),

\[
\Pr_{(r_p^{(1)}, \bar{s}^{(1)}), \ldots, (r_p^{(g)}, \bar{s}^{(g)}) \leftarrow \text{Simp}} \left[\exists i \in [g] : \frac{\alpha_{r_p}^2 r_p}{|\bar{s}r_p|} > \sqrt{\delta + \epsilon} \right] \leq \text{negl}(n).
\]

Proof of Claim 4.8.5. Consider the \((r_p^{(1)}, \bar{s}^{(1)}), \ldots, (r_p^{(g)}, \bar{s}^{(g)}) \) sampled in Figure 2, define event \(E \) as the occurrence that \((r_p^{(1)}, \bar{s}^{(1)}), \ldots, (r_p^{(g)}, \bar{s}^{(g)}) \) are all VIEWp-good.

- **If** \(x \in \text{Yes}(\Pi_n) \), conditioned on the occurrence of \(E \), following Claim 4.8.3, each \(\frac{\alpha_{r_p}^2 r_p}{|\bar{s}r_p|} \) is an independent variable in range \([0 : 2]\) with expectation as assured by Claim 4.8.4. Therefore, following Hoeffding bound,

\[
\Pr \left[\frac{1}{g} \frac{1}{|\bar{s}|} \sum_{i \in [g]} \left(\frac{\alpha_{r_p}^2 r_p}{|\bar{s}r_p|} \right) \left(r_p, \bar{s} \right) \text{ is VIEWp-good} \left[\frac{1}{6} \right] \right] \leq \Pr_{(r_p^{(1)}, \bar{s}^{(1)}), \ldots, (r_p^{(g)}, \bar{s}^{(g)}) \leftarrow \text{Simp}} \left[\frac{1}{g} \frac{1}{|\bar{s}|} \sum_{i \in [g]} \left(\frac{\alpha_{r_p}^2 r_p}{|\bar{s}r_p|} \right) \left(r_p, \bar{s} \right) \text{ VIEWp-good} \left[\frac{1}{6} \right] \right] + \Pr[\bar{E}]
\]

\[
\leq \frac{1}{2^{-H(g)}} + 7 \cdot g \cdot \sqrt{\epsilon}
\]

\[
\leq \text{negl}(n).
\]

- **If** \(x \in \text{No}(\Pi_n) \), for any \(i \in [g] \), applying Markov inequality using the expectation upperbound ensured by Claim 4.8.4, we have

\[
\Pr_{(r_p^{(i)}, \bar{s}^{(i)}) \leftarrow \text{Simp}} \left[\frac{\alpha_{r_p}^2 r_p}{|\bar{s}r_p|} \left(r_p, \bar{s} \right) \text{ VIEWp-good} \left[\frac{1}{6} \right] \right] \leq \sqrt{\delta + \epsilon} \leq 8 \sqrt{\delta + \epsilon} \leq \text{negl}(n).
\]

24
Apply an union bound over \(g \) samples, the probability that there exists \(i \in [g] \) such that
\[
\Pr \left(\exists i \in [g] : \frac{|\alpha_{x(i)}| \cdot |\zeta_{x(i)}|}{|\zeta_{r_p(x(i))}| \cdot |R_V|} > \sqrt{\delta + \epsilon} \right) \leq g \cdot \negl(n) + \Pr [E] \leq \negl(n).
\]

Consider the bounds \(k_{\alpha_i} \) and \(k_{r_p(x(i))} \) claimed by prover \(M \) in the \(g \) iterations.

Completeness. Given \(x \in \text{Yes}(\Pi_n) \), the honest prover \(M \) set \(k_{\alpha_i} = |\alpha_{x(i)}| \), \(k_{r_p(x(i))} = |\zeta_{x(i)}| \), and \(k_{r_p(x(i))} = 4 \cdot g \cdot |\zeta_{r_p(x(i)}}| \). Taking an union bound over \(g \) samples, the probability that verifier doesn’t reject after \(g \) iterations is
\[
\Pr[\text{A doesn’t reject after } g \text{ iterations}] \geq \left(1 - \negl(n) \right)^g \geq 1 - g \cdot \negl(n) - 1 - g \cdot \frac{1}{4g} \geq \frac{3}{4} - \negl(n).
\]

Follows Claim 4.8.5 the probability that \(k < \frac{1}{10g} \) is bounded by \(\negl(n) \). To conclude, the probability that \(A \) accepts in the end is at least:
\[
\Pr \left(\langle M, A \rangle (x) = 1 \right) \geq 1 - \Pr [\text{verifier reject in } g \text{ iterations}] - \Pr \left[k < \frac{1}{10 \cdot g} \right] \\
\geq 1 - \frac{1}{4} - \negl(n) - \negl(n) \\
> \frac{2}{3}.
\]

Soundness. Consider any NO instance \(x \in \text{No}(\Pi_n) \), \(A \) will accept only if at the end of \(g \) iterations,
\[
\sum_{i \in [g]} \frac{k_{\alpha_i} \cdot k_{r_p(x(i))}}{|r_p(x(i))|} \geq \frac{1}{10g}.
\]

By the pigeonhole principle, it follows that

Claim 4.8.6. If \(\sum_{i \in [g]} \frac{k_{\alpha_i} \cdot k_{r_p(x(i))}}{|r_p(x(i))|} \geq \frac{1}{10g} \), there exists a \(j \in [g] \) such that \(\frac{k_{\alpha_j} \cdot k_{r_p(x(j))}}{|r_p(x(j))|} \geq \frac{1}{10g} \).

Let \(T \) be the event that “\(\forall i \in [g] : \frac{|\alpha_{x(i)}| \cdot |\zeta_{x(i)}|}{|\zeta_{r_p(x(i))}| \cdot |R_V|} \leq \sqrt{\delta + \epsilon} \)”. Define the event \(W_i \) being that \(A \) does not reject after \(i^{th} \) iterations of bound protocol, and let \(W \) be that \(A \) doesn’t reject after all \(g \) repetitions. Define \(H \) to be the event that \(\sum_{i \in [g]} \frac{k_{\alpha_i} \cdot k_{r_p(x(i))}}{|r_p(x(i))|} \geq \frac{1}{10g} \). Denote by \(L_j \) the event that \(k_{\alpha_j} \leq 2 \cdot |\alpha_{x(i)}| \) and
\[k_{r,(j)} \leq 2 \cdot |\zeta_{r,(j)}| \]. We have:

\[
\Pr[A \text{ accept}] = \Pr[H \land W] \\
\leq \Pr[H \land W|T] + \Pr[T] \\
\leq \Pr[W|H,T] + \Pr[T]. \tag{3}
\]

On the event \(H \): \(\sum_{i \in [g]} \frac{k_{\alpha_j,k_{r,(j)}}}{k_{r,(j)} \cdot \zeta_{r,(i)}} |\mathcal{K}_V| \geq \frac{1}{10g} \), let index \(j \) be such that \(H_j : \frac{k_{\alpha_j,k_{r,(j)}}}{k_{r,(j)} \cdot \zeta_{r,(j)}} |\mathcal{K}_V| \geq \frac{1}{10g} \) by Claim 4.8.6.

\[
\Pr[W|H,T] \leq \Pr[W_j|H,H_j,T] \\
= \Pr[W_j \land L_j|H,H_j,T] + \Pr[W_j \land \bar{L}_j|H,H_j,T] \\
\leq \Pr[W_j \land L_j|H,H_j,T] + \Pr[W_j|H,H_j,T,\bar{L}_j] \\
\leq \Pr[W_j|H,H_j,T,L_j] + \negl(n). \tag{4}
\]

Line 1 follows Claim 4.8.6, Line 4 follows from conditional probability and Lemma 3.5.

Conditioned on \(H_j \left(\frac{k_{\alpha_j,k_{r,(j)}}}{k_{r,(j)} \cdot \zeta_{r,(j)}} |\mathcal{K}_V| \geq \frac{1}{10g} \right) \), \(T \) (In particular, \(\frac{|\alpha_j|}{|\zeta_{r,(j)}|} |\mathcal{K}_V| \leq \sqrt{\delta + \epsilon} \)), and \(L_j \), following Lemma 4.6:

\[
\Pr[W_j|H,H_j,T,L_j] \leq \frac{6 \cdot k_{r,(j)},\bar{s}_j}{|\zeta_{r,(j)}| - 1} \\
\leq 80 \cdot g^2 \cdot \sqrt{\delta + \epsilon} \leq \negl(n).
\]

To conclude, \(\Pr[(M,V)(x) = 1] \leq \negl(n) \), and thus Figure 2 is a constant-round interactive proof for \(\Pi \).

Lemma 4.9 ([GS86]). Given that \((P,V) \) is a \((q(n)) \)-rounds uniform-verifier (resp. non-uniform \(V \)) interactive proof for a problem \(\Pi \), then there exists a \((q(n) + 2) \)-rounds public-coin uniform-verifier (resp. non-uniform \(V' \)) interactive proof \((P',V') \) for \(\Pi \).

Following the transformation assured by Lemma 4.9, we can get an AM protocol for \(\Pi \).

Remark that the transformation in Lemma 2.8 does not maintain the efficiency of the simulator, and thus we cannot use that directly to build AM protocol for the complemented problem \(\Pi \). Consider any instance \(x \) of \(\Pi \) and let \((P,V) \) be the \((\delta,\epsilon) \)-instance-hiding interactive proof for \(\Pi \). We define \(\bar{\alpha}_s = \{ r \in \beta^\pi_s \mid V(x,r,s) = 0 \} \), which is the subset of \(\beta^\pi_s \) with which \(V \) rejects in the end on instance \(x \). It’s clear that \(\bar{\alpha}_s, \alpha^\pi_x \) are partitions of \(\beta^\pi_s \), and hence \((|\alpha^\pi_x|,|\bar{\alpha}_s|) = 1 \) for any possible view \(s \). By linearity of expectation we have:

- If \(x \in \text{YES}(\Pi_n) \) = \(\text{NO}(\Pi_n) \) : \(\sum_{s \in \mathcal{S}} \Pr[\bar{\alpha}_s] \geq 1 - \delta(n) \).
- If \(x \in \text{NO}(\Pi_n) \) = \(\text{YES}(\Pi_n) \) : \(\sum_{s \in \mathcal{S}} \Pr[\bar{\alpha}_s] \leq \delta(n) \).

Furthermore there exists an efficient membership oracle \(O_{\bar{\alpha}_x} \) for \(\bar{\alpha}_x \), which essentially checks the consistency of \((r,s,x) \) like \(O_{\alpha^\pi_x} \) but outputs 1 only if \(V(r,x,s) = 0 \) in the end. A constant-round interactive proof can be constructed as in Figure 2, but using membership oracle for set \(\bar{\alpha}_x \), the rest of the argument mirrors that of problem \(\Pi \), thus completing the proof of the theorem.

\[\square \]
4.2 Constant-Round Non-Uniform Proofs from Instance-Hiding

Proof of Theorem 4.1. As observed earlier, the expectation $\mathbb{E}_{\vec{s} \leftarrow \vec{S}_x} \left[\frac{\alpha_{\vec{w}}}{{|\vec{w}|}} \right]$ distinguishes the promise problem. A natural approach is thus to reduce the task to proving the size of sets such as $\alpha_{\vec{s}}$. A major challenge, however, is the inefficiency of simulator coupled with the lack of an efficient method to sample \vec{s}. Fortunately, we observe that the simulator only requires the instance length as input, which allows us to relegate the inefficient simulation to the sampling of non-uniform advice. This methodology will be useful in subsequent sections.

Another challenge we will encounter is absence of protocol to prove the upperbound of $|\beta_{\vec{s}}^x|$. In response, we will provide the necessary information via non-uniform advice. We observe that for any two distinct instances, x and w in Π_n, the value of $|\beta_{\vec{s}}^w|$ will approximate $|\beta_{\vec{s}}^x|$ on average. This observation is formalized in the following claims:

Claim 4.9.1. For any $x, w \in \text{YES} (\Pi_n) \cup \text{NO} (\Pi_n)$:
$$\Delta (\vec{S}_x, \vec{S}_w) \leq \Delta (\vec{S}_x, \text{Sim}_p(n)) + \Delta (\vec{S}_w, \text{Sim}_p(n)) < 2 \cdot \epsilon(n),$$
where $\text{Sim}_p(n)$ is the distribution simulated by simulator Sim_p.

Proof of Claim 4.9.1. From the hiding property, we have a simulator Sim_p that such that for any instance $x \in \text{YES} (\Pi_n) \cup \text{NO} (\Pi_n)$: $\Delta (\vec{S}_x, \text{Sim}_p(n)) \leq \epsilon(n)$. Therefore we have:
$$\Delta (\vec{S}_x, \vec{S}_w) \leq \Delta (\vec{S}_x, \text{Sim}_p(n)) + \Delta (\vec{S}_w, \text{Sim}_p(n)) \leq 2 \cdot \epsilon(n).$$

Claim 4.9.2. For any two instances $x, w \in \text{YES} (\Pi_n) \cup \text{NO} (\Pi_n)$:
$$\left| \mathbb{E}_{\vec{s} \leftarrow \vec{S}_x} \left[\frac{\alpha_{\vec{w}}}{|\vec{w}|} \right] - \mathbb{E}_{\vec{s} \leftarrow \vec{S}_w} \left[\frac{\alpha_{\vec{w}}}{|\vec{w}|} \right] \right| \leq 2 \cdot \epsilon(n).$$

Claim 4.9.3. For any two instances $x, w \in \text{YES} (\Pi_n) \cup \text{NO} (\Pi_n)$:

- If $x \in \text{YES} (\Pi_n)$:
 $$\mathbb{E}_{\vec{s} \leftarrow \vec{S}_x} \left[\frac{\alpha_{\vec{w}}}{|\vec{w}|} \right] \geq 1 - \delta(n) - 2 \cdot \epsilon(n).$$

- If $x \in \text{NO} (\Pi_n)$:
 $$\mathbb{E}_{\vec{s} \leftarrow \vec{S}_w} \left[\frac{\alpha_{\vec{w}}}{|\vec{w}|} \right] \leq \delta(n) + 2 \cdot \epsilon(n).$$

We remark that here \vec{s} is sampled from \vec{S}_w. The denominator is the size of verifier’s randomness consistent with w and \vec{s}, while the numerator is the size of $\alpha_{\vec{s}}^x$. Looking ahead, this would allow us to decide an instance x using view \vec{s} sampled from another instance \vec{w}.

Proof of Claim 4.9.3. From the completeness and soundness of (P, V) and Claim 4.9.1 we have:

- Completeness: If $x \in \text{YES} (\Pi_n)$:
 $$\mathbb{E}_{\vec{s} \leftarrow \vec{S}_x} \left[\frac{\alpha_{\vec{w}}}{|\vec{w}|} \right] = \Pr [(P(n), V(x)) = 1] \geq 1 - \delta(n).$$

27
• **Soundness:** \(x \in \text{No}(\Pi_n) \):

\[
\mathbb{E}_{x \sim \mathcal{S}_x} \left[\frac{|\alpha_x^s|}{|\beta_x^s|} \right] = \Pr[\langle P(n), V(x) \rangle = 1] = \delta(n).
\]

Combine with Claim 4.9.2, the claim follows.

AM protocol for \(\Pi \): \(\langle M, A \rangle^Q(x) \)

Parameters: input length \(n, g \)

Inputs:
- An instance \(x \in \text{YES}(\Pi_n) \cup \text{NO}(\Pi_n) \)

Outputs: \(d \in \{0, 1\} \)

Ingredients:
- \((P, V) \) is an \((\delta, \epsilon)\)-Instance-Hiding Interactive Proof
- Advice: Takes advice \(\tilde{s}^{(1)}, \ldots, \tilde{s}^{(g)}, b_1, \ldots, b_g \) from advice oracle \(Q \)
- \(\text{WSLBPO}_{\tilde{c}}(\tilde{c}, K) \): Weighted Sets Lowerbound Protocol from Lemma 3.6 for the sets \(S_1, \ldots, S_g \), with input \(\tilde{c} \), and errors negligible in \(n \).
- For \(i \in [g] \) and transcript \(\tilde{s}^{(i)} \), we define the efficient membership oracle for set \(\alpha_{x}^{\tilde{s}^{(i)}} \) as follows:

\[
\text{Algorithm } O_{\alpha_{x}^{\tilde{s}^{(i)}}}(r) :
1. \tilde{s}^{(i)} = (u_1, y_1, \ldots, u_q, y_q)
2. s_0 \leftarrow \phi \text{ (the empty string)}
3. \text{For } j \leftarrow 1 \text{ to } q
 \begin{align*}
 & \text{Check } V\left(x, r, (u_1, y_1, \ldots, u_q, y_q)\right) = u_i, \text{ if not output } 0. \\
 & \text{If } V(x, r, \tilde{s}) = 1 \text{ output } 1; \text{ Else output } 0.
 \end{align*}
\]

Protocol:

1. \(M \) and \(A \) run the protocol \(\text{WSLBPO}_{\alpha_{x}^{\tilde{s}^{(1)}}} \cdots \alpha_{x}^{\tilde{s}^{(g)}} \) with membership oracles access to \(O_{\alpha_{x}^{\tilde{s}^{(1)}}}, \ldots, O_{\alpha_{x}^{\tilde{s}^{(g)}}} \) and inputs \((\frac{1}{b_1}, \ldots, \frac{1}{b_g}), (\frac{1}{2} \cdot g) \):

\[
d \leftarrow \text{WSLBPO}_{\alpha_{x}^{\tilde{s}^{(1)}}} \cdots \alpha_{x}^{\tilde{s}^{(g)}} \left(\left(\frac{1}{b_1}, \ldots, \frac{1}{b_g}, \frac{1}{2} \cdot g \right) \right).
\]

2. \(A \) outputs \(d \).

\(\Pi \in \text{AM/poly} \). Given the necessary tools above, we construct our AM protocol with non-uniform verifier as shown in Figure 3 where the advice oracle \(Q \) is defined in Figure 4.
Claim 4.9.4. Consider the protocol in Figure 3 with the advice oracle in Figure 4. On input any instance x, it satisfies the following properties:

- If $x \in \text{YES}(\Pi_n)$, with probability at least $1 - 2^{\Omega(g)}$,
 \[\sum_{i \in [g]} \frac{\alpha_{x(i)}^2}{b_i} \geq \frac{g}{2}. \]

- If $x \in \text{NO}(\Pi_n)$, with probability at least $1 - 2^{\Omega(g)}$,
 \[\sum_{i \in [g]} \frac{\alpha_{x(i)}^2}{b_i} \leq \frac{g}{8}. \]

Proof of Claim 4.9.4. Note that $b_i = |\beta_{x(i)}^y|$ and w may not be equal to x. Define $\mu = E \left[\sum_{i \in [g]} \frac{\alpha_{x(i)}^2}{|\beta_{x(i)}^y|} \right] = g \cdot E_{x \sim S_n} \left[\frac{\alpha_{x}^2}{|\beta_{x}^y|} \right]$, and following Claim 4.9.3 we have:

- If $x \in \text{YES}(\Pi_n)$:
 \[\mu \geq g \cdot (1 - \delta(n) - 2 \cdot \epsilon(n)). \]

- If $x \in \text{NO}(\Pi_n)$:
 \[\mu \leq g \cdot (\delta(n) + 2 \cdot \epsilon(n)). \]

Given that $\delta + 2 \cdot \epsilon \leq \frac{1}{16}$, and follows the Hoeffding bound:

- If $x \in \text{YES}(\Pi_n)$: the probability that $\sum_{i \in [g]} \frac{\alpha_{x(i)}^2}{b_i} < \frac{g}{2}$ is:
 \[
 \Pr \left[\sum_{i \in [g]} \frac{\alpha_{x(i)}^2}{|\beta_{x(i)}^w|} < \frac{g}{2} \right] \leq \Pr \left[\sum_{i \in [g]} \frac{\alpha_{x(i)}^2}{|\beta_{x(i)}^w|} < (1 - \delta - 2 \cdot \epsilon) \cdot g - \frac{g}{4} \right] \\
 \leq \Pr \left[\sum_{i \in [g]} \frac{\alpha_{x(i)}^2}{|\beta_{x(i)}^w|} < \mu - \frac{g}{4} \right] \\
 \leq 2 \cdot e^{-\frac{(g/4)^2}{\mu}} \\
 \leq 2 \cdot e^{-\frac{g^2}{16}} \\
 \leq 2^{-\Omega(g)}.
 \]

- If $x \in \text{NO}(\Pi_n)$: the probability that $\sum_{i \in [g]} \frac{\alpha_{x(i)}^2}{b_i} > \frac{g}{8}$ is:
 \[
 \Pr \left[\sum_{i \in [g]} \frac{\alpha_{x(i)}^2}{|\beta_{x(i)}^w|} > \frac{g}{8} \right] \leq \Pr \left[\sum_{i \in [g]} \frac{\alpha_{x(i)}^2}{|\beta_{x(i)}^w|} > (\delta + 2 \cdot \epsilon) \cdot g + \frac{g}{16} \right] \\
 \leq \Pr \left[\sum_{i \in [g]} \frac{\alpha_{x(i)}^2}{|\beta_{x(i)}^w|} > \mu + \frac{g}{16} \right] \\
 \leq 2 \cdot e^{-\frac{(g/16)^2}{\mu + \frac{g}{16}}} \\
 \leq 2^{-\Omega(g)}.
 \]
We define the following events:

- \(E_{\text{Yes}} : \sum_{i \in [g]} \frac{\alpha_x^i}{h_i} \geq \frac{g}{2} \).
- \(E_{\text{No}} : \sum_{i \in [g]} \frac{\alpha_x^i}{h_i} \leq \frac{g}{2} \).

- \(W_1 \): The execution of WSLBP accepts.
- \(W_0 \): The execution of WSLBP rejects.

Following Claim 4.9.4 and Lemma 3.6, we have the completeness and soundness:

- **Completeness:** If \(x \in \text{Yes}(\Pi_n) \):

 \[
 \Pr[\langle A, M \rangle(x) = 1] \geq \Pr[E_{\text{Yes}} \land W_1] = \Pr[E_{\text{Yes}}] \cdot \Pr[W_1|E_{\text{Yes}}]
 \geq (1 - 2^{-\Omega(g)}) \cdot (1 - g \cdot \text{negl}(n)).
 \]

- **Soundness:** If \(x \in \text{No}(\Pi_n) \), for any prover \(M^* \):

 \[
 \Pr[\langle A, M^* \rangle(x) = 1] \leq \Pr[E_{\text{No}} \land W_1] + \Pr[E_{\text{Yes}}]
 \leq \Pr[E_{\text{No}}] \cdot \Pr[W_1|E_{\text{No}}] + \Pr[E_{\text{Yes}}]
 \leq (1 - 2^{-\Omega(g)}) \cdot \text{negl}(n) + 2^{-\Omega(g)}.
 \]

By setting \(g \) to some polynomial of \(n \) and following Lemma 3.4, we conclude that the protocol shown in Figure 3 is a AM protocol for \(\Pi \).

For any \(\Pi \) that has \((\delta, \epsilon)\)-IHIP with negligibly small \(\delta, \epsilon \), it directly follows Lemma 2.8 that \(\Pi \in \text{coAM/poly} \). The transformation described in Lemma 2.8, however, introduces a polynomial loss in hiding due to the execution of protocol outlined in Figure 7. Here, we are proving a stronger assertion where \(\delta, \epsilon < \frac{1}{32} \). We apply linearity of expectation to prove that the same AM/poly protocol is complete and sound for the complement problem \(\bar{\Pi} \).

\(\Pi \in \text{coAM/poly} \). Consider any instance \(x \in \text{Yes}(\bar{\Pi}) \cup \text{No}(\bar{\Pi}) \) and let \((P, V) \) be the \((\delta, \epsilon)\)-instance-hiding interactive proof for \(\Pi \). We define \(\tilde{\alpha}_x^r = \{ r \in \beta_x^r \mid V(x, r, \bar{s}) = 0 \} \) as in the proof of Theorem 4.3. Because both \(\alpha_x^r \) and \(\tilde{\alpha}_x^r \) are subset of \(\beta_x^r \), by switching the names of the two sets and following Claim 4.9.2 we have that for any two instances \(x, w \in \text{Yes}(\Pi_n) \cup \text{No}(\Pi_n) \):

\[
\left| \mathbb{E}_{\bar{s} \in \bar{S}_x} \left[\frac{[\tilde{\alpha}_x^r]}{[\beta_x^r]} \right] - \mathbb{E}_{\bar{s} \in \bar{S}_w} \left[\frac{[\tilde{\alpha}_w^r]}{[\beta_w^r]} \right] \right| \leq 2\epsilon(n).
\]

By triangle inequality, we get that:

- If \(x \in \text{Yes}(\bar{\Pi}_n) \):

 \[
 \mathbb{E}_{\bar{s} \in \bar{S}} \left[\frac{[\tilde{\alpha}_x^r]}{[\beta_x^r]} \right] \geq 1 - \delta(n) - 2\epsilon(n).
 \]

- If \(x \in \text{No}(\bar{\Pi}_n) \):

 \[
 \mathbb{E}_{\bar{s} \in \bar{S}} \left[\frac{[\tilde{\alpha}_x^r]}{[\beta_x^r]} \right] \leq \delta(n) + 2\epsilon(n).
 \]
Advice oracle $Q_w(P, V, n)$

Inputs:
- Input length n (Omitted when clear from context).
- (P, V) is an (δ, ϵ)-IHIP protocol for Π.

Ingredients:
- w is some arbitrary instance of Π.

Procedure:
1. **For** $i \leftarrow 1$ to g
 - Samples random seed for verifier: $r_i^v \leftarrow R_V$
 - Samples random seed for prover: $r_i^p \leftarrow R_P$
 - Simulate the view with the prover’s and verifier’s algorithm and randomness:
 $$\vec{s}^{(i)} \leftarrow \langle P(r_i^p), V(w, r_i^v) \rangle.$$
 - Computes number of verifier’s randomness consistent to the view $\vec{s}^{(i)}$:
 $$b_i \leftarrow |\beta_w^{\vec{s}^{(i)}}|,$$
2. Output $\vec{s}^{(1)}, \ldots, \vec{s}^{(g)}, b_1, \ldots, b_g$.

Figure 4: Advice Oracle $Q_w(P, V, n)$ for AM Protocol From IHIP

Consequently, a constant-round public-coin interactive proof for $\bar{\Pi}$ can be constructed using the same technique of applying weighted lower bound protocol with identical advice oracle.

Proof of Claim 4.9.2. For any two instances $x, w \in \text{Yes}(\Pi_n) \cup \text{No}(\Pi_n)$, denote by S_x and S_w the support of \vec{S}_x and \vec{S}_w respectively and following Claim 4.9.1 we have:

\[
\mathbb{E}_{\vec{s} \leftarrow S_w} \left[\frac{\alpha_x^{\vec{s}}}{|\beta^x_{\vec{s}}|} \right] = \sum_{\vec{s} \in S_w} \Pr \left[\vec{S}_w = \vec{s} \right] \cdot \frac{|\alpha_x^{\vec{s}}|}{|\beta^x_{\vec{s}}|} = \sum_{\vec{s} \in S_w \cap S_x} \Pr \left[\vec{S}_w = \vec{s} \right] \cdot \frac{|\alpha_x^{\vec{s}}|}{|\beta^x_{\vec{s}}|} + \sum_{\vec{s} \in S_w \setminus S_x} \Pr \left[\vec{S}_w = \vec{s} \right] \cdot \frac{|\alpha_x^{\vec{s}}|}{|\beta^x_{\vec{s}}|}.
\]

(1)

\[
= \sum_{\vec{s} \in S_w \cap S_x} \Pr \left[\vec{S}_w = \vec{s} \right] \cdot \frac{|\alpha_x^{\vec{s}}|}{|\beta^x_{\vec{s}}|} + \sum_{\vec{s} \in S_w \setminus S_x} \Pr \left[\vec{S}_w = \vec{s} \right] \cdot \frac{|\alpha_x^{\vec{s}}|}{|\beta^x_{\vec{s}}|} + \sum_{\vec{s} \in S_w \setminus S_x} \Pr \left[\vec{S}_w = \vec{s} \right] \cdot \frac{0}{|\beta^x_{\vec{s}}|}
\]

(2)

\[
= \sum_{\vec{s} \in S_w \cap S_x} \frac{|\gamma_{\vec{s}}| \cdot |\alpha_x^{\vec{s}}|}{|\beta^x_{\vec{s}}|} \cdot \frac{|\gamma_{\vec{s}}|}{|\beta^p_{\vec{s}}|} + \sum_{\vec{s} \in S_w \setminus S_x} \Pr \left[\vec{S}_w = \vec{s} \right] \cdot \frac{0}{|\beta^w_{\vec{s}}|}
\]

(3)

\[
= \sum_{\vec{s} \in S_w \cap S_x} \frac{|\gamma_{\vec{s}}| \cdot |\alpha_x^{\vec{s}}|}{|\beta^x_{\vec{s}}| \cdot |\beta^p_{\vec{s}}|}.
\]

(4)
where Line 3 is because $|\alpha_x^\bar{s}| \leq |\beta_x^\bar{s}| = 0$ for $\bar{s} \in \mathcal{S}_w \setminus \mathcal{S}_x$.

\[
\mathbb{E}_{\bar{s} \leftarrow \mathcal{S}_x} \left[\frac{|\alpha_x^\bar{s}|}{|\beta_x^\bar{s}|} \right] = \sum_{\bar{s} \in \mathcal{S}_x \cap \mathcal{S}_w} \Pr \left[\bar{S}_x = \bar{s} \right] \cdot \frac{|\alpha_x^\bar{s}|}{|\beta_x^\bar{s}|} + \sum_{\bar{s} \in \mathcal{S}_x \setminus \mathcal{S}_w} \Pr \left[\bar{S}_x = \bar{s} \right] \cdot \frac{|\alpha_x^\bar{s}|}{|\beta_x^\bar{s}|} \quad (1)
\]

\[
= \sum_{\bar{s} \in \mathcal{S}_w \cap \mathcal{S}_s} \frac{|\gamma_{\bar{s}}^\bar{x}|}{|\mathcal{R}_V|} \cdot \frac{|\alpha_x^\bar{s}|}{|\beta_x^\bar{s}|} + \sum_{\bar{s} \in \mathcal{S}_x \setminus \mathcal{S}_w} \Pr \left[\bar{S}_x = \bar{s} \right] \cdot \frac{|\alpha_x^\bar{s}|}{|\beta_x^\bar{s}|} \quad (2)
\]

\[
= \sum_{\bar{s} \in \mathcal{S}_w \cap \mathcal{S}_s} \frac{|\gamma_{\bar{s}}^\bar{x}|}{|\mathcal{R}_P|} \cdot \frac{|\alpha_x^\bar{s}|}{|\mathcal{R}_V|} + \sum_{\bar{s} \in \mathcal{S}_x \setminus \mathcal{S}_w} \Pr \left[\bar{S}_x = \bar{s} \right] \cdot \frac{|\alpha_x^\bar{s}|}{|\beta_x^\bar{s}|} \quad (3)
\]

Therefore we have:

\[
\mathbb{E}_{\bar{s} \leftarrow \mathcal{S}_x} \left[\frac{|\alpha_x^\bar{s}|}{|\beta_x^\bar{s}|} \right] - \mathbb{E}_{\bar{s} \leftarrow \mathcal{S}_w} \left[\frac{|\alpha_x^\bar{s}|}{|\beta_x^\bar{s}|} \right] = \sum_{\bar{s} \in \mathcal{S}_x \setminus \mathcal{S}_w} \Pr \left[\bar{S}_x = \bar{s} \right] \cdot \frac{|\alpha_x^\bar{s}|}{|\beta_x^\bar{s}|} \quad (1)
\]

\[
\leq \sum_{\bar{s} \in \mathcal{S}_x \setminus \mathcal{S}_w} \Pr \left[\bar{S}_x = \bar{s} \right] \quad (2)
\]

\[
\leq \Delta(\bar{S}_x, \bar{s}_w) \quad (3)
\]

\[
\leq 2 \cdot \epsilon(n). \quad (4)
\]

Combining with Lemma 3.2, the corollary follows:

Corollary 4.10. If $\text{NP} \subseteq \text{IHIP/poly}$, the polynomial hierarchy collapses to the third level.

5 Implications for One-Way Functions

As suggested in [Imp95], it is unclear whether hardness of problems in NP implies the existence of one-way function. This is important in the sense that if our world is in “Pessiland” or “Heuristica”, where NP problems are hard either on average or on worst case but one-way functions do not exist, a huge set of cryptography primitives including pseudorandom generator [Yao82, BM82] and digital signatures [GMR88] would be impossible in a strong sense.

In this section, we provide positive implications by assuming the hard problem also possessing an instance-hiding interactive proof. We show two separate proofs – one for problems that only have an IHIP with *average-case hardness*, and another for those that have a strong IHIP with only *worst-case hardness*. The former proof is non-constructive – we can only prove that a one-way function exists given an average-hard problem has IHIP. Moreover, this construction of one-way functions uses potential adversaries in a non-blackbox manner. Similar techniques have found use in the context of collision-resistant hash functions [KY18, RV22].

The latter proof is constructive – we show a construction of one-way function from any worst-case hard problem that has a Strong-IHIP, where the simulator is efficient. Implications similar to this are known for other classes such as SRE [AR16] (and SZK [Ost91], though that needs average-case hardness), which similarly rely on the efficiency of the simulator (or the encoding function in case of SRE).

5.1 OWFs from Average-Case Hard IHIP

Definition 5.1 (Average-Case Hard Problems). Consider a promise problem $\Pi = (\text{Yes}, \text{No})$, and an ensemble of efficiently sampleable distributions $X = \{X_n\}_{n \in \mathbb{N}}$, where X_n is supported on $(\text{Yes}_n \cup \text{No}_n)$. Π is
said to be hard on average over X if for any polynomial-time algorithm A, there is a negligible function ν such that for all n,

$$\Pr_{x \leftarrow X_n} [A(x) = \Pi(x)] \leq \text{negl}(n).$$

Remark 5.2. In the above definition, we require that X_n be supported fully on $(\text{Yes}_n \cup \text{No}_n)$, and also be efficiently sampleable. Often in natural hard problems, these may not be simultaneously perfectly satisfied – a natural efficiently sampleable hard distribution might have a small probability of not satisfying the promise. While we do not explicitly state this in our theorems, our proofs are robust to this and continue to hold as long as the probability of not satisfying the promise is small enough, e.g. negligible.

Theorem 5.3. If any hard on the average problem possesses a (δ, ϵ)-instance-hiding interactive proof for some negligible functions δ and ϵ, then one-way functions exist.

For simplicity, let us first consider the case of 1-round IHIP.

Lemma 5.4. If any hard on the average problem possesses a one-round (δ, ϵ)-instance-hiding interactive proof for some negligible δ, ϵ, then there exists an explicit construction of one-way functions.

One of the building blocks for our proof is the notion of distributional one-way function defined in [[IL89]], which also proved that the existence of distributionally one-way functions imply existence of one-way functions.

Definition 5.5 ([IL89]). Consider a family of functions $F = \{f_n : \{0,1\}^n \rightarrow \{0,1\}^{m(n)}\}_{n \in \mathbb{N}}$. For any $n \in \mathbb{N}$ and algorithm A, define the following two distributions: $D_{0,n}(x \leftarrow \{0,1\}^n, \text{outputs } (x, f(x)))$ and $D_{1,n}(x \leftarrow \{0,1\}^n, \text{outputs } (A(f(x)), f(x)))$. $F = \{f_n\}$ is said to be distributionally one-way if, for any efficient algorithm A, there is a constant $c > 0$ such that for all large enough n,

$$\Delta(D_{0,n}, D_{1,n}^A) > n^{-c}.$$

Remark 5.6. While the above definition refers to the distribution of the input x being uniform over some $\{0,1\}^n$, we will treat it as coming from some sampleable distribution. That is, we will construct functions f_n where the above lower bound on statistical distance holds when x is sampled from some efficiently sampleable distribution X_n rather than $\{0,1\}^n$. This is sufficient because this function f_n composed with the efficient sampling algorithm for X_n then satisfies Definition 5.5.

Lemma 5.7 ([IL89]). If there is a distributional one-way function then there is a one-way function. Further, there is an explicit transformation from any distributional one-way function to a one-way function.

Note that the above implication is explicit – given a distributional one-way function family, one can explicitly construct a one-way function family. In what follows, we will borrow the notations of elements in Section 4.

Proof of Lemma 5.4. Consider any efficiently sampleable ensemble $X = \{X_n\}_{n \in \mathbb{N}}$ over Π. Let $\Pi = (\text{Yes}, \text{No})$ be a hard on-average problem with respect to efficiently sampleable distributions X_n over $\text{Yes}_n \cup \text{No}_n$. Suppose Π has a single-round (two-message) (δ, ϵ)-IHIP for some negligible δ, ϵ. Define function $F_1(x, r) = (x, \mathcal{V}(x, r, \phi))$ and note that F_1 is efficiently computable. Suppose, for contradiction, that F_i is not distributionally one-way function when x is sampled from X_n and r is uniform over $\mathcal{R}_\mathcal{V}$. There exists a negligible function negl and an efficient algorithm A_1 that, given a randomly sampled image $F_1(x, r)$, outputs a distribution $A_1(F_1(x, r))$, which is $\text{negl}(n)$-close to uniform distribution over $F_1^{-1}(F_1(x, r))$; that is,

$$\Delta(((x, r), F_1(x, r)), (A_1(F_1(x, r)), F_1(x, r))) \leq \text{negl}(n).$$

Without loss of generality, assume that A_1, on input (x, u_1), will never output an (x', r) such that $x' \neq x$. We will proceed to argue that a non-uniform efficient algorithm B_1^X can be made using A_1 to decide Π with
all but negligible probability. Specifically, \mathcal{B}_f^x is hard-coded with $\vec{s} = (u_1, y_1)$, and upon receiving input x, it runs $A_1(x, u_1)$. If $A_1(x, u_1)$ outputs $r \in \mathcal{R}_V$, it returns the output of $\mathcal{V}(x, r, \vec{s})$; otherwise it outputs \perp.

Define advice oracle \mathcal{O} based on inefficient simulator on honest prover \mathcal{S}_mp as in Section 3.1. This oracle $\mathcal{O}(n)$ runs $\mathcal{S}_\text{mp}(n)$ and provides the(130,242),(986,306)

\[
\Delta \left(\mathcal{O}(n), \text{View}_{\text{pub}}(P, \mathcal{V}(x)) \right) \leq \Delta \left(\mathcal{S}_\text{mp}(n), \text{View}_{\text{pub}}(P, \mathcal{V}(x)) \right) \leq \epsilon(n) \leq \text{negl}(n).
\]

Let \mathcal{O}' be an ideal advice oracle such that for any $x \in \text{Yes}_n \cup \text{No}_n$, it samples the exact public view distribution of the IHIP protocol for instance x: $\Delta \left(\mathcal{O}'(x), \text{View}_{\text{pub}}(P, \mathcal{V}(x)) \right) = 0$. We define the following four hybrid distributions, where $\vec{s} = (u_1, y_1)$:

- D_0: Samples $x \leftarrow X_n, r \leftarrow \mathcal{R}_V$, runs $\vec{s} \leftarrow \text{View}_{\text{pub}}(P, \mathcal{V}(x, r))$, and outputs (x, r, \vec{s}).
- D_1: Samples $x \leftarrow X_n, \vec{s} \leftarrow \mathcal{O}'(x)$ and samples $(x, r) \leftarrow F_1^{-1}(x, u_1)$, and outputs (x, r, \vec{s}).
- D_2: Samples $x \leftarrow X_n, \vec{s} \leftarrow \mathcal{O}'(x)$ and runs $(x, r) \leftarrow A_1(x, u_1)$, and outputs (x, r, \vec{s}).
- D_3: Samples $x \leftarrow X_n, \vec{s} \leftarrow \mathcal{O}(n)$ and runs $(x, r) \leftarrow A_1(x, u_1)$, and outputs (x, r, \vec{s}).

Claim 5.7.1. $\Delta(D_0, D_3) \leq \text{negl}(n)$

Proof of Claim 5.7.1. It’s clear that $\Delta(D_0, D_1) = 0$, and $\Delta(D_1, D_2) \leq \text{negl}(n)$ follows from the property of A_1. Furthermore, we have:

\[
\Delta(D_2, D_3) \leq \max_x \left(\Delta(\mathcal{O}'(x), \mathcal{O}(n)) \right) = \max_x \left(\Delta(\text{View}_{\text{pub}}(P, \mathcal{V}(x)), \mathcal{S}_\text{mp}(n)) \right) \leq \text{negl}(n),
\]

where the first inequality follows from the property of A_1. Fix the inverter A_1, define the set A_1-Good = $\{x \in \text{Yes}_n \cup \text{No}_n | \Delta(D_0|x, D_3|x) \leq \text{negl}(n)\}$. For any $x \in A_1$-Good, following the correctness of honest prover of the protocol, we have that:

\[
\operatorname{Pr}_{\vec{s} \leftarrow \mathcal{O}, \mathcal{B}_f^x} [\mathcal{B}_f^x(x) = \Pi(x)] \geq \operatorname{Pr}_{[P, \mathcal{V}(x)]} [\Pi(x)] - \Delta(D_0|x, D_3|x) \geq 1 - \delta(n) - \text{negl}(n) = 1 - \text{negl}(n),
\]

where the first inequality is from triangle inequality. Thus for a random instance x, conditioned on that $x \in A_1$-Good:

\[
\operatorname{Pr}_{\vec{s} \leftarrow \mathcal{O}, \mathcal{B}_f^x, x \leftarrow X_n} [\mathcal{B}_f^x(x) = \Pi(x) | x \in A_1$-Good] = $\operatorname{Pr}[X_n = x | x \in A_1$-Good] \cdot $\operatorname{Pr}_{\vec{s} \leftarrow \mathcal{O}, \mathcal{B}_f^x} [\mathcal{B}_f^x(x) = \Pi(x)] \geq 1 - \text{negl}(n).
\]

In conclusion:

\[
\operatorname{Pr}_{\vec{s} \leftarrow \mathcal{O}, \mathcal{B}_f^x, x \leftarrow X_n} [\mathcal{B}_f^x(x) = \Pi(x)] \geq \operatorname{Pr}_{\vec{s} \leftarrow \mathcal{O}, \mathcal{B}_f^x, x} [\mathcal{B}_f^x(x) = \Pi(x) | x \in A_1$-Good] \cdot $\operatorname{Pr}_{x \leftarrow X_n} [x \in A_1$-Good] \\
\geq (1 - \text{negl}(n)) \cdot (1 - \text{negl}(n)) \\
= 1 - \text{negl}(n).
\]

Therefore, there must exists some view \vec{s} such that $\operatorname{Pr}_{\mathcal{B}_f^x, x \leftarrow X_n} [\mathcal{B}_f^x(x) = \Pi(x)] \geq 1 - \text{negl}(n)$, which is a contradiction and so F_1 has to be a distributional one-way function, and the lemma follows. \qed
Proof of Theorem 5.3. While the underlying ideas bear resemblance to those in the proof of Lemma 5.4, the multi-round scenario, even with just two rounds, turns out to need other non-trivial ideas. We firstly prove the case of two rounds before applying underlying idea to prove any polynomial rounds recursively. Consider the existence of a hard on-average promise problem that allows for a two-round (four-message) \((\delta, \epsilon)\)-instance-hiding interactive proof. Now, suppose (for the sake of contradiction) that distributional one-way functions do not exist. In attempting to apply the same strategy utilized in Lemma 5.4, our goal would be to devise an efficient algorithm \(C_2\), that takes a random instance \(x\) and a random protocol view \(s \leftarrow \text{Sim}_P(n)\), and with high probability over its input domain, outputs \(r'_v\) such that \((x, r'_v, s)\) is statistically close to the real view of verifier \(V\) (when interacting with honest prover): \(\text{View}_V(P, V(x))\). If we can construct such \(C_2\), we can take a “good” public view as non-uniform advice, run \(C_2\) to obtain consistent randomness of \(V\), and decide the problem on most instances.

The proof differs from the that of Lemma 5.4 because the verifier’s messages \((u_1, u_2)\) may not be efficiently computable given \(x\) and \(r_v\), even if verifier’s algorithm is efficient. This is because the second message of the verifier, \(u_2\), depends on \(y_1\), which, despite solely dependent on \(u_1\) and some randomness of prover, may not be efficiently computable. So we do not have a direct analogue of the function \(F_1\) we used in the earlier proof.

To address the challenge, we note that the first message of verifier \(u_1\) is in fact efficiently samplable. Below, note that \(s = (u_1, y_1, u_2, y_2)\). Define:

- \(R_{x,u_1} = \{r \in R_V \mid V(x, r, \phi) = u_1\}\).
- \(R_{x,s} = \{r \in R_V \mid V(x, r, \phi) = u_1 \wedge V(x, (u_1, y_1)) = u_2\}\).

Note that \(R_{x,s} \subseteq R_{x,u_1} \subseteq R_V\). Consider the function \(F_1(x, r) = (x, V(x, r, \phi))\). We will show that if \(F_1\) is not a distributional one-way function, then we can either use this to construct another distributional one-way function \(F_2\) or construct an efficient algorithm \(B_2\) that decides \(\Pi\) on-average.

Specifically, suppose \(F_1\) is not a distributional one-way function, then there exists an efficient inverter \(A_1\) of \(F_1\). Let \(C_1\) be the algorithm that takes \(x, u_1\) as input, runs \(A_1(x, u_1)\) to get \((x, r)\), and outputs \(r\). Given \((x, u_1)\), \(C_1\) serves to sample \(r\) from a distribution that is statistically close to uniform distribution over \(R_{x,u_1}\). A key observation is that the distribution of \(u_2\) conditioned on \((u_1, y_1)\) is efficiently (approximately) samplable given such an inverter because one can simply run the verifier on \((x, r, u_1, y_1)\). Thus, we will apply \(C_1\) to construct an efficient function \(F_2\) that samples \(u_2\) efficiently given \((u_1, y_1)\).

Particularly, let \(r_2\) denote the randomness of \(C_1\), and for each \((u_1, y_1)\), define the following function

\[
F_2^{u_1,y_1}(x, r_2) = (x, V(x, C_1(x, u_1; r_2), (u_1, y_1)))
\]

where \(C_1\) takes \(r_2\) as randomness and \(u_1, y_1\) are hard-coded in the function \(F_2^{u_1,y_1}\). For any \((u_1, y_1)\), it is clear that \(F_2^{u_1,y_1}\) is efficient. If any of these functions are distributionally one-way, we are done. If not, then for every \((u_1, y_1)\), there exists an efficient algorithm \(A_2^{u_1,y_1}\) that samples close-uniform pre-image of \(F_2^{u_1,y_1}\). This means following two distributions are statistically negligibly close for any \((u_1, y_1)\):

- \(H_0(u_1, y_1):\) Samples \(x \leftarrow X_n, r_2 \leftarrow R_{C_1}, r_1 \leftarrow C_1(x, u_1; r_2), u_2 \leftarrow V(x, r_1, (u_1, y_1)), (r_2, x, u_1, y_1, u_2)\).
- \(H_1(u_1, y_1):\) Samples \(x \leftarrow X_n, r_2 \leftarrow R_{C_1}, r_1 \leftarrow C_1(x, u_1; r_2), u_2 \leftarrow V(x, r_1, (u_1, y_1)), (r_2^*, x, u_1, y_1, u_2)\), computes \((x, r_2^*) \leftarrow A_2^{u_1,y_1}(x, u_2)\), and outputs \((r_2^*, x, u_1, y_1, u_2)\).

By the data processing inequality, the following two distributions are also statistically close:

- \(H'_0(u_1, y_1):\) Samples \((r_2, x, u_1, y_1, u_2) \leftarrow H_0(u_1, y_1), r_1 \leftarrow C_1(x, u_1; r_2), (r_1, x, u_1, y_1, u_2)\).

\(5\) In this proof, we usually denote by \(A_i\) the efficient inverter for efficient function \(F_i\); and denote by \(C_i\) an efficient algorithm that samples a distribution statistically close to uniform distribution over \(R_{x,(u_1,y_1,...,u_i)}\).

\(6\) This is where we apply the adversary in a non-blackbox way.
• $H_1'(u_1, y_1)$: Samples $(r_2^*, x, u_1, y_1, u_2) \leftarrow H_1(u_1, y_1)$, $r_1^* \leftarrow C_1(x, u_1; r_2^*)$, and outputs $(r_1^*, x, u_1, y_1, u_2)$.

Let O' be an ideal advice oracle such that for any $x \in \text{Yes}_n \cup \text{No}_n$, it samples the exact public view distribution of the IHIP protocol for instance x: $\Delta\left(O'(x), \text{VIEW}_{pub}(P, V(x))\right) = 0$. Define the following distributions:

• D_0: Samples $x \leftarrow X_n$, $r_1 \leftarrow \mathcal{R}_\psi$, $u_1 \leftarrow V(x, r_1, \phi)$, $y_1 \leftarrow \mathcal{P}(u_1)$, $u_2 \leftarrow V(x, r_1, (u_1, y_1))$, $y_2 \leftarrow \mathcal{P}(u_1, y_1, u_2)$, and outputs $(x, r_1, u_1, y_1, u_2, y_2)$.

• D_1: Samples $x \leftarrow X_n$, $\bar{s} \leftarrow O'(x)$, $(u_1, y_1) \leftarrow \mathcal{S}$, $(x, r_1) \leftarrow F_1^{-1}(x, u_1)$, $u_2^* \leftarrow V(x, r_1, (u_1, y_1))$, $y_2 \leftarrow \mathcal{P}(u_1, y_1, u_2^*)$, and outputs $(x, r_1, u_1, y_1, u_2^*, y_2)$.

• D_2: Samples $x \leftarrow X_n$, $\bar{s} \leftarrow O'(x)$, $(u_1, y_1) \leftarrow \mathcal{S}$, $r_2 \leftarrow \mathcal{R}_{\mathcal{C}_1}$, $r_1 \leftarrow \mathcal{C}_1(x, u_1, r_2)$, $u_2^* \leftarrow V(x, r_1, (u_1, y_1))$, $y_2 \leftarrow \mathcal{P}(u_1, y_1, u_2^*)$, and outputs $(x, r_1, u_1, y_1, u_2^*, y_2)$.

• D_3: Samples $x \leftarrow X_n$, $\bar{s} \leftarrow O'(x)$, $(u_1, y_1) \leftarrow \mathcal{S}$, $r_2 \leftarrow \mathcal{R}_{\mathcal{C}_1}$, $r_1 \leftarrow \mathcal{C}_1(x, u_1, r_2)$, $(x, u_2^*) \leftarrow F_2^{-u_1,y_1}(x, r_2)$, $y_2 \leftarrow \mathcal{P}(u_1, y_1, u_2^*)$, and outputs $(x, r_1, u_1, y_1, u_2^*, y_2)$.

• D_4: Samples $x \leftarrow X_n$, $\bar{s} \leftarrow O'(x)$, $r_2 \leftarrow \mathcal{R}_{\mathcal{C}_1}$, $(x, u_2^*) \leftarrow F_2^{-u_1,y_1}(x, r_2)$, $y_2 \leftarrow \mathcal{P}(u_1, y_1, u_2^*)$, $(x, r_2^*) \leftarrow (F_2^{-u_1,y_1})^{-1}(x, u_2^*)$, $r_1^* \leftarrow C_1(x, u_1, r_2^*)$, outputs $(x, r_1^*, u_1, y_1, u_2^*, y_2)$.

Main differences between the hybrid distributions are highlighted using different colors. D_1 alters D_0 by replacing u_2 in the original \bar{s} with u_2^*, achieved by sampling a uniform preimage (x, r_1) from $F_1^{-1}(x, u_1)$ and then running V with r_1. D_2 modifies the sampling of (x, r_1) by employing the efficient algorithm \mathcal{C}_1 instead of using uniform sampling. D_3 is a reconfiguration of D_2, driven by the function $F_2^{-u_1,y_1}$. D_4 generates r_1^* by sampling a random preimage over $(F_2^{-u_1,y_1})^{-1}(x, u_2^*)$ to get r_2^*, and feeding \mathcal{C}_1 with (x, r_2^*), instead of outputs r_1 directly.

Claim 5.7.2. $\Delta(D_0, D_4) < \negl(n)$.

Proof of Claim 5.7.2. It is clear that $\Delta(D_0, D_1) = 0$ by definition of F_1 and $\Delta(D_1, D_2) < \negl(n)$ according to the definition of \mathcal{C}_1. Furthermore, $\Delta(D_2, D_3) = 0$ holds because $F_2^{-u_1,y_1} = \left(x, V(x, C_1(x, u_1, r_2), (u_1, y_1))\right)$, and D_3 is essentially the same distribution as D_2, albeit with a modified description. By definition of $(F_2^{-u_1,y_1})^{-1}$, the r_2^* in D_4 follows the same distribution as r_2 in D_3 conditioned on (x, u_1, y_1, u_2^*). Following data processing inequality, $\Delta(D_3, D_1) = 0$.

Suppose $F_2^{-u_1,y_1}$ is not a distributional one-way, there exists an efficient inverter $A_2^{-u_1,y_1}$ for $F_2^{-u_1,y_1}$ that, given a random image (x, u_2) of $F_2^{-u_1,y_1}$, outputs a distribution statistically close to uniform distribution over preimage set $(F_2^{-u_1,y_1})^{-1}(x, u_2)$. We will use $A_2^{-u_1,y_1}$ to construct an efficient algorithm that decides Π on-average with respect to X_n, which contradicts our assumptions. Specifically, let r_3 denote the randomness used by A_2, we define algorithm $\mathcal{C}_2^{-u_1,y_1}(x, u_2, r_3)$ as follows:

\[
\mathcal{C}_2^{-u_1,y_1}(x, u_2, r_3):
\begin{enumerate}
\item $(x, r_2) \leftarrow A_2^{-u_1,y_1}(x, u_2, r_3)$
\item $r_1 \leftarrow \mathcal{C}_1(x, u_1, r_2)$
\item outputs r_1.
\end{enumerate}
\]

We write $\mathcal{C}_2^{-u_1,y_1}(x, u_2)$ as shorthand when the randomness is sampled uniformly. Define hybrid distributions:

36
The conditional probability mass ensures that:

\[\text{“good” advice } \vec{s} \text{ where the first inequality follows triangle inequality and data processing inequality. Thus there exists a } \vec{s} \text{ that is hard on average with respect to ensemble } X \text{, which contradicts the assumption that } \Pi \text{ is hard on-average with respect to ensemble } D. \]

Claim 5.7.3. \(\Delta(D_0, D_8) < \text{negl}(n) \)

Proof of Claim 5.7.3. \(\Delta(D_4, D_5) \leq \text{negl}(n) \) follows the property of \(A_{2, y_1}^{u_1, y_1} \). Follows triangle inequality, we have that \(\Delta(D_0, D_5) \leq \text{negl}(n) \) which also indicates that the distribution of \((u_1, y_1, u_2^0, y_2^0) \) in \(D_5 \) is negl-close to the distribution \(\vec{s} \) in \(D_6 \). Thus \(\Delta(D_5, D_6) \leq \text{negl}(n) \) follows data processing inequality. \(\Delta(D_6, D_7) = 0 \) according to definition of \(A_{2, y_1}^{u_1, y_1} \) and \(C_{2, y_1}^{u_1, y_1} \) respectively. Following data processing inequality, \(\Delta(D_7, D_8) \leq \max_x \left(\Delta(O(x), O(n)) \right) \leq \text{negl}(n) \). By triangle inequality, we have that \(\Delta(D_0, D_8) \leq \text{negl}(n) \) in general.

Similarly to Lemma 5.4, applying \(C_{2, y_1}^{u_1, y_1} \) as a sub-routine, construct \(B_2^x \):

\[
B_2^x(x) :
\begin{enumerate}
 \item \((u_1, y_1, u_2) \leftarrow \vec{s} \).
 \item \(r \leftarrow C_{2, y_1}^{u_1, y_1}(x, u_2) \).
 \item \text{outputs } V(x, r, \vec{s}).
\end{enumerate}
\]

The probability of \(B_2 \) decides \(\Pi \) is:

\[
\Pr_{\vec{s} \leftarrow O(n), x \leftarrow X_n, B_2^x} [B_2^x(x) = \Pi(x)] = \Pr_{(x, r, \vec{s}) \leftarrow D_7} [V(x, r, \vec{s}) = \Pi(x)],
\]

\[
\geq \Pr_{(x, r, \vec{s}) \leftarrow D_0} [V(x, r, \vec{s}) = \Pi(x)] - \Delta(D_0, D_7),
\]

\[
= \Pr[(P, V(x)) = \Pi(x)] - \Delta(D_0, D_7),
\]

\[
\geq 1 - \text{negl}(n),
\]

where the first inequality follows triangle inequality and data processing inequality. Thus there exists a “good” advice \(\vec{s} \) such that \(\Pr_{x \leftarrow X_n, B_2^x} [B_2^x(x) = \Pi(x)] \geq 1 - \text{negl}(n) \). Fix \(\vec{s} \) and non-uniform \(C_{2, y_1}^{u_1, y_1} \), \(B_2^x \) is a non-uniform efficient machine, which contradicts the assumption that \(\Pi \) is hard on-average with respect to \(X \).

Now we extend the proof of implication to any polynomial number of rounds of IHIP. Consider a problem \(\Pi \) that is hard on average with respect to ensemble \(X = \{X_n\}_{n \in \mathbb{N}} \) and has a \(q \) rounds \((\vec{s}, \epsilon)-\text{IHIP } (P, V) \). For any possible public view of the protocol \(\vec{s} = (u_1, y_1, \ldots, u_q, y_q) \) and instance \(x \), for \(i \in [q] \), define:

\[
\mathcal{R}_{x, (u_1, y_1, \ldots, u_i)} = \{r \in \mathcal{R}_V \mid \forall j \in [i] : V(x, r, (u_1, y_1, \ldots, u_{j-1}, y_{j-1})) = u_j\}.
\]

The conditional probability mass ensures that:

\[
\mathcal{R}_{x, \vec{s}} \subseteq \mathcal{R}_{x, (u_1, y_1, \ldots, u_{q-1})} \subseteq \cdots \subseteq \mathcal{R}_{x, (u_1, y_1, u_2)} \subseteq \mathcal{R}_{x, u_2} \subseteq \mathcal{R}_V.
\]
The theorem follows a recursive argument. Let F_1, C_1 and A_1 be as defined before. From $i=2$ to q, given that $C^{u_1,y_1,\ldots,u_{i-2},y_{i-2}}_{i-1}(x,u_{i-1})$ efficiently samples a distribution statistically close to uniform distribution over $R_{x,u_1,y_1,\ldots,u_{i-1}}$. We define

$$F^{u_1,y_1,\ldots,u_{i-1},y_{i-1}}_i(x,r_i) = \left(x,V\left(x,C^{u_1,y_1,\ldots,u_{i-2},y_{i-2}}_{i-1}(x,u_{i-1},r_i), (u_1,y_1,\ldots,u_{i-1},y_{i-1})\right)\right).$$

We note that $F^{u_1,y_1,\ldots,u_{i-1},y_{i-1}}_i$ is efficient. Assume $F^{u_1,y_1,\ldots,u_{i-1},y_{i-1}}_i$ is not a distributional one-way function, there exists an efficient inverter $A^{u_1,y_1,\ldots,u_{i-1},y_{i-1}}_i$ that, on input (x,u_{i-1}), samples (x,r_i) statistically close to uniform distribution over $(F^{u_1,y_1,\ldots,u_{i-1},y_{i-1}}_i)^{-1}(x,u_i)$. With $A^{u_1,y_1,\ldots,u_{i-1},y_{i-1}}_i$, we define $C^{u_1,y_1,\ldots,u_{i-1},y_{i-1}}_i$ for the next round of the argument:

```
C^{u_1,y_1,\ldots,u_{i-1},y_{i-1}}_i(x,u_i,r_{i+1}) :
1. (x,r_i) ← A^{u_1,y_1,\ldots,u_{i-1},y_{i-1}}_i(x,u_{i+1}).
2. r_1 ← C^{u_1,y_1,\ldots,u_{i-2},y_{i-2}}_{i-1}(x,u_{i-1},r_i).
3. outputs r_1.
```

Suppose none of F_i is distributional one-way function and the arguments continue until q^{th} round, where we have $C^{u_1,y_1,\ldots,u_{q-1},y_{q-1}}_q$ that given \tilde{s} and on input x, samples a distribution statistically close to the uniform distribution over $R_{x,\tilde{s}}$. Then we construct the decision algorithm B_q:

```
B^{\tilde{s}}_q(x) :
1. (u_1,y_1,u_{q-1},y_{q-1}) ← \tilde{s}.
2. r ← C^{u_1,y_1,\ldots,y_{q-1}}_q(x,u_q).
3. outputs V(x,r,\tilde{s}).
```

The rest of the arguments mirror those in the two-round case and the theorem follows.

\[\square\]

5.2 Explicit OWFs from Worst-Case Hard Strong IhIP

In addition to the positive result regarding OWF, this section also providing insights for comparing IhIP/Strong-IHIP with classes SZK and SRE by examining the consequences of the existence of hard problems within these classes. For instance, Ostrovsky [Ost91] proves an implication of average-case hard SZK of OWFs, while Applebaum and Raykov [AR16] demonstrate a similar implication of worst-case hard SRE. In this subsection, we present an implication of worst-case hard Strong-IHIP on OWF.

Definition 5.8 (Worst-Case Hard Problems). A promise problem $\Pi = (\text{Yes}, \text{No})$ is said to be **worst-case hard** if for any polynomial-time algorithm A, there is a negligible function negl, such that for all large enough n, there exists an instance $x \in \text{Yes}_n \cup \text{No}_n$,

$$\Pr[A(x) = \Pi(x)] \leq \text{negl}(n).$$

Theorem 5.9. If any worst-case hard problem has a honest-prover strong (δ, ϵ)-instance-hiding interactive proof for some negligible functions δ and ϵ, then there is an explicit construction of one-way functions.
Proof of Theorem 5.9. Consider any promise problem Π that has honest-prover strong (δ, ϵ)-instance-hiding interactive proof (P, V) for some negligible δ, ϵ with efficient simulator Sim_P. Different from Theorem 5.3, here the transcript distribution can be efficiently sampled. Specifically, there exists an efficient simulator Sim_P that on the input n and randomness $r_S \in \mathcal{R}_S$ outputs a possible public view of the protocol: $\vec{s} = (u_1, y_1, \ldots, u_q, y_q)$. It also simulates the randomness of the prover, but we do not need this here, and throughout simply ignore that part of the simulator’s output. We define Sim_i as the algorithm that outputs the public transcripts of Sim_P up to virtual verifier’s i^{th} message, that is (u_1, y_1, \ldots, u_i). We will proceed to prove that if Π is hard in worst case, then there exists a $j \in [0, q]$ such that Sim_i is a distributional one-way function.

Suppose, for the sake of contradiction, none of $\{\text{Sim}_i\}_{i \in [q]}$ are distributional one-way. Then, for each Sim_i, there exists a probabilistic polynomial-time algorithm A_i which takes output of Sim_i, represented as (u_1, y_1, \ldots, u_i), samples a randomness $r_{\text{Sim}, i}$ negl-close to uniform distribution over $\text{Sim}_i^{-1}(u_1, y_2, \ldots, u_i)$. We construct a efficient algorithm B that utilizes $A_1, \ldots, A_q, \text{Sim}_P$ as sub-routines to get y_1, \ldots, y_q and computes Π most of the time. Formally, we define B as follows:

\begin{align*}
B(x) : \\
1. \quad r_V \leftarrow \mathcal{R}_V. \\
2. \quad r_p \leftarrow \mathcal{R}_p. \\
3. \quad u_1 \leftarrow V(x, r_V, \phi). \\
\textbf{For} \ i \leftarrow 1 \text{ to } q \ \\
\quad (a) \ (n, r_{\text{Sim}, i}) \leftarrow A_i(u_1, y_1, \ldots, u_i). \\
\quad (b) \ (\ldots, u_i, y_i, \ldots) \leftarrow \text{Sim}_P(n; r_{\text{Sim}, i}). \\
\quad (c) \ u_{i+1} \leftarrow V(x, r_V, (u_1, \ldots, y_i)). \\
\text{Outputs } V(x, r_V, (u_1, y_1, \ldots, u_q, y_q)).
\end{align*}

Figure 5: Algorithm from strong-IHIP to Decide Π

Intuitively, in the proof of Theorem 5.3, we use simulator to generates the entire public view, or $\text{VIEW}_{\text{pub}}(P, S, V_S)$, and utilize the inverting adversaries to obtain the “simulated verifier randomness”, which is proven to have correctness. Since the simulator Sim_P is efficient here, we have better control over the simulated protocol, which can be executed during the actual execution of algorithm. Specifically, the algorithm B above uses Sim_P to simulate prover and runs the real verifier to interacts with the simulated prover, ultimately outputting the result. Under the assumption that $\{\text{Sim}_i\}_{i \in [q]}$ are not distributional one-way function, B employs the inverters to “simulate” the “simulated prover” efficiently. We will proceed to prove that this prover ensures correctness. Formally, we define the provers as follows:

- **Real prover** $P(\vec{s}_{i-1}, u_i)$: On input (\vec{s}_{i-1}, u_i), it generates response, $y_i \leftarrow P((\vec{s}_{i-1}, u_i))$, and outputs y_i.

- **Simulated prover** $P_S(\vec{s}_{i-1}, u_i)$: On input (\vec{s}_{i-1}, u_i), sample the next message over the simulator’s conditional probability mass $(n, r_{\text{Sim}, i}) \leftarrow \text{Sim}_i^{-1}(\vec{s}_{i-1}, u_i); (\ldots, u_i, y_i, \ldots) \leftarrow \text{Sim}_P(n; r_{\text{Sim}, i})$, and outputs y_i.

- **Efficiently simulated prover** $P_{SS}(\vec{s}_{i-1}, u_i)$: On input (\vec{s}_{i-1}, u_i), use inverter A_i to sample the next message over simulator’s conditional probability mass efficiently $(n, r_{\text{Sim}, i}) \leftarrow A_i(\vec{s}_{i-1}, u_i); (\ldots, u_i, y_i, \ldots) \leftarrow \text{Sim}_P(n; r_{\text{Sim}, i})$, and outputs y_i.

39
The B in Figure 5 is essentially an execution of \((P_{SS}, V)\). We will proceed to prove that

\[
\text{VIEW}_V(P_{SS}, V(x)) \approx \text{VIEW}_V(P, V(x)) \approx \text{VIEW}(P, V(x)),
\]

and the correctness of B will follow.

To begin, we will firstly prove that \(\text{VIEW}_V(P_{SS}, V(x)) \approx \text{VIEW}_V(P, V(x))\). Define a sequence of hybrid algorithm \(W_j\) for \(j \in [0, q]\) as follows:

\[
W_j(x):
1. r_V \leftarrow R_V.
2. r_p \leftarrow R_p.
3. u_1 \leftarrow V(x, r_V, \phi).
 \text{For } i \leftarrow 1 \text{ to } j
 \begin{align*}
 (a) & (\ldots, u_i, y_i, \ldots) \leftarrow P(u_1, y_1, \ldots, u_i). \\
 (b) & u_{i+1} \leftarrow V(x, r_V, (u_1, \ldots, y_i)).
 \end{align*}
 \text{For } i \leftarrow j + 1 \text{ to } q
 \begin{align*}
 (a) & (n, r_{\text{Sim}, i}) \leftarrow \text{Sim}_i^{-1}(u_1, y_1, \ldots, u_i). \\
 (b) & (\ldots, u_i, y_i, \ldots) \leftarrow \text{Sim}(n; r_{\text{Sim}, i}). \\
 (c) & u_{i+1} \leftarrow V(x, r_V, (u_1, \ldots, y_i)).
 \end{align*}
\]

Outputs \((x, r_V, u_1, y_1, \ldots, u_q, y_q)\).

Claim 5.9.1. For any \(x \in \text{YES}_n \cup \text{NO}_n\), \(j \in [q]\):

\[
\Delta(W_j(x), W_{j-1}(x)) \leq \epsilon.
\]

Proof of Claim 5.9.1. In the rest, let \(W_j(x)[2i]\) denote the state of \(W_j\)'s first public 2i messages, that is \((u_1, y_1, \ldots, u_i, y_i)\) (Similarly for \(\text{VIEW}_{pub}(P, V(x))[2i]\)). We noted that because we are using real verifier \(V\) in all cases, we would like to ignore the verifier’s private randomness when analyzing the distances between hybrid algorithms, this is because the distribution of \((x, r_V, u_1, y_1, \ldots, u_q, y_q)\) identical to one obtained by firstly sampling \((x, u_1, y_1, \ldots, u_q, y_q)\) and then sampling \(r_V\) uniformly among the randomness consistent with \((x, u_1, y_1, \ldots, u_q, y_q)\), or \(\beta_{x, u_1, \ldots, y_1}\) as in Section 4. Thus it’s sufficed to focus on \((x, u_1, y_1, \ldots, y_q)\) by data processing inequality. According to \(\epsilon\)-hiding of \((P, V)\), we have that for any \(j \in [q]\)

\[
\Delta(W_j(x)[2j], \text{Sim}_j(n)) \leq \Delta(\text{VIEW}_{pub}(P, V(x)), \text{VIEW}_{pub}(P_S, V(x))) \leq \epsilon.
\]

For \(j \in [q]\), and any possible \((\vec{s}_{j-1}, u_j)\),

\[
\Delta(P(\vec{s}_{j-1}, u_j), P_S(\vec{s}_{j-1}, u_j)) = \Delta(W_j(x)[2j] | W_j(x)[2j-1] = (\vec{s}_{j-1}, u_j), \text{Sim}_j(n)) \leq \epsilon,
\]

where the first line of equation is by definition of \(P\) and \(P_S\), the second line follows the definitino of total variance distance.
Fact 5.10. Let \((X_1, Y_1)\) and \((X_2, Y_2)\) be two joint distributions over space \(X \times Y\). Suppose it holds that
\(\Delta(X_1, X_2) \leq \epsilon_1\) and for any \(x \in X\), \(\Delta(Y_1 | X_1 = x, Y_2 | X_2 = x) \leq \epsilon_2\), then
\(\Delta((X_1, Y_1), (X_2, Y_2)) \leq \epsilon_1 + \epsilon_2\).

Proof.

\[
\Delta((X_1, Y_1), (X_2, Y_2)) = \frac{1}{2} \sum_{(x,y) \in X \times Y} \left| \Pr[X_1 = x, Y_1 = y] - \Pr[X_2 = x, Y_2 = y] \right|
\]

\[
= \frac{1}{2} \sum_{(x,y) \in X \times Y} \left| \Pr[X_1 = x] \cdot \Pr[Y_1 = y | X_1 = x] - \Pr[X_2 = x] \cdot \Pr[Y_2 = y | X_2 = x] \right|
\]

\[
\leq \frac{1}{2} \sum_{(x,y) \in X \times Y} \left| \Pr[X_1 = x] \cdot \Pr[Y_1 = y | X_1 = x] - \Pr[X_2 = x] \cdot \Pr[Y_1 = y | X_1 = x] \right|
\]

\[
+ \left| \Pr[X_2 = x] \cdot \Pr[Y_1 = y | X_1 = x] - \Pr[X_2 = x] \cdot \Pr[Y_2 = y | X_2 = x] \right|
\]

\[
= \frac{1}{2} \sum_{x \in X} \sum_{y \in Y} \Pr[Y_1 = y | X_1 = x] \cdot \left(\frac{1}{2} \sum_{y \in Y} \Pr[Y_1 = y | X_1 = x] - \Pr[Y_2 = y | X_2 = x] \right)
\]

\[
\leq \epsilon_1 + \epsilon_2,
\]

where the first inequality follows triangle inequality.

Denote by \(D_{j-1} = \text{VIEW}_{\text{pub}}(P, V(x))[2j - 1]\) for brevity, we have:

\[
\Delta(W_j(x), W_{j-1}(x)) = \Delta((D_{j-1}, P(D_{j-1})), D_{j-1}, P_S(D_{j-1})) \leq \epsilon,
\]

where the last inequality follows Fact 5.10 and Eq. 7. Thus, the claim follows.

Apply Fact 4.8 and triangle inequality, we have the following claim:

Claim 5.10.1. For any \(x \in \text{YES}_n \cup \text{NO}_n\):

\[
\Delta(\text{VIEW}_V(P, V(x)), \text{VIEW}_V(P_S, V(x))) = \Delta(W_q(x), W_0(x)) \leq q \cdot \epsilon.
\]

We now proceed to check the distance \(\Delta(\text{VIEW}_V(P_S, V(x)), \text{VIEW}_V(P_{SS}, V(x)))\). Define a sequence of hybrid algorithms \(W'_j\):
Claim 5.10.1 and equality, data processing inequality and the fact that where the first inequality is because the first (i and thus:

For $i \leftarrow 1$ to j
(a) $(n, r_{\text{Sim}, i}) \leftarrow \text{Sim}_i^{-1}(u_1, y_1, \ldots, u_i)$.
(b) $(\ldots, u_i, y_i, \ldots) \leftarrow \text{Sim}_p(n; r_{\text{Sim}, i})$.
(c) $u_{i+1} \leftarrow V(x, r_V, u_1, \ldots, y_i)$.

For $i \leftarrow j + 1$ to q
(a) $(n, r_{\text{Sim}, i}) \leftarrow A_i(u_1, y_1, \ldots, u_i)$.
(b) $(\ldots, u_i, y_i, \ldots) \leftarrow \text{Sim}_p(n; r_{\text{Sim}, i})$.
(c) $u_{i+1} \leftarrow V(x, r_V, (u_1, \ldots, y_i))$.

Outputs $x, r_V, u_1, y_1, \ldots, u_q, y_q$.

It’s clear that $B(x) = V(W'_0(x)) = (P_S, V(x))$ and $W'_q(x) = W_0(x) = \text{VIEW}_{\text{pub}}(P_S, V)$.

Claim 5.10.2. For any $x \in \text{YES}_n \cup \text{NO}_n$, $j \in [q]$:

$\Delta (W'_j(x), W'_{j-1}(x)) \leq \text{negl}(n)$.

Proof of Claim 5.10.2. For $j \in [q], i \in [2q]$, similarly define $W'_j(x)[i]$ as in the proof of Claim 5.9.1. Following Claim 5.10.1 and ϵ-hiding,

$\Delta (W'_{j-1}(x)[2 \cdot (j - 1)], \text{Sim}_{j-1}(n)) \leq \Delta (\text{VIEW}_{\text{pub}}(P_S, V(n)), \text{VIEW}_{\text{pub}}(P_S, V_S(x)))$

$\leq \Delta (\text{VIEW}_{\text{pub}}(P_S, V_S(n)), \text{VIEW}_{\text{pub}}(P, V(x)))$

$+ \Delta (\text{VIEW}_{\text{pub}}(P, V(n)), \text{VIEW}_{\text{pub}}(P_S, V(x)))$

$\leq \epsilon + q \cdot \epsilon$

$\leq (q + 1) \cdot \epsilon$,

where the first inequality is because the first $(j - 1)$-round of W'_{j-1} is $\text{VIEW}_{\text{pub}}(P_S, V(n))[2 \cdot (j - 1)]$, the second inequality follows triangle inequality, and the third inequality follows hiding and Claim 5.10.1.

By definition of A_{j-1}, we have $\Delta (A_{j-1} (\text{Sim}_{j-1}(n; R_{\text{Sim}, j-1})), \text{Sim}_{j-1}^{-1}(\text{Sim}_{j-1}(n; R_{\text{Sim}, j-1}))) < \text{negl}(n)$, and thus:

$\Delta (W'_j(x), W'_{j-1}(x)) \leq \Delta (A_j (W'_{j-1}(x)[j - 1]), \text{Sim}_{j-1}^{-1}(W'_j(x)[j - 1]))$

$\leq \Delta (A_j (\text{Sim}_{j-1}(n; R_{\text{Sim}, j-1})), \text{Sim}_{j-1}^{-1}(\text{Sim}_{j-1}(n; R_{\text{Sim}, j-1}))) + 2 \cdot \Delta (W'_{j-1}(x)[j - 1], \text{Sim}_{j-1}(n))$

$\leq \text{negl}(n)$.

where the first inequality follows data processing inequality, and the second inequality follows triangle inequality, data processing inequality and the fact that $W'_{j-1}(x)[j - 1] = W'_j(x)[j - 1]$.

Thus by triangle inequality, we have:
Claim 5.10.3. For any \(x \in \text{Yes}_n \cup \text{No}_n \):

\[
\Delta(\text{VIEW}_V(P_{SS}, V(x)), \text{VIEW}_V(P, V(x))) = \Delta(W'_q(x), W'_0(x)) \\
\leq \text{negl}(n).
\]

Given Claim 5.9.1 and Claim 5.10.3, and by triangle inequality and data processing inequality, the following claim follows:

Claim 5.10.4. For any \(x \in \text{Yes}_n \cup \text{No}_n \):

\[
\Delta (B(x), (P, V(x))) \leq \Delta (\text{VIEW}_V(P_{SS}, V(x)), \text{VIEW}_V(P, V(x))) \\
\leq \Delta (\text{VIEW}_{pub}(P_{SS}, V(x)), \text{VIEW}_{pub}(P, V(x))) \\
+ \Delta (\text{VIEW}_{pub}(P, V(x)), \text{VIEW}_{pub}(P, V(x))) \\
\leq \text{negl}(n).
\]

Therefore, by triangle inequality

\[
\Pr[B(x) = \Pi(x)] \geq \Pr[(P, V(x)) = \Pi(x)] - \Delta(B(x), (P, V(x))) \geq 1 - \delta - \text{negl}(n) \geq 1 - \text{negl}(n).
\]

This shows that \(B \) solves \(\Pi \) in worst case with bounded error, and thus completes the proof.

Remark 5.11. Unlike the OWF in Theorem 5.3, which incorporates the verifier algorithm \(V \) as part of the construction, the explicit construction of OWF from strong-IHIP uses solely the efficient simulator \(\text{Sim}_P \), which does not take the instance \(x \) as input. This is what allows the worst-case hardness of the problem to be useful in proving one-wayness of the latter function. Notably, the construction of OWF in [Ost91], based on \(\text{SZK} \) simulator, also takes the instance as part of the input, thus requiring hardness also over some distribution of instances. It is of interest to find whether a worst-case hard with just IHIP, which is not guaranteed an efficient simulator for honest prover, implies OWF.

6 Oracle Separation from \(\text{SZK} \)

Given that \(\text{SZK} \) and IHIP are both contained in \(\text{AM/poly} \cap \text{coAM/poly} \), it is natural to ask whether one is contained in the other. While we don’t know how to construct IHIP protocols for \(\text{SZK} \) problems such as Statistical Difference and Graph Non-Isomorphism, it is also unclear whether IHIP is contained in \(\text{SZK} \). Towards understanding their relationship, we exhibit an oracle relative to which \(\text{IHIP} \not\subset \text{SZK} \). Before advancing, it is essential to define the associated complexity classes.

Definition 6.1 (Class \(\text{SZK} \)). A promise problem \(\Pi = (\text{Yes}, \text{No}) \) is in \(\text{SZK} \) if there exists a protocol \(\langle P, V \rangle \), where the verifier runs in polynomial time, satisfying the following:

- \(\langle P, V \rangle \) is an interactive proof for \(\Pi \) (where both \(P \) and \(V \) get the input instance) with negligible completeness and soundness errors.

- There exists an efficient algorithm \(\text{Sim} \) such that for any efficient \(V^* \) and any \(x \in \text{Yes}_n \),

\[
\Delta(\text{Sim}_{V^*}(x), \text{VIEW}_{V^*}(P(x), V^*(x))) \leq \text{negl}(n).
\]
Definition 6.2. An oracle protocol is a protocol \((P, V)\) in which both \(P\) and \(V\) are allowed to make calls to an oracle. For any oracle \(O : \{0, 1\}^* \rightarrow \{0, 1\}^*\), such a protocol with oracle \(O\) is denoted by \((P, V)^O\). The view of each party in such a protocol also includes the set of oracle queries it makes and the corresponding responses. The conditions for \((P, V)^O\) being a (Strong) instance-hiding proof (resp. SZK) system for a promise problem are the same as those in Definition 2.2 (resp. Definition 6.1), except that the simulator is also allowed access to the same oracle.

Definition 6.3. For any oracle \(O : \{0, 1\}^* \rightarrow \{0, 1\}^*\), **Strong-IHIP**\(^O\) (resp. **SZK**\(^O\)) is the class of promise problems that have a strong instance-hiding proof (resp. SZK proof) system with oracle \(O\). This includes promise problems whose definitions involve properties of the oracle.

Theorem 6.4. There exists an oracle \(O\) such that **Strong-IHIP**\(^O\) \(\not\subseteq\) **SZK**\(^O\).

Looking ahead, our oracle separation will use oracles based on the group model [Sh07]. Rather than Shoup’s original formulation of this model, we will use the following formulation as in Corrigan-Gibbs and Kogan [CGK18], which will be more convenient to use.

Definition 6.5 (Generic Group Oracles). For any \(N \in \mathbb{N}\), and bijective function \(\sigma : \mathbb{Z}_N \rightarrow [N]\), the oracle \(\mathcal{G}_\sigma : [N] \times [N] \rightarrow [N]\) is defined as: \(\mathcal{G}_\sigma(g, h) = \sigma(\sigma^{-1}(g) + \sigma^{-1}(h))\). We refer to elements of \([N]\) in this context as the group elements, and the corresponding inverses of \(\sigma\) as their discrete logarithms.

Let \(N : \mathbb{N} \rightarrow \mathbb{N}\) be the function that, on input any \(n \in \mathbb{N}\), outputs the smallest prime number larger than \(2^n - 1\). For any family of oracles \(\mathcal{I} = \{I_n : Z_{N(n)} \rightarrow \{0, 1\}\}_{n \in \mathbb{N}}\) and family of bijective functions \(\sigma = \{\sigma_n : Z_{N(n)} \rightarrow [N(n)]\}_{n \in \mathbb{N}}\), we define the promise problem \(\Pi^{I, \mathcal{G}_\sigma} = (\text{Yes}, \text{No})\) as follows:

\[
\text{Yes}_n = \{(n, N(n), \sigma_n(1), \sigma_n(x)) \mid I_n(x) = 1\}.
\]

\[
\text{No}_n = \{(n, N(n), \sigma_n(1), \sigma_n(x)) \mid I_n(x) = 0\}.
\]

We extend the notation \(\mathcal{G}_\sigma\) in the natural manner to denote the family of oracles \(\mathcal{G}_{\sigma_n}\) for all \(n \in \mathbb{N}\). Similarly, note that to define \(\text{Yes}_n(\Pi^{I, \mathcal{G}_\sigma})\) and \(\text{No}_n(\Pi^{I, \mathcal{G}_\sigma})\), only \(I_n\) and \(\sigma_n\) need to be specified; we denote the corresponding promise problem restricted to instances of size \(n\) by \(\Pi^{I_n, \mathcal{G}_{\sigma_n}}\).

We show that there is an instance-hiding oracle protocol that, given oracle access to \(\mathcal{I}\) and \(\mathcal{G}_\sigma\), is a valid instance-hiding proof for \(\Pi^{I, \mathcal{G}_\sigma}\), whereas every oracle protocol fails to be an SZK proof for this language for most such oracles. This already gives a separation between “generic” instance-hiding and SZK protocols that only use group elements in a generic manner. To show the oracle separation, a careful diagonalization argument is needed. We first state and prove the following two lemmas that show the above statements, and then set up and perform the required diagonalization, which proves Theorem 6.4.

Lemma 6.6. There is an oracle protocol \((P, V)\) such that, for any \(\mathcal{I}\) and \(\sigma\) as above, \((P, V)^{\mathcal{I}, \mathcal{G}_\sigma}\) is a strong instance-hiding proof system for \(\Pi^{I, \mathcal{G}_\sigma}\).

Proof of Lemma 6.6. The required IHIP protocol is presented in Figure 6. The completeness and soundness of the protocol follows from the fact that \(y = \sigma_n(x + r), \sigma_n\) is a bijection, and so for \(V\) to accept we have \(x^* = x + r\), and so \(I_n(x^* - r) = I(x)\). It is perfectly instance-hiding because the only message sent by \(V\), for any instance of size \(n\), is a uniformly random element of \([N(n)]\). It is strong instance-hiding because the view of the honest prover \(P\) can be efficiently simulated (perfectly) given \(n\) by sampling a random element \(x^* \leftarrow Z_{N(n)}\), and outputting \((\sigma_n(x^*), x^*)\). This completes the proof.

Lemma 6.7. For any oracle protocol \((P, V)\) and polynomial-time oracle algorithm \(\text{Sim}\), there is an \(n_0 \in \mathbb{N}\) such that for all \(n \geq n_0\), there exists some \(I_n\) and \(\sigma_n\) as above such there is either an input in \(\text{No}_n(\Pi^{I_n, \mathcal{G}_{\sigma_n}})\) on which \((P, V)^{I_n, \mathcal{G}_{\sigma_n}}\) has soundness error \(\Omega(1/n)\), or an input in \(\text{Yes}_n(\Pi^{I_n, \mathcal{G}_{\sigma_n}})\) on which it has either completeness error \(\Omega(1/n)\), or honest-verifier statistical zero-knowledge error \(\Omega(1/n)\) with \(\text{Sim}^{I_n, \mathcal{G}_{\sigma_n}}\) as the simulator.

\(^7\)For this simulator to be uniform, \(N(n)\) has to be efficiently computable, which it may be not. We ignore this detail as this is resolved by simply adding another oracle that, on input \(n\), outputs \(N(n)\).
strong-IHIP protocol for $\Pi^{\mathcal{I},\sigma}$: $(P,V)^{\mathcal{I},\mathcal{G}_\sigma}$

Inputs:
- P is given the input size n.
- V has input $(n,N(n),\sigma_n(1),\sigma_n(x))$ for some $x \in \mathbb{Z}_N(n)$.

Protocol:
1. V : randomly sample $r \leftarrow \mathbb{Z}_N(n)$ and compute $\sigma_n(r)$.
 - This can be done with $O(\log N(n))$ calls to \mathcal{G}_{σ_n} using repeated doubling of $\sigma_n(1)$.
2. V : compute and send $y \leftarrow \mathcal{G}_{\sigma_n}(\sigma_n(x),\sigma_n(r))$ to P.
3. P : compute $x^* \in \mathbb{Z}_N(n)$ such that $y = \sigma_n(x^*)$ and send x^* to V.
4. V : accept if and only if $y = \sigma_n(x^*)$ and $\mathcal{I}_n(x^* - r) = 1$.

Figure 6: strong-IHIP protocol for $\Pi^{\mathcal{I},\sigma}$

Our proof of Lemma 6.7 relies on the hardness of the discrete logarithm problem for generic algorithms, which require at least $N^{1/2}$ time on groups of order N, as shown by Shoup [Sho97]. Our modelling of such algorithms is more general than Shoup’s, so we instead use the following corollary of a theorem of Corrigan-Gibbs and Kogan [CGK18, Theorem 2].

Lemma 6.8. For any prime $N \in \mathbb{N}$ and oracle algorithm A that receives at most \sqrt{N}-bit non-uniform advice and runs in time T,

$$
\Pr_{\sigma,x}[A^{\mathcal{G}_{\sigma}}(\sigma(1),\sigma(x)) = x] \leq \frac{T^{2.01}}{\sqrt{N}}.
$$

where σ is a uniformly random bijective function from \mathbb{Z}_N to $[N]$, and x is uniformly random over \mathbb{Z}_N.

Proof of Lemma 6.7. Consider any oracle protocol (P,V) and polynomial-time oracle algorithm Sim, and some $n \in \mathbb{N}$. Suppose, towards a contradiction, that for every \mathcal{I}_n and σ_n as above, the protocol $(P,V)^{\mathcal{I}_n,\mathcal{G}_{\sigma_n}}$ is complete and sound as an interactive proof for $\Pi^{\mathcal{I}_n,\sigma_n}$, and is also honest-verifier SZK, with $\text{Sim}^{\mathcal{I}_n,\mathcal{G}_{\sigma_n}}$ as the simulator, all with errors $o(1/n)$. We will simply denote \mathcal{I}_n and σ_n as \mathcal{I} and σ in the rest of the proof for brevity.

By the zero-knowledge property, for any \mathcal{I} and σ, we have the following on any YES instance $z = (n,N(n),\sigma(1),\sigma(x))$:

$$
\Delta\left(\text{Sim}^{\mathcal{I},\mathcal{G}_{\sigma}}(z),\text{VIEW}_V(P^{\mathcal{I},\mathcal{G}_{\sigma}}(z),V^{\mathcal{I},\mathcal{G}_{\sigma}}(z))\right) \leq o\left(\frac{1}{n}\right).
$$

(8)

Denote by $E(\mathcal{I},\sigma,x)$ the event that, given oracle access to \mathcal{I} and \mathcal{G}_{σ}, on input $z = (n,N(n),\sigma(1),\sigma(x))$ as input, the verifier V queries the oracle \mathcal{I} at x during the course of its interaction with P. Note that the view of the verifier consists of its randomness, the transcript of the protocol and oracle queries/responses. Together, given the oracle, these also fully determine the set of oracle queries made by the verifier during its execution. Denote by $E_{\text{Sim}}(\mathcal{I},\sigma,x)$ the event that x is among the set of oracle queries so determined by the view output by the simulator $\text{Sim}^{\mathcal{I},\mathcal{G}_{\sigma}}(z)$. By Lemma 6.8 and the poly(n)-time efficiency of Sim, since $N(n) > 2^{n-1}$, we have:

$$
\Pr_{\mathcal{I},\sigma,x \leftarrow \mathcal{Z}_N(n)}[E_{\text{Sim}}(\mathcal{I},\sigma,x)] \leq o\left(\frac{1}{n}\right).
$$

(9)
This is because if not, \(x \in \mathcal{I}^{-1}(1) \) can be extracted from the view output of \(\text{Sim} \) by an algorithm that simulates the oracle \(\mathcal{I} \) to it. As \(\mathcal{I} \) above is a uniformly random Boolean function, the probability that more than \(1/3 \) of the \(x \in \mathbb{Z}_{N(n)} \) are in \(\mathcal{I}^{-1}(1) \) is \((1 - \text{negl}(n)) \); denote by \(I \) the set of \(\mathcal{I} \) in which this happens. Thus, by some elementary probability arguments, we have the following for all \(n \):

\[
\begin{align*}
\Pr_{\mathcal{I}, \sigma, x \leftarrow \mathbb{Z}_{N(n)}^{\mathcal{I}^{-1}(1)}, \text{Sim}} [E_{\text{Sim}}(\mathcal{I}, \sigma, x)] &\leq \Pr[\mathcal{I} \in I] \mathbb{E}_{\mathcal{I} \leftarrow I} \left[\Pr_{\sigma, x \leftarrow \mathbb{Z}_{N(n)}^{\mathcal{I}^{-1}(1)}} [E_{\text{Sim}}(\mathcal{I}, \sigma, x)] \right] + \Pr[\mathcal{I} \not\in I] \\
&\leq \Pr[\mathcal{I} \in I] \mathbb{E}_{\mathcal{I} \leftarrow I} \left[\frac{\Pr_{\sigma, x \leftarrow \mathbb{Z}_{N(n)}^{\mathcal{I}^{-1}(1)}} [E_{\text{Sim}}(\mathcal{I}, \sigma, x)]}{\Pr_{x \leftarrow \mathbb{Z}_{N(n)}^{\mathcal{I}^{-1}(1)}} [x \in \mathcal{I}^{-1}(1)]} \right] + \Pr[\mathcal{I} \not\in I] \\
&\leq \Pr[\mathcal{I} \in I] \mathbb{E}_{\mathcal{I} \leftarrow I} \left[\frac{\Pr_{\sigma, x \leftarrow \mathbb{Z}_{N(n)}^{\mathcal{I}^{-1}(1)}} [E_{\text{Sim}}(\mathcal{I}, \sigma, x)]}{1/3} \right] + \Pr[\mathcal{I} \not\in I] \\
&\leq 3 \cdot \Pr_{\mathcal{I}, \sigma, x \leftarrow \mathbb{Z}_{N(n)}^{\mathcal{I}^{-1}(1)}} [E_{\text{Sim}}(\mathcal{I}, \sigma, x)] + \Pr[\mathcal{I} \not\in I] \\
&\leq o \left(\frac{1}{n} \right).
\end{align*}
\]

(10)

where the last inequality holds for all large enough \(n \). Such \(x \in \mathcal{I}^{-1}(1) \) correspond directly to YES instances of \(\Pi^{\mathcal{I}, \mathcal{G}_{\sigma}} \), in which case the simulator is supposed to work. So by Eqs. (8) and (10), we have:

\[
\begin{align*}
\Pr_{\mathcal{I}, \sigma, x \leftarrow \mathbb{Z}_{N(n)}^{\mathcal{I}^{-1}(1)}, V} [E(\mathcal{I}, \sigma, x)] &\leq o \left(\frac{1}{n} \right)
\end{align*}
\]

(11)

This implies that, for all large enough \(n \), there exists an \(\mathcal{I}, \sigma \), and \(x \in \mathbb{Z}_{N(n)} \cap \mathcal{I}^{-1}(1) \) such that, when interacting with the honest prover and given input \((n, \mathcal{N}(n), \sigma(1), \sigma(x)) \), the verifier queries \(\mathcal{I} \) at \(x \) with \(o(1) \) probability. Consider the oracle \(\mathcal{I}^{-x} \), which is the same as \(\mathcal{I} \), except that \(\mathcal{I}^{-x}(x) = 0 \). The verifier can be made to accept the input \((n, \mathcal{N}(n), \sigma(1), \sigma(x)) \) with probability \((1 - o(1)) \) given oracle access to \(\mathcal{I}^{-x} \) and \(\mathcal{G}_{\sigma} \) by a malicious prover that simply emulates the honest prover’s strategy with oracle \(\mathcal{I} \). This breaks the soundness of the protocol for the problem \(\Pi^{\mathcal{I}^{-x}, \sigma} \). This is a contradiction to our assumption at the start of the proof, and this proves the lemma.

Now, we show how to use Lemma 6.7 to construct functions \(\mathcal{I} \) and \(\sigma \) such that with respect the oracles \((\mathcal{I}, \mathcal{G}_{\sigma}) \), the problem \(\Pi^{\mathcal{I}, \sigma} \) does not have an SZK protocol. The standard approach to doing so is diagonalization: to enumerate all possible oracle protocols and simulators, and for each pick an input size \(n \) and corresponding \(\mathcal{I}_{n} \) and \(\sigma_{n} \) on which it fails (as promised by Lemma 6.7), and include that in \(\mathcal{I} \) and \(\sigma \). However, we cannot do this directly, as the set of all protocols is not countable. Instead, we will do this for a countable set of protocols and show that for any potential SZK protocol, there is a protocol in this set that computes the same problem. This countable set will be the set of protocols with simulation-based provers [For87].

Definition 6.9 (Simulation-based Protocols). Given (oracle) algorithms \(V \) and \(\text{Sim} \), the *simulation-based protocol* defined by these is the protocol \((P_{\text{Sim}}, V) \), where \(P_{\text{Sim}} \) is the *simulation-based prover* that behaves as follows: to compute the prover’s message at any point in the protocol, sample from the distribution of this message in the output of \(\text{Sim} \), conditioned on this output matching the protocol transcript so far (if this conditional distribution is not defined, set the message to be \(\bot \)).

The following lemma follows immediately from the statistical zero-knowledge property. (Roughly this statement is also proven as part of the proof of Theorem 5.9.)

Lemma 6.10. Suppose \((P, V) \) is an honest-verifier SZK proof system for a promise problem \(\Pi \) with simulator \(\text{Sim} \), all with respect to some oracle \(O \). Then the simulation-based protocol \((P_{\text{Sim}}, V) \) is also an honest-verifier SZK proof for \(\Pi \) with simulator \(\text{Sim} \), with respect to oracle \(O \).
Given this lemma, we only need to enumerate over pairs of polynomial-time algorithms \((V, \text{Sim})\) in our diagonalization argument, and this is indeed a countable set. Together, Lemmas 6.6, 6.10 and 6.11 prove Theorem 6.4.

Lemma 6.11. There exist \(I = \{I_n\}\) and \(\sigma = \{\sigma_n\}\) such that no simulation-based protocol is a valid SZK proof system for \(\Pi^{I,\sigma}\) with respect to oracles \((I, G_\sigma)\).

Proof. We prove this by enumerating over all polynomial-time oracle algorithms \((V, \text{Sim})\), and constructing \(I\) and \(\sigma\) such that each of them fails to be an SZK proof on some input size. One subtlety here is that Lemma 6.7 is stated only for algorithms that have access to \(I_n\) and \(\sigma_n\) for some specific value of \(n\), whereas in reality they will be able to query \(I_{n'}\) or \(\sigma_{n'}\) for values of \(n'\) different from the input size. We will need to make sure these queries are not useful to the algorithm.

Consider an enumeration of all pairs of polynomial-time oracle algorithms \(((V_1, \text{Sim}_1), (V_2, \text{Sim}_2), \ldots)\). We will process them in order to construct \(I\) and \(\sigma\) as follows. Below, the “default” values for any \(I_n\) are the all-zero function, and for \(\sigma_n\) it is the identity function. When we say a protocol “fails to be an SZK proof” at some input size \(n\), we mean that one of its errors on some input of that size is at least \(1/n\). Note that we only need to rule out protocols that on every input size \(n\) has errors smaller than \(1/n\).

First, we claim that there has to exist an \(n_1\) such that if for all \(n \neq n_1\) we set \(I_n\) and \(\sigma_n\) to the default values, there exist \(I_{n_1}^*\) and \(\sigma_{n_1}^*\) such that the simulation-based protocol defined by \((V_1, \text{Sim}_1)\) fails to be an SZK proof for \(\Pi^{I,\sigma}\) at input length \(n_1\). If not, then we can contradict Lemma 6.7 by running this protocol with the oracles artificially set to the default values at \(n\) that is different from the input size. Further, as \(V_1\) and \(\text{Sim}_1\) are polynomial-time algorithms, there is a number \(n_{1}'\) such that when run on inputs of size \(n_1\), neither algorithm ever makes a query to an oracle \(I_n\), etc., for \(n > n_{1}'\). We will start by setting \(I_{n_1} = I_{n_1}', \sigma_{n_1} = \sigma_{n_1}',\) and \(I_n\) and \(\sigma_n\) to be the default values for all \(n \leq n_{1}'\).

Next, we will essentially repeat this argument for \((V_2, \text{Sim}_2)\) – there has to exist an \(n_2\) larger than \(n_{1}'\) such that if we set the oracles as above for \(n \leq n_{1}'\), to the default values for \(n > n_{1}'\) except for \(n = n_2\), there exist \(I_{n_2}^*\) and \(\sigma_{n_2}^*\) for which \((V_2, \text{Sim}_2)\) fails to be an SZK proof. Otherwise we can contradict Lemma 6.7 by running this protocol with oracles artificially set to the ones determined above for \(n \leq n_{1}'\), and to default values otherwise. We then set \(I_{n_2}\) and \(\sigma_{n_2}\) to be these \(I_{n_2}^*\) and \(\sigma_{n_2}^*\), and set default values for \(n\) up to the similarly defined \(n_{2}'\). Repeating this argument throughout the enumeration then gives us the \(I\) and \(\sigma\) that prove the lemma.

\[\square\]

7 Instance-Hiding Delegation Schemes

In this section, we extend the study to a setting in which a machine \(V\), given an private input \(x\), delegates the computational task of computing a function \(f(x)\) to a computationally stronger machine \(P\). We seek solutions in which the prover \(P\) does this without learning \(x\), but without asking for any guarantees in case \(P\) does not follow the protocol. We further generalize the definition to allow the prover to learn leakage \(\ell(x)\) of instance \(x\) defined by some PSPACE function \(\ell\). We note that because some results (e.g. Theorem 4.1, Theorem 4.3, Theorem 5.3, Theorem 5.9) about IHIP in previous sections rely solely on its correctness of honest prover and hiding properties (and do not need the soundness property), these can be generalized to this setting. We further show strong connections between the existence of such delegation schemes and of IHIP’s, and then use these connections together with closure properties of these schemes to show the closure properties of IHIP’s stated in Section 2.1. Below, as before, for any set \(S\), \(S_n\) denotes its intersection with \(\{0,1\}^n\). For any promise problem \(\Pi = (\text{Yes}, \text{No})\), we define its characteristic function to be the partial function that maps inputs in \(\text{Yes}\) to 1, inputs in \(\text{No}\) to 0, and is undefined on other inputs.

\(^8\)Given that \(n_1 \ll n_2\), these oracles can be encoded as non-uniform advice with random access and a length no longer than \(\sqrt{N(n_2)}\).
Definition 7.1 (Instance-Hiding Delegation Scheme (IHD) [FO91]). Consider a function $f : X \rightarrow Y$, and functions $\delta, \epsilon : \mathbb{N} \rightarrow [0, 1]$ and $\ell : X \rightarrow \{0, 1\}^*$. A (δ, ϵ, ℓ)-Instance-Hiding Delegation Scheme (IHD) for f is a protocol (P, V) in which a probabilistic polynomial-time verifier V interacts with a computationally unbounded prover P. For some $n \in \mathbb{N}$, V gets a private input $x \in X_n$, while P gets the input n. At the end of the interaction, V outputs $y \in Y \cup \{\bot\}$. The protocol is required to satisfy the following properties for all large enough $n \in \mathbb{N}$:

- **Correctness:** For any input $x \in X_n$:
 $$\Pr[(P(n), V(x)) = f(x)] \geq 1 - \delta(n).$$

- **Hiding Against Honest Prover (with leakage):** There exists a computationally unbounded randomized algorithm Sim$_P$ such that for any input $x \in X_n$:
 $$\Delta\left(\operatorname{Sim}_P(n, \ell(x)), \operatorname{VIEW}_P(P(n), V(x))\right) \leq \epsilon(n).$$

If the simulator Sim$_P$ is efficient, we call the protocol *Strong-Instance-Hiding Delegation* (Strong-IHD). The protocol is *perfectly-hiding* if $\epsilon(n) = 0$. If left unspecified, we assume ℓ is the constant function that always outputs \bot, corresponding to the absence of leakage.

The following proposition directly follows the completeness and soundness for the honest prover in IHIP, and ϵ-hiding.

Proposition 7.2. Consider a promise problem Π with characteristic function $f : \{\text{Yes} \cup \text{No}\} \rightarrow \{0, 1\}$, and let (P, V) be a (δ, ϵ)-IHIP (resp. strong IHIP) for Π, then (P, V) is a (ϵ, δ)-IHD (resp. strong IHD) for f.

Next, we define a version of instance-hiding delegation schemes that has an additional verifiability property that protects against provers that may deviate from the protocol.

Definition 7.3 (Verifiable Instance-Hiding Delegation Scheme (VIHD) [FO91]). Consider any function $f : X \rightarrow Y$, and functions $\delta, \epsilon : \mathbb{N} \rightarrow [0, 1]$, and $\ell : X \rightarrow Z$. A (δ, ϵ, ℓ)-Verifiable Instance-Hiding Delegation Scheme (VIHD) for f is a IHD protocol that additionally achieves verifiability and hiding against malicious provers:

- **Correctness:** For any input $x \in X_n$:
 $$\Pr[(P(n), V(x)) = f(x)] \geq 1 - \delta(n).$$

- **Verifiability:** For any prover P^*, for any input $x \in X_n$:
 $$\Pr[(P^*(n), V(x)) = f(x) \cup \{\bot\}] \geq 1 - \delta(n).$$

- **Hiding against malicious prover (with leakage):** For any prover P^*, there exists a computationally unbounded randomized algorithm Sim$_{P^*}$ such that for any input $x \in X_n$,
 $$\Delta\left(\operatorname{Sim}_{P^*}(n, \ell(x)), \operatorname{VIEW}_{P^*}(P^*(n), V(x))\right) \leq \epsilon(n).$$

The VIHD is strong if the simulator for honest prover Sim$_P$ is efficient. If left unspecified, we assume ℓ is the constant function that always outputs \bot, corresponding to the absence of leakage.
We then have the following proposition, which states that VIHD protocols are essentially stronger than IHIP protocols.

Proposition 7.4. Let \(f \) be the characteristic function for a promise problem \(\Pi \). If \((P, V) \) is a \((\delta, \epsilon, \ell)\)-verifiable instance-hiding delegation (resp. strong \((\delta, \epsilon)\)-verifiable instance-hiding delegation) for \(f \), then there exists a \((\delta, \epsilon)\)-instance-hiding proof (resp. strong \((\delta, \epsilon)\)-instance-hiding interactive proof) \((P', V') \) for \(\Pi \).

Proof Sketch. We define \(P' = P \) and let \(V' \) run \(V \) as a black box on the same input, and output 1 (Accept) if and only if \(V \) outputs 1. The \(\delta \)-completeness and \(\epsilon \)-hiding follow the correctness and \(\epsilon \)-hiding of \((P, V) \) respectively. The soundness of \((P', V') \) follows from the correctness and verifiability of \((P, V) \). \(\square \)

7.1 Verifiable IHD from IHD

It is immediate that any VIHD is also a IHD. If restricting \(\ell \) to be constant function, [FO91] demonstrates that if any function \(f \in \text{PSPACE} \) has perfect-hiding \((\delta, 0, \ell)\)-IHD, then \(f \) also has a perfect-hiding \((\delta', 0, \ell)\)-VIHD. We extend their theorem to \(\epsilon \)-hiding schemes with a richer class of leakage function \(\ell \). The protocol and proof essentially closely follow that of [FO91, Lemma 3.1], with the only difference being in the hiding statements that the prover proves to the verifier in each round. In our case, the prover proves \(\epsilon \)-hiding with respect to any \(\text{PSPACE} \) leakage function, whereas in [FO91] the focus is on perfect hiding and only the constant function as leakage.

Theorem 7.5. Suppose that a function \(f \) is computable in polynomial space and has a \((\delta, \epsilon, \ell)\)-IHD \((P, V) \) for some negligible \(\delta, \epsilon \) and \(\ell \in \text{PSPACE} \), then there exists negligible \(\delta', \epsilon' \) and \((P', V') \) such that \((P', V') \) is a \((\delta', \epsilon', \ell)\)-VIHD for \(f \).

Corollary 7.6. Suppose that a function \(f \) is computable in polynomial space and has a \((\delta, \epsilon)\)-IHD for some negligible \(\delta, \epsilon \). If \(f \) is the characteristic function for a promise problem \(\Pi \), then \(\Pi \) has a \((\delta', \epsilon')\)-IHIP for some negligible \(\delta', \epsilon' \).

The above corollary follows from Theorem 7.5 and Proposition 7.4, and carries over our results from other sections about the implications of IHIP protocols to IHD schemes. Because the protocol format of an IHD is related to IHIP, just with a possibly different output space at the end, we adopt the notations of elements in Section 4.

Proof. Inspired by the proof for perfect-hiding in [FO91], we rely on the fact that both the correctness and the hiding aspects of an execution are statements in \(\text{PSPACE} \), and thus can be proven with an appropriate interactive proof protocol following the celebrated \(\text{IP} = \text{PSPACE} \) theorem [LFKN92][Sha92]. Intuitively, consider a \(q \)-round IHD \((P, V) \) for a function \(f \), we construct a new protocol \((P', V') \) that ensures verifiability and hiding against a malicious prover. \((P', V') \) runs \((P, V) \) in a round-by-round manner. Before \(V \) sends a message in each round, \(P' \) proves to \(V' \) that for any input \(x \), the distribution of \(V \)'s next message in this round will not reveal much additional information about \(x \). This ensures that hiding against malicious prover. After the execution of \((P, V), V' \) has the view of \(V: (x, r_{V'}, s) \), which is supposed to achieve correctness if \(V \) interacts with honest prover. To enforce verifiability, \(P' \) proves to the verifier that for any input \(x \in X_n \), the public view \(s \) achieves correctness with high probability. The protocol is presented in Figure 7.
Verifiable Instance Hiding Delegation: \(\langle P', V' \rangle \)

Parameters:
- Function \(f : \mathcal{X} \rightarrow \mathcal{Y} \).
- Input length \(n \).
- Leakage function \(\ell \).

Inputs: An instance \(x \in \mathcal{X}_n \).

Outputs: \(y \in \mathcal{Y} \cup \{ \bot \} \).

Ingredients:
- \(\langle P, V \rangle \) is a \(q \)-round \((\delta, \epsilon)\)-IHD for \(R \) as described.
- Consider the public view of protocol \(\langle P, V \rangle \) up to \(i \)-th round \((u_1, y_1, \ldots, u_i, y_i)\), and any input \(x \in \mathcal{X}_n \). Define \(\beta^P_{(u_1, y_1, \ldots, u_i, y_i)} \) as the set of verifier’s randomness consistent with input \(x \) and \((u_1, y_1, \ldots, u_i, y_i)\). Denote by \(U(u_1, y_1, \ldots, u_i, y_i) \) the set of the possible next messages of \(V \):

\[
U(u_1, y_1, \ldots, u_i, y_i) = \bigcup_{x \in \mathcal{X}} \{ u_{i+1} = V(x, r_V, (u_1, y_1, \ldots, u_i, y_i)) \mid r_V \in \beta^P_{(u_1, y_1, \ldots, u_i, y_i)} \}.
\]

Protocol:

1. \(V' \) samples a randomness \(r_V \leftarrow \mathcal{R}_V \).

2. \(V' \) generates its first message \(u_1^* \leftarrow V(x, r_V, \phi) \), and sends it to \(P' \), and \(P' \) responds with the \(y_1 \) that is \(P \)'s response to this message.

3. **For** \(i \in [2, q] \):

 (a) \(P' \) and \(V' \) execute an interactive proof protocol where \(P' \) proves the following hiding statement:

 \[
 \sum_{u_i \in U(u_1^*, y_1^*, \ldots, u_i^*, y_i^*)} \left| \frac{\beta^P_{(u_1^*, y_1^*, \ldots, u_i^*, y_i^*)}}{\beta^P_{(u_1^*, y_1^*, \ldots, y_i^*, y_{i-1}^*)}} \right| \left| \frac{\beta^P_{(u_1^*, y_1^*, \ldots, y_i^*, y_{i-1}^*)}}{\beta^P_{(u_1^*, y_1^*, \ldots, u_i^*, y_{i-1}^*)}} \right| \leq 4\epsilon^i.
 \]

 The above statement is in \(\text{PSPACE} \) if \(\ell, f \in \text{PSPACE} \) and the IP follows from \(\text{IP} = \text{PSPACE} \).

 (b) **If** the verifier in the above IP rejects, \(V' \) rejects immediately.

 Else

 i. \(V' \) computes \(u_i^* \leftarrow V(x, r_V, (u_1^*, y_1^*, \ldots, u_{i-1}^*, y_{i-1}^*)) \) and sends \(u_i \) to \(P' \).

 ii. \(P' \) computes the response \(y_i^* \) according to \(P \) and sends it to \(V' \).

4. \(P' \) and \(V' \) execute an interactive proof protocol where \(P' \) proves that:

 \[
 \text{"For any } x \in \mathcal{X}_n: \quad \Pr_{r_V \leftarrow \beta_P} \left[V(x, r_V, (u_1^*, \ldots, y_q^*)) \neq f(x) \right] < \frac{1}{2^{3q^2}}.\]

5. **If** the verifier in the above protocol rejects, then \(V' \) rejects.

 Else \(V' \) outputs \(V(x, r_V, (u_1^*, \ldots, y_q^*)) \).

Figure 7: Transformation from IHD to VIHD
Round-by-Round Hiding The ε-hiding for the first round is ensured by ε-hiding of \((P, V)\) as it only involves \(V\)'s single message. From the second round, however, malicious prover \(P'\) may deviate from the behavior of the honest prover \(P\) leading to possible leakage of \(x\) if \(V'\) sticks to \(V\). When considering only the hiding property, the protocol described in Figure 7 can be viewed as a \(q\)-fold sequential composition of one-round ε-hiding protocols on the same input \(x\), where only the first ε-hiding protocol is determined before the execution. For each \(i \in [2, q]\), the \(i\)th protocol is defined by a prefix, \((u^*_1, y^*_1, \ldots, y^*_{i-1})\). The prover \(P'^*\) is required to prove to \(V'\) that the protocol defined by \((u^*_1, y^*_1, \ldots, y^*_{i-1})\) remains to be ε-hiding before the protocol’s execution.

Assume for simplicity first that the IP for proving hiding statements is perfectly complete and sound. That is, if \(V'\) does not reject until end of \(q\) rounds (in this case all of the hiding statements are true), then conditioned on any prover’s view up to \(i - 1\) round, the next message of \(V\) \(u^*_1\) will be 2ε-hiding. We proceed to use Fact 5.10 to inductively prove that the overall prover’s view of the protocol will be \(2 \cdot q \cdot \epsilon\)-hiding. For the analysis of hiding, we ignore the parts of views between \(P'\) and \(V'\) on the proof of hiding statement because they are independent of the input \(x\) conditioned on view of previous rounds. Denote by \(U^*_i(x)\) \(V'\)’s message in \(i\)th round when the input is \(x\). Similarly, \((R_{p'}^*, U^*_1, Y^*_1, \ldots, U^*_q, Y^*_q)(x)\) denotes \(P\)’s view up to \(i\)th round. For any two inputs \(x, x' \in \mathcal{X}_n\),

- Base step: It’s clear that \(\Delta((R_{p'}^*, U^*_i, Y^*_i)(x), (R_{p'}^*, U^*_i, Y^*_i)(x')) \leq 2\epsilon\) by ε-hiding of \((P, V)\).

- Inductive step: For each round \(i \in [q]\), suppose \(\Delta((R_{p'}^*, U^*_1, \ldots, Y^*_i)(x), (R_{p'}^*, U^*_1, \ldots, Y^*_i)(x')) = \epsilon_i\).

For any for any possible \((u^*_1, y^*_1, \ldots, u^*_i, y^*_i)\), conditioned on that \(V'\) not rejecting up to \(i\) rounds, and on the prover’s view of previous \(i\) rounds equals to \((r_{p'}, u^*_1, \ldots, y^*_i)\) (i.e. \((R_{p'}^*, U^*_1, \ldots, Y^*_i)(x) = (R_{p'}^*, U^*_1, \ldots, Y^*_i)(x) = (r_{p'}, u^*_1, \ldots, y^*_i))\), the distance between verifier’s \((i + 1)\)th message on the two inputs is bounded:

\[
\Delta(U^*_i+1(x))(R_{p'}^*, U^*_1, \ldots, Y^*_i)(x) = (u^*_1, \ldots, y^*_i), U^*_i+1(x))(U^*_i, \ldots, Y^*_i)(x) = (u^*_1, \ldots, y^*_i) \leq 4\epsilon.
\]

This follows the hiding argument. Thus by Fact 5.10 and data processing inequality,

\[
\Delta((R_{p'}^*, U^*_1, \ldots, Y^*_i+1)(x), (R_{p'}^*, U^*_1, \ldots, Y^*_i+1)(x')) \leq \epsilon_i + 4\epsilon.
\]

This concludes that the protocol view is \(2 \cdot q(n) \cdot \epsilon(n)\) if the IP for proving hiding statements are perfect complete and sound. In the case where the IP for hiding statement has negl-completeness/soundness error, the base case remain unchanged, and we argue that this error won’t affect the inductive argument. Formally, define \(A_i\) as the indicator that \(P'\) makes \(V'\) accept on \(i\)th-round hiding statements. For any two inputs \(x, x' \in \mathcal{X}_n\), and each round \(i \in [q]\), conditioned on any possible view in the first \(i\) rounds \((R_{p'}^*, U^*_1, \ldots, Y^*_i)(x) = (R_{p'}^*, U^*_1, \ldots, Y^*_i)(x') = (r_{p'}, u^*_1, \ldots, y^*_i)\), and let \(A_j = 1\) for \(j \in [i]\), by Fact 4.7:

- In the case that \(i\)th-round hiding statement is true:

\[
\Delta((U^*_i+1(x), A_{i+1}),(U^*_i+1(x'), A_{i+1})) = \mathbb{E}_{b \sim \mathcal{A}_{i+1}} \Delta((U^*_i+1(x)|A_{i+1} = b), (U^*_i+1(x')|A_{i+1} = b)) \\
\leq \Delta((U^*_i+1(x)|A_{i+1} = 1), (U^*_i+1(x')|A_{i+1} = 1)) + \Pr[A_{i+1} = 0] \\
\leq 2\epsilon(n) + \text{negl}(n) \\
\leq \text{negl}(n).
\]

- In the case that \(i\)th-round hiding statement is false:

\[
\Delta((U^*_i+1(x), A_{i+1}),(U^*_i+1(x'), A_{i+1})) = \mathbb{E}_{b \sim \mathcal{A}_{i+1}} \Delta((U^*_i+1(x)|A_{i+1} = b), (U^*_i+1(x')|A_{i+1} = b)) \\
\leq \Delta((U^*_i+1(x)|A_{i+1} = 0), (U^*_i+1(x')|A_{i+1} = 0)) + \Pr[A_{i+1} = 1] \\
\leq 0 + \text{negl}(n) \\
\leq \text{negl}(n),
\]

where the second last inequality is because \(V'\) will reject and set \(U^*_i+1 = \bot\) in both cases if \(A_{i+1} = 0\).
Therefore, following the same induction as in the case of perfect completeness and soundness, there exists some negligible ϵ' such that $\langle P', V' \rangle$ is ϵ'-hiding against any prover.

Correctness. We say a public view \vec{s} of $\langle P(n), V(x) \rangle$ is \vec{S}-good if for any $x \in X_n$: $\Pr_{r_v \leftarrow \beta_{\vec{s}}^2} [V(x, r_v, \vec{s}) \neq f(x)] < \frac{1}{2n/2}$, and by definition for any $x \in X_n$:

$$\Pr_{(r_v, \vec{s}) \leftarrow \text{VIEW}(P, V(x))} [V(x, r_v, \vec{s}) = f(x) | \vec{s} \in \vec{S}\text{-good}] \geq 1 - \frac{1}{2n/2}.$$

We will proceed to show that \vec{s} is \vec{S}-good with high probability. Similarly to that in [FO91], we assume that $\delta < \frac{1}{2^\pi}$, which is made through standard amplification procedure with parallel repetition; the proof that parallel repetition works for amplification follows from a Chernoff bound for correctness, and Lemma 2.10 for hiding. Define $\vec{\alpha}_x^2 = \{r_v \in \beta_{\vec{s}}^2 | V(x, r_v, \vec{s}) \neq f(x)\}$. By δ-correctness and following the same argument as in Claim 4.5.2, for any input instance x:

$$E_{\vec{s} \leftarrow \text{VIEW}_{pub}(P(n), V(x))} \left[\frac{|\vec{\alpha}_x^2|}{|\beta_{\vec{s}}^2|} \right] \leq \delta \leq \frac{1}{2^{2n}}.$$

Follows Markov bound,

$$\Pr_{\vec{s} \leftarrow \text{VIEW}_{pub}(P(n), V(x))} \left[\Pr_{r_v \leftarrow \beta_{\vec{s}}^2} [V(x, r_v, \vec{s}) = f(x)] > \frac{1}{2n/2} \right] = \Pr_{\vec{s} \leftarrow \text{VIEW}_{pub}(P(n), V(x))} \left[\frac{|\vec{\alpha}_x^2|}{|\beta_{\vec{s}}^2|} > \frac{1}{2n/2} \right] < \frac{1}{2^{3n/2}}.$$

Apply a union bound over all possible $x \in \{0, 1\}^n$, and we get that:

$$\Pr_{\vec{s} \leftarrow \text{VIEW}_{pub}(P(n), V(x))} \left[\exists x \in X_n : \Pr_{r_v \leftarrow \beta_{\vec{s}}^2} [V(x, r_v, \vec{s}) \neq f(x)] > \frac{1}{2n/2} \right] \leq \frac{1}{2n/2}.$$

Thus we have $\Pr_{\vec{s} \leftarrow \text{VIEW}_{pub}(P(n), V(x))} \left[\vec{s} \text{ is } \vec{S}\text{-good} \right] \geq 1 - \frac{1}{2n/2}$. Moreover, because the statement “\vec{s} is \vec{S}-good” is a PSPACE statement if f can be computed in PSAPACE, it can be proved by an interactive proof protocol with completeness and soundness error $1 - \negl(n)$ [LFKN92][Sha92]. Therefore, the probability that $\langle P(n)', V'(x) \rangle$ outputs correctly is:

$$\Pr [(P(n)', V'(x)) = f(x)] \geq \Pr_{r_v, r_p} [\langle P(n)', V'(x) \rangle = f(x) | \vec{s} \text{ is } \vec{S}\text{-good}] \cdot \Pr_{\vec{s} \leftarrow \text{VIEW}_{pub}(P(n), V(x))} \left[\vec{s} \text{ is } \vec{S}\text{-good} \right]$$

$$\geq (1 - \frac{1}{2n/2}) \cdot (1 - \frac{1}{2n/2})$$

$$\geq 1 - \negl(n).$$

Verifiability. The verifiability relies on the soundness of the interactive proof for the statement “\vec{s} is \vec{S}-good”. Specifically, if \vec{s} is not \vec{S}-good, V' will output \bot with $1 - \negl(n)$ probability. On the other hand, if \vec{s} is \vec{S}-good, V' will output $f(x)$ with $1 - \negl(n)$ probability. □

7.2 Closure Properties

In this section, we use some obvious closure properties of instance-hiding delegation schemes, together with the connections to IHIP proven so far, to show similar closure properties for IHIP’s. Consider any functions $f : \mathcal{X} \rightarrow \mathcal{Y}$ and $p : \mathcal{Y}^* \rightarrow \mathcal{Z}$. For any function $k : \mathbb{N} \rightarrow \mathbb{N}$, we define the composed function $p \circ f^{\circ k} : \mathcal{X}^* \rightarrow \mathcal{Z}$ as the following partial function for each $n \in \mathbb{N}$:

$$(p \circ f^{\circ k})(x_1, \ldots, x_{k(n)}) = p \left(f(x_1), \ldots, f(x_{k(n)})\right).$$

where each x_i is of size n.

52
Proposition 7.7 (Closure of VIHD under Composition with Efficient Functions). Consider any function \(f \) that has a \((\delta, \epsilon)\)-VIHD for some negligible functions \(\delta \) and \(\epsilon \), and any efficiently computable function \(p \). For any polynomial \(k : \mathbb{N} \rightarrow \mathbb{N} \), the composed function \(p \circ f^\otimes k \) also has a \((\delta', \epsilon')\)-VIHD for some negligible functions \(\delta' \) and \(\epsilon' \).

Proof Sketch. Let \(\langle P, V \rangle \) be the VIHD protocol for \(f \). Define \(\langle P', V' \rangle \) as the protocol that runs \(\langle P, V \rangle \) on each \(x_i \), gets result \(y_i \), and finally outputs \(p(y_1, \ldots, y_k) \) if no \(\langle P_i, V_i \rangle \) outputs \(\perp \) (otherwise outputs \(\perp \)).

Given that \(\langle P, V \rangle \) is \(\epsilon \)-hiding, and following Lemma 2.10, \(\langle P', V' \rangle \) is a \((k \cdot \epsilon)\)-hiding protocol. Furthermore, because the \(k \) protocols are independent, and each constitutes \(\delta \)-correctness, the protocol \(\langle P', V' \rangle \) thus also possesses \(k \cdot \delta \)-correctness through a union bound. Verifiability of \(\langle P, V \rangle \) implies that except with probability \(k \cdot \delta \), all the values of \(y_i \) obtained, if not \(\perp \), are correct. This is thus the protocol we want. \(\square \)

Combining Propositions 7.2, 7.4 and 7.7 and Theorem 7.5, we get the following as corollaries.

Theorem 2.7 (Closure under Composition with Efficient Functions). Consider any promise problems \(\Pi \) that has an IHIP protocol, and any efficiently computable function \(f : \{0, 1, \perp\}^* \rightarrow \{0, 1, \perp\} \) whose output is \(\perp \) whenever any of its inputs is \(\perp \). For any polynomial \(k : \mathbb{N} \rightarrow \mathbb{N} \), the composed promise problem \(f \circ \Pi^\otimes k \) also has an IHIP protocol.

Lemma 2.8 (Closure under Complementation). Suppose, for some negligible functions \(\delta, \epsilon \), that a problem \(\Pi \) has a \((\delta, \epsilon)\)-IHIP (possibly with a non-uniform verifier). Then the complement of \(\Pi \) has a \((\delta', \epsilon')\)-IHIP (resp. with a non-uniform verifier if starting with a non-uniform verifier), where \(\delta' \), \(\epsilon' \) are also negligible.

Finally, we prove the following propositions regarding closure properties of VIHD schemes in the presence of leakage that will be useful in Appendix C.

Proposition 7.8. Consider two functions \(\ell, \ell' \in \text{PSPACE} \) defined over domain \(\mathcal{X} \) such that for any two inputs \(x, x' \in \mathcal{X} \), \(\ell(x) = \ell(x') \) if and only if \(\ell'(x) = \ell'(x') \). For functions \(\delta, \epsilon \) and any function \(f : \mathcal{X} \rightarrow \mathcal{Y} \), if \(\langle P, V \rangle \) is a \((\delta, \epsilon, \ell)\)-IHD (resp. \((\delta, \epsilon, \ell)\)-VIHD) for \(f \), then \(\langle P, V \rangle \) is a \((\delta', \epsilon', \ell')\)-IHD (resp. \((\delta, \epsilon, \ell')\)-VIHD) for \(f \). Furthermore, if there is an efficient bijective map between \(\ell \) and \(\ell' \), the transformation holds for strong IHD (resp. strong VIHD).

Proof Sketch. \(\ell \) and \(\ell' \) are renaming of each other and thus a simulator with respect to \(\ell' \) can be made given a simulator with respect to \(\ell \). \(\square \)

Acknowledgements

We thank anonymous reviewers of an early version of this paper for their useful comments and references. Both authors are supported by the National Research Foundation, Singapore, under its NRF Fellowship programme, award no. NRF-NRFF14-2022-0010.

References

A Examples of Instance-Hiding Proofs

In an instance-hiding interactive proof for a promise problem Π, the prover proves to the verifier that $x \in \text{YES}(\Pi)$ without knowing anything about x. One approach to constructing such proofs is to use random-self-reducibility properties. One class of problems with such properties, based on discrete logarithm problem, is described below.

Definition A.1 (Discrete Log Problem (DLP)). Consider any cyclic group G. Given a generator $g \in G$ and an element $h \in G$, the Discrete Log Problem is to find an $a \in \mathbb{Z}_{|G|}$ such that $g^a = h$.

The Discrete Log problem over \mathbb{Z}_{p}^* is believed to be hard on average for most primes p (see, e.g. [Elg85]).

Example 1: DL on \mathbb{Z}_{p}^*

Definition A.2. For a prime p, a generator $g \in \mathbb{Z}_{p}^*$, and an arbitrary predicate $f : \mathbb{Z}_{p-1} \to \{0, 1\} \cup \{\bot\}$, we define the promise problem $\mathcal{DL}_f^{p,g}$ as follows:

- $\text{YES}(\mathcal{DL}_f^{p,g}) = \{y \mid \exists x \in \mathbb{Z}_{p-1} : g^x = y \land f(x) = 1\}$.
- $\text{NO}(\mathcal{DL}_f^{p,g}) = \{y \mid \exists x \in \mathbb{Z}_{p-1} : g^x = y \land f(x) = 0\}$.

We demonstrate that this problem possesses a simple, strong instance-hiding interactive proof, utilizing the random self-reducibility property of the discrete logarithm.

Proposition A.3. Consider any prime p, generator g of \mathbb{Z}_{p}^*, and function $f : \mathbb{Z}_{p-1} \to \{0, 1\} \cup \{\bot\}$ that is computable in polylog(p) time. The promise problem $\mathcal{DL}_f^{p,g}$ has a perfect strong-IHIP where the verifier runs in time polylog(p).

There are no known universal constructions of Statistical Randomized Encodings (SRE), or even Statistical Zero Knowledge (SZK) protocols, for this problem for such arbitrary efficient functions f. In fact, the oracle separation we show in Section 6 suggests that this problem is unlikely to have generic SRE/SZK when defined with arbitrary cyclic groups and unstructured functions f, even given oracle access to f.

Proof. Because DLP possesses random self-reduction, the verifier can efficiently reduce the instance to a random instance and ask the prover to compute the discrete log for it.\footnote{We remark that the promise problem $\mathcal{DL}_f^{p,g}$ itself may not possess random self-reducibility. Indeed, [TW87] demonstrated that random self-reducible problems have perfect zero-knowledge proof.} In the end, verifier verifies the discrete log and reduces the instance back to original, and computes f to decide the promise problem. Specifically, the protocol is as shown in Figure 8.
IHIP for \mathcal{DL}_p^f: $(P,V(y))$

Parameters: Prime p, generator g of \mathbb{Z}_p^*.

Ingredient: Function $f: \mathbb{Z}_{p-1} \to \{0,1\} \cup \{\bot\}$.

Protocol:
1. V does:
 (a) Samples a random $r \leftarrow \mathbb{Z}_{p-1}$.
 (b) Randomize the instance using r: $y' \leftarrow y \cdot g^r \mod p$.
2. V sends y' to P.
3. P computes $x' \in \mathbb{Z}_{p-1}$ such that $g^{x'} = y'$.
4. P sends x' to V.
5. V verifies that $g^{x'} = y'$, if not outputs 0.
6. V computes $d \leftarrow x' - r$ and outputs 1 (Accept) if $f(d) = 1$; otherwise outputs 0 (Reject).

Completeness and Soundness: Given that d serves as an NP witness for \mathcal{DL}_p^f, the completeness and soundness follow immediately.

Hiding:

• **Simulating for the Honest Prover**: We define a simulator Sim_P that samples r uniformly at random from \mathbb{Z}_{p-1} and outputs (g^r, r). This Sim_P is clearly efficient and the simulated distribution is identical to the honest prover’s view in the protocol, thus ensuring perfect hiding.

• **Simulating for a Malicious Prover**: In this one-round instance-hiding interactive proof, the prover’s P^* is a random process dependent on verifier’s message. Because the simulator is unbounded and verifier’s message follows the uniform distribution over \mathbb{Z}_p^*, Sim_{P^*} will sample a uniform $\alpha \leftarrow \mathbb{Z}_p^*$, and output $(\alpha, P^*(\alpha))$.

Example 2: DL2 on Schnorr group The Schnorr group is commonly used in the construction of public-key encryption and signatures schemes (see, e.g.,[SS01]). Here we provide an example of problem based on the Schnorr group, for which we show a two-round instance-hiding interactive proof. However, it is not clear whether it has a one-round instance-hiding IP.

Definition A.4 (Schnorr group [Sch91]). A Schnorr group is a large prime-order subgroup of \mathbb{Z}_p^*, defined by a tuple (p,q,g) where:
- p and q are primes,
- q divides $p - 1$,
- g is a generator of the subgroup G of \mathbb{Z}_p^* of order q.

Definition A.5. Given a Schnorr group G defined by (p,q,g_1) and any generator g_2 of \mathbb{Z}_p^*, we define the promise problem $\mathcal{DL}_p^f(q,g_1, g_2)$ with respect to an arbitrary predicate $f: \mathbb{Z}_{q-1} \to \{0,1\} \cup \{\bot\}$ as:
- $\text{YES}(\mathcal{DL}_p^f(q,g_1, g_2)) = \{y \in G \setminus \{1\} \mid \exists x \in \mathbb{Z}_{q-1} : f(x) = 1 \land g_1^{g_2 x} = y\}$.

58
\(\text{No}(\mathcal{DL}_2^{f,p,q,g_2}) = \{ y \in G \setminus \{1\} \mid \exists x \in \mathbb{Z}_{q-1} : f(x) = 0 \land g_2^{g_2^x} = y \} \).

Proposition A.6. Consider any Schnorr group \(G \) defined by \((p,q,g_1)\), generator \(g_2 \) of \(\mathbb{Z}_q^* \), and function \(f : \mathbb{Z}_{q-1} \to \{0,1\} \cup \{\perp\} \) that is computable in \(\text{polylog}(p) \) time. The promise problem \(\mathcal{DL}_2^{f,p,q,g_1,g_2} \) has a perfect strong-IHIP where the verifier and the simulator for the honest prover run in time \(\text{polylog}(p) \).

Proof of Proposition A.6. The IHIP protocol (as shown in Figure 9) for \(\mathcal{DL}_2^{f,p,q,g_1,g_2} \), similar to that for \(\mathcal{DL}_2^{f,p,g_1} \), leverages the random self-reducibility of discrete logarithm in \(\mathbb{Z}_p^* \) to compute the value \(z \in \mathbb{Z}_q^* \) in an oblivious manner such that \(y = g_1^z \). This procedure is then repeated to get \(x \in \mathbb{Z}_{q-1} \) such that \(z = g_2^x \).

IHIP for \(\mathcal{DL}_2^{f,p,q,g_1,g_2} : \langle P,V(y) \rangle \)

Parameters: A Schnorr group \(G \) defined by \((p,q,g_1)\), and generator \(g_2 \) of \(\mathbb{Z}_q^* \).

Ingredient:
- Function \(f : \mathbb{Z}_{q-1} \to \{0,1\} \cup \{\perp\} \).
- A bit \(t \in \{0,1\} \) initialized to be 1 that verifier keeps for delay rejection.

Protocol:
1. \(V \) does:
 - (a) Samples a random \(r_1 \leftarrow \mathbb{Z}_q \).
 - (b) Randomize the \(y \) using \(r_1 \): \(y' \leftarrow y \cdot g_1^{r_1} \mod p \).
2. \(V \) sends \(y' \) to \(P \).
3. \(P \) compute \(z^{\prime\prime} \in \mathbb{Z}_q \) such that \(g_1^{z^{\prime\prime}} = y' \), and sends \(z^{\prime\prime} \) to \(V \).
4. \(V \)
 - (a) Verifies that \(g_1^{z^{\prime\prime}} = y' \), if not, set \(t = 0 \).
 - (b) Computes \(z' \leftarrow z^{\prime\prime} - r_1 \). By promise, \(z' \in \mathbb{Z}_q^* \).
 - (c) Samples \(r_2 \leftarrow \mathbb{Z}_{q-1} \), and computes \(z'' \leftarrow z' \cdot g_2^{r_2} \mod q \), and sends \(z'' \) to \(P \).
5. \(P \) finds \(x^{\prime\prime} \in \mathbb{Z}_{q-1} \) such that \(g_2^{x^{\prime\prime}} = z'' \) and sends \(x^{\prime\prime} \) to \(V \).
6. \(V \)
 - (a) Checks \(g_2^{x^{\prime\prime}} = z'' \), if not outputs 0 (Reject).
 - (b) Computes \(x' \leftarrow x^{\prime\prime} - r_2 \mod q - 1 \).
 - (c) If \(f(x') = 1 \) and \(t = 1 \), outputs 1 (Accept), otherwise outputs 0 (Reject).

\(^a \)Verifier will reject at the final stage even if the prover fails at an earlier stage to ensure hiding.

Figure 9: Ins-HIP for \(\mathcal{DL}_2^{f,p,q,g_1,g_2} \)

Completeness and Soundness: Given that \(x^* \) is an \(\text{NP} \) witness for \(\mathcal{DL}_2^{f,p,q,g_1,g_2} \), the completeness and soundness follow immediately.

Hiding:
- **Simulating for the Honest Prover:** We define the efficient simulator \(\text{Sim}_P \) for honest prover as follows:
Sim_{P}(n) :
1. a \leftarrow \mathbb{Z}_q.
2. b \leftarrow g_1^a \mod p.
3. Samples c \leftarrow \mathbb{Z}_{q-1}.
4. Computes b' \leftarrow g_2^c \mod q.
5. Outputs (b, a, b', c).

Sim_{P} perfectly simulates the public view because:
- z' = (g_a^2 + r_1 \mod q) in Figure 9 is uniformly distributed over \mathbb{Z}_q.
- x' = (x^* + r_2 \mod q - 1) in Figure 9 is uniformly distributed over \mathbb{Z}_{q-1}.

Hence the output distribution of Sim_{P} (a, b, b', c) is identical to the public view of the protocol Figure 9 (y', z'^*, z'', x'^*).

• Simulating for a Malicious Prover: Similarly, the two messages from V are independently uniformly distributed over \mathbb{G} and \mathbb{Z}_q^* respectively. For any malicious prover P', Sim_{P'} will simulate identical public view distribution as follows:

Sim_{P'}(n) :
1. a \leftarrow \mathbb{Z}_q.
2. b \leftarrow g_1^a \mod p.
3. Samples P' randomness: r_{P'} \leftarrow \mathcal{R}_{P'}.
4. Runs a^* \leftarrow P'(b; r_{P'}).
5. Samples c \leftarrow \mathbb{Z}_{q-1}.
6. Computes b' \leftarrow g_2^c \mod q.
7. Runs c^* \leftarrow P^*(b, a^*, b')
8. Outputs (r_{P'\ast}, b, a^*, b', c^*).

B Parallel Repetition of Interactive Proofs

Lemma B.1 (See, also [Gol98, Appendix C.]). Consider an interactive proof \langle P, V \rangle for a promise problem \Pi with completeness and soundness errors at most \delta \leq (1/2 - \Omega(1)), where the verifier V’s input might possibly be private. Let \langle P^{\otimes k}, V^{\otimes k} \rangle be the interactive proof obtained by running k independent copies of \langle P, V \rangle on the same input in parallel and V^{\otimes k} outputting the majority of the outputs. Then \langle P^{\otimes k}, V^{\otimes k} \rangle is an interactive proof for \Pi with completeness and soundness errors at most 2^{-\Omega(k)}.

Proof. Denote the original IP for promise problem \Pi = (\text{Yes}, \text{No}) by \langle P, V \rangle, and the IP after parallel repetition by \langle P^{\otimes k}, V^{\otimes k} \rangle. Suppose \langle P, V \rangle has t rounds of interactions (that is, 2t messages), without loss of generality with the verifier speaking first. We will borrow the notations of elements on interactive proof from Section 4. The completeness of \langle P^{\otimes k}, V^{\otimes k} \rangle follows immediately from the completeness of \langle P, V \rangle using a Chernoff bound. So we concentrate on proving its soundness.

60
Fix any input \(x \notin \text{No}_n \). We define the following function that keeps track of the greatest probability of the verifier accepting starting from any point in the protocol. For any \(i \in [0, t] \), any \(u_1, \ldots, u_i \in \mathcal{U} \) and \(y_1, \ldots, y_i \in \mathcal{Y} \):

\[
p(u_1, y_1, \ldots, u_i, y_i) = \max_{P_*} \Pr[\langle P^*, \mathcal{V} \rangle \text{ accepts } | \text{ the first } 2i \text{ messages were } (u_1, y_1, \ldots, u_i, y_i)]
\]

Note that it is sufficient to take the max above over deterministic prover strategies \(P^* \), as given any randomized prover strategy, we can simply fix the random string that maximises the acceptance probability for the given input.\(^{10}\) Thus, the above probability is only over the remaining random choices \((u_{i+1}, \ldots, u_t)\) of the verifier. Using the notation \(\bar{u}_i = (u_1^i, \ldots, u_k^i) \), we similarly define the following function for the repeated protocol:

\[
p'(\bar{u}_1, \bar{y}_1, \ldots, \bar{u}_i, \bar{y}_i) = \max_{P_*} \Pr[\langle P^{\otimes k*}, \mathcal{V}^{\otimes k} \rangle \text{ accepts } | \text{ the first } 2i \text{ messages were } (\bar{u}_1, \bar{y}_1, \ldots, \bar{u}_i, \bar{y}_i)]
\]

The soundness guarantee of \(\langle P, \mathcal{V} \rangle \) may be interpreted as the statement \(p(\phi) \leq \delta \) (where \(\phi \) represents the empty string). Our objective will be to similarly prove that \(p'(\bar{\phi}) \leq 2^{-\Omega(k)} \). Define the following function \(M : \{0, 1\}^k \to \{0, 1\} \) that computes the probability that the sum of \(k \) independent Bernoulli random variables, with parameters \(g_1, \ldots, g_k \), is at least \(k/2 \):

\[
M(g_1, \ldots, g_k) = \sum_{k/2 \leq |i| \leq k} \prod_{j \in [k]} \left(b_j \cdot q_j + (1 - b_j) \cdot (1 - q_j) \right).
\]

We will use the following property of \(M \) that follows from the fact that it is a multilinear polynomial in the \(q_j \)'s. For any set of distributions \(U_1, \ldots, U_k \) over \(\mathcal{U} \) and any set of functions \(g_1, \ldots, g_k \),

\[
\mathbb{E}_{(u_1, \ldots, u_k) \sim U_1 \times \cdots \times U_k} [M(g_1(u_1), \ldots, g_k(u_k))] = \sum_{|i| \geq k/2} \mathbb{E}_{(u_1, \ldots, u_k)} \left[\prod_{j \in [k]} (b_j \cdot g(u_j) + (1 - b_j) \cdot (1 - g(u_j))) \right]
\]

\[
= \sum_{|i| \geq k/2} \prod_{j \in [k]} \mathbb{E}_{u_j} \left[(b_j \cdot g(u_j) + (1 - b_j) \cdot (1 - g(u_j))) \right]
\]

\[
= M \left(\mathbb{E}_{u_1} [g(u_1)], \ldots, \mathbb{E}_{u_k} [g(u_k)] \right).
\]

where the first and third equalities are from linearity of expectation, and the second follows from the fact that the \(u_j \)'s are being sampled independently of each other. We have similar behavior with the max operator as well because \(M(g_1, \ldots, g_k) \) is non-decreasing with each of the \(g_j \)'s:

\[
\max_{(g_1, \ldots, g_k) \in \mathcal{Y}^k} M(g_1(y_1), \ldots, g_k(y_k)) = M \left(\max_{y_1} g(y_1), \ldots, \max_{y_k} g(y_k) \right).
\]

Recall that our objective is to prove that \(p'(\phi) \leq 2^{-\Omega(k)} \). We will prove the following claim, which implies this statement (through a Chernoff bound) when the \(i \) in it is set to 0 as long as the original protocol has soundness error \(\delta \) less than \((1/2 - \Omega(1))\).

Claim B.1.1. For each \(i \in [0, t] \), and any \(\bar{u}_1, \ldots, \bar{u}_i \in \mathcal{U}^k \) and \(\bar{y}_1, \ldots, \bar{y}_i \in \mathcal{Y}^k \),

\[
p'(\bar{u}_1, \ldots, \bar{y}_i) = M \left(p(u_1^i, \ldots, y_i^i), \ldots, p(u_k^i, \ldots, y_i^i) \right).
\]

\(^{10}\)In the case where the prover does not take instance as input (e.g. IHIP), a universal deterministic optimal prover that is optimal for all instances may not exist. But for one particular instance \(x \), an deterministic optimal strategy always exists (see, also [GS86, Section 4.2]).
We prove this claim by induction. First, note that for \(i = t \), \(p'(\bar{u}_1, \ldots, \bar{y}_t) \) is either 1 or 0 depending on whether a majority of the complete proofs \((u'_1, \ldots, y'_t) \) are accepted by \(V \). In other words, it is 1 if a majority of \(p(u'_1, \ldots, y'_t) \) are 1, and 0 otherwise. This proves the base case \(i = t \).

Denote by \(U_{(u_1, \ldots, y_i)} \) (Similarly, \(\bar{U}_{(\bar{u}_1, \ldots, \bar{y}_i)} \)) the distribution of verifier’s message conditioned on the first \(2i \) messages in the protocol being \((u_1, y_1, \ldots, u_i, y_i) \). To perform our induction, we start by noting the following properties of \(p \) that follow by definition.

Claim B.1.2. For \(i \in [0, t - 1] \), and any \(u_1, \ldots, u_i \in \mathcal{U} \) and \(y_1, \ldots, y_i \in \mathcal{Y} \),

\[
p(u_1, \ldots, y_i) = \mathbb{E}_{u_{i+1} \sim U(u_1, \ldots, y_i)} \left[\max_{y_{i+1} \in \mathcal{Y}} p(u_1, \ldots, y_i, y_{i+1}) \right].
\]

Proof of Claim B.1.2. The claim follows immediately by the manner in which an IP operates. Given that \(u_1, \ldots, y_i \) are the first \(2i \) messages, the next message \(u_{i+1} \) is sampled from \(\mathcal{U} \) by the verifier according to the distribution \(U(u_1, \ldots, y_i) \). Thus, \(p(u_1, \ldots, y_i) \) is the expectation over such \(u_{i+1} \) of the maximum probability that the verifier can be made to accept given \(u_{i+1} \) was its next message. This is precisely the expression in the right-hand side.

By identical arguments, we also have the following analogous relation for \(p' \) for any \(i \in [0, t - 1] \) and any \(\bar{u}_1, \ldots, \bar{u}_i \in \mathcal{U}^k \) and \(\bar{y}_1, \ldots, \bar{y}_i \in \mathcal{Y}^k \):

\[
p'(\bar{u}_1, \ldots, \bar{y}_i) = \mathbb{E}_{\bar{u}_{i+1} \sim \bar{U}(\bar{u}_1, \ldots, \bar{y}_i)} \left[\max_{\bar{y}_{i+1} \in \mathcal{Y}^k} p'(\bar{u}_1, \ldots, \bar{y}_i, \bar{u}_{i+1}, \bar{y}_{i+1}) \right]. \tag{14}
\]

Now, suppose Claim B.1.1 was true for some \(i^* \in [0, t] \). Then, we show how to prove it for \(i^* - 1 \), which would complete the inductive argument. We do this by writing (14) as follows:

\[
p'(\bar{u}_1, \ldots, \bar{y}_{i^*-1}) = \mathbb{E}_{\bar{u}_{i^*} \sim \bar{U}(\bar{u}_1, \ldots, \bar{y}_{i^*-1})} \left[\max_{\bar{y}_{i^*} \in \mathcal{Y}^k} p'(\bar{u}_1, \ldots, \bar{y}_{i^*-1}, \bar{u}_{i^*}, \bar{y}_{i^*}) \right]
\]

\[= \mathbb{E}_{\bar{u}_{i^*} \sim \bar{U}(\bar{u}_1, \ldots, \bar{y}_{i^*-1})} \left[\max_{\bar{y}_{i^*} \in \mathcal{Y}^k} M \left(\ldots, p(u_{i^*}^1, \ldots, y_{i^*}^1, u_{i^*}^2, \ldots, y_{i^*}^2, \ldots) \right) \right]
\]

\[= \max_{\bar{u}_{i^*} \sim \bar{U}(\bar{u}_1, \ldots, \bar{y}_{i^*-1})} \mathbb{E}_{\bar{u}_{i^*} \sim \bar{U}(\bar{u}_1, \ldots, \bar{y}_{i^*-1})} \left[\max_{\bar{y}_{i^*} \in \mathcal{Y}^k} p(u_{i^*}^1, \ldots, y_{i^*}^1, u_{i^*}^2, \ldots, y_{i^*}^2, \ldots) \right]
\]

\[= M \left(\ldots, p(u_1^1, \ldots, y_1^1), \ldots \right).
\]

where the second equality follows from the induction hypothesis, the third from (13), and the fourth from (12). The final inequality follows from Claim B.1.2. This proves Claim B.1.1 by induction, and thus the requisite bound on the soundness error of \(\langle p^\otimes k, V^\otimes k \rangle \).

\[\square\]

C Randomized Encodings and Input-Hiding IP

In this section, we study proof systems with hiding properties slightly weaker than those of instance-hiding interactive proofs. In these *input-hiding* interactive proofs, the prover is allowed to learn the whether the instance is a YES or NO instance, but nothing else about it. We study the relationship between such proofs, IHIPs, and Statistical Randomized Encodings.
Completeness: For any input $x \in \text{YES}_n$:
$$\Pr[(P(n), V(x)) = 1] \geq 1 - \delta(n).$$

Soundness: For any input $x \in \text{NO}_n$, and any prover P^*:
$$\Pr[(P^*(n), V(x)) = 1] \leq \delta(n).$$

Input-Hiding: For any prover P^*, there exists a computationally unbounded randomized algorithm Sim_{P^*}, called a simulator, such that for any input $x \in \text{YES}_n \cup \text{NO}_n$,
$$\Delta\left(\text{Sim}_{P^*}(n, \Pi(x)), \text{VIEW}_{P^*}(P^*(n), V(x))\right) < \epsilon(n).$$

If the simulator corresponding to the honest prover runs in polynomial time in n, we say the protocol is Strong-Input-Hiding (Strong-Inp-HIP). The protocol is perfectly-hiding Inp-HIP if $\epsilon(n) = 0$ for all n. If a simulator is only guaranteed to exist only for the honest prover P, the protocol is honest-prover Inp-HIP.

Definition C.2 (Class Inp-HIP, Inp-HIP/Poly). The class Inp-HIP consists of all promise problems that have a (δ, ϵ)-Inp-HIP with uniform verifier protocol for some negligible $\delta(n)$ and $\epsilon(n)$. For concrete functions (δ, ϵ), we denote by (δ, ϵ)-Inp-HIP the class of problems possessing (δ, ϵ)-Inp-HIP. Similarly, Inp-HIP/Poly denotes the class of promise problem that have a (δ, ϵ)-Inp-HIP with non-uniform verifier protocol for some negligible $\delta(n)$ and $\epsilon(n)$.

Lemma C.3 (Parallel Amplification for Inp-HIP). Consider a promise problem $\Pi \in \text{Inp-HIP}$, and suppose (P, V) is a (δ, ϵ)-Inp-HIP for Π. Let $k(\cdot)$ be such that $k < 1/\epsilon$, and define (P_k, V_k) as the protocol that, given input x, execute (P, V) in parallel $k(n)$ times on input x and outputs the majority of the results. Then (P_k, V_k) is a $(\min(\delta, 2^{-\Omega(k)}), k \cdot \epsilon)$-Inp-HIP for Π.

Proposition C.4 (Inp-HIP/Poly = co-Inp-HIP/Poly). If a problem Π has a (δ, ϵ)-Inp-HIP protocol (possibly with a non-uniform verifier), where δ and ϵ are negligible functions, then the complement of Π also possesses a (δ', ϵ')-Inp-HIP protocol (resp. with a non-uniform verifier if starting with a non-uniform verifier), for some negligible functions δ' and ϵ'.

Proof Sketch of Proposition C.4.

Claim C.4.1. Consider a promise problem Π with characteristic function $f : \text{YES} \cup \text{NO} \rightarrow \{0, 1\}$, and let (P, V) be a (δ, ϵ)-Inp-HIP for Π and $\ell = f$, then (P, V) is a (ϵ, δ, ℓ)-IHD for f.

Claim C.4.2. Let f be the characteristic function for the promise problem Π and $\ell = f$. If (P, V) is a (δ, ϵ, ℓ)-verifiable instance-hiding delegation (resp. strong (δ, ϵ, ℓ)-verifiable instance-hiding delegation) for f, then there exists a (δ, ϵ)-input-hiding proof (resp. (δ, ϵ, ℓ)-strong input-hiding interactive proof) (P', V') for Π.

Proof Sketch. The proof of Claim C.4.1 and Claim C.4.2 mirror the proof of Proposition 7.2 and Proposition 7.4 respectively.

Combining Claim C.4.1, Claim C.4.2, Proposition 7.7, and Proposition 7.8, the proposition follows.
C.1 IHIP/Inp-HIP from SRE

Input-hiding IPs are closely related to the notion of Randomized Encodings (RE) of promise problems [AIK04], which has been implicitly studied in the context of secure multiparty computation [Yao86, Kil88, FKN03], and has subsequently been explicitly explored as a cryptographic primitive [IK00, AIK04, AIKPC15]. In fact, Inp-HIP can be shown to be equivalent to an interactive version of RE for promise problems as defined by Applebaum et al. [AIK10]. We will show how to use a Statistical Randomized Encoding (SRE) for a problem to construct Inp-HIP for it. An oracle separation of IHIP from SRE follows Theorem 6.4 because \(\text{SRE} \subseteq \text{SZK} \) [App14a].

Given a function \(f \) and an input \(x \), the Randomized Encoding reveals the value \(f(x) \) without revealing anything else about \(x \). The proof methodology used to prove Theorem C.7 can be broadened to demonstrate that input-hiding IPs are in fact equivalent to an interactive variant of Randomized Encodings, as defined by Applebaum et al. [AIK10].

Definition C.5 (Statistical Randomized Encodings [IK00, AIK04, AIKPC15]). We say that an efficient randomized algorithm \(\text{Enc} \) is an \(\epsilon \)-private and \(\delta \)-correct Statistical Randomized Encoding of a promise problem \(\Pi = (\text{Yes}, \text{No}) \) (abbreviated \((\delta, \epsilon) \)-SRE), if the following holds:

- **\(\epsilon \)-privacy** : There exists an efficient simulator \(\text{Sim} \) such that:
 - For any yes-instance \(x_{\text{yes}} \in \text{Yes}_n \):
 \[
 \Delta(\text{Sim}(n, 1), \text{Enc}(x_{\text{yes}})) \leq \epsilon(n).
 \]
 - For every no-instance \(x_{\text{no}} \in \text{No}_n \):
 \[
 \Delta(\text{Sim}(n, 0), \text{Enc}(x_{\text{no}})) \leq \epsilon(n).
 \]

- **\(\delta \)-correctness** : There exists a computationally unbounded decoder \(\text{Dec} \), such that for every instance \(x \in \text{Yes}_n \cup \text{No}_n \),
 \[
 \Pr[\text{Dec}(\text{Enc}(x)) \neq \Pi(x)] \leq \delta(n).
 \]

If left unspecified, \(\epsilon(n) \) and \(\delta(n) \) are required to be negligible functions by default.

Definition C.6 (Class SRE [AIKPC15]). The class \(\text{SRE} \) is defined as the set of all promise problems that admit a \((\delta,\epsilon)\)-SRE for negligible functions \(\epsilon(n), \delta(n) \).

Theorem C.7. Suppose, for some functions \(\delta \) and \(\epsilon \), promise problem \(\Pi \) has a \((\delta,\epsilon)\)-SRE. Then for any polynomial \(g \), \(\Pi \) also has a \((\delta',\epsilon')\)-Inp-HIP and strong \((\delta'',\epsilon'')\)-Inp-HIP, where \(\delta'' = \delta' = \max (\epsilon + O(\frac{1}{g}), g \cdot (\epsilon + \delta)) \), \(\epsilon' = \epsilon \) and \(\epsilon'' = \epsilon + g \cdot \delta \).

Corollary C.8. \(\text{SRE} \subseteq \text{Inp-HIP} \)

Proof of Theorem C.7. For a promise problem \(\Pi \) with SRE \((\text{Enc}, \text{Dec}, \text{Sim}_{\text{SRE}}) \), given input instance \(x \in \text{Yes}_n \cup \text{No}_n \), the high level idea is to hide \(\text{Enc}(x) \) among a sequence of samples from \(\text{Sim}_{\text{SRE}}(n, 1) \) and \(\text{Sim}_{\text{SRE}}(n, 0) \), and ask the prover for to run \(\text{Dec} \) on them and return the results. The verifier can verify that the correctness of responses to the simulated samples, and accept the prover’s assertion regarding \(\text{Enc}(x) \) if they are all correct. The Inp-HIP protocol for \(\Pi \) is presented in Figure 10. We now compute its completeness, soundness, and instance-hiding errors in terms of the parameters \(\delta = \delta(n), \epsilon = \epsilon(n), \) and \(g \).

Completeness: Given the definitions of \(\epsilon \)-privacy and \(\delta \)-correctness from SRE, it is implied that the probability of the prover finding the correct value \(b_j^* = b_j \) for each \(j \neq i \) is at least \(1 - (1 - \epsilon - \delta) \). Consequently, the probability of \(P \) determining the correct values of \(b_i \) for all \(i \in [g] \) is bounded below by \((1 - \epsilon - \delta)^2 \cdot (1 - \delta) \approx 1 - g \cdot (\epsilon + \delta) \). Thus, the completeness error is at most \(g \cdot (\epsilon + \delta) \).

\(^{11}\) This formulation of method is similar to the one from section 1.1 of [AIK04] and section 1.2 of [GGH⁺07]
Inp-HIP from SRE: \(\langle P(\Pi(x)), V(x) \rangle \)

Parameters: Input length \(n, g \).

Input:

- Prover’s Input: A bit \(b = \Pi_n(x) = \begin{cases} 1, & \text{if } x \in \text{Yes}(\Pi_n) \\ 0, & \text{if } x \in \text{No}(\Pi_n) \end{cases} \)
- Verifier’s Input: Private instance \(x \).

Ingredients:

- \((\text{Enc}, \text{Dec}, \text{Sim}_{\text{SRE}})\) is a \((\delta, \epsilon)\)-SRE for \(L \).

Protocol:

1. \(V \) does:

 (a) Samples a random index \(j \leftarrow [g] \) (to place the instance \(x \)).

 (b) Encodes the instance as: \(q_j \leftarrow \text{Enc}(x) \).

 (c) For \(i \in [g] \setminus \{j\}; \)

 Sample a random bit \(b_i \leftarrow \{0, 1\} \),

 If \(b_i = 1 \)

 Simulates a “yes” instance: \(q_i \leftarrow \text{Sim}_{\text{SRE}}(n, 1) \).

 Else

 Simulates a “no” instance: \(q_i \leftarrow \text{Sim}_{\text{SRE}}(n, 0) \).

2. \(V \) sends the \((q_1, \ldots, q_g)\) to the prover \(P \).

3. \(P \) decodes each \(q_i \): \(b_i^* \leftarrow \text{Dec}(q_i) \)

4. \(P \) sends the bits \((b_1^*, \ldots, b_g^*)\) back to the verifier \(V \).

5. \(V \) accepts if \(b_i^* = b_i \) for all \(i \neq j \) and \(b_j^* = 1 \); otherwise, it rejects.

Figure 10: Simulator for Inp-HIP from SRE

Soundness: We use \(Y_0 \) and \(Y_1 \) as the shorthand for distribution \(\text{Sim}_{\text{SRE}}(n, 0) \) and \(\text{Sim}_{\text{SRE}}(n, 1) \) respectively. Let \(\text{swap} \) be a randomized function that takes as input a tuple of \(g \) elements \(\vec{y} \) from the domain of \(Y_0 \) (and \(Y_1 \)). It samples a \(j \leftarrow [g] \), swaps the first co-ordinate \(y_1 \) of its input with the \(j \)th element \(y_j \), and outputs the resulting tuple \((y_j, y_2, \ldots, y_{j+1}, \ldots, y_g)\). We denote by \(\vec{b} = (b_1, \ldots, b_{g-1}) \) a set of I.I.D uniform bits. Consider any No instance \(x \in \text{No}(\Pi_n) \), we can see that the message from verifier in Figure 10 as \(D_0 : \text{swap}(\text{Enc}(x), Y_{b_1}, \ldots, Y_{b_{g-1}}) \). Define \(m_1 = \sum_{i \in [g-1]} b_i \) and \(m_0 = g - 1 - m_1 \), as the number of samples from \(Y_1 \) and \(Y_0 \), respectively, in the particular execution of the sampling process. Then the probability that \(P^* \) can cheat and make \(V \) accept in the end is bounded by the probability of guessing correctly the \(j \) given a sample from \(D_0 \). Consider a hybrid distribution \(D_1 = \text{swap}(Y_0, Y_{b_1}, \ldots, Y_{b_{g-1}}) \). Given a sample from \(D_1 \), the probability of guessing the \(j \) chosen during its sampling process correctly is at most \(\frac{1}{m_0} \). By the \(\epsilon \)-privacy of SRE and data processing inequality we have:

\[
\Delta(D_0, D_1) \leq \Delta(\text{Enc}(x), Y_0) \leq \epsilon.
\]
Thus, the probability that P^* can make V accept is at most $\left(\frac{1}{m_0} + \epsilon \right)$. Because m_0 is essentially computed as the sum of $(g - 1)$ random bits, follows Chernoff bound:

$$\Pr \left[m_0 < \frac{g}{3} \right] \leq e^{-\Omega(g)}.$$

Apply a union bound, we have:

$$\Pr \left[(P^*, V(x)) = 1 \right] \leq e^{-\Omega(g)} + O \left(\frac{1}{g} \right) + \epsilon = \epsilon + O \left(\frac{1}{g} \right),$$

which is the soundness error in the resulting protocol.

ϵ'-Input-hiding: For any prover P^*, the corresponding simulator Sim_{P^*} for input-hiding is defined as in Figure 11.

Simulator for Inp-HIP from SRE: $Sim_{P^*} (n, b = \Pi(x))$

Parameters: input length n, g

Ingredients:
- Prover algorithm P^*
- $(\text{Enc}, \text{Dec}, \text{Sim}_{SRE})$ represents an (δ, ϵ)-SRE for L.

Inputs:
- Input length n
- A bit b, indicating Yes/No outcomes.

Procedure:

1. $j \leftarrow [g]$
2. **If** $b = 0$, $q_i \leftarrow \text{Sim}_{SRE}(n, 0)$, **Else**, $q_i \leftarrow \text{Sim}_{SRE}(n, 1)$
3. **For** $i \in [g]\setminus\{j\}$
 - $b_i \leftarrow \{0, 1\}$
 - **If** $b_i = 1$, then $q_i \leftarrow \text{Sim}_{SRE}(n, 1)$.
 - **Else**, $q_i \leftarrow \text{Sim}_{SRE}(n, 0)$.
4. Compute $(b_1^*, \ldots, b_g^*) \leftarrow P^*(q_1, \ldots, q_g)$
5. Output $(q_1, \ldots, q_g, b_1^*, \ldots, b_g^*)$.

Figure 11: Simulator for Inp-HIP from SRE

In this protocol, which involves only two messages, the prover’s response is determined solely by the verifier’s initial message. Therefore, we can disregard the prover’s randomness and focus solely on verifier’s message. According to the data processing inequality, this approach is sufficient for proving the quality of the simulation.

Observe that the simulator’s behavior mirrors the actual protocol, with one key difference: instead of using an encoding of the input x as the verifier does, the simulator uses a sample from Sim_{SRE}. By the privacy of the SRE, the distance between $\text{Enc}(x)$ and $\text{Sim}_{SRE}(n, \Pi(x))$ is at most ϵ. Consequentially, by the data processing inequality, this also sets a upperbound on the statistical distance between the simulated transcript and the actual protocol.
Strong \((\epsilon'')\)-Input-hiding: An efficient honest-prover simulator \(\text{Sim}_p\) can be constructed similar to that in Figure 11, except that \(\text{Sim}_p\) outputs \((q_1, \ldots, q_g, b_1, \ldots, b_g)\) directly instead of running inefficient \(P\). Due to the correctness error of \(P\), conditioned on any \((q_1, \ldots, q_g)\), the distance between \((b_1, \ldots, b_g)\) and \((b_1^*, \ldots, b_g^*)\) is bounded by \(g \cdot \delta\). Therefore, the hiding error of \(\text{Sim}_p\) is \(\epsilon'' = \epsilon + g \cdot \delta\). The lemma thus follows.

\(\square\)

Setting Parameters: Following the above lemma, the errors in the protocol are as follow:

- Completeness: \(g \cdot (\epsilon + \delta)\).
- Soundness: \(\epsilon + O\left(\frac{1}{g}\right)\).
- Input-hiding: \(\epsilon\).
- Strong Input-hiding: \(\epsilon + g \cdot \delta\)

For any inverse polynomial \((\delta, \epsilon)\), by setting \(g = \frac{1}{\sqrt{\epsilon + \delta}}\), we get IHIP with \(\sqrt{\epsilon + \delta}\) completeness/soundness error. For negligible \((\delta, \epsilon)\), by setting \(g\) to be large enough polynomial, we get a input-hiding with slightly weaker soundness, which can be amplified through parallel repetition ensured by Lemma C.3.

Theorem C.9. Suppose, for some negligible functions \(\delta\) and \(\epsilon\), the promise problem \(\Pi\) has a \((\delta, \epsilon)\)-SRE. Then, for any polynomial \(p(\cdot)\), there exists a negligible function \(\delta'\) such that \(\Pi\) has a strong \((\delta', 1/p)\)-IHIP.

Proof of Theorem C.9. Given that a promise problem \(\Pi\) has SRE \((\text{Enc}, \text{Dec}, \text{Sim}_{SRE})\), the IHIP protocol that we construct is the same as the protocol in Figure 10. The completeness and soundness errors are as in the proof of Theorem C.7, and the only difference is the construction of the simulator, which is given in Figure 12. In the setting of IHIP, different from Inp-HIP, the result \(\Pi(x)\), is not given to the simulator as an input.

<table>
<thead>
<tr>
<th>Simulator for Ins-HIP from SRE: (\text{Sim}'_p, (n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters:</td>
</tr>
<tr>
<td>Ingredients:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Inputs:</td>
</tr>
<tr>
<td>Procedure:</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Similarly, an efficient \(\text{Sim}_p\) will not run \(P\) but set \(b_i^* = b_i\) directly.

Figure 12: Simulator for Ins-HIP from SRE
As seen in the proof of Theorem C.7, for an inefficient simulator, we can focus solely on the verifier’s first message due to data processing inequality. The analysis of efficient simulator Sim for honest prover, as described in the footnote of Figure 11, will be provided at the end of the proof. Consider any prover P∗, simulator Sim∗ as shown in Figure 11, and Sim′∗ in Figure 12. We remark that the output distribution of Sim′∗(n) is an equal convex combination of Sim∗(n, 0) and Sim∗(n, 1). Consider a Yes instance xyes ∈ Yes(Πn) (arguments for No instances are symmetric). Following the observation about the convex combination, the distance between the simulated transcript and the actual protocol is bounded as:

\[\Delta (Sim′∗(n), ViewP(⟨P∗, V(xyes)⟩)) \leq \frac{1}{2} \cdot \Delta (Sim∗(n, 0), ViewP(⟨P∗, V(xyes)⟩)) + \frac{1}{2} \cdot \Delta (Sim∗(n, 1), ViewP(⟨P∗, V(xyes)⟩)). \quad (15) \]

The second term above is bounded in the proof of Theorem C.7 by ε, demonstrating input-hiding. We now bound the first term.

We define the symbols m0, m1, Y0, Y1 as in the proof of Theorem C.7, and recall that m0 and m1 follow the binomial distribution Binomial(1/2, g − 1) as noted there. We define the following sampling process that captures the protocol and the simulator for different choices of Y:

\[\begin{align*}
D(Y_0, Y_1, Y) : \\
1. & \text{ Sample } m_0 \leftarrow \text{Binomial}\left(\frac{1}{2}, g - 1\right) \\
2. & \text{ Outcome } m_0 \\
3. & y_0^1, \ldots, y_0^{m_0} \leftarrow Y_0 \\
4. & y_1^1, \ldots, y_1^{m_1} \leftarrow Y_1 \\
5. & y \leftarrow Y \\
6. & \text{ Output a random permutation of } (y, y_0^1, \ldots, y_0^{m_0}, y_1^1, \ldots, y_1^{m_1})
\end{align*} \]

For any instance xyes ∈ Yes(Π), define the following hybrid distributions:

- \(D_0 : D(Y_0, Y_1, \text{Enc}(xyes)) \).
- \(D_1 : D(Y_0, Y_1, Y_1) \).
- \(D_2 : D(Y_0, Y_1, Y_0) \).

The first term in Eq. (15) is the distance \(\Delta(D_0, D_2) \), which we seek to bound. The arguments about input-hiding in the proof of Theorem C.7 give us the following claim.

Claim C.9.1. \(\Delta(D_0, D_1) \leq \epsilon \).

We bound the distance between \(D_1 \) and \(D_2 \) as follows.

Claim C.9.2. \(\Delta(D_1, D_2) \leq \frac{2}{\sqrt{g}} \).

Proof of Claim C.9.2. Define two distributions \(H_0, H_1 \):

\[\begin{align*}
H_1 : \\
1. & \text{ Sample } m_0 \leftarrow \text{Binomial}\left(\frac{1}{2}, g - 1\right) \\
2. & \text{ Outcome } m_0 \\
\end{align*} \]

\[\begin{align*}
H_0 : \\
1. & \text{ Sample } m_0 \leftarrow \text{Binomial}\left(\frac{1}{2}, g - 1\right) \\
2. & \text{ Outcome } m_0 + 1 \\
\end{align*} \]

Furthermore, consider a process W:
\[W(m, Y_1, Y_0) : \\
1. m_0 \leftarrow m \\
2. m_1 \leftarrow g - m_0 \\
3. \textbf{For} i \leftarrow 1 \text{ to } m_0 : y_i^0 \leftarrow Y_0 \\
4. \textbf{For} i \leftarrow 1 \text{ to } m_1 : y_i^1 \leftarrow Y_1 \\
5. \text{Output a random permutation of } (y_1^0, \ldots, y_{m_0}^0, y_1^1, \ldots, y_{m_1}^1) \]

We observe that the sampling processes for \(D_1 \) and \(D_2 \) can be represented as \(W(H_1, Y_1, Y_0) \) and \(W(H_0, Y_1, Y_0) \), respectively. Let \(\mc{Y} \) denote the union the support of \(Y_1 \) and \(Y_0 \). Then, we have:

\[
\begin{align*}
\Delta(D_1, D_2) &= \Delta(W(H_1, Y_1, Y_0), W(H_0, Y_1, Y_0)) \\
&\leq \Delta((H_1, W(H_1, Y_1, Y_0)), (H_0, W(H_0, Y_1, Y_0))) \\
&= \Delta(H_1, H_0) \\
&= \frac{1}{2} \sum_{m \in \{0, 1, \ldots, g\}} |\Pr[H_1 = m] - \Pr[H_0 = m]| \\
&= \frac{1}{2} \cdot \left(\Pr[H_1 = 0] + \Pr[H_0 = g] + \sum_{m \in \{1, \ldots, g-1\}} \left| \frac{g-1}{m} - \frac{(g-1)}{m} \right| \right) \\
&= \frac{1}{2} \cdot \left(2 \cdot \frac{1}{2g-1} + \sum_{m \in \{1, \ldots, \left\lfloor (g-1)/2 \right\rfloor \} \left(\frac{g-1}{m} - \frac{(g-1)}{m} \right) \right) \\
&= \frac{1}{2g-1} \cdot \left(1 + \left(\frac{g-1}{\left\lfloor (g-1)/2 \right\rfloor} - 1 \right) \right) \\
&= \left(\frac{g-1}{\left\lfloor (g-1)/2 \right\rfloor} \right) \\
&\leq O \left(\frac{1}{\sqrt{g}} \right).
\end{align*}
\]

Where Line (2) follows from the data processing inequality, Line (3) is due to the Fact 4.8, and Line (9) from the value of the central binomial coefficient [See, e.g., Section 2.11 in \cite{Luk69}].

Following the triangle inequality, we deduce:

\[
\Delta(D_0, D_2) \leq \Delta(D_0, D_1) + \Delta(D_1, D_2) \leq \epsilon + O \left(\frac{1}{\sqrt{g}} \right).
\]

This allows us to bound the first term in Eq. (15), showing that the instance-hiding error is at most \(\epsilon(n) + O(1/\sqrt{g}) \). Setting \(g \) such that \(\epsilon(n) + O(1/\sqrt{g}) < 1/p \) and the theorem follows.

The efficient simulator \(\text{Sim}_p \), as described in the footnote of Figure 12, is similar to that in the proof of Theorem C.7. It will outputs \((q_1, \ldots, q_g, b_1, \ldots, b_g)\) directly instead of running decoders on \(q_i \) to get \(b_i^* \). We consider an inefficient simulator \(\text{Sim}_p \) for honest prover \(P \) as defined in Figure 12. Following the same argument in the the strong-hiding of Theorem C.7, the distance \(\Delta \left(\text{Sim}_p(n), \text{Sim}_p'(n) \right) \leq g \cdot \delta \). By triangle inequality, \(\Delta \left(\text{Sim}_p(n), \text{VIEW}_P(P, V(x)) \right) \leq \epsilon(n) + O(1/\sqrt{g}) + g \cdot \delta \), which is smaller than \(1/p \) for an appropriate polynomial \(g \ll p^2 \). \(\square \)

69
C.2 IHIP from Inp-HIP

An instance-hiding IP is also clearly an input-hiding IP, and thus $\text{IHIP} \subseteq \text{Inp-HIP}$. We will show that an input-hiding IP can be used to construct an instance-hiding IP for the same problem, with slightly worse hiding. In particular, for any polynomial $p(\cdot)$, it can be proved that that $\text{Inp-HIP} \Rightarrow (1/p, 1/p)$-$\text{IHIP} \Rightarrow (1/p, 1/p)$-$\text{Inp-HIP}$. However, it’s important to note that input-hiding proofs do not strongly equate to instance-hiding proofs. Specifically, we currently lack a method to transform an Inp-HIP with negligible hiding error into an IHIP while only incurring an polynomial-times increase in error.

Theorem C.10. Consider two negligible functions δ, ϵ, and a promise problem Π that possesses a (δ, ϵ)-Inp-HIP, then for any polynomial $p(\cdot)$, there exists a negligible δ' such that Π also has $(\delta', 1/p)$-IHIP. Similarly, if Π is a strong (δ, ϵ)-Inp-HIP, then it has an strong $(\delta', 1/p)$-IHIP, for the same p and δ'.

Together with Theorem 4.1, this implies the following.

Corollary C.11. $\text{Inp-HIP} \subseteq \text{AM/poly} \cap \text{coAM/poly}$.

Combining this with Lemma 3.2, we have the following.

Corollary C.12. If $\text{NP} \subseteq \text{Inp-HIP}/\text{Poly}$, the polynomial hierarchy collapses to the third level.

Proof Sketch of Theorem C.10. This proof almost mirrors that of Theorem C.9, with the random variables defined differently but analogously. So we describe the high level approach here and direct the reader to Theorem C.9 to complete the proof.

Starting with a (δ, ϵ)-Inp-HIP denoted as (P, V), we design a verifier V' which has hardcoded into it a Yes instance $x_1 \in \text{YES}(\Pi)$ and a No instance $x_0 \in \text{NO}(\Pi)$. At the start of its execution, the verifier generates a random sequence of bits $b_1, \ldots, b_{g-1} \leftarrow \{0, 1\}$, and a corresponding sequence $x_{b_1}, \ldots, x_{b_{g-1}}$ composed of the canonical instances. Given an input x, it is inserted into a random location in this sequence.

Subsequently, P' and V' execute (P, V) on each instance in the sequence $x_{b_1}, \ldots, x, \ldots, x_{b_{g-1}}$. V' accepts only if the outcome of the executions are correct on all canonical instances x_{b_i}, and V accepts on x. The completeness and soundness of (P', V') follows from those of (P, V) and standard arguments about composition of interactive proofs.

In order to show instance-hiding, we need to construct a simulator for any prover P^*. Our simulator simply runs the protocol (P^*, V'), except instead of planting a given instance in the sampled sequence as V' does, it again uses a random canonical instance (x_0 or x_1) in its place. Consider the protocol transcript for a Yes instance x_{yes}. The input-hiding property guarantees that if the canonical instance x_1 was used by the simulator, then the simulated transcript is close to the protocol. We then need to show that even if the simulator uses x_0, the simulated transcript is still close. We do this using the fact that the distributions of the number of Yes instances in the sequence $x_{b_1}, \ldots, x, \ldots, x_{b_{g-1}}$ in the case of x being a Yes or a No instance are close (with distance $\approx 1/\sqrt{g}$). In essence, the instance x_{yes} is effectively hidden by all the other randomly chosen instances. In case that (P, V) is a strong (ϵ, δ)-Inp-HIP, a strong (ϵ', δ')-IHIP can be made similarly except that the efficiently simulator Sim_H will output (b_1, \ldots, b_g) directly as in Theorem C.7. The details are identical to those in the proof of Theorem C.9. The proof there shows that any problem with a Statistical Randomized Encoding also has an Ins-HIP. The only change needed in the proof is to format the output of the simulator appropriately, and use the view of P^* instead of the encoding $\text{Enc}(x)$ used there. □