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Abstract. A secret sharing scheme is a cryptographic primitive that
allows a dealer to share a secret among a set of parties, so that only
authorized subsets of them can recover it. The access structure of the
scheme is the family of authorized subsets.
In a weighted threshold access structure, each party is assigned a weight
according to its importance, and the authorized subsets are those in
which the sum of their weights is at least the threshold value. For these
access structures, the share size of the best known secret sharing schemes
is either linear on the weights or quasipolynomial on the number of par-
ties, which leads to long shares, in general.
In certain settings, a way to circumvent this efficiency problem is to
approximate the access structure by another one that admits more effi-
cient schemes. This work is dedicated to the open problem posed by this
strategy: Finding secret sharing schemes with a good tradeoff between
the efficiency and the accuracy of the approximation.
We present a method to approximate weighted threshold access struc-
tures by others that admit schemes with small shares. This method is
based on the techniques for the approximation of the Chow parameters
developed by De et al. [Journal of the ACM, 2014]. Our method provides
secret sharing schemes with share size n1+o(1), where n is the number of
parties, and whose access structure is close to the original one. Namely, in
this approximation the condition of being authorized or not is preserved
for almost all subsets of parties.
In addition, applying the recent results on computational secret sharing
schemes by Applebaum et al. [STOC, 2023] we show that there exist
computational secret sharing schemes whose security is based on the
RSA assumption and whose share size is polylogarithmic in the number
of parties.
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1 Introduction

A secret sharing scheme is a cryptographic primitive that allows a dealer to
share a secret among a set of parties, so that only authorized subsets of them
can recover it. These authorized subsets define the access structure of the scheme,
which is a monotone increasing family of parties.

Secret sharing schemes were introduced independently by Shamir [Sha79] and
Blakley [Bla79] in 1979, when they presented methods for constructing secret
sharing schemes for threshold access structures. In these schemes, the authorized
subsets are those containing at least a given threshold of parties. Interestingly,
these constructions are ideal, in the sense that the length of the share received
by each party is equal to the length of the secret. This is the best situation we
can hope for [KGH83].

Secret sharing schemes are used as a building box in cryptographic protocols
such as multiparty computation and threshold encryption, for example [Bei11].
In many of these applications, schemes with threshold access structures are
enough. However, there are situations that require non-threshold access struc-
tures. This is the case when using secret sharing schemes for protocols in the
proof-of-stake model, where each validator has a stake that depends on the
amount of coins it has and the importance in the system is proportional to the
stake, resulting in a non-uniformly distribution [KRDO17,BCC+21,DPTX24].
Another common case can be found in the stock exchange, where the shares of a
company are non-uniformly distributed among the shareholders and the weight
of their vote depends on the share. In such cases, there is a need of secret shar-
ing schemes with weighted threshold access structures (WTASs). In these access
structures, each party is assigned a weight according to its importance and the
authorized subsets are those in which the sum of their weights is at least the
threshold value.

The share size of best known secret sharing schemes for general weighted
threshold access structures is either linear on the weights [Sha79] or quasipolyno-
mial on the number of parties [BW06], which may lead to long shares, in general.
Recently, there were proposals trying to circumvent this efficiency problem by
approximating the weights by smaller ones or by relaxing the privacy and cor-
rectness problem of the access structure [BHS23,GJM+23,DPTX24], considering
approximations of weighted threshold access structures. This work is dedicated
to the open problem posed by this strategy: Finding secret sharing schemes with
a good tradeoff between the efficiency and the accuracy of the approximation.

1.1 Our Results

In this work, we present a method that, given a weighted threshold access struc-
ture Γ , it provides a secret sharing scheme with small share size that realizes a
weighted threshold access structure Γ ′ that is close to Γ . For that, we translate
our problem into a problem of approximation of monotone Linear Threshold
Functions (LTF) and, in this richer complexity theory framework, we develop
techniques for the approximation of these functions. As a measure of distance



3

between access structures, we consider the Hamming distance. Namely, the error
of the approximation is d/2n, where d is the distance between the access struc-
tures and n is the number of parties of the access structure. Our main result is
the following.

Theorem 1.1 (Informal). For any weighted threshold access structure Γ on n
parties there exists a secret sharing scheme with share size n1+o(1) whose access
structure is o(1)-close to Γ .

The result is constructive, and we provide an efficient algorithm that, given
a weighted threshold access structure Γ , it outputs another weighted threshold
access structure Γ ′ whose weights are much smaller, the distance between Γ
and Γ ′ is small, and the hierarchy among parties is preserved. Then, with the
new weights, it is enough to use the construction of Shamir [Sha79] for weighted
threshold access structures to obtain the secret sharing scheme. The approxima-
tion error is o(1), which means that for almost all subsets of parties the condition
of being authorized or not is not modified in the approximation. Moreover, our
scheme is linear for finite fields F with size log |F| = Ω(log n).

Previous best solutions had different trade-offs, illustrated in Fig. 1. Our
result is in the last row. In some previous works, the bounds are for the total
share size, and not for the share size. Because of that, we decided to present the
bounds for the total share size, that is, the sum of the size of the shares of all
parties. In our construction, it is simply n · n1+o(1).

Our main technical contribution is the use of Chow parameters in the con-
struction of secret sharing schemes for weighted threshold access structures. In
this regard, the approximation of linear threshold functions by Chow parame-
ters is a problem that has been thoroughly studied in the past, giving positive
and negative results (see, for example, [Ser06,OS11,DDFS14]). In particular,
we modify an algorithm for the approximation of Chow parameters by De et
al. [DDFS14] to solve this problem in the monotone case. That is, to guarantee
that all the weights of the approximation are positive. With that, we can approx-
imate weighted threshold access structures with small weights. In this context,
our main result is the following.

Theorem 1.2 (Informal). Let f be a monotone LTF. For any 0 < ϵ there
exists an ϵ-close monotone LTF g represented by an integer vector with norm√
n · quasipoly

(
1
ϵ

)
.

Previous proposals also consider reductions of the weights, by scaling or
rounding them [BHS23,DPTX24], leading to approximated access structures.
These techniques can be replaced by the the Chow parameters approximation
technique developed in this work. Furthermore, we give a lower bound on the
size of the weights obtained by any approximation technique and show that our
strategy is nearly optimal for this task. This is summarized in the following
statement.

Theorem 1.3 (Informal). Let ϵ ∈ (0, 1), and let n ∈ N. There exists a mono-
tone LTF f over n variables such that any monotone LTF ϵ-close to f has integer
weights of size Ω

(√
n, quasipoly

(
1
ϵ

))
.
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Total Share Size
Access

structure
Error Privacy Linear

[Sha79] W logn = 2O(n log(n)) WTAS 0 Perfect Yes

[BW06] nO(log(n)) WTAS 0 Perfect Yes

[GJM+23] W = 2O(n log(n)) (t, t+Ω(λ))-ramp
WTAS

- 2−λ-Stat. No

[BHS23]
Rounding

O
(

n
β−α

) (αW, βW )−ramp
WTAS

- Perfect Yes

[BHS23]
BS Channels

n ·max
{
λ2, poly( 1

α−β
)
} (αW, βW )−ramp

WTAS
- 2−λ-Stat. No

Theorem 1.1 n2+o(1) WTAS o(1) Perfect Yes

Fig. 1. Summary of secret sharing schemes for weighted threshold access structures
with information-theoretic security. In the second column, we give an upper bound
on the total share size of the schemes, considering secrets of 1-bit. We use the fact
that the best upper bound for the size of the weights in weighted threshold access
structures is W = 2O(n logn) [Mur71], which is tight [H̊as94]. In the last two rows,
the bound is obtained by multiplying the bound on the individual share size by n. In
the Access structure column, we distinguish between perfect WTAS and ramp WTAS.
In the Error column, we bound the error in the approximation of weighted threshold
access structures. If the scheme realize exactly the access structure, we set the error to
be 0. Ramp WTASs can also be used to approximate perfect WTAS, but we could not
find any non-trivial upper bound on the error. In the Privacy column, we distinguish
between perfect and statistical privacy. In the last column, we show if the scheme is
linear or not.

If, instead of constructing schemes in the information-theoretic setting, we
consider computational assumptions, it is possible to build more efficient secret
sharing schemes. This can be done by applying the recent results on succinct
computational secret sharing schemes by Applebaum et al. [ABI+23] to the poly-
nomial size monotone circuits for weighted threshold functions constructed by
Beimel and Weinreb [BW06]. More in detail, the existence of an efficient Projec-
tive Pseudorandom Generator (pPRG) allows to obtain a computational secret
sharing scheme for weighted threshold access structures with polylogarithmic
share size in the number of parties. This is stated in the following theorem.

Theorem 1.4 (Informal). Under the subexponential RSA assumption, any
weighted threshold access structure over n parties admits a computational secret
sharing scheme where the size of the shares is O(polylog(n)) and the size of the
public information is O(poly(n)).

Furthermore, we show how to improve the result of Theorem 1.4 by com-
bining it with our approximation technique. In particular, we specify the public
information size (the degree of its polynomial) at the cost of considering an
o(1)-close weighted threshold access structure.
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Open Questions. Our results leave several open questions about the search
of better secret sharing schemes for weighted threshold access structures. The
schemes presented in this work can be improved in the two main stages, which
are the approximation of the weighted threshold access structure with small
weights and the construction of schemes for small weights. The approximation
techniques in the first stage have limitations that are similar to the ones in
[DDFS14], which are close to the optimal, in the worst case. Any improvement
in the average case of this technique would lead to smaller shares in the average
case.

In the second stage, our approach is simpler, because we directly apply ex-
isting techniques by Shamir [Sha79] and Applebaum et al. [ABI+23] that take
benefit of a short description of the access structure by means of weights or for-
mulas. It is natural to expect improvements in this stage by using more complex
formulas with more complex gates [LV18] or with wiretap techniques [BHS22].

Improving the upper and lower bounds on the share size for weighted thresh-
old access is still the most important open problem in this area. Also, we do not
have the intuition of what makes an access structure hard to be realized. On
the positive side, we have characterizations of ideal weighted threshold access
structures [BW06,FP12]. However, we do not know how to take advantage of
this to find a useful characterization of access structures that admit schemes
with polynomial share size.

1.2 Our Techniques

Given a weighted threshold access structure Γ , our main objective is to construct
another weighted threshold access structure Γ ′ that is close to Γ and whose
weights are small. In this way, the impact of the weights on the share size of any
secret sharing scheme realizing Γ ′ will be considerably low.

With this in mind, since every access structure can be described by a mono-
tone Boolean function, the starting point of our work is to translate the problem
of approximating weighted threshold access structures to the problem of approx-
imating monotone Boolean functions.

In the case of a weighted threshold access structure defined by a threshold
T and a vector of positive weights w = (w1, . . . , wn) assigned to the parties, it
can be represented by a monotone Boolean function of the form

f(x) = sign(w · x− T ),

which are known as monotone LTFs in the context of complexity theory.
We can therefore study weighted threshold access structures from the per-

spective of complexity theory simply by considering the monotone LTF assigned
to it. More in detail, our proposal consists in approximating Γ by reducing the
weights and the threshold of its associated monotone LTF f . We do this by
taking advantage of the description of f in terms of its Chow parameters. This
procedure is summarized in Fig. 2 and can be done in five steps.

1. Consider the monotone LTF f associated to Γ .
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2. Compute the Chow parameters χf of f .
3. Modify the Chow parameters χf to obtain the Chow parameters χg of a

monotone LTF g that is ϵ-close to f and has small weights.1

4. Construct the monotone LTF g from χg.
5. Consider the weighted threshold access structure Γ ′ associated to g.

Γ Γ ′

f χf χg g

ϵ-close

(1)
(2) (3) (4)

(5)

Fig. 2. Procedure for approximating any weighted threshold access structure.

Steps (1), (2), and (5) of Fig. 2 are immediate. For this reason, throughout
this work we skip steps (1) and (5) and we deal directly with the monotone LTFs
associated to the access structures. All the effort remains in deriving steps (3)
and (4). To do so, we adapt the results of De et al. [DDFS14], in which they
construct an approximate LTF with smaller weights by solving a problem related
to the Chow parameters, described next.

The Chow Parameters Problem. Any Boolean function can be uniquely
expressed as a real multilinear polynomial [O’D14], whose degree-0 and degree-1
coefficients are known as the Chow parameters.2 The notion of the Chow param-
eters is of greater importance in the case of LTFs, since they uniquely specify any
LTF within the space of all Boolean functions [Cho61] and, when the function is
monotone, they quantify the influence of each variable on the output result. In
this context, the Chow parameters problem consists in efficiently reconstructing
any LTF from its Chow parameters.

In their work, De et al. [DDFS14] solve the approximate version of the Chow
parameters problem by constructing a LTF close to the original one based on
its Chow parameters. More specifically, they they design an iterative algorithm
that starts with an approximation of the Chow parameters and step by step
modifies them until the desired LTF is obtained. Moreover, their construction
has the advantage that the resulting LTF has weights that depend sublinearly
in the input length and quasipolynomially in the error.

In this work, we adapt the construction of De et al. [DDFS14] to the monotone
setup to guarantee that the resulting approximation not only is a LTF but also
a monotone LTF. Moreover, we also analyse the running time of the procedure
to ensure its efficiency.

1 The notion of distance between Boolean functions consists in the fraction of inputs
in which they differ.

2 Indeed, the Chow parameters are a particular case of a much more general family
known as the Fourier coefficients.
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Secret Sharing Schemes Construction. Once we have derived a low-weight
approximator for the original access structure, we still need to construct the
information-theoretic and the computational secret sharing schemes. In both
cases, we apply already known constructions that allow us to maximize the
benefits of having an approximate weighted threshold access structure with small
weights.

In the case of the information-theoretic scheme, we use Shamir’s virtualiza-
tion technique [Sha79]. In this way, the share size of the resulting scheme is
equal to the total weight, which we know in advance that is small due to the
approximation procedure.

With respect to the computational setting, we apply a recent result of Ap-
plebaum et al. [ABI+23] in which they introduce a new cryptographic primitive
known as Projective Pseudorandom Generator (pPRG). They use it to obtain
secret sharing schemes for monotone circuits in which the size of the shares is
polylogarithmic in the number of gates. More in detail, we combine this con-
struction with the existence of a monotone circuit of polynomial size for any
weighted threshold access structure [BW06] to obtain a scheme with polyloga-
rithmic shares. Furthermore, we use our approximation technique to bound the
size of the public information.

In both cases we also tune the parameters in order to find a good trade-off
between the accuracy of the approximation and the share size. In particular, we
perform a fine-grained analysis of the size of the Chow parameters and use their
interpretation as the influence of the parties in the access structure to obtain
secret sharing schemes with even smaller share size.

1.3 Related Work

In this section, we restrict the discussion to the previous works on secret sharing
schemes for weighted threshold access structures.

In 1979, Shamir [Sha79] and Blakley [Bla79] presented the first secret sharing
schemes for threshold access structures. Shamir also presented a way to realize
weighted threshold access structures with threshold schemes via virtualization.
Given the weights wi and the threshold t, the dealer treats party i as wi dif-
ferent parties, sending wi different shares of the t-threshold scheme to party i.
This technique gives a scheme with total share size O(W logW ) for any access
structure, where W is the sum of the weights.

Weighted threshold access structures are a specific kind of hierarchical ac-
cess structures. In these access structures, parties are partitioned into clusters
that are hierarchically ordered, being the parties in higher levels more power-
ful than the ones in lower levels. Simmons [Sim88] considered some hierarchi-
cal access structures, and Brickell [Bri89] found ideal linear schemes for them,
providing new tools for the construction of schemes with linear properties. By
using different kinds of polynomial interpolation, Tassa [Tas07], and Tassa and
Dyn [TD09] proposed constructions of ideal secret sharing schemes for some
kinds of hierarchies. Beimel, Tassa and Weinreb [BTW08] presented a charac-
terization of the ideal weighted threshold access structures, generalizing some
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partial results in [MPSV99,PS00]. Farràs and Padró [FP12] characterized all
ideal hierarchical access structures, and presented ideal linear schemes for them.
That work included an alternative characterization of ideal weighted threshold
access structures. Characterizations in [BTW08,FP12] use the connections be-
tween ideal access structures and matroids by Brickell and Davenport [BD91].
Indeed, Mo [Mo23] found that ideal hierarchical access structures are connected
to lattice path matroids. Beyond the ideal case, the characterization of weighted
threshold access structures that admit efficient schemes is open.

Beimel and Weinreb [BW06] proved that all weighted threshold access struc-
tures admit secret sharing schemes in which the size of the shares is nO(log(n)).
Taking into account that most weighted threshold access structures require
weights of exponential size [SB91], this is the best general construction known
to date. It builds a monotone circuit with logarithmic depth and polynomial size
that describe the access structure, and then this circuit is converted into a lin-
ear scheme. The upper bound is obtained by using the fact that every weighted
threshold access structure admits an equivalent description with weights that
are at most exponential [Mur71]. This result reveals that weighted threshold
access structures are in a privileged position from the efficiency point of view,
because most of the general access structures require linear schemes of share size
2n/3+o(n) [BF20].

In recent works, Benhamouda, Halevi, and Stambler [BHS23] and Garg et
al. [GJM+23] explored a relaxed model, considering ramp weighted threshold
access structures. In these access structures, there are privacy and correctness
thresholds, and each party has a single weight. This setting admits schemes that
are not perfect, allowing a reduction of the share size. The schemes in [BHS23]
have a privacy threshold αW and a reconstruction threshold βW for some 0 <
α < β < 1. In this setup, their first proposal is based on a rounding technique
of weights that leads to a share size of n

β−α . This technique can lead to smaller
weights, but the error in the approximation cannot be bounded. For the second
construction, they establish an interesting connection between wiretap channels.
Choosing specific parameters, it is possible to get a scheme with 2−λ-statistical
security and total share size n ·max

{
λ2,poly(1/(α− β))

}
.

The construction of Garg et al. [GJM+23] uses as a primitive a scheme whose
security is guaranteed by the Chinese Reminder Theorem [Mig83]. The privacy
is statistical, and the gap between privacy and reconstructions thresholds de-
pend on the security parameter λ. With this security relaxation, it is possible
to improve the share size bound from Shamir’s scheme, obtaining O(W ). The
resulting scheme is not linear, but there are still ways to use it as a building
block [GJM+23].

We noticed that it is hard to give general bounds on the error of the approxi-
mation of weighted threshold access structures by (t, r)-ramp ones. For instance,
if weights are close to W/n and the threshold is close to W/2, even a small gap in
the thresholds may produce a significant error. Namely, in this case, (aW, bW )-
ramp approximations for constants a, b may lead to an error tending to 1, which
implies that the condition of being authorized or not changes for almost all sub-
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sets. Despite that, in some scenarios, approximating by ramp weighted threshold
access structures can be a good strategy. Compared to those previous works, our
proposal realizes a perfect access structure and avoids moving to the ramp set-
ting. This allows us to fully control the approximation error, knowing the number
of inputs where the approximated access structure differs from the original one.

1.4 Organization

In Section 2 we lay out the preliminaries on the analysis of Boolean functions
and secret sharing schemes. In Section 3 we present the technique for approxi-
mating monotone LTFs, obtaining Theorem 1.2 and proving the optimality of
its bounds, i.e. Theorem 1.3. In Section 4 we construct the information-theoretic
secret sharing scheme of Theorem 1.1, while in Section 5 we construct the compu-
tational secret sharing scheme of Theorem 1.4. The Appendix contains deferred
proofs and definitions.

2 Preliminaries

Notation. We notate N and R+ for the sets of the non-negative integer and
real numbers, respectively. For n ∈ N, we denote the set {1, . . . , n} as [n]. For
a set S, we denote its cardinal as |S|. We denote vectors x using bold symbols,
their i-th coordinates as xi, their Euclidean norm as ∥x∥ =

√
x2
1 + . . .+ x2

n,
and their support as supp(x) = {i ∈ [n] : xi ̸= 0}. The unary vector is
denoted by 1n ∈ Rn and the zero vector is denoted by 0n. For any vectors
x,y ∈ Rn, we denote its scalar product as x · y, its Hamming distance as
distHam(x,y) = |{i ∈ [n] : xi ̸= yi}|, and we say that x ≤ y if and only if
xi ≤ yi for all i ∈ [n]. For x ∈ {0, 1}, x denotes its complementary, and for
x ∈ {0, 1}n, we set x⊕i = (x1, . . . , xi−1, xi, xi+1, . . . , xn).

Next, we define three functions over the reals. We set sign : R −→ {−1, 1} as
the function with sign(x) = 1 if and only if x ≥ 0; we set sign0 : R −→ {0, 1}
as the function with sign0(x) = 1 if and only if x ≥ 0; and P1 : R −→ [−1, 1] as
the function with P1(x) = x if x ∈ [−1, 1] and P1(x) = sign(x) otherwise. For
x,w ∈ Rn and σ ∈ R we define

– WTF(w, σ)(x) = sign0(w · x− σ),
– LTF(w, σ)(x) = sign(w · x− σ), and
– LBF(w, σ)(x) = P1(w · x− σ).

Throughout this work, all probability distributions P assume picking ele-
ments uniformly at random.

2.1 Analysis of Boolean Functions

In this section, we introduce all the definitions and results about Boolean func-
tions needed for our purposes. First, we focus on the notions of weighted and
linear threshold functions and their properties. Later, we state some results
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about the Chow parameters. Finally, we introduce the notion of distance between
Boolean functions and relate it with the Chow parameters. The statements and
proofs of the switching lemmas, and the proof of Lemma 2.13 are deferred to
Appendix A.

Weighted and Linear Threshold Functions. We start by presenting the
main building block of our construction: weighted threshold functions.

Definition 2.1 (Weighted Threshold Function). Let w ∈ Rn and σ ∈ R. A
Weighted Threshold Function (WTF) is a Boolean function f : {0, 1}n −→ {0, 1}
of the form f(x) = WTF(w, σ)(x). The vector (w, σ) is said to represent f ,
while the vector x ∈ {0, 1}n is said to be authorized (resp. forbidden) if and
only if f(x) = 1 (resp. f(x) = 0).

Among all WTFs, we are interested in those that are monotone because they
are in one-to-one correspondence with weighted threshold access structures. In
this regard, the following remark gives a characterization of monotone WTFs.

Remark 2.2. A WTF given by f(x) = WTF(w, σ)(x) is monotone if and only
if there exists a representation of f with wi ≥ 0 for any i ∈ [n]. Indeed, if f is
monotone increasing and wi < 0, then f does not depend on xi, and we can set
its weight to 0.

An important result about monotone WTF is that they can be computed by
polynomial size logarithmic depth monotone circuits of unbounded fan-in. This
is the statement that follows.

Theorem 2.3 ([BW06]). Every weighted threshold function is in mAC1.

It is also usual to define Boolean functions by taking {−1, 1}n as domain
instead of {0, 1}n. Indeed, one can pass from one domain to the other by con-
sidering the bijection ϕ(x) = (−1)x for x ∈ {0, 1} and extending it naturally to
{0, 1}n. For this reason, we now define linear threshold functions, which are an
analogue of WTF in the {−1, 1}n domain.

Definition 2.4 (Linear Threshold Function). Let w ∈ Rn and σ ∈ R. A
Linear Threshold Function (LTF) is a Boolean function f : {−1, 1}n −→ {−1, 1}
of the form f(x) = LTF(w, σ)(x). The vector (w, σ) is said to represent f , while
the vector x ∈ {−1, 1}n is said to be authorized (resp. forbidden) if and only if
f(x) = 1 (resp. f(x) = −1).

Related to this, using ϕ we can switch from any monotone WTF to an equiv-
alent monotone LTF and vice versa without modifying the weight of any coor-
dinate. More in detail, the switching lemmas deferred to Appendix A.1 imply
that the weight vector representing a monotone LTF (resp. WTF) is not affected
when converting it to a monotone WTF (resp. LTF). For this reason, along this
work we will switch between both notions depending on which one is more useful
for us at any given time.

We also need to introduce the following straightforward generalization of
LTF.
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Definition 2.5 (Linear Bounded Function). Let w ∈ Rn and σ ∈ R. A
Linear Bounded Function (LBF) is a function f : {−1, 1}n −→ [1, 1] of the form
f(x) = LBF(w, σ)(x). The vector (w, σ) is said to represent f .

Next, we define an important notion in the context of monotone LTFs: the
influence of each coordinate.

Definition 2.6. Let f : {−1, 1}n −→ {−1, 1} be a Boolean function. For any
i ∈ [n], the influence of the i-th coordinate on f is the fraction of input values
in which it affects the output, i.e. Inf i[f ] = P[f(x) ̸= f(x⊕i)].

We end this section by stating two useful results about the weights of mono-
tone LTFs. The first one shows that any monotone LTF can be expressed by a
monotone formula of size polynomial in the sum of the weights. The second is a
known upper bound on the size of the weights of any monotone LTF.

Theorem 2.7 ([Ser04]). For any w ∈ Rn
+ and σ ∈ R the monotone LTF

given by f(x) = LTF(w, σ)(x) has a monotone formula of size O(W 5.3), where
W = w · 1n.

Theorem 2.8 ([Mur71]). For any monotone LTF f with n variables there
exist w1, . . . , wn, σ ∈ N smaller than 2⌈n log(n)⌉ such that f(x) = LTF(w, σ)(x),
where w = (w1, . . . , wn).

Chow Parameters. We first give the definition of the Chow parameters. Let
E denote the expectancy of a discrete random variable.

Definition 2.9 (Chow Parameters). The Chow parameters of a function

f : {−1, 1}n −→ R are the n+ 1 values f̂(0) = E[f(x)] and f̂(i) = E[f(x)xi] for
any i ∈ [n], taking uniform distribution on its domain. The Chow vector of f is

χf = (f̂(0), . . . , f̂(n)).

Chow parameters are a particular case of a much more general family known
as the Fourier coefficients. More in detail, each function f : {−1, 1}n −→ R can
be uniquely expressed as a multilinear polynomial whose coefficients are defined
as the Fourier coefficients of f . In this setting, it can be shown that the Chow
parameters simply correspond to the Fourier coefficients of degree 0 and 1. The
book of O’Donnell [O’D14] offers a detailed discussion of this topic.

Following the later construction, we could also have defined the Fourier co-
efficients (and in particular the Chow parameters) for Boolean functions in the
{0, 1} domain. However, in this case we can no longer define the Chow parame-
ters in terms of expectations as is done in Definition 2.9. This is because the basis
in which the Fourier coefficients are constructed is not orthonormal. Therefore,
when it comes to Chow parameters, we always consider Boolean functions in the
{−1, 1} domain.

In this regard, recall that for monotone LTFs we can always move from one
domain to the other thanks to Lemma A.1 and Lemma A.2. Hence, by an abuse
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of notation, when we consider the Chow parameters of a WTF, we refer to the
Chow parameters of its LTF analogue.

An important result regarding the Fourier coefficients is the following one,
known as Plancherel’s Theorem.

Theorem 2.10 (Plancherel’s Theorem [O’D14]). For any functions f, g :

{−1, 1}n −→ R we have that E[f(x)g(x)] =
∑

S⊆[n] f̂(S)ĝ(S).

Nowadays, Chow parameters (and by extension the Fourier coefficients) have
become one of the most used tools for the study of Boolean functions. In the
case of LTFs, this is mainly motivated by the next theorem, known as Chow’s
Theorem.

Theorem 2.11 (Chow’s Theorem [Cho61]). Any LTF is uniquely deter-
mined within the space of Boolean functions by its Chow parameters.

Moreover, in the case of monotone Boolean functions, the Chow parameters
have an additional interpretation as gauges of the influence of each coordinate.
This is stated in the following proposition.

Proposition 2.12 ([O’D14]). Let f : {−1, 1}n −→ {−1, 1} be a monotone

Boolean function. Then f̂(i) = Inf i[f ] for any i ∈ [n].

We conclude this section by presenting a useful lemma relating monotonicity,
projections and Chow parameters. Its proof is deferred to Appendix A.2.

Lemma 2.13. Let f : {−1, 1}n −→ R be a monotone function and g(x) =

P1(f(x)). Then f̂(i) ≥ ĝ(i) ≥ 0 for any i ∈ [n].

To simplify the notation and without loss of generality, from now on we
will assume that any LTF has the weights sorted in decreasing order, which
immediately implies a decreasing order in its Chow parameters except for f̂(0).

Distance. The concept of distance between Boolean functions gives a way to
measure the similarity of two access structures. Hence, we introduce it to formally
define the notion of closeness between monotone LTFs.

Definition 2.14 (Function Distance). Let X be a finite set. The distance
between two functions f, g : X −→ R is defined as dist(f, g) = E[|f(x) − g(x)|].
If dist(f, g) < ϵ we say that f and g are ϵ-close. Moreover, the Chow distance
between f and g is defined as distChow(f, g) = ∥χf − χg∥.

Remark 2.15. Notice that if f, g are WTFs then dist(f, g) = P[f(x) ̸= g(x)],
while if f, g are LTFs then dist(f, g) = 2P[f(x) ̸= g(x)].

Both notions of distance are closely related. In particular, for the case of
LTFs each of them can be bounded in terms of the other. This is stated in the
theorems that follow.
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Theorem 2.16 ([OS11]). For every f, g : {−1, 1}n −→ R, it holds that
distChow(f, g) ≤ 2

√
dist(f, g).

Theorem 2.17 ([DDFS14]). Let f be a LTF and let g : {−1, 1}n −→ [−1, 1]
be any function. If distChow(f, g) ≤ ϵ, then dist(f, g) ≤ 2−Ω( 3

√
log 1

ϵ ).

Theorem 2.16 and Theorem 2.17 establish a relation between the upper
bounds given by the distances of LTFs and their Chow distances, which pro-
vides a strategy to check closeness between LTFs simply by looking at their
Chow parameters. Indeed, this is the key observation that we will exploit in the
next section to approximate monotone LTFs.

2.2 Secret Sharing Schemes

For convenience, we work with access structures described by monotone Boolean
functions, which is equivalent to work with monotone increasing families of sub-
sets.

Definition 2.18 (Access Structure). An n-party access structure is a mono-
tone Boolean function f : {0, 1}n → {0, 1} such that f(0n) = 0 and f(1n) = 1.

If f(x) = 1, we say that the set A = supp(x) is authorized, and else we say
that A is forbidden.

Definition 2.18 implies that non-constant monotone WTF are a particular
case of access structures. In this context, they are also called weighted threshold
access structures.

Remark 2.19. In the case of a weighted threshold access structure given by
f(x) = WTF (w, σ)(x), the family of authorized subsets corresponds to

Γ = {A ⊆ [n] :
∑
i∈A

wi ≥ σ}.

Moreover, note that if two functions f and f ′ are ϵ-close, the corresponding
monotone families of subsets Γ and Γ ′ satisfy |Γ ∪ Γ ′| − |Γ ∩ Γ ′| < ϵ2n.

Secret sharing schemes admit information-theoretic and computational con-
structions. We first define information-theoretic secret sharing schemes.

Definition 2.20 (Information-Theoretic Secret Sharing Scheme). Let
S be a finite set and let f be an access structure over n parties. A secret shar-
ing scheme for f is a pair of a randomized algorithm Share and deterministic
algorithms ReconstructA such that

– Perfect correctness. For any secret s ∈ S and any authorized set A it
holds that

P[s = ReconstructA(Share(s)A)] = 1,

where Share(s)A denotes the restriction of the output of Share(s) to the par-
ties in A.
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– Perfect privacy. For any secrets s, s′ ∈ S, any forbidden set B, and any
possible set of shares {si}i∈B it holds that

P[{si}i∈B = Share(s)B ] = P[{si}i∈B = Share(s′)B ].

As of today, the best information-theoretic secret sharing scheme for general
weighted threshold access structures in terms of the share size is the following
result. It is due to the work of Beimel and Weinreb [BW06] and consists in
describing monotone circuits that compute any threshold function and later
applying monotone-circuits-to-secret-sharing compilers [BL88].

Theorem 2.21 ([BW06]). Every weighted threshold access structure over n
parties has an information-theoretic secret sharing scheme with with share size
nO(log(n)).

We now state the definition of computational secret sharing schemes. The
security of computational secret sharing schemes is given in terms of a game
between an adversary and a challenger. For the sake of completeness, we defer
its definition to Appendix B.1.

Definition 2.22 (Computational Secret Sharing Scheme). Let S be a fi-
nite set, let λ ∈ N be the security parameter, and let f be an access structure over
n parties. A computational secret sharing scheme for f is a pair of a randomized
polynomial-time algorithm Share and deterministic polynomial-time algorithms
ReconstructA such that

– Correctness. For any secret s ∈ S and any authorized set A it holds that

P[s = ReconstructA(Share(s,1
λ)A)] = 1,

where Share(s,1λ)A denotes the restriction of the output of Share(s,1λ) to
the parties in A.

– Privacy. The scheme is secure if any polynomial-time adversary succeeds
in breaking the scheme with negligible probability.

3 Approximation of Monotone Linear Threshold
Functions

The aim of this section is to approximate a monotone LTF with another mono-
tone LTF with smaller integer weights. To do so, we adapt to the monotone
setup the work of De et al. [DDFS14], in which an algorithm for approximating
LTFs is presented. To simplify the presentation of this and the following results,
we use Õ notation, which ignores polylogarithmic factors. The main result of
this section is the following theorem.

Theorem 3.1 (Theorem 1.2 restated). Let κ(ϵ) = 2−O(log3( 1
ϵ )) and let

µ(n) ∈ R be a function that satisfies µ(n) ≥ 2
√
n+ 1. For δ, ϵ ∈ (0, 1), there

exists a randomized algorithm ApproximateLTF that given a monotone LTF over
n variables f with κ(ϵ) ≤ f̂(n)µ(n), outputs with probability 1 − δ a monotone
function g(x) = LTF(v, v0)(x) with the following properties:
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1. g is ϵ-close to f ,

2. v ∈ Nn, v0 ∈ Z, and ∥v∥ = O

(
µ(n)

(
1
ϵ

)O(log2( 1
ϵ ))

)
.

Further, the algorithm runs in time Õ
(
nµ(n)2poly

(
1

κ(ϵ)

)
log

(
1
δ

))
.

To prove Theorem 3.1 it suffices to construct a candidate algorithm for
ApproximateLTF and check that it satisfies all the requirements from the state-
ment. We do this in two steps. First, we assume the existence of a similar algo-
rithm ApproximateLBF whose output is a monotone LBF and show how to use it
to construct the desired ApproximateLTF algorithm. Second, we prove that this
ApproximateLBF algorithm exists.

In particular, the proof of Theorem 3.1 relies on the following result.

Theorem 3.2. Let µ(n) ∈ R be a function that satisfies µ(n) ≥ 2
√
n+ 1. For

δ, ϵ ∈ (0, 1), there exists a randomized algorithm ApproximateLBF that given a

monotone LTF over n variables f with ϵ ≤ f̂(n)µ(n), outputs with probability
1−δ a monotone function g(x) = LBF(kv, kv0)(x) with the following properties:

1. distChow(f, g) ≤ 3ϵ,

2. k ∈ R,v ∈ Nn, v0 ∈ Z, and ∥v∥ = O
(

µ(n)
ϵ3

)
.

Further, the algorithm runs in time Õ
(
nµ(n)2

ϵ4 log
(
1
δ

))
.

We start by proving Theorem 3.1 using Theorem 3.2. The proof of Theo-
rem 3.2 is more involved, and it deferred to Section 3.1.

Proof of Theorem 3.1. A direct application of Theorem 3.2 guarantees that in

a running time of Õ
(
nµ(n)2poly

(
1

κ(ϵ)

)
log

(
1
δ

))
we obtain a monotone LBF

g(x) = LBF(v, v0) such that distChow(f, g) ≤ 3κ(ϵ) with probability 1− δ. From
there, adjusting properly the constants of κ(ϵ) and applying Theorem 2.17 we
get that dist(f, g) ≤ ϵ

2 .
Now, defining f ′(x) as f ′(x) = LTF(v, v0)(x) it is straightforward to check

that f ′ is monotone and dist(f, f ′) ≤ 2dist(f, g) ≤ ϵ. Moreover, again by Theo-

rem 3.2 we have that ∥v∥ = O
(

µ(n)
κ(ϵ3)

)
= O

(
µ(n)

(
1
ϵ

)O(log2( 1
ϵ ))

)
. ⊓⊔

At this point, to prove Theorem 3.1 it only remains to prove Theorem 3.2.

3.1 Proof of Theorem 3.2

We first present a high-level overview of the construction of the ApproximateLBF
algorithm. As in the work from De et al. [DDFS14], it mainly relies in the

straightforward observation that the function f̂(0) +
∑n

i=1 f̂(i)xi has exactly
the same Chow parameters as the input LTF f .
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Starting from there, the function g(x) = P1(f̂(0)+
∑n

i=1 f̂(i)xi) seems a rea-
sonable candidate for being the monotone LBF output by the algorithm because
it is build based on the Chow parameters of f . However, taking the projection
of a function leads to a modification of the original Chow parameters, so our
candidate g may not satisfy the desired condition on the Chow distance.

To solve this problem, we could try to correct this gap in the Chow distance
following a similar procedure as before. In particular, we can construct a function
h whose Chow parameters correspond to the difference between χf and χg, i.e.

h(x) = f̂(0) − ĝ(0) +
∑n

i=1(f̂(i) − ĝ(i))xi, and add it to g with the aim of
obtaining a better output candidate P1(g + h).

At this point, we face again the problem of checking up to which point the
projection operation has modified the Chow parameters of our output candidate.
Hence, we can repeat the previous procedure iteratively seeking that at each step
we will get closer to the desired result.

In general terms, ApproximateLBF algorithm implements the idea we have just
presented. Nevertheless, some minor changes are introduced to deal with techni-
calities regarding monotonicity and the bounds on the weights and the running
time. The ApproximateLBF algorithm is depicted in detail in Algorithm 1, while
Algorithm 2 presents an auxiliary method.

Notice that in the work of De et al. [DDFS14] the context is slightly different.
They propose this algorithm to solve the approximate Chow problem, i.e. given
the approximate Chow parameters of an unknown LTF they try to recover it by
constructing an ϵ-close LTF to it. The two main differences with our setup are
that we already know in advance the original monotone LTF and that in our
case the constructed LTF has to be monotone. Hence, all the changes made in
the statement and proof of Theorem 3.2 are due to this differences.

Algorithm 1 ApproximateLBF

Input: Monotone f(x) = LTF(w, w0)(x), Chow parameters χf , and δ, ϵ ∈ (0, 1)

Output: Monotone g(x) = LBF(kv, kv0)(x) with distChow(f, g) ≤ 3ϵ, ∥v∥ = O
(√

n
ϵ3

)
Require: µ(n) ≥ 2

√
n+ 1 and ϵ ≤ f̂(n)µ(n)

1: g′ ← 0, g ← P1(g
′)

2: χg̃ ← VectorApprox(χf ,χg, ϵ)
3: while ∥χf − χg̃∥ ≤ 2ϵ do
4: h←

∑n
i=0(f̂(i)− g̃(i))xi

5: g′ ← g′ + h
2

6: g ← P1(g
′)

7: Compute χg with precision ϵ
2µ(n)

▷ Chow parameters of g

8: χg̃ ← VectorApprox(χf ,χg, ϵ) ▷ Rounding to ensure integer difference
9: end while
10: return g

To prove Theorem 3.2 it suffices to check that ApproximateLBF (Algorithm 1)
satisfies all the conditions of the statement. In comparison to the work of De
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Algorithm 2 VectorApprox

Input: Chow parameters χf ,χg ∈ Rn+1 and ϵ ∈ (0, 1)
Output: Vector χg̃ ∈ Rn+1

1: for i = 0, . . . , n do
2: g̃(i)← the closest value to ĝ(i) such that f̂(i)− g̃(i) = k ϵ

µ(n)
with k ∈ Z

3: end for
4: return χg̃ = (g̃(0), . . . , g̃(n))

et al. [DDFS14], apart from slightly differences in the bounds of some norms,
our proof requires a more fine-grained analysis to ensure that the resulting ap-
proximate function is also monotone. For this reason, we divide it into several
propositions: one for checking the monotonicity of the output, another to ensure
the halting of the algorithm, and a last one for the bounds on the weights and
the running time.

We start by proving that the output of ApproximateLBF (Algorithm 1) cor-
responds to a monotone LBF satisfying the gap in the Chow distance. This is
stated in Proposition 3.3 and its proof is deferred to Appendix C.1. Indeed, this
is the part in which our work differs the most from the one of De et al. [DDFS14],
since it is where we impose the monotonicity condition on the output.

Proposition 3.3. ApproximateLBF (Algorithm 1) outputs with probability 1− δ
a monotone LBF g such that distChow(f, g) ≤ 3ϵ.

Proposition 3.3 ensures that the output of ApproximateLBF (Algorithm 1) is a
monotone LBF satisfying the required distance in the Chow parameters. However
this is a meaningless result unless we prove that ApproximateLBF (Algorithm 1)
always halts, since apparently nothing prevents the algorithm to stay indefinitely
in the main loop (steps 4-8). The next proposition shows that this situation can
not happen. Its proof is almost analogous to the one from De et al. [DDFS14]
and we defer it to Appendix C.2.

Proposition 3.4. The main loop of ApproximateLBF (Algorithm 1, steps 4-8)
requires at most 1

ϵ2 iterations.

Finally, the remaining proposition gives the bound on the weights and the
running time. It is a crucial result, since the bound on the weights is what later
enables the construction of secret sharing schemes for weighted threshold access
structures with small share size. Moreover, the bound on the running time shows
the feasibility of this strategy.

Proposition 3.5. The monotone function g(x) = LBF(kv, kv0)(x) output by
ApproximateLBF (Algorithm 1) has the following properties:

1. k ∈ R,v ∈ Nn, v0 ∈ Z, and ∥v∥ = O
(

µ(n)
ϵ3

)
.

2. Its running time is Õ
(
nµ(n)2

ϵ4 log
(
1
δ

))
.
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Again, the full proof of Proposition 3.5 is included in Appendix C.3. At this
point, to prove Theorem 3.2 it suffices to combine the results of Proposition 3.3,
Proposition 3.4 and Proposition 3.5.

3.2 Remarks on the Error and the Weight Bound of Theorem 3.1

Theorem 3.1 sets a method for approximating monotone LTFs up to any ac-
curacy and gives a bound on the resulting weights in terms of the number of
variables and the error. However, there are some additional properties that any
approximation technique must satisfy to be suitable for usage, such as preserving
the order of the weights or having optimal bounds.

In this section, we show that our proposal fulfills all these desired require-
ments. First, we show that the error has a negligible impact on the original
hierarchy of the coordinates. Later, we prove the optimality of the algorithm
with respect to the weight bound. Finally, we perform an analysis on the trade-
off between both notions: the error and the size of the weights.

On the Error and the Preservation of the Weights Hierarchy. One of the
biggest concerns when approximating any monotone LTF is the error it produces
and how it can affect the hierarchy of the weights. In this regard, we must ensure
that the error produced does not cause a drastic change in the impact of each
coordinate to the output of the function. In other words, any approximating
procedure must maintain the influence of the coordinates unchanged. The next
result shows that our technique technique satisfies this property.

Theorem 3.6. Let f, g be two o(1)-close monotone LTFs. Then, |Inf i[f ] −
Inf i[g]| = o(1) for any i ∈ [n].

Proof. By Proposition 2.12 it is enough to prove that distChow(f, g) = o(1).
Now, Theorem 2.16 states that distChow(f, g) ≤ 2

√
dist(f, g), so using that

dist(f, g) = o(1) we are done. ⊓⊔

Furthermore, we can go even further and ask not only that the influence of
each coordinate is preserved but also that the hierarchy of the weights is main-
tained. That is, we demand that whenever one coordinate has a greater weight
than another in the original function, the same happens after the approximation.
This can be achieved simply by rearranging the weights of the approximation
function at the end of the process. In this regard, the next lemma proves that
this additional modification does not increase the error of the approximation.

Lemma 3.7. Let f be any monotone LTF, let g(x) = LTF(w, w0)(x) be any
monotone LTF ϵ-close to f , and let h(x) = LTF(w′, w0)(x), where w′ is the
weight vector w sorted in decreasing order. It holds that dist(f, h) ≤ ϵ.

Proof. First, notice that it suffices to prove the statement for the case where the
vector w is already sorted except for any two coordinates i < j, since any other
case can be reduced to this one.
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Now, to show that dist(f, h) ≤ ϵ we must show that for any x ∈ {−1, 1}n
with xi, xj = −1 it holds that∣∣{f(y) = g(y) : y ∈ {x⊕i,x⊕j}

}∣∣ ≤ ∣∣{f(y) = h(y) : y ∈ {x⊕i,x⊕j}
}∣∣ .

Since both f and g, are monotone Boolean functions, each of them has only
three possible outputs for any pair of inputs x⊕i,x⊕j . More in detail, either
f(x⊕i) = f(x⊕j) = −1, f(x⊕i) = f(x⊕j) = 1, or f(x⊕i) = 1 > f(x⊕j) = −1
(and similarly for g). Therefore, we are left with a total of 9 different cases.

We now prove the case where

f(x⊕i) = 1, f(x⊕j) = −1, g(x⊕i) = −1, and g(x⊕j) = 1.

By hypothesis, we have that∣∣{f(y) = g(y) : y ∈ {x⊕i,x⊕j}
}∣∣ = 0.

Moreover, by the definition of h we have that g(x⊕i) = −1 implies that h(x⊕j) =
−1, and that g(x⊕j) = 1 implies that h(x⊕i) = 1. Therefore, we get that∣∣{f(y) = h(y) : y ∈ {x⊕i,x⊕j}

}∣∣ = 2,

which proves this case.

The remaining eight cases follow a similar procedure. ⊓⊔

Therefore, we conclude that our technique not only approximates any mono-
tone LTFs up to a given accuracy, but it also preserves the original hierarchy on
the weights and the influence of each coordinate.

Optimality of the Weight Bound. One may wonder if the weight bound of
Theorem 3.1 can be lowered in terms of its dependency on n or 1

ϵ . We answer
this question by showing that the bound is optimal in terms of n and is close of
being optimal in terms of 1

ϵ . In particular, we prove the following theorem.

Theorem 3.8 (Theorem 1.3 restated). Let κ = max{
√
n,

(
1
ϵ

)Ω(log(log( 1
ϵ )))}.

There does not exist an algorithm OptimalApproximateLTF such that for any
monotone LTF over n variables f and ϵ ∈ (0, 1) outputs a monotone function
g(x) = LTF(v, v0)(x) with the following properties:

1. g is ϵ-close to f ,

2. v ∈ Zn and ∥v∥ = O(κ).

Remark 3.9. In the statement of Theorem 3.1 the weight bound, with respect to
n, corresponds to any µ(n) ≥ 2

√
n+ 1. Therefore, when we look at the optimality

of the bound in Theorem 3.8 we can replace µ(n) by
√
n.
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As we did with Theorem 3.1, we split the proof of Theorem 3.8 in two steps.
First, we prove that the bound is optimal in terms of its dependency on n. Later,
we study the optimality of the bound with respect to ϵ.

To show that the bound can not be improved in terms of n it suffices to give
an explicit monotone LTF f over n variables and a particular value of ϵ such
that any LTF g ϵ-close to f has some weight of size Ω(

√
n).3 This is precisely

what Servedio did in a previous work [Ser06], where he proved the result that
follows.

Theorem 3.10 ([Ser06]). Let w = (1, . . . , 1, n) ∈ Zn, let f be the monotone
LTF given by f(x) = LTF(w, n)(x), and let g : {−1, 1}n −→ {−1, 1} be an 1

10 -
close LTF to f . Then any integer representation of g must have some weight of
size Ω(

√
n− 1).

Next, we move to study the optimality of the bound in terms of 1
ϵ . To obtain

the bound stated in Theorem 3.8 we rely on a particular LTF introduced by
H̊astadt [H̊as94] that requires integer weights of size 2Ω(n log(n)).

Theorem 3.11. There exist a monotone LTF and ϵ ∈ (0, 1) such that any

monotone LTF g ϵ-close to f has some weight of size
(
1
ϵ

)Ω(log log( 1
ϵ )).

Proof. We argue by contradiction. Suppose that for any monotone LTF f and
ϵ ∈ (0, 1) we can construct a monotone LTF g ϵ-close to f with weights of

size
(
1
ϵ

)o(log log( 1
ϵ )). Now, let f be the LTF introduced by H̊astadt [H̊as94] that

requires integer weights of size 2Ω(n log(n)). Without loss of generality, we can
suppose that f is also monotone.4 Then, for any ϵ < 1

2n by hypothesis we can

construct a monotone LTF g with integer weights of size 2o(n log(n)) that is ϵ-
close to f . Since there are only 2n < 1

ϵ distinct input values, this implies that
f = g. But this clearly contradicts the lower bound on the weights of the H̊astadt
function f . ⊓⊔

If we consider Theorem 3.1 as a strategy to reduce the weights of a given
monotone LTF, we can interpret Theorem 3.8 not only as the limitations of
this technique, but also as the limitations of any approximation technique based
on the reduction of the weights, as for example rounding. However, since The-
orem 3.1 is a general result, it is possible that some monotone LTFs admit
low-weight approximators with smaller weights.

3 Since we are looking for a lower bound in terms of n, note that we can set in advance
the approximation error ϵ to a concrete value and the approximate LTF g does not
need to be monotone.

4 By definition, any LTF can be converted into a monotone LTF simply by flipping
some of its input variables. If f is not monotone, it suffices to define f ′ as the
monotone LTF obtained from f by this procedure. It is clear that the magnitude of
the weights of f ′ is the same as that of the weights of f .
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Trade-Off between the Error and the Weight Bound. We end this sec-
tion by studying the trade-off between the size of the weights and the error of
Theorem 3.1. Since the weight bound of Theorem 3.1 depends on 1

ϵ , the more
accurate the approximation, the higher the weight bound will be. Moreover, this
factor is of the form quasipoly

(
1
ϵ

)
, which implies that the weight bound grows

faster than the accuracy of the approximation does.

In this regard, note that, at the cost of increasing the weight bound, we can
make the error ϵ as small as desired because there is no lower restriction apart
from the trivial 0 < ϵ. However, we can not increase ϵ freely since Theorem 3.1

requires that 2−O(log3( 1
ϵ )) < f̂(n)µ(n). This can be annoying in case we want to

minimize the size of the weights.

To overcome this limitation, we can try to increase ϵ by pushing up the
value of its upper bound f̂(n)µ(n). In that sense, the factor f̂(n) is given by
the original LTF and Proposition 2.12 implies that, in the worst case, it can be
equal to 1

2n−1 . Hence, our only option is to increase the value of µ(n), which is

lower bounded by 2
√
n+ 1.

Nevertheless, note that µ(n) also appears as a linear factor of the weight
bound. For this reason, we must be careful when increasing the value of µ(n)
with the aim of decreasing the weight bound, since pushing it too high may go
against our interests.

A more fine-grained analysis of this trade-off will appear later in Section 4
during the proof of Theorem 4.3. As we will see, a better result can be obtained
by discarding the Chow parameters with the lowest values.

4 Secret Sharing Schemes for Approximate Weighted
Threshold Access Structures

In this section we apply the results on low-weight approximators for monotone
LTFs to construct information-theoretic secret sharing schemes for weighted
threshold access structures with small share size. First, we introduce our pro-
posal and discuss some alternatives. Later, we compare it with state-of-the-art
solutions.

4.1 Scheme Construction

The main result of this section is the following theorem.

Theorem 4.1. Let κ(ϵ) = 2−O(log3( 1
ϵ )) and let µ(n) ∈ R be a function that

satisfies µ(n) ≥ 2
√
n+ 1. For any weighted threshold access structure over n

parties f and ϵ ∈ (0, 1) with κ(ϵ) ≤ f̂(n)µ(n), there exists a weighted threshold
access structure over n parties ϵ-close to f admitting an information-theoretic

secret sharing scheme with share size Õ

(
µ(n)

(
1
ϵ

)O(log2( 1
ϵ ))

)
.
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Proof. First, recall that due to the switching lemmas of Appendix A.1 we can
work indistinctly with f and its equivalent monotone WTF. Hence, in this proof
we will not make any distinction between them.

Now, given µ(n) > 2
√
n+ 1 and ϵ ∈

(
0, f̂(n)µ(n)

]
we apply Theorem 3.1 to

obtain a monotone function g(x) = LTF(v, v0)(x) that is ϵ-close to f . Moreover,

it holds that v ∈ Nn, v0 ∈ Z, and ∥v∥ = O

(
µ(n)

(
1
ϵ

)O(log2( 1
ϵ ))

)
.

By construction, g is a weighted threshold access structure with weights v,
threshold v′0, and with dist(f, g) < ϵ. In addition, since we know that ∥v∥ =

O

(
µ(n)

(
1
ϵ

)O(log2( 1
ϵ ))

)
it suffices to use Shamir’s virtualization technique to

obtain the desired secret sharing scheme for g. ⊓⊔

Remark 4.2. Since we use Shamir’s virtualization technique, the secret sharing
scheme constructed in Theorem 4.1 is also linear. This implies that our proposal
has homomorphic properties and efficient Share and Reconstruction algorithms.

Following the arguments of Section 3.2, it seems inevitable that to obtain
a small upper bound on the share size in Theorem 3.1, the Chow parameters
associated to the weighted threshold access structure must be big enough. Oth-
erwise, the inequality κ(ϵ) ≤ f̂(n)µ(n) would imply that either ϵ is too small
or µ(n) is too big, which in both cases would lead to an increase in the upper
bound on the share size.5

However, if some of the Chow parameters are small, we can still obtain a
small upper bound on the share size simply by discarding those parties from the
original weighted threshold access structure. More in detail, thanks to Proposi-
tion 2.12 we can view each Chow parameter as the influence of a specific party
in the access structure. Therefore, if some of the Chow parameters are small, we
can guarantee that removing them from the access structure would not modify it
too much. In this way, we can always control the value of the f̂(n) that appears
in the statement of Theorem 3.1.

As a consequence of combining this observation with Theorem 4.1 we obtain
the following result.

Theorem 4.3 (Theorem 1.1 restated). Let k ∈ N. For any weighted thresh-
old access structure over n parties f there exists a weighted threshold access
structure over n parties 1

logk(n)
-close to f admitting an information-theoretic

secret sharing scheme with share size n1+o(1).

Proof. Let w be the weight vector of f , σ its threshold value, and let l ∈ [n] be

the maximum value such that f̂(l) ≥ 1
2n logk(n)

.

5 The fact that the upper bound on the share size given by Theorem 3.1 is high does
not rule out the possibility that the shares obtained via the approximation technique
are small. In other words, it is possible to obtain a scheme with short shares by using
ApproximateLTF algorithm even if f̂(n) is small.
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We consider the weighted threshold access structure over l parties f ′ given
by the weight vector (w1, . . . , wl) and threshold σ. Proposition 2.12 implies that
dist(f, f ′) ≤ n

2n logk(n)
= 1

2 logk(n)
.

Next, we set µ(n) = n ≥ 2
√
n+ 1, ϵ = 1

2 log(n) , and κ(ϵ) := 2−O(log3( 1
ϵ )). For

sufficiently large n we have that

κ(ϵ) =
1

2O(log3(2 logk(n)))
≤ 1

2 logk(n)
=

n

2n logk(n)
= f̂(l)µ(n).

Hence, we can apply Theorem 4.1 to f ′ to get a weighted threshold access
structure over n parties g that is 1

logk(n)
-close to f ′ and admits an information-

theoretic secret sharing scheme with share size Õ

(
n
(
1
ϵ

)O(log2( 1
ϵ ))

)
. Moreover,

it holds that(
1

ϵ

)O(log2( 1
ϵ ))

= n
O(log3( 1

ϵ ))
log(n) = n

O(log3(2 logk(n)))
log(n) = no(1),

which implies that the share size is n1+o(1). Finally, the triangle inequality implies
that

dist(f, g) ≤ dist(f, f ′) + dist(f ′, g) ≤ 1

2 logk(n)
+

1

2 logk(n)
=

1

logk(n)
.

⊓⊔

4.2 Remarks on the Secret Sharing Techniques

At the end of the proof of Theorem 4.1 we have used Shamir’s virtualization tech-
nique to construct our secret sharing scheme. Hence, one may wonder if the use
of an alternative construction may lead to smaller shares. To answer this ques-
tion, we move to combine our technique with the other existing proposals. First,
we target the work of Benaloh and Leichter based on monotone formulae [BL88].
Later, we focus our attention on the work of Beimel and Weinreb using mono-
tone circuits [BW06]. From there, we observe that the resulting schemes have
larger share size than the one from Theorem 4.1. Finally, we present a brief dis-
cussion about lower bounds on information-theoretic secret sharing schemes for
weighted threshold access structures.

Alternative Secret Sharing Schemes Constructions. Benaloh and Le-
ichter [BL88] presented a secret sharing construction whose share size is linear
in the size of any monotone formula realizing the access structure. In this regard,
note that Theorem 2.7 states that any weighted threshold access structure has
a monotone formula of polynomial size in the total weight. Therefore, given any
weighted threshold access structure we can combine our approximation tech-
nique with these two results to obtain an information-theoretic secret sharing
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scheme with total share size O

(
µ(n)10.6

(
1
ϵ

)O(log2( 1
ϵ ))

)
for an ϵ-close weighted

threshold access structure. More specifically, we first apply Theorem 3.1 to con-
struct an ϵ-close weighted threshold access structure, then we use Theorem 2.7 to
obtain a polynomial size monotone formula, and finally we construct the secret
sharing scheme with polynomial share size.

The construction by Beimel and Weinreb [BW06] has two main steps. First,
they describe logarithmic depth and polynomial size unbounded fan-in monotone
circuits that compute any monotone weighted threshold function (Theorem 2.3).
Later, they transform the circuit into a monotone boolean formula, that is trans-
formed into a scheme by the technique mentioned above, obtaining the share size
in Theorem 2.21. To construct these circuits they use the upper bound on the
weights of 2⌈n log(n)⌉ of Theorem 2.8. Hence, we can use our approximation tech-
nique to avoid using this bound. More in detail, we can apply Theorem 3.1 to con-
struct an ϵ-close weighted threshold access structure and bound the weights by

µ(n)
(
1
ϵ

)O(log2( 1
ϵ )). However, this strategy only leads to secret sharing schemes

with share size nO(log(log(µ(n), 1ϵ ))), which is still quasipolynomial. This is be-
cause the quasipolynomial magnitude is due to the conversion from monotone
circuits to monotone formulae, something in which our technique does not help.

On the Share Size Lower Bounds. The best lower bounds on the share
size for weighted threshold access structures are far from the general ones. The
fact that threshold access structures belong to this family gives a lower bound
of Ω(log n) on the share size. Moreover, there is a family of weighted threshold
access structures that require information ratio close to 2 [FMBPV12]. These
are the best known lower bounds.

A common technique for obtaining lower bounds on the share size for linear
schemes is through counting arguments. In this regard, the next theorem gives
upper and lower bounds on the number of weighted threshold access structures
over n parties and shows that they correspond to a small subset within the set of
monotone Boolean functions. Counting arguments like the ones in [KW93] give
trivial bounds, in this case.

Theorem 4.4. The number of weighted threshold access structures over n par-
ties is 2Θ(n2).

Proof. First, notice that finding the number of weighted threshold access struc-
tures over n parties is equivalent to finding the number of monotone WTFs over
n variables.

Now, let T (resp. TM ) denote the set of all WTFs (resp. monotone WTFs)
with n variables. In a previous work [Mur71], Muroga proved that

2
n2

2 ≤ |T | ≤ 2n
2

for any n.

Hence, to prove the theorem it suffices to show that |T |
2n ≤ |TM |.
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To do so, we define a surjective mapping φ : T ′
M −→ T , where T ′

M is the set
containing 2n copies of each monotone LTF ordered from 0 to 2n − 1. In this
setup, φ simply consists in taking the positive representation of any monotone
LTF given by Remark 2.2 and mapping its k-th copy to the LTF obtained by
negating the weights corresponding to the coordinates referred by the binary
representation of k.

Hence, φ is surjective by construction because for any LTF with k weights
smaller than zero we obtain a monotone LTF by taking the absolute value of
these weights. In particular, its preimage consists in the k-th copy of some mono-
tone LTF. ⊓⊔

4.3 Comparison with State-of-the-Art Proposals

We now compare our proposal with the state-of-the-art constructions. This is
summarized in Fig. 1.

Share Size. Our construction and the ones from Benhamouda, Halevi, and
Stambler are the unique schemes that offer polynomial share size. However, the
share size of the works of from Benhamouda, Halevi, and Stambler also depend
on the inverse of the gap β − α, which leads to an increase of the share size
when targeting ramp weighted threshold access structures with small gaps. With
respect to the proposals from Shamir and Garg et al., their share size depends
on the weights, which can be exponential in terms of the number of parties as
stated in Theorem 2.8. For this reason, these proposals are more suitable for the
cases in which there are lots of parties with small weights. Contrary to that, the
scheme from Beimel and Weinreb fits well in weighted threshold access structures
with high order weights because it has quasipolynomial share size in the number
of parties.

Access Structure. The works from Shamir and Beimel and Weinreb are the
only ones that construct secret sharing schemes for weighted threshold access
structures, while the proposals from Garg et al. and Benhamouda, Halevi, and
Stambler rely on the more flexible setting of ramp weighted threshold access
structures. Concerning to this, note that the gap needed for the scheme of Garg
et al. is significantly smaller, since the other gaps correspond to a fraction of the
total weightW . In comparison, despite modifying the original weighted threshold
access structure, our construction has the advantage that the resulting access
structure is also a weighted threshold access structure whose error is 1

polylog(n) ,

which tends to zero as the number of parties tends to infinity. Furthermore,
since our proposal has the error as an input parameter, we are able to tune the
accuracy of the approximation as desired. In contrast, in the ramp proposals it
is hard to establish a precise relation between the variation of the thresholds and
the size of the gap.
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Privacy and Linearity. Our proposal, the ones from Shamir, Beimel and
Weinreb, and the rounding scheme from Benhamouda, Halevi, and Stambler
have perfect privacy and are also linear. This makes them suitable for multiparty
computation applications. The rest of the constructions only admit statistical
secret sharing schemes and are not linear.

5 Computational Secret Sharing Schemes for
Approximate Weighted Threshold Access Structures

In this section we construct computational secret sharing schemes for weighted
threshold access structures with small share size. First, we introduce some auxil-
iary results necessary for our work. Later, we present the construction and show
how to quantify the public information size with our approximation technique.

5.1 Succinct Computational Secret Sharing Schemes

In a recent work, Applebaum et al. [ABI+23] construct computational secret
sharing schemes with small share size for a wide set of access structures. More in
detail, they introduce a new cryptographic primitive known as Projective Pseu-
dorandom Generator (pPRG), show how to construct it from several assumptions
such as RSA or the existence of OWF, and use it to obtain succinct computa-
tional secret sharing schemes, i.e. schemes whose share size is considerably small.
We defer the definition of pPRG to Appendix B.2.

Their main result regarding pPRG is the following theorem.

Theorem 5.1 ([ABI+23]). Under the subexponential (resp. polynomial) RSA
assumption, there exists a subexponential-robust pPRG (resp. polynomial-robust
pPRG) with subexponential stretch (resp. arbitrary polynomial stretch) whose
projective keys and public parameters are both strongly succinct, i.e. of length
log(m) · poly(λ), where m is the output length and λ is the security parameter.
The running time of generating the m-bit output of the pPRG is Õ(m) ·poly(λ).

For our purposes, we require a slight generalization of the notion of pPRG
known as block-pPRG, whose precise definition is presented in Appendix B.3.
Block-pPRG are important because they are the building blocks for computa-
tional secret sharing schemes for monotone circuits with unbounded fan-in in
which the share size is polylogarithmic in the number of gates. This is summa-
rized in the following theorem.

Theorem 5.2 ([ABI+23]). Let λ be the security parameter. Assume that there
is a robust block-pPRG in which the length of the projective keys is log(mλ) ·
poly(λ) and the length of the public parameters is log(mλ) · poly(λ), where m is
the output length (number of blocks) of the generator and each block is of length
λ. Then, there is a computational secret sharing scheme for monotone unbounded
fan-in circuits whose share size is log(mλ) · poly(λ) and its public information
size is poly (log (m) , λ) +m∧λ, where m is the number of gates and m∧ is the
number of AND-gates.
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5.2 Scheme Construction

A direct application of Theorem 5.1 and Theorem 5.2 to the polynomial size log-
arithmic depth monotone circuits for monotone WTF of Theorem 2.3 leads to
the construction of a computational secret sharing scheme for weighted thresh-
old access structures with polylogarithmic share size and public information of
polynomial size in the number of parties. This is stated in the next theorem.

Theorem 5.3 (Theorem 1.4 restated). Let λ be the security parameter.
Under the subexponential RSA assumption, any weighted threshold access struc-
ture over n parties admits a computational secret sharing scheme where the size
of the shares is O (poly(log (n) , λ)) and the size of the public information is
O (poly(n, λ)).

Proof. Given a weighted threshold access structure f , we use Theorem 2.3 to
compute its polynomial size logarithmic depth monotone circuit. Then, we apply
Theorem 5.1 and Theorem 5.2 to this circuit to obtain the desired computational
secret sharing scheme.

The main drawback of the secret sharing scheme construction of Theorem 5.3
is that its public information size corresponds to the size of the monotone circuit,
which is a polynomial of unknown degree. For this reason, it is worth trying to
pin down the degree of that polynomial.

In order to do so, we combine our results on low-weight approximators for
monotone LTFs with the work from Applebaum et al. In particular, we construct
computational secret sharing schemes for approximate weighted threshold access
structures that maintain the share size of Theorem 5.3 and whose public infor-
mation size is a polynomial of concrete degree. The main statement follows.

Theorem 5.4. Let λ be the security parameter, let κ(ϵ) = 2−O(log3( 1
ϵ )) and let

µ(n) ∈ R be a function that satisfies µ(n) ≥ 2
√
n+ 1. Under the subexponential

RSA assumption, for any weighted threshold access structure over n parties f
and ϵ ∈ (0, 1) with κ(ϵ) ≤ f̂(n)µ(n), there exists a weighted threshold access
structure over n parties that is ϵ-close to f admitting a computational secret
sharing scheme where the size of the shares is O

(
poly

(
log

(
µ(n), 1

ϵ

)
, λ

))
and

the size of public information is O

(
µ(n)10.6

(
1
ϵ

)O(log2( 1
ϵ )) ,poly (λ)

)
.

Proof. The first part of the proof is analogue to that of Theorem 4.1, i.e. we use
the switching lemmas (Appendix A.1) and Theorem 3.1 to obtain a weighted
threshold access structure g with weight vector v, threshold v0, and dist(f, g) <
ϵ.

From there, instead of applying Shamir’s virtualization technique, we use

Theorem 2.7 to obtain a monotone formula for g of sizeO

(
µ(n)10.6

(
1
ϵ

)O(log2( 1
ϵ ))

)
.

Now, since a monotone formula is indeed a monotone circuit, we can com-
bine Theorem 5.1 and Theorem 5.2 to construct a computational secret sharing
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scheme for g where the size of the shares is O
(
poly

(
log

(
µ(n), 1

ϵ

)
, λ

))
and the

size of public information is O

(
µ(n)10.6

(
1
ϵ

)O(log2( 1
ϵ )) ,poly (λ)

)
. ⊓⊔

Now, we can mimic the approach done in the information-theoretic setting
to obtain the following result as a consequence of Theorem 5.4.

Theorem 5.5. Let k ∈ N. Under the subexponential RSA assumption, for any
weighted threshold access structure over n parties f , there exists a weighted
threshold access structure over n parties 1

logk(n)
-close to f admitting a computa-

tional secret sharing scheme where the size of the shares is O (poly (log(n), λ))
and the size of the public information is O

(
n10.6+o(1),poly (λ)

)
.

Proof. The proof follows the same steps as the proof of Theorem 4.3. The only
difference is that we apply Theorem 5.4 to the intermediate weighted threshold
access structure f ′ instead of Theorem 4.1. In this way, at the end of the proce-
dure we obtain a computational secret sharing scheme for g with shares of size
O (poly (log (n) , λ)) and public information of size O

(
n10.6+o(1),poly (λ)

)
.
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A Statements and Proofs of Results in Section 2

A.1 Switching lemmas

The next lemma shows that using ϕ we can switch from any monotone WTF to
an equivalent monotone LTF without modifying the weight of any coordinate.

Lemma A.1. For any w ∈ Rn
+ and σ ∈ R let f be the monotone WTF given

by f(x) = WTF(w, σ)(x) and let W (x) = w ·x. Let α ∈ {0, 1}n be a forbidden
vector of f with maximum weight and let g be the monotone LTF given by g(y) =
LTF(w,W (α)−W (α)). It holds that f(x) = 1 if and only if g(ϕ(x)) = −1.

Proof. First of all, notice that for any x ∈ {0, 1}n we have that W (x)+W (x) =
W (1n), i.e. the sum of the weights of a vector and its complementary are equal
to the total weight.

For any x ∈ {0, 1}n, having f(x) = 1 is clearly equivalent to imposing that
W (x) ≥ σ. Moreover, by definition we have that σ > W (α). Hence, combining
both inequalities and the previous comment we have that f(x) = 1 if and only
if W (α) −W (α) > W (x) −W (x), which by definition is the same as stating
that g(ϕ(x)) = −1. ⊓⊔
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The lemma that follows corresponds to the converse of Lemma A.1, i.e. it
shows that using ϕ we can pass from any monotone LTF to an equivalent mono-
tone WTF without modifying the weight of any coordinate.

Lemma A.2. For any w ∈ Rn
+ and σ ∈ R let f be the monotone LTF given

by f(x) = LTF(w, σ)(x) and let W (x) =
∑

xi=1 wi. Let α ∈ {−1, 1}n be a
forbidden vector of f with maximum weight and let g be the monotone WTF given
by g(x) = WTF(w,W (α)). It holds that f(x) = 1 if and only if g(ϕ−1(x)) = 0.

Proof. First of all, notice that for any x ∈ {−1, 1}n we have thatW (x)+W (x) =
W (1n).

For any x ∈ {−1, 1}n, having f(x) = 1 is clearly equivalent to imposing that
W (x) −W (x) ≥ σ. Moreover, by definition we have that σ > W (α) −W (α).
Hence, combining both inequalities and the previous comment we have that
f(x) = 1 if and only if W (α) > W (x), which by definition is the same as stating
that g(ϕ−1(x)) = 0. ⊓⊔

A.2 Proof of Lemma 2.13

Proof. First, we prove that f̂(i) ≥ ĝ(i). By definition, we must prove that
E[f(x)xi] ≥ E[P1(f(x))xi]. Since |P1(f(x))| ≤ 1, it suffices to prove that
whenever there exists x ∈ {−1, 1}n such that f(x)xi ≤ −1, then there exists
y ∈ {−1, 1}n such that f(y)yi ≥ −f(x)xi.

In this regard, if f(x)xi ≤ −1 it holds that either f(x) < −1 and xi = 1 or
f(x) > 1 and xi = −1. In both cases, by monotonicity if we define y = x⊕i we
have that f(y)yi ≥ |f(x)xi| as desired.

Now, to prove that ĝ(i) ≥ 0, it suffices to notice that by construction if f
is monotone then g is monotone too and then to use again the monotonicity
argument for the values x ∈ {−1, 1}n such that g(x)xi ≤ 0. ⊓⊔

B Computational Secret Sharing Schemes

In this section, we provide the full definitions of computational secret shar-
ing schemes and projective pseudorandom generators. All these definitions are
from [ABI+23], and we provide them for the sake of completeness.

B.1 Security of Computational Secret Sharing Schemes

Definition B.1 (Security). Let S = {0, 1}, let λ ∈ N be the security parame-
ter, let f be an access structure over n parties, and let (Share, Reconstruct) be a
computational secret sharing scheme for f . Consider the following game between
a non-uniform t(λ)-time adversary A and a challenger:

1. The adversary A on input 1λ chooses a forbidden set A and sends it to the
challenger.



32 Oriol Farràs and Miquel Guiot

2. The challenger chooses a uniformly random secret s ∈ S. It computes Share(s)
and sends Share(s)A to the adversary.

3. The adversary outputs a value s′ ∈ S.

The adversary wins the game if s′ = s.
We say that the computational secret sharing scheme is t(λ)-secure if for

every non-uniform t(λ)-time adversary A and sufficiently large λ, the probability
that A wins is at most 1

2 + 1
t(λ) . By default, we require t(λ)-security for every

polynomial t(·). In any case, we always assume that t > λ.

B.2 Projective Pseudorandom Generators

Definition B.2 (Projective Pseudorandom Generator). A projective Pseu-
dorandom Generator (pPRG) is a triple of algorithms pPRG = (pPRG.Setup;
pPRG.KeyGen; pPRG.Eval) with the following syntax:

– Setup: pPRG.Setup( 1λ, 1m ) −→(params, msk) is a randomized poly-time
algorithm that takes as input a security parameter λ and an output length
parameter m, and samples public parameters params and master secret key
msk. We assume that the public parameters are of length at least λ and that
one can recover in time poly(λ, logm) the values of the security parameter
and the output length m from params.

– Key Generation: pPRG.KeyGen(params, msk, T ) is a deterministic poly-
time algorithm that takes as input the public parameters params, a secret key
msk, and a set T ⊆ [m] represented by its m-bit characteristic vector, and
outputs a projective key a{T}.

– Evaluation: pPRG.Eval(params, msk, T ) is a deterministic poly-time al-
gorithm that takes as input the public parameters params, a projective key
a{T}, and a set T ⊆ [m] represented by an m-bit characteristic vector, and
outputs a string y ∈ {0, 1}|T |. We refer to c as the string that is the output
of the pPRG.

Since the description length of params (resp. T ) is at least λ (resp., the output
length m), the algorithms pPRG.KeyGen and pPRG.Eval are implicitly allowed to
run in time poly(λ, m). We require the following properties:

– Correctness: Correctness requires that for every λ, m, (params, msk) ∈
pPRG.Setup( 1λ, 1m), T ⊆ [m], and a{T} = pPRG.KeyGen(params, msk,
T ), it holds that y = c[T ], where y = pPRG.Eval(params, a{T}, T ) is the
string generated by the T -projective key a{T} and c = pPRG.Eval(params,
msk) is the string generated by (params, msk).

– Succinctness: Weak succinctness requires that there is a constant δ > 0
such that for every T ⊆ [m] the bit-length of a{T} is m1−δ poly(λ). Strong
succinctness requires that there is a fixed polynomial p such that the size of
a{T} is p(logm,λ).

– Security: Consider the following game between an adversary A and a chal-
lenger:
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1. Given an input 1λ, the adversary A chooses 1m and T ⊆ [m] and sends
(1m, T ) to the challenger.

2. The challenger samples (params, msk) ←− pPRG.Setup( 1λ, 1m), com-
putes c ←− pPRG.Eval(params, msk ), sets c1 ←− c[T ], and samples c0
uniformly from {0, 1}|T | , where T = [m]\T is the complement of T. The
challenger samples b uniformly from {0, 1} and sends params, a{T} =
pPRG.KeyGen(params, msk, T ), and cb to the adversary.

3. The adversary A outputs a bit b0 and wins if b = b0.
We say that pPRG is t(λ)-secure if for every non-uniform t(λ)-time adver-
sary A the probability that A wins is at most 1

2 + 1
t(λ) .

An additional feature of a projective PRG is robustness, a strengthening of
the above security definition.

– Robustness: Consider the following game between an adversary A and a
challenger:
1. Given an input 1λ, the adversary A chooses 1m and sets T1, . . . , Tl ⊆ [m]

and sends them to the challenger. Let T = T1 ∪ . . .∪Tl denote the union
of these sets.

2. The challenger samples (params, msk)←− pPRG.Setup(1λ, 1m), computes
c←− pPRG.Eval(params, msk), sets c1 ←− c[T ], and samples c0 uniformly

from {0, 1}|T |, where T = [m] \ T is the complement of T. Further-
more, the challenger samples b uniformly from {0, 1} and sends params,
a{Ti} = pPRG.KeyGen(params, msk, Ti) for all i ∈ [l], and cb to the
adversary.

3. The adversary A outputs a bit b′ and wins if b′ = b.
We say that pPRG is t(λ)-robust if for every non-uniform t(λ)-time adver-
sary A the probability that A wins is at most 1

2 + 1
t(λ) .

B.3 Block-Projective Pseudorandom Generators

Definition B.3 (Block-Projective Pseudorandom Generator). A Block-
Projective Pseudorandom Generator (block-pPRG) is a natural generalization of
pPRG. Specifically, in a block pPRG we think of the pseudorandom output as a
sequence (c1, . . . , cm) of m blocks, where each block ci is of length λ. A projective
key a{T} of a set T ⊆ [m] should allow computing all the blocks ci for which
i ∈ T . The security and robustness games are defined naturally where the only

difference is that c0 is sampled uniformly from ({0, 1}λ)T .

Remark B.4. Any (robust) pPRG with an output length of m′ = mλ can be
viewed as a (robust) block pPRG of length m by parsing the outputs as blocks
and by setting the projective key of T to a{T ′}, where T ′ is the set of all
location that fall inside the blocks whose index is in T . Alternatively, one can
simply concatenate λ-independent copies of a pPRG of output length m and set
the i-th bit of the j-th block to be the j-th output bit of the i-th copy. This
transformation preserves robustness and increases the key size and the size of
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the public parameters by a factor of λ, and therefore succinctness and strong
succinctness are preserved. Finally, we note that concrete constructions (e.g.
those based on RSA) can be easily modified to obtain block-pPRGs directly at
a minor cost.

C Proofs of Results in Section 3

C.1 Proof of Proposition 3.3

Proof. First, notice that whenever ∥χf − χg̃∥ ≤ 2ϵ the triangle inequality im-
plies that

∥χf − χg∥ ≤ ∥χf − χg̃∥+ ∥χg̃ − χg∥ ≤ 2ϵ+

√√√√ n∑
i=0

(
ϵ

µ(n)

)2

≤ 2ϵ+
ϵ

2
< 3ϵ.

Next, we prove that the output g is a monotone LBF. Let αi be the i-th
coefficient of g′ for any i ∈ [n], i.e. g′(x) = α0 +

∑n
i=1 αixi. By definition,

g = P1(g
′), so to prove that g is monotone it suffices to prove the following

claim.

Claim. αi is non-negative for any i ∈ [n].

Proof of the Claim. The construction of the Chow parameters implies that αi =
ĝ′(i) for any i ∈ [n]. Hence, the claim is equivalent to require that all the Chow
parameters of g′ are non-negative except for the first one.6

Let gt and g′t denote the instances of the functions g and g′ after the t-
th iteration of the loop of ApproximateLBF (Algorithm 1, steps 4-8), and let

ht =
∑n

i=0(f̂(i)− g̃t(i))xi. Instead of proving the claim, we prove the following
stronger statement: at any step t, ĝ′t(i) ≥ 0 for any i ∈ [n].

We prove it by induction on t. For t = 0 the result follows trivially for any
i ∈ [n] because g′0 ≡ 0.

We now suppose it is true for t and prove it for t + 1. By construction, we
have that

ĝ′t+1(i) = ĝ′t(i) +
1

2
ht(i) = ĝ′t(i) +

1

2
(f̂(i)− g̃t(i)) ≥

≥ ĝ′t(i) +
1

2
(f̂(i)− ĝ′t(i)−

ϵ

µ(n)
) ≥ 1

2
(f̂(i) + ĝ′t(i)−

ϵ

µ(n)
) ≥ 0,

where the first inequality holds because g̃t(i) ≤ ĝt(i)+
ϵ

µ(n) , the second inequality

follows from g′t being monotone by hypothesis and applying Lemma 2.13, and

the last inequality is derived using that by hypothesis ĝ′t(i) ≥ 0 and f̂(i) ≥ ϵ
µ(n) .

This concludes the proof of the claim. ⊓⊔
6 Notice that to ensure monotonicity of a LTF the sign of the threshold does not
matter. Hence, we do not require its 0-th Chow parameter to be non-negative.
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It only remains to prove the probabilistic nature of the result. This is a
technical requirement to obtain the desired running time. In more detail, the
running time of the algorithm is mainly determined by computing the Chow
parameters χg at each iteration (step 7), which requires exponential running
time for total precision. However, since we only require the Chow parameters
to be computed with precision ϵ

2µ(n) , we can use the Chernoff bounds to obtain

a probabilistic but more efficient result. In particular, with probability at least
1 − δ, we obtain the Chow parameters χg with precision ϵ

2µ(n) by using the

empirical mean of g(x)xi on O
(

µ(n)2

ϵ2 log
(
n
ϵδ

))
random points as our estimate

of ĝ(i) for any i = 0, . . . , n. ⊓⊔

C.2 Proof of Proposition 3.4

Proof. To prove that the main loop of the algorithm terminates, we define a
potential function at step t as

E(t) = E[(f − gt)
2] + 2E[(f − gt)(gt − g′t)] = E[(f − gt)(f − 2g′t + gt)].

We next proof the following claim about the potential function E(t).

Claim. E(t+ 1)− E(t) ≤ −ϵ2.

Proof. By construction, we have that

E(t+1)−E(t) = E[(f − gt+1)(f − 2g′t+1+ gt+1)]−E[(f − gt)(f − 2g′t+ gt)] =

= E[(f − gt)(2g
′
t − 2g′t+1) + (gt+1 − gt)(2g

′
t+1 − gt − gt+1)] =

= E[(f − gt)ht] +E[(gt+1 − gt)(2g
′
t+1 − gt − gt+1)]. (1)

Hence, to bound E(t+ 1)− E(t) it suffices to give upper bounds on E[(f −
gt)ht] and E[(gt+1 − gt)(2g

′
t+1 − gt − gt+1)] independently.

We first prove that

E[(f − gt)ht] ≥ ρ2 − ρϵ

2
(2)

To prove Equation (2) it suffices to use the Cauchy-Schwartz inequality and
Theorem 2.10 to get that

E[(f − gt)ht] =

n∑
i=0

(f̂(i)− ĝt(i))(f̂(i)− g̃t(i)) =

=

n∑
i=0

(f̂(i)− g̃t(i))(g̃t(i)− ĝt(i)) +

n∑
i=0

(f̂(i)− g̃t(i))
2 ≥ ρ2 − ρϵ

2
.

Next, to upper bound the expression E[(gt+1 − gt)(2g
′
t+1 − gt − gt+1)] we

prove that for every x ∈ {−1, 1}n

(gt+1(x)− gt(x))(2g
′
t+1(x)− gt(x)− gt+1(x)) ≤

ht(x)
2

2
.
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We first observe that

|gt+1(x)− gt(x)| =
∣∣∣∣P1

(
g′t(x) +

ht(x)

2

)
− P1(g

′
t(x))

∣∣∣∣ ≤ ∣∣∣∣ht(x)
2

2

∣∣∣∣
because a projection operation does not increase the distance.

Second, we prove that

|2g′t+1(x)− gt(x)− gt+1(x)| ≤ |g′t+1(x)− gt(x)|+ |g′t+1(x)− gt+1(x)|.

This is because

|g′t+1(x)− gt(x)| =
∣∣∣∣ht(x)

2
+ g′t(x)− gt(x)

∣∣∣∣ ≤ ∣∣∣∣ht(x)

2

∣∣∣∣
unless g′t(x) − gt(x) ̸= 0 and g′t(x) − gt(x) has the same sign as ht(x). In that
case, the definition of P1 implies that

|gt(x)| = sign(g′t(x)) and sign(ht(x)) = sign(g′t(x)− gt(x)) = gt(x).

However, this means that

|g′t+1(x)| ≥ |g′t(x)| > 1 and sign(g′t+1(x)) = sign(g′t(x)) = gt(x).

As a result

gt+1(x) = gt(x) and (gt+1(x)− gt(x))(2g
′
t+1(x)− gt(x)− gt+1(x)) = 0.

Similarly, for the second part we have that if

|g′t+1(x)− gt+1(x)| ≥
∣∣∣∣ht(x)

2

∣∣∣∣
then

gt+1(x) = sign(g′t+1(x)) and |g′t+1(x)| ≥
∣∣∣∣ht(x)

2

∣∣∣∣+ 1.

This implies that

|g′t(x)| ≥ |g′t+1(x)| −
∣∣∣∣ht(x)

2

∣∣∣∣ > 1

and
gt(x) = sign(g′t(x)) = sign(g′t+1(x)) = gt+1(x).

Altogether, we obtain that

(gt+1(x)− gt(x))(2g
′
t+1(x)− gt(x)− gt+1(x)) ≤

ht(x)
2

2
.

Hence, applying Theorem 2.10 we get that

E[(gt+1 − gt)(2g
′
t+1 − gt − gt+1)] ≤ E[h2

t ] =
ρ2

2
, (3)
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which gives an upper bound of E[(gt+1 − gt)(2g
′
t+1 − gt − gt+1)].

Finally, by substituting Equation (2) and Equation (3) into Equation (1), we
obtain the claimed decrease in the potential function

E(t+ 1)− E(t) ≤ −ρ2 + ϵρ

2
+

ρ2

2
= −ρ

2
(ρ− ϵ) ≤ −ϵ2,

where in the last inequality we have used that ρ > 2ϵ. ⊓⊔

Once the claim is proved, we notice that for all t

E(t) = E[(f − gt)
2] + 2E[(f − gt)(gt − g′t)] ≥ 0.

This holds because for every x ∈ {−1, 1}n if gt(x)−g′t(x) is non-zero, by the
definition of P1 we have that

gt(x) = sign(g′t(x)) and sign(gt(x)− g′t(x)) = −gt(x).

In this case,

f(x)− g(x) = 0 or sign(f(x)− gt(x)) = −gt(x)

and hence
(f(x)− gt(x))(gt(x)− g′t(x)) ≤ 0.

Therefore,

E[(f − gt)(gt − g′t)] ≤ 0 and clearly E[(f − gt)
2] ≤ 0.

By construction, it is clear that E(0) = 1 and therefore the process will stop
after at most 1

ϵ2 steps. ⊓⊔

C.3 Proof of Proposition 3.5

Proof. We start by proving the bound on the weights. Let T denote the number of
iterations of the algorithm. By our construction, the function gT = P1(

∑
t≤T ht)

is a LBF represented by weight vector w such that wi =
∑

j≤T
1
2 (f̂(i)− g̃j(i)).

Our roundings of the estimates of Chow parameters of gt ensure that each of
1
2 (f̂(i)− g̃j(i)) is a multiple of k = ϵ

2µ(n) . Hence, gt = LBF(kv, kv0), where the

vector v has only integer components.
At every step j, we have that√√√√ n∑

i=0

(f̂(i)− ˜gj(i))2 ≤
∥∥χf − χgj

∥∥+
∥∥χgj − χg̃j

∥∥ ≤ 2
√
dist(f, g) +

ϵ

2

≤ 4 +
ϵ

2
= O(1),

where the first inequality is due to the triangle inequality, the second inequality
follows from Theorem 2.16, and the last one is because dist(f, g) ≤ 2.
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Therefore, since there are at most ϵ−2 steps, the triangle inequality implies

that ∥w∥ = O(ϵ−2) and hence ∥v∥ = ∥w∥
k = O

(
µ(n)
ϵ3

)
.

The running time of the algorithm is essentially determined by finding χg̃t

in each step t. As discussed in the proof of Proposition 3.3, to ensure that with
probability 1 − δ all the estimates of χgt are within ϵ

2µ(n) of the true values

requires evaluating each gt on O
((

µ(n)2

ϵ2

)
log

(
n
ϵδ

))
random points. Moreover,

evaluating gt on any point x ∈ {−1, 1}n takes O(n) time and recall that there is
a total of O(ϵ−2) steps. Therefore, combining all these bounds we get the claimed
total running time. ⊓⊔
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