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Abstract. A transciphering framework, also known as hybrid homomor-
phic encryption, is a practical method of combining a homomorphic en-
cryption (HE) scheme with a symmetric cipher in the client-server model
to reduce computational and communication overload on the client side.
As a server homomorphically evaluates a symmetric cipher in this frame-
work, new design rationales are required for “HE-friendly” ciphers that
take into account the specific properties of the HE schemes.
In this paper, we propose a new TFHE-friendly cipher, dubbed FRAST,
with a TFHE-friendly round function based on a random S-box to min-
imize the number of rounds. The round function of FRAST can be ef-
ficiently evaluated in TFHE by a new optimization technique, dubbed
double blind rotation. Combined with our new WoP-PBS method, the
double blind rotation allows computing multiple S-box calls in the round
function of FRAST at the cost of a single S-box call. In this way, FRAST
enjoys 2.768 (resp. 10.57) times higher throughput compared to Kreyvium
(resp. Elisabeth) for TFHE keystream evaluation in the offline phase of
the transciphering framework at the cost of slightly larger communica-
tion overload.

Keywords: homomorphic encryption, programmable bootstrapping, transci-
phering framework, stream cipher, HE-friendly cipher

1 Introduction

Homomorphic Encryption. In order to achieve both privacy and usability
of data in use, various types of homomorphic encryption (HE) schemes have
been proposed and widely studied. HE schemes are typically targeted at the
client-server model, where a large amount of data from clients is processed by
an untrusted server. In this scenario, each client encrypts its data using an HE
scheme and sends the HE-ciphertexts to the server so that the server is able to
perform meaningful computations on the encrypted data without decrypting it.

⋆ This work was done while M. Cho was a master’s student at KAIST.



However, this approach of homomorphically encrypting all the clients’ data in the
client side has two technical problems. One is that a client should encrypt all its
data with an HE scheme, which is heavier than traditional symmetric encryption
schemes. Typically, even public key schemes such as RSA are only used for
key-sharing and symmetric key schemes are used for actual data encryption in
practice, so it would be desirable to reduce the computational cost required to
the client with the help of the server. The other problem, which seems inevitable
for HE schemes, is ciphertext expansion that increases the amount of data to
transfer to the server.

Transciphering Framework. In order to address the problems mentioned
above, a transciphering framework, also known as hybrid homomorphic encryp-
tion, has been proposed [45]. In this framework, the client encrypts its data using
a symmetric key cipher, and the server homomorphically recovers the data to
get the HE-ciphertext of the original data.

More precisely, the client chooses a symmetric key k of a symmetric cipher
E, computes the HE-ciphertext of k, namely, EncHE(k) using an HE scheme
HE, and sends it to the server only once. After that, when the client wants to
send data m to the server, the client encrypts m using E with key k and sends
the ciphertext c to the server. Then the server homomorphically encrypts it to
obtain EncHE(c), and then homomorphically evaluates the decryption circuit of
E using EncHE(k), obtaining the HE-ciphertext EncHE(m) of the original data m.
Figure 1 describes the transciphering framework using a stream cipher, where
the server precomputes EncHE(z) for a keystream z from the stream cipher in
the offline phase, and EncHE(m) is obtained by homomorphically computing
EncHE(c) − EncHE(z) in the online phase. In the transciphering framework, the
client takes the following advantages.

– A client does not need to encrypt all its data using an HE scheme (except
the symmetric key). All the data can be encrypted using only a symmetric
cipher, significantly saving computational resources in terms of time and
memory.

– Symmetric encryption does not result in ciphertext expansion, so the com-
munication overload between the client and the server will be significantly
lower compared to using any homomorphic encryption scheme alone.

All these merits come at the cost of computational overload on the server-side.
That said, this trade-off would be worth considering in practice since servers are
typically more powerful than clients.

HE-friendly Ciphers. For most HE schemes, linear operations such as ad-
dition and constant multiplication are way cheaper than nonlinear operations
such as multiplication. With this observation, the efficiency of an HE-friendly
cipher has been known to depend on its nonlinear operations. That said, more
specific design rationale might differ according to the specific properties of the
HE scheme. When combined with BGV [16] and BFV [15, 29], HE schemes
supporting homomorphic addition and multiplication over finite fields, it would
be desirable to use as few multiplications as possible. However, multiplication
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Fig. 1: The transciphering framework with a stream cipher. Homomorphic op-
erations are performed in the boxes with thick lines. The vertical dashed line
distinguishes the client and server, and the horizontal dashed line distinguishes
the offline and online computations. The encryption EncHE performed by the
server in the online phase can be done trivially.

is needed to construct nonlinear layers, which are essential to achieve security
against various attacks including differential, linear, and algebraic attacks. So
designing a symmetric cipher with simple nonlinear layers might require a large
number of rounds. To address this issue, a novel design strategy has been pro-
posed [43]: using randomly generated linear layers and simple nonlinear layers.
Many HE-friendly ciphers (for the BGV and BFV schemes) follow this design
rationale.

However, when it comes to the TFHE scheme [20, 21], one might take a
different strategy of designing TFHE-friendly ciphers due to the difference of
TFHE from BGV and BFV. We note that when TFHE [20] was first proposed, it
supported homomorphic XOR and AND operations on its ciphertexts encrypting
a single bit of message, both of which require the same computational cost of
one bootstrapping. Later, the leveled version of TFHE [21] was proposed3 by
expanding the plaintext encoding to Z2t for a small integer t such as t = 4. In
particular, it enjoys fast linear operations and nonlinear operations by means of
table lookup. In this paper, TFHE refers to the leveled version of TFHE.

The table lookup operation, homomorphically performed by programmable
bootstrapping (PBS), is a distinctive feature of TFHE. Since the table lookup
cost does not depend on the algebraic representation of a function to evaluate,
it is not required to approximate nonlinear functions into polynomials, as in the
case of BGV and BFV. Applying PBS to nonlinear operations such as ReLU
and max, [21] enables efficient homomorphic inference of deep neural networks.

3 It was named Concrete in [21], while recently it is also simply called TFHE.
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In terms of designing TFHE-friendly ciphers, homomorphic nonlinear opera-
tion by PBS removes the requirement of the algebraic simplicity of the nonlinear
layers. On the other hand, programmable bootstrapping requires that either one
padding bit is empty in the most significant bit (MSB) of the value hidden in
the ciphertext4, or the table is negacyclic. For example, the Elisabeth cipher [25],
first proposed as a TFHE-friendly cipher, uses 4-bit negacyclic S-boxes in the
nonlinear layers.

Regardless of which HE scheme is used, an HE-friendly cipher is typically de-
signed as a stream cipher. The authors of Kreyvium [17], a variant of Trivium [27]
with 128-bit security, first claimed that with a stream cipher, a keystream can
be precomputed independently of a message in the transciphering framework,
leading to simple homomorphic decryption in the online phase5. Since then, most
HE-friendly ciphers have been designed as stream ciphers. As the online phase
can be made simple with a stream cipher, high throughput for keystream eval-
uation in the offline phase becomes of practical relevance, in particular, in an
environment where a large amount of data is transferred.

1.1 Our Contribution

In this paper, we propose a new TFHE-friendly stream cipher, dubbed FRAST
(Feistel with RAndomly generated S-boxes for Tfhe), which enjoys high through-
put for its keystream evaluation on TFHE. The main design rationale of FRAST
is twofold.

First, the round function is designed to allow multiple S-box evaluations
at the cost of almost a single S-box evaluation. More precisely, it computes
S(x+ rki) for a common input x and multiple round keys rki for an S-box used
in the round function. Since the inputs to the S-box are distinct, a naive way of
evaluating the round function of FRAST would be to evaluate each S(x + rki)
separately.

On the other hand, in order to optimize the TFHE evaluation of FRAST, we
opt for the structure such that the inputs to the S-box share a common value
x, while the round keys rki’s are fixed once the master key is chosen. Then
S(x+ rki) can be evaluated for multiple round keys rki by sharing the internal
state of computing S(x) at the cost of some precomputation on the round keys.
We call this type of optimization technique double blind rotation.

As mentioned before, the PBS operation basically requires either one empty
padding bit in the ciphertext or the negacyclicity of the function to evaluate. To
address this issue, advanced PBS techniques called programmable bootstrapping
without padding (WoP-PBS)6 are proposed [22, 8, 49, 40, 39, 23]. Since FRAST
uses a non-negacyclic S-box for its component, we also propose a new WoP-PBS
method supporting the double blind rotation.

4 Precisely, the MSB should be known to perform PBS correctly.
5 In the case of TFHE, one PBS operation might be required to clear a carry bit after
the subtraction. See Section 6 for details.

6 It is also called the full domain functional bootstrapping (FDFB).
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Our WoP-PBS uses three GenPBS operations in a naive evaluation with-
out requiring additional evaluation keys or larger TFHE parameters for a larger
PBS precision. To the best of our knowledge, ComBo [23] is the only WoP-PBS
method satisfying the above constraints, while it uses four GenPBS operations
in its naive evaluation. Combined with the multi-value PBS [18] or PBSman-
yLUT [22], it is possible to reduce one GenPBS for both our WoP-PBS and
ComBo. Using parallel computation with log p threads, the latency of our WoP-
PBS becomes almost the same as a single GenPBS, where the plaintext space
is Zp for some power-of-two p. For ComBo, the latency can be reduced to two
GenPBS operations using parallel computation with two threads.

The second feature of our design is that the round function is based on ran-
domly generated S-boxes for some rounds. We note that the TFHE evaluation
of an S-box is independent of its structure unless it is constant or negacyclic.
Exploiting this property of the TFHE operation, random S-boxes efficiently mit-
igate various attacks using multiple input-output pairs from a fixed function. On
the other hand, some rounds of FRAST are still based on fixed S-boxes to guar-
antee concrete security against algebraic attacks.

We implement FRAST using the tfhe-rs library [50]. FRAST achieves 2.768
(resp. 10.57) times higher throughput compared to Kreyvium (resp. Elisabeth) on
the server-side offline phase.

1.2 Related Work

In this section, we briefly review some existing TFHE-friendly ciphers. The FLIP
stream cipher [43] is based on a filter permutator that randomly permutes key
bits and computes a nonlinear function, called a filter function, generating a
single keystream bit. The filter function is chosen to have a simple algebraic
representation for its efficient homomorphic evaluation, and its low security is
enhanced by the randomly generated permutation layer. On the other hand, the
permutation layer is publicly generated, so one can homomorphically evaluate
this layer with almost no cost.

Later, an improved filter permutator, dubbed FiLIP, has been proposed [42].
As both FLIP and FiLIP have been proposed for the 3rd generation FHE such as
TFHE, Hoffmann et al. [36] proposed an efficient evaluation of FiLIP with TFHE.
Cong et al. [24] adopt a transciphering using the FiLIP cipher in private decision
tree evaluation, but they use the FINAL [12] scheme for the transciphering,
which is an HE scheme based on the NTRU assumption. Méaux et al. [44]
also proposed a FINAL-based transciphering with FiLIP that supports setup-
independent plaintext space.

The (improved) filter permutator originally works on the Boolean space F2.
By generalizing this space to a group, Cosseron et al. [25] proposed a TFHE-
friendly cipher Elisabeth. In this construction, Z16-addition is used for the group
operation and the filter function consists of Z16-addition and evaluation of some
negacyclic S-boxes. This exploits the negacyclic-friendly property of the PBS op-
eration in TFHE while its overall structure still follows the strategy of randomly
generating its permutation layer. Recently, the Elisabeth cipher has been broken
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by an algebraic attack [34]. After that, Hoffmann et al. [37] proposed several
patches for Elisabeth, named Elisabeth-b, Gabriel and Margrethe, whose TFHE
evaluation cost is at least twice more than Elisabeth under a single thread.

For the other type of TFHE-friendly ciphers, Balenbois et al. [4] proposed to
use Trivium and Kreyvium in the transciphering framework with TFHE. Kreyvium
is a variant of a stream cipher Trivium of 80-bit security, that supports a larger
key to achieve 128-bit security. Once an initial vector IV is chosen, the key
and IV are loaded on the registers. The registers are updated by a nonlinear
function, which also generates keystream bits after some initialization rounds.
They presented an efficient TFHE evaluation of Trivium and Kreyvium keystreams
by the multithreading technique.

2 Preliminaries

2.1 Notations

Throughout the paper, bold lowercase letters (resp. bold uppercase letters) de-
note vectors (resp. matrices). For two vectors (bit strings) a and b, their con-
catenation is denoted by a∥b. ⌊r⌉ denotes the nearest integer to r, rounding
upwards in case of a tie. A real interval [a, b) has an alternative notation: [a, b[.
For two integers a and b, Z ∩ [a, b[ is denoted by Ja, bJ. For an integer q, we
identify Zq = Z/qZ with J−q/2, q/2J in the context of TFHE. The set B and [n]
denote {0, 1} and {1, 2, . . . , n}, respectively, for a positive integer n. For a set
S, we will write a← S to denote that a is chosen from S uniformly at random.
For a probability distribution D, a← D denotes that a is sampled according to
the distribution D. Unless stated otherwise, all logarithms are to the base 2.

In the context of TFHE, we use p and q for the moduli of messages and
ciphertexts, respectively. We only consider the case where p and q are powers
of two. For a power-of-two N , we denote the cyclotomic ring Z[X]/(XN + 1)
by ZN [X]. For the polynomial ring over Zq, we write Rq,N = Zq[X]/(XN + 1).
Similarly, we write BN [X] = B[X]/(XN + 1).

2.2 TFHE

In this section, we briefly review the core concepts of the TFHE scheme. Al-
though TFHE itself is mathematically defined over the real torus T = R/Z [20],
it is common to use the discretized torus 1

qZ/Z for q = 232 or q = 264 considering

its implementation. Hence, we identify the discretized torus 1
qZ/Z as Zq, which

is commonly used in the recent descriptions of TFHE [21, 22, 8].

LWE, RLWE, and GLWE Ciphertexts. Under a secret key S ∈ Rk
q,N ,

a message M ∈ Rp,N is encrypted into a GLWE ciphertext c ∈ Rk+1
q,N with a

scaling factor ∆ such that ∆ ≤ q/p as follows [16].

c = GLWES(∆ ·M) = (A1, . . . , Ak, B =

k∑
i=1

Ai · Si + [M ·∆]q + E)
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where S = (S1, . . . , Sk), Ai ← Rq,N for i = 1, 2, . . . , k, and E ← χσ for some
Gaussian distribution χσ denoting the error distribution. (A1, . . . , Ak) and B
are called the mask and the body of the GLWE ciphertext c, respectively, and
k is called the GLWE dimension. It is common to use a binary secret key in the
TFHE scheme, so we only deal with binary secret keys in this paper.

A GLWE ciphertext with N = 1 is called an LWE ciphertext. In this case,
it is common to use n to denote the LWE dimension instead of k, so that an
LWE ciphertext is usually denoted (a1, . . . , an, b) ∈ Zn+1

q . When k = 1, a GLWE
ciphertext is called an RLWE ciphertext. In this paper, we refer LWE ciphertexts
separately from GLWE ciphertexts of N > 1.

The decryption of a GLWE ciphertext is computing its phase, which is defined
as B−⟨(A1, . . . , Ak),S⟩, followed by rounding the phase by the scaling factor ∆.
The decryption works correctly if the error contained in the ciphertext is small
enough to be eliminated during the rounding by ∆.

From the definition of the GLWE ciphertext, the addition of two GLWE
ciphertexts under the same secret key results in the addition of their internal
plaintexts in Rq,N . Multiplying the ciphertext by a scalar plaintext is possi-
ble by iterating the addition several times. Both the addition and the scalar
multiplication increase the error of the resulting ciphertext linearly.

GGSW Ciphertexts. In the case of nonlinear operations such as multiplica-
tion, TFHE uses another type of ciphertext called GGSW [33]. Let B ∈ N be a

power-of-two and ℓ ∈ N. A GGSW ciphertext C ∈ Rℓ(k+1)×(k+1)
q,N of a message

M ∈ ZN [X] under a secret key S ∈ BN [X]k is an ℓ(k+ 1)× (k+ 1) matrix over
Rq,N defined as follows.

C =
(
GLWES

(
−Si ·

q

Bj
M
))

(i,j)∈[k+1]×[ℓ]

where S = (S1, . . . , Sk), Sk+1 = −1, and each GLWE ciphertext is considered
as a row having k + 1 columns of polynomials in Rq,N . B and ℓ are called the
decomposition base and the decomposition level of the GGSW ciphertext C,
respectively.

External Product and CMux Gate. The external product � between
GGSW ciphertext C and GLWE ciphertext c is defined as

C � c = GadgetDecomp(c) ·C

where GadgetDecomp(c) ∈ Rℓ(k+1)
q,N is the gadget decomposition of c [33, 22]

of which coefficients are lying in J−B/2, B/2J. The external product between
GGSW and GLWE ciphertexts defines homomorphic module scalar multipli-
cation on the discretized torus 1

qZ/Z. Roughly speaking, the external product
increases the error by the magnitude of the plaintext in the GGSW ciphertext.
Thus it is common to use GGSW ciphertext encrypting a single bit of message
in the external product.

The controlled mux gate, dubbed CMux, is the key operation used in TFHE.
Suppose two GLWE ciphertexts c0 and c1 are given along with a secret Boolean
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value b encrypted to a GGSW ciphertext C, where all three ciphertexts are
encrypted with the same key S. Then one may select cb without knowing b by

CMux(C, c0, c1) = (c1 − c0) � C+ c0.

Programmable Bootstrapping. The programmable bootstrapping (PBS)
of TFHE supports an extra functionality that evaluates a function for free during
the bootstrapping. Suppose an LWE ciphertext c = (a1, . . . , an, b) ∈ Zn+1

q of a
message m under a secret key s = (s1, . . . , sn) ∈ Bn is given. The PBS operation
outputs a refreshed LWE ciphertext c′ ∈ ZkN

q of the message f(m) under a

secret key s′ ∈ BkN by the following steps.

1. Encode the function f on a new GLWE ciphertext under a different secret
key S′ ∈ BN [X]k. The half of the function values of f are redundantly
encoded in the coefficients of the plaintext of the (trivial) GLWE ciphertext.

2. (Modulus switch) Compute c̃ = (ã1, . . . , ãn, b̃) ∈ Zn+1
2N where

ãi = ⌊ai · (2N)/q⌉ and b̃ = ⌊b · (2N)/q⌉,

obtaining an LWE ciphertext encrypting m̃ ≈ ⌊m · (2N)/q⌉.
3. (Blind rotation) Multiply X−b̃+

∑n
i=1 ãisi = X−m̃ to the GLWE ciphertext

encoding the function using a bootstrapping key {GGSWS′(si)}ni=1; multiply
either 1 or X−ãi according to si ∈ {0, 1} by the CMux gate.

4. (Sample extraction) Extract the constant term of the GLWE ciphertext,
obtaining an LWE ciphertext of f(m) under the secret key s′ ∈ BkN which
is a reordering of the coefficients of S′.

In this paper, we call the above PBS operation GenPBS as in [22].
The requirement of negacyclicity of f comes from the modulus switching

step; it computes m̃ ≈ ⌊m · (2N)/q⌉ while XN = −1. Hence, it is only possible
to evaluate a negacyclic function f : Zp → Zq such that f(x + p/2) = −f(x)
by encoding only half of the function values. To evaluate an arbitrary function,
TFHE requires one padding bit of zero in the MSB of m to guarantee m̃ < N .

In this paper, we define the precision of GenPBS as the log of the number
of the function values encoded in the GLWE ciphertext that the GenPBS op-
eration evaluates. Then, a GenPBS operation of t-bit precision can compute an
arbitrary function of t-bit precision, i.e., a function on J0, 2tJ, or an arbitrary
negacyclic function of (t+ 1)-bit precision without the padding bit. A GenPBS
operation with a larger precision requires a larger polynomial size N , increasing
computational cost for it.

Keyswitching. Since GenPBS outputs an LWE ciphertext under a different
secret key, it has to be switched back to a ciphertext under the original secret
key. This step is called the keyswitching. In practice, the keyswitching operation
is performed only once just before the GenPBS operation to match the LWE di-
mension rather than after every GenPBS operation. To denote the keyswitching
operation before the GenPBS operation, we denote a GenPBS after a keyswitch-
ing as KSthenGenPBS.

8



Plaintext Encoding in TFHE. To keep the padding bit zero, Bergerat
et al. [8] proposed a new encoding method for TFHE splitting the traditional
plaintext space into three parts: one (or more) bit of padding at the MSB, the
carry subspace after the padding bits, and the message subspace at the LSBs.
By tracking the maximum possible value in the ciphertext, it clears the carry
space before the padding bit is filled. For example, the default parameters of
tfhe-rs library for shortint type, called PARAM MESSAGE 2 CARRY 2, uses the
encoding that consists of two message bits, two carry bits, and one padding bit.

2.3 Algebraic Attacks

In this section, we briefly review algebraic attacks applicable to FRAST.

2.3.1 Trivial Linearization and Extended Linearization

Trivial Linearization. Given input-output pairs of a symmetric cipher, it is
possible to construct a system of polynomial equations with respect to the key
variables k. Trivial linearization is to make the system linear by introducing new
variables for all monomials of degree greater than one and to solve it. For the
linearized system to be solved, the number of equations should be greater than
or equal to the number of variables including newly introduced ones.

If a system of Boolean equations in n variables is of degree d and almost all
the monomials of degree up to d appear in the system, then the complexity of
the trivial linearization attack is given by(

d∑
i=1

(
n

i

))ω

ignoring the constant factor, where 2 ≤ ω ≤ 3 denotes the linear algebra con-
stant.

Extended Linearization. Courtois et al. [26] proposed the eXtended Lin-
earization algorithm that can be used when the number of equations is less
than the number of monomials. Given a system of m equations of degree d in n
variables over F2, the XL algorithm extends the system by multiplying all the
monomials of degree at most D − d for some D(> d) to obtain a larger num-
ber of (linearly independent) equations of degrees at most D. As the number of
equations grows faster than the number of monomials, it is possible to solve the
system for a sufficiently large D. The problem is that it is hard to determine the
smallest D, called the solving degree.7

When designing a symmetric cipher, we can assume that all the resulting
equations are linearly independent, which is in favor of an adversary. Then it is

7 The recent results show that the solving degree is the same as the degree of regular-
ity [47, 2].
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possible to estimate the solving degree D as the smallest one satisfying(
D−d∑
i=0

(
n

i

))
m ≥

D∑
i=1

(
n

i

)
assuming that all the monomials appear in the extended system of equations.
Then the complexity of the XL algorithm is given by(

D∑
i=1

(
n

i

))ω

(1)

ignoring the constant factor. There are some optimized variants such as the
Wiedemann XL algorithm [48], while using (1) with ω = 2 still gives a lower
bound on its complexity.

Hybrid Strategy. A hybrid strategy that guesses the values of some variables
can be applied to the linearization attacks. The complexity of the hybrid trivial
linearization after guessing k variables is given by

min
k

2k

(
d∑

i=1

(
n− k

i

))ω

(2)

ignoring the constant factor.
For the XL attack, the solving degree might differ according to the number

of guessed variables. Let Dn,k be the solving degree of the system after guessing
k variables. Then the complexity of the hybrid XL attack over F2 is given by

min
k

2k

Dn,k∑
i=1

(
n− k

i

)ω

(3)

ignoring the constant factor.

2.3.2 Gröbner Basis Attack

The Gröbner basis attack is to solve a system of equations by computing its
Gröbner basis. The complexity of Gröbner basis computation can be estimated
using the degree of regularity of the system of equations [5], upper bounding
the degree of polynomials that occur during the computation of a Gröbner basis
using algorithms such as F4 [30] and F5 [31].

Consider a system {fi}mi=1 of m equations in n variables. Let di denote the
degree of fi for i = 1, 2, . . . ,m. When working on F2, Bardet et al. [6] proposed
the following Hilbert series to estimate the degree of regularity taking homoge-
nization into account8.

Tm,n(z) =
(1 + z)n

(1− z)
∏m

i=1(1 + zdi)
. (4)

8 It already takes into account the field equations of the form x2 − x = 0 over F2.
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The degree of regularity dreg is determined by the smallest degree of the term
with a non-positive coefficient in the series Tm,n. Given the degree of regularity
dreg over F2, the complexity of computing a Gröbner basis is known to be

O

((
n

dreg

)ω)
. (5)

The degree of regularity estimated by the Hilbert series is commonly used to
theoretically estimate the complexity of the Gröbner basis attack. However, it
requires an assumption that the system of equations is semi-regular. It is known
that almost all polynomial sequences are semi-regular [32], but for a system
obtained from a symmetric cipher it might not be the case since it has a certain
structure.

3 The FRAST Cipher

3.1 Specification

A stream cipher FRAST with 128-bit security takes as input a 256-bit key k ∈
Z64
16 and a 128-bit nonce nc ∈ {0, 1}128, and returns a 128-bit keystream block

knc ∈ Z32
16. The FRAST cipher has two types of round functions: the randomized

one and the fixed one. Both types of round functions have the same structure
except for the underlying S-boxes.

In a nutshell, FRAST consists of 40 rounds, namely,

FRAST[k, nc] = RF[k, nc, 40] ◦ RF[k, nc, 39] ◦ · · · ◦ RF[k, nc, 1]

where RF[k, nc, i] is the i-th round function using secret key k and nonce nc. For
(x1, . . . , x32) ∈ Z32

16, RF[k, nc, i](x1, . . . , x32) = (y1, . . . , y32) ∈ Z32
16 is defined as

yj = xj + S
(nc; i)
erf (x1 + rk

(i)
j ) for j = 2, 3, . . . , 32,

y1 = x1 + S
(nc; i)
crf (y2 + y3 + · · ·+ y32 + rk

(i)
1 )

where rk(i) = (rk
(i)
1 , rk

(i)
2 , . . . , rk

(i)
32 ) ∈ Z32

16 is the i-th round key (derived from

the master key k), and S
(nc; i)
erf and S

(nc; i)
crf are the S-boxes used in the i-th round

function9 (see Figure 2).
FRAST repeats 4 random round functions followed by 1 fixed round function.

Hence, the i-th round is a random round if i is not a multiple of 5, and is a fixed
round if i is a multiple of 5.

S-Box. The random rounds of FRAST generate their S-boxes S
(nc; i)
erf and S

(nc; i)
crf

as negacyclic functions; the first 8 function values (S
(nc; i)
erf (0), . . . , S

(nc; i)
erf (7)) and

9 The subscript erf (resp. crf) stands for expanding round function (resp. contracting
round function), a term used in the generalized Feistel networks [1].
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nc XOF
x1 x2 x3 x32

y1 y2 y3 y32

rk
(i)
2

S
(nc; i)
erf

rk
(i)
3

S
(nc; i)
erf

rk
(i)
32

S
(nc; i)
erf

S
(nc; i)
crf

rk
(i)
1

4-bit 4-bit 4-bit 4-bit

· · ·

...

Fig. 2: The i-th round function of FRAST. rk
(i)
1 , . . . , rk

(i)
32 are the i-th round keys.

(S
(nc; i)
crf (0), . . . , S

(nc; i)
crf (7)) are sampled by the output from the underlying ex-

tendable output function XOF with input nc, and the other function values are
determined by the negacyclic property of the S-boxes.

The fixed rounds of FRAST use the same fixed S-box defined in Table 1 for
their S-boxes S

(nc; i)
erf and S

(nc; i)
crf . The S-box is one of the golden S-boxes of size

4-bit proposed in [46].

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 0 3 5 8 6 9 12 7 13 10 14 4 1 15 11 2

Table 1: The fixed S-box used in the fixed rounds of FRAST.

Key Schedule. The round keys rk(i) for i = 1, 2, . . . , 40 are obtained by
multiplying 64 × 64 invertible matrices over Z16 to the master key k ∈ Z64

16.
More precisely, an invertible matrix M is chosen from the output of SHAKE256
with a fixed public input10. Then, round keys rk2i−1 and rk2i are defined by
Mi · k = rk2i−1∥rk2i for i = 1, 2, . . . , 20. The exact specification of M is given
in Supplementary Material A.

Encryption Mode. When a keystream of m blocks in (Z32
16)

m is needed for
some m > 0, the “inner-counter mode” can be used: for ctr = 0, 1, . . . ,m − 1,

10 We used the string Feistel with RAndomly generated S-boxes for Tfhe in our
implementation, obtaining an invertible matrix over both Z16 and F24 without re-
jection.

12



one computes
z[ctr] = FRAST[k, nc∥ctr](ic),

where ic denotes a constant (0, 1, . . . , 15, 0, 1, . . . , 15) ∈ Z32
16. Figure 3 shows the

overall structure of FRAST in the counter mode.

nc∥ctr XOF

ic Round
1 to 5

· · · Round
5i+ 1

· · · Round
5i+ 4

Round
5i+ 5

· · · Round
36 to 40

z[ctr]

· · ·· · · · · ·

Fig. 3: The overall structure of FRAST in the counter mode, where ic is the
public input constant and z[ctr] is the keystream. Homomorphic operations are
performed in the box with thick lines. The i-th round is a fixed round if i is a
multiple of 5, and a random round otherwise.

3.2 Design Rationale

Each round of FRAST uses a common input branch to the S-boxes, while each
S-box input is masked with a distinct round key. The motivation for using the
common input branch lies in the multi-value PBS [18] that evaluates multiple
functions on the same input at the cost of almost one PBS call. To evaluate
multiple functions efficiently, it computes a common state by the blind rotation,
the most expensive part of the PBS operation, and induces the desired function
values by polynomial multiplications. Similarly to this method, by sharing the
result of the blind rotation on the common input value and using the precom-
puted GGSW ciphertexts of the round key bits, we can evaluate multiple S-box
calls on a common input with multiple round keys added at the cost of almost
one S-box evaluation. This optimization technique is dubbed double blind rota-
tion since one blind rotation by the common input is followed by another by the
round key (see Section 4.2 for the details).

The round function of FRAST, which can be seen as a generalized Feistel
network, has an issue on the error growth in its TFHE evaluation. Unlike the
substitution-permutation network, the branches are not refreshed during the
evaluation of S-boxes, so linear layers, linearly increasing the internal noise, are
not “free” anymore. With a simple permutation layer, the number of rounds
might be much higher than the number of branches due to the weak diffusion of
the permutation layer.

It is a common strategy to design HE-friendly ciphers with random linear
layers (in the substitution-permutation network) in order to reduce the required
number of rounds. However, TFHE evaluation of such linear layers will lead to
significant error growth. So we opt for random S-box generation to randomize the
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FRAST encryption function. Since TFHE evaluates S-boxes by PBS operations,
the random structure of the S-box will not affect the evaluation cost of FRAST.

The size of the S-boxes in FRAST is 4 bits, which is common in symmetric
ciphers. As the performance of PBS operation with 4-bit precision is sufficiently
efficient11, we choose 4-bit S-boxes for FRAST. For the efficiency of the homomor-
phic S-box evaluation, the random S-boxes are defined by negacyclic functions
whose half of the function values are sampled uniformly at random from Z16,
determining the others by the negacyclic property.

On the other hand, the fixed S-box of FRAST is non-negacyclic. It is one
of the golden S-boxes proposed in [46], which is known to have no polynomial
representation over Z16 (see Lemma 1). Although FRAST uses addition over Z16,
we analyze its security against algebraic attack with the XOR-variant of FRAST
as done in the Elisabeth cipher, focusing on classical algebraic properties over
F2. Over F2, all the output bits of the S-box have algebraic degree 3 and all
the input bits affect the output bits nonlinearly. Its inverse also has the same
algebraic properties. The number of quadratic equations induced by the S-box
is 21, which is the minimum for 4-bit S-boxes. The algebraic representations
of the S-box are given in Supplementary Material B. Zhang et al. [51] argue
that the golden S-boxes proposed in [46] might be vulnerable to differential and
linear attacks due to certain properties of the linear layers combined with the
S-boxes. When it comes to FRAST, randomly generated S-boxes mitigate such
vulnerabilities.

FRAST uses 256-bit keys, providing 128-bit security. The key length typically
affects the communication overload of the transciphering since it should be sent
to the server as a TFHE-ciphertext. When it comes to FRAST, most of the
round keys are sent to the server to enable the double blind rotation, so that
the length of the master key itself does not affect the communication overload.
Hence, to achieve stronger security against algebraic attacks, FRAST uses master
keys longer than the target level of security.

4 PBS Techniques for FRAST

In the transciphering framework with TFHE, each S-box of the cipher should
be evaluated by the GenPBS operation. However, it requires either one bit of
padding in the input ciphertext or the S-box to be negacyclic. Although the
random S-boxes of FRAST are negacyclic, the fixed S-box of FRAST is non-
negacyclic.

To address the issue of padding bit, PBS techniques called without-padding
PBS (WoP-PBS) have been proposed [22, 49, 40, 8, 39]. Most of the previ-
ous WoP-PBS methods require either additional evaluation keys, such as LWE-
toGLWE keyswitching keys [22, 39] and circuit bootstrapping keys [8], or pa-
rameters supporting GenPBS of t-bit precision to compute functions of t-bit
input [49, 40] (while a negacyclic function of t-bit input can be computed by

11 The default parameter of tfhe-rs library for shortint type supports GenPBS with
4-bit precision.

14



GenPBS of (t − 1)-bit precision). Using the additional evaluation keys of large
size requires an additional communication overload, so it might weaken the pur-
pose of the transciphering framework. WoP-PBS of t-bit precision using GenPBS
of t-bit precision is not compatible with the double blind rotation, a technique for
the FRAST evaluation described in Section 4.2, since the double blind rotation
requires one more padding bit to evaluate a non-negacyclic function. ComBo,
proposed by Clet et al. [23], is the first WoP-PBS method that can compute an
arbitrary function of t-bit precision using GenPBS of (t− 1)-bit precision with-
out additional evaluation keys. However, ComBo is also not compatible with the
double blind rotation since it uses GenPBS operations in depth 2.

4.1 Our New WoP-PBS

In this section, we introduce our new WoP-PBS that can compute an arbitrary
function of t-bit precision using at most 3 GenPBS operations of (t − 1)-bit
precision with no additional evaluation key. If it is possible to use the multi-value
PBS [18] or PBSmanyLUT [22] together, our WoP-PBS can compute arbitrary
functions in 2 GenPBS operations. In parallel computation, a variant of our
WoP-PBS can fully parallelize the required GenPBS operations, obtaining the
latency almost the same as that of a single GenPBS operation. Most importantly,
our WoP-PBS method supports the double blind rotation technique, described
in Section 4.2, to evaluate FRAST efficiently.

For an input message m ∈ J0, pJ with m = β∥m′ = β · p2 +m′ for β ∈ {0, 1}
and m′ ∈ J0, p/2J, let ClearMSB(m) = 0∥m′, which can be computed in a single
GenPBS operation by extracting the MSB of the input and subtracting it from
the input on the MSB position. The resulting ciphertext can be regarded as a
ciphertext of ClearMSB(m) ∈ J0, p/2J with one bit of padding.

The function f to compute is decomposed into fmsb-odd and fmsb-even, which
are defined as follows.

fmsb-odd(m) =
1

2

(
f(m)− f

(
m+

p

2

))
=

1

2

(
f(β∥m′)− f(β∥m′)

)
fmsb-even(m) =

1

2

(
f(m) + f

(
m+

p

2

))
=

1

2

(
f(β∥m′) + f(β∥m′)

)
where β = 1− β ∈ {0, 1}, the flipped bit of β. From f = fmsb-odd + fmsb-even, one
can compute f by computing fmsb-odd and fmsb-even.

We note that fmsb-odd becomes a negacyclic function on J0, pJ from its defi-
nition, i.e., fmsb-odd(m + p

2 ) = −fmsb-odd(m), so it can be evaluated by a single
GenPBS operation. In the case of fmsb-even, it can be regarded as a function on
J0, p/2J since fmsb-even(m + p

2 ) = fmsb-even(m). Observing that the MSB of the
input does not affect the output of fmsb-even, one can compute fmsb-even in a sin-
gle GenPBS operation with an input of the ciphertext of ClearMSB(m) with a
padding bit. All the GenPBS operations are of (log p−1)-bit precision. Since the
output ciphertext of our WoP-PBS is sum of two outputs of GenPBS operations,
the error variance of it is two times larger than that of the GenPBS operation
in the same parameters.
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Our WoP-PBS requires 3 GenPBS operations in its naive evaluation: one
for each of fmsb-odd, ClearMSB, and fmsb-even. When the multi-value PBS [18] or
PBSmanyLUT [22] can be used together, one can compute fmsb-odd and ClearMSB
in a single GenPBS operation since they compute negacyclic functions on the
same input.

Using parallel computation, a variant of our WoP-PBS can achieve almost
the same latency with a single GenPBS operation as follows. After decomposing
f into fmsb-odd and fmsb-even, one can further decompose fmsb-even using the same
method recursively by regarding fmsb-even as a function on J0, p/2J. For example,
when p = 16, an arbitrary function f on J0, pJ is decomposed into 4 negacyclic
functions f0, f1, f2, f3 and one constant f4 such that

f(m) = f0(m) + f1(m mod 8) + f2(m mod 4) + f3(m mod 2) + f4

where fi is negacyclic on J0, p/2iJ for i = 0, . . . , 3. All the fi can be computed
by a single GenPBS of (log p− i− 1)-bit precision without the padding bit. The
input ciphertext of m mod 24−i without padding can be obtained by using the
plaintext modulus switching ignoring some of the first MSB bits [22], which is
the same as multiplying 2i to the original input. This decomposition can be
generalized to the function on J0, pJ for arbitrary power-of-two p, resulting in
log p negacyclic functions and one constant. All the decomposed functions can be
computed in parallel, achieving the latency of a single GenPBS operation using
log p threads. The error variance of the output ciphertext is (log p)2 times larger
than the output of GenPBS in the worst-case12. For the exact specification of
the decomposed functions, see Supplementary Material F.

4.2 Double Blind Rotation

The round function of FRAST requires multiple S-box calls on the inputs of
the form x1 + rkj for j = 2, . . . , ℓ where x1 is the value of the first branch,
rkj ’s are the round keys, and ℓ is the number of branches. In the GenPBS
operation computing a function f on x1 + rkj , the blind rotation step rotates a
GLWE ciphertext encoding f by a factor of x1 + rkj . In a naive way, evaluating
f(x1 + rkj) for all j = 2, . . . , ℓ requires rotating a GLWE ciphertext encoding f
by x1 + rkj independently for all j = 2, . . . , ℓ.

The idea of the double blind rotation is that the result of the rotation by x1

can be shared. Suppose an LWE ciphertext of x1 without padding and GGSW
ciphertexts of the round key bits rkj,b are given where rkj = rkj,4∥ . . . ∥rkj,1 for
j = 2, 3, . . . , ℓ and b = 1, . . . , 4. For a negacyclic function f , let GLWE(Pf ) be
a GLWE ciphertext of Pf ∈ Rq,N that encodes f on its coefficients. The blind
rotation on GLWE(Pf ) by LWE(x1) outputs GLWE(Pf · X−x̂1) where x̂1 is a
scaled value of x1 such that the constant term of Pf ·X−x̂1 becomes f(x1). Then

12 Estimating the error variance as log p times larger one in the average-case requires
the heuristic assumption that outputs of the GenPBS operations on the inputs that
differ only by constant factors have independent errors.

16



one can compute GLWE(Pf · X−(x̂1+r̂kj)) by multiplying X−r̂kj homomorphi-

cally where r̂kj is the scaled value of rkj . Given the GGSW ciphertexts of the
round key bits, it can be computed by additional 4 CMux gates. Therefore, one
can compute LWE(f(x1 + rkj)) for all j = 2, . . . , ℓ by a single GenPBS followed
by 4(ℓ− 1) CMux gates.

Two issues remain for applying the double blind rotation on FRAST. First,
the fixed S-box in the FRAST round function is not negacyclic, requiring WoP-
PBS for its evaluation instead of GenPBS. In this case, a WoP-PBS method that
does not perform GenPBS operations in depth 2 is required. Evaluating a non-
negacyclic function with the help of padding bits is also possible, but the double
blind rotation requires two bits of padding to guarantee x̂1+ r̂ki < N . Our WoP-
PBS method can resolve this issue for evaluating FRAST with TFHE parameters
supporting a GenPBS operation in 4-bit precision. When S is decomposed into
Smsb-odd and Smsb-even, the double blind rotation can be applied to Smsb-odd as
it is negacyclic. In the case of Smsb-even, one can make two bits of padding in
the ciphertext of ClearMSB(x1) by one more GenPBS operation to change its
scaling factor, allowing the double blind rotation using a GenPBS operation of
4-bit precision13. See Supplementary Material H for details of FRAST evaluation
by the double blind rotation.

The other is computing the GGSW ciphertexts of the round key bits. Since
the round key bits are fixed, we directly transfer the round key bits used for
the double blind rotation packed in the GLWE ciphertexts once, and convert
it into GGSW ciphertexts on the server-side by the GLWEtoGGSW conversion
proposed in [19]14. The communication overload for the round keys and the
evaluation keys for the conversion is only a few MBs.

5 Security Analysis

In this work, we will consider the standard “secret-key model”, where an ad-
versary arbitrarily chooses a nonce, and obtains the corresponding keystream
without any information on the secret key. The related-key and the known-key
models are beyond the scope of this paper. We also limit the number of encryp-
tions under the same key up to 264 blocks since otherwise one would not be able
to avoid a nonce collision (when nonces are chosen uniformly at random).

The extendable output function whose output determines the random S-
boxes is modeled as a random oracle, so an adversary is not able to freely choose
the S-boxes. The input to the FRAST is also fixed as the known constant ic.
Therefore, in this model, we believe that FRAST is secure against any type of
chosen-plaintext attacks such as (higher-order) differential, truncated differen-

13 Using the variant of our WoP-PBS that fully decomposes a function into negacyclic
functions enables the double blind rotation using a GenPBS operation of 3-bit pre-
cision at the cost of more CMux gate operations.

14 It only deals with the case of converting RLWE to RGSW, but converting GLWE
to GGSW for k > 1 is also possible using the same idea.
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tial, invariant subspace trail, and cube attacks. On the other hand, we assume
that the specifications of the random S-boxes are given to the attacker.

Overall, in this section, our focus will be mainly put on algebraic and linear
attacks, which are possible in the known-plaintext models. We analyze the secu-
rity of FRAST against algebraic (resp. linear) attacks based on the fixed (resp.
random) round functions of FRAST.

5.1 Algebraic Attacks

An algebraic attack is to build a system of polynomial equations and solve it to
recover the secret key. For simplicity, we ignore the random rounds of FRAST.
Instead, we assume that a distinct input is given to FRAST since the first 4
rounds are randomized ones. This can be considered as a case such that all the
random S-boxes are linear, which is in favor of an attacker, so that the algebraic
degree does not increase in the random rounds.

Algebraic Representation over Z16. Recently, Grassi et. al. [35] showed
that the brute-force attack on a polynomial system of n secret elements over
Zq, where q = py for a prime p and y > 1, requires only O(y · pn) computation
instead of O(py·n). This implies that if FRAST has a polynomial representation
over Z16 then it becomes vulnerable to the brute-force search attack. On the
other hand, for an S-box to have a polynomial representation over Z16, the
following condition should be satisfied.

Lemma 1. Let f : Z16 → Z16 be a function over Z16. If f has a polynomial
representation, then it should satisfy f(i+8)−f(i) ∈ {0, 8} for all i = 0, 1, . . . , 7.

Proof. Suppose that f is represented by f(x) = a0 + a1x + · · · + a15x
15 where

a0, a1, . . . , a15 ∈ Z16. Then, for all i = 0, 1, . . . , 7, one obtains

f(i+ 8)− f(i) = 8

 15∑
j=1

aj

(
j−1∑
m=0

(i+ 8)j−m−1im

) .

Since 8z ∈ {0, 8} for every z ∈ Z16, f(i+ 8)− f(i) ∈ {0, 8}.
As the fixed S-box of FRAST does not satisfy the necessary condition above,

we can conclude that the FRAST round function cannot be represented as a
polynomial over Z16.

Algebraic Analysis on the XOR Variant of FRAST. We consider an
XOR-variant of FRAST with addition and constant multiplication over Z16 re-
placed by XOR and multiplication over F24 . Such an approach has also been
taken for the algebraic analysis of the Elisabeth cipher by introducing an XOR-
variant of Elisabeth, dubbed Beth.

The XOR-variant of FRAST can be represented by a system of Boolean equa-
tions. In this section, we analyze FRAST using various systems of Boolean equa-
tions for its XOR-variant. For the complexity of linearization attacks, we will use
ω = 2 in (2) and (3). In particular, for the XL attack, the independence assump-
tion will be used to estimate the solving degree as mentioned in Section 2.3.1.
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5.1.1 Trivial Linearization

One can build a system of equations using only the key variables as unknowns
and apply trivial linearization attack. The attack cost depends on the number
of monomials appearing in the system, determined by the degree of the system.

Consider a single round function of FRAST with input (x1, x2, . . . , xℓ), output
(y1, y2, . . . , yℓ), and round key (rk1, rk2, . . . , rkℓ) where xj , yj , rkj ∈ F4

2 for j =
1, 2, . . . , ℓ15. Then we have

y1 = x1 + S(y2 + y3 + · · ·+ yℓ + rk1),

yj = xj + S(x1 + rkj) for j = 2, 3, . . . , ℓ. (6)

Since all the outputs of S are of degree 3, the degree of S(x + rk) is at least
deg x + 2, assuming that rkj is a dense linear combination of the master key.
Then, we have deg yj ≥ deg x1 + 2 for j = 2, . . . , ℓ and deg y1 ≥ deg x1 + 4. Let

(x
(i−1)
1 , . . . , x

(i−1)
ℓ ) (resp. (x

(i)
1 , . . . , x

(i)
ℓ )) be the input (resp. output) of the i-th

round function. From deg x
(1)
j = 3 for j = 2, . . . , ℓ, we obtain

deg x
(i)
1 ≥ 4i+ 1,

deg x
(i)
j ≥ 4i− 1 for j = 2, . . . , ℓ

for i = 1, 2, . . . , r where r is the number of rounds.
Considering the meet-in-the-middle attack, we also need to consider the back-

ward direction. Using the same argument, one can obtain a system of degree at
least 4⌊r/2⌋+ 1, which is 17 when r = 8.

Since the round keys are dense linear combinations of the master key, one can
expect almost all the monomials of degree up to the lower bound to appear in the
system. Experimental results on the number of the appearing monomials with
toy parameters are given in Supplementary Material C. Assuming the system of
FRAST contains almost all the monomials of degree 17, the time complexity of
the (hybrid) trivial linearization attack is 2173.76.

Remark 1. The attack on Elisabeth [34] is one of the trivial linearization attacks
combined with an optimization technique on the Gaussian elimination. Hence,
FRAST is also secure against the attack.

5.1.2 XL Attack

Other than the equations only in the key variables, one can build a system of
equations of low degrees by introducing new variables other than the key vari-
ables or guessing some bits of the internal state. Then it is possible to apply
algebraic attacks such as the XL attack and the Gröbner basis attack. We con-
sider the following three kinds of systems for FRAST.

1. A system of equations by introducing new intermediate variables for each
round.

15 ℓ = 32 in the actual specification of FRAST.
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2. A system of equations by introducing new variables for the first branch of
each round.

3. A system of equations by guessing the values of the first branch for each
round.

New Variables for the Intermediate State. One can build a system of
equations by introducing new intermediate variables for each round. In this case,
using implicit relations induced by S leads to a larger number of equations of

lower degrees than using explicit relations. Let (x
(i−1)
j )ℓj=1 and (x

(i)
j )ℓj=1 denote

the input and the output of the i-th round function, respectively. From the im-
plicit relation S′(x, y) = 0 induced by S, one can obtain the following equations.

S′(x(i)
2 + x

(i)
3 + · · ·+ x

(i)
ℓ + rk

(i)
1 , x

(i)
1 − x

(i−1)
1

)
= 0

S′(x(i−1)
1 + rk

(i)
j , x

(i)
j − x

(i−1)
j

)
= 0 for j = 2, 3, . . . , ℓ (7)

where (rk
(i)
j )ℓj=1 denotes the i-th round key which is linear to the master key.

Since S-box S has 21 implicit quadratic equations over F2, each round induces
21ℓ quadratic equations. For r rounds of FRAST, one obtains 21ℓr quadratic
equations in 256+128(r− 1) variables. When m keystream blocks are used, one
obtains 21ℓrm quadratic equations in 256 + 128(r − 1)m variables.

New Variables for the First Branch. Since the first branch is common to
all the S-box evaluations, introducing new variables for (x

(i)
1 )r−1

i=1 might signifi-

cantly reduce the degree of the keystream x
(r)
j for all j = 2, 3, . . . , ℓ. Regarding

(x
(i)
1 )r−1

i=1 as new variables, one obtains two types of equations: one from the

keystream (x
(r)
j )ℓj=2 and the other from (x

(i)
1 )ri=1. The first type of equations are

x
(r)
j = x

(0)
j +

r∑
i=1

S(x
(i−1)
1 + rk

(i)
j ) (8)

for j = 2, 3, . . . , ℓ, and the other type of equations are

rk
(i)
1 +

ℓ∑
j=2

x
(i)
j = S−1(x

(i)
1 − x

(i−1)
1 ) (9)

where x
(i)
j = x

(0)
j +

∑i
t=1 S(x

(t−1)
1 + rk

(t)
j ) for i = 1, 2, . . . , r. Hence, we obtain

4(ℓ+ r− 1) equations of degree 3 in 256+4(r− 1) variables. From m keystream
blocks, one obtains 4(ℓ + r − 1)m equations of degree 3 in 256 + 4(r − 1)m
variables.

Remark 2. Both equations (8) and (9) use the explicit representation of S. If
the implicit representation is used, then the resulting system of equations is of
degree 4. Since the XL attacks are based on the strategy of extending equations
of lower degrees to a larger number of equations of higher degrees by multiplying
polynomials (or monomials), we only consider the system of equations of a lower
degree if the same variables are used.
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Guessing the First Branch. It is possible to guess the intermediate states

of the first branch x
(i)
1 for i = 1, 2, . . . , r − 1, in which case we obtain equations

of the same degree except that equation (9) becomes linear for i = r since x
(r)
j

are known for j = 1, 2, . . . , ℓ. This linear equation determines the value of rk
(r)
1 ,

reducing the number of variables by 4. Hence, by guessing 4(r − 1) bits of the
intermediate state, one obtains a system of 4(ℓ+ r− 2) equations of degree 3 in
252 variables.

When m keystream blocks are used, the round key rk
(1)
1 fixed in the first

block determines x
(r−1)
1 for all the other blocks. Therefore, one obtains a system

of 4(ℓ + r − 2)m equations of degree 3 in 252 variables by guessing 4(r − 1) +
4(r − 2)(m− 1) bits of the intermediate state of the first branch.

XL Attack Complexity. Table 2 summarizes the complexity of the XL at-
tacks for the above systems according to the number of keystream blocks used
to build the systems. One can find that FRAST is secure against the XL attacks
under 128-bit security even with the independent assumption.

# Blocks
Intermediate Variables First Branch Variables Guessing First Branch

# Var # Eqs gopt D Cost # Var # Eqs gopt D Cost # Var # Eqs gopt D Cost

1 1152 5376 3 16 239.56 284 156 127 26 323.85 252 152 97 26 320.82
2 2045 10752 10 20 327.32 312 312 120 26 333.02 252 304 70 25 335.01
3 2944 16128 0 24 394.81 340 468 124 26 346.39 252 456 46 25 335.01
4 3840 21504 0 27 456.45 368 624 8 39 356.90 252 760 18 26 359.92

Table 2: Complexity of the hybrid XL attacks for each system. gopt denotes
the optimal number of guessing for the hybrid XL attack, D denotes the solving
degree, and ‘Cost’ denotes the attack complexity in bits. For the system guessing
the first branch, guessing 32m bits of the first branch is considered in its cost
where m is the number of blocks.

5.1.3 Gröbner Basis Attack

We experimentally computed Gröbner basis for the systems described in Sec-
tion 5.1.2 on toy parameters and found that the highest degree reached during
the computation is not well estimated by the degree of regularity from (4). In-
stead, we experimentally verified that the actual Gröbner basis computation
time grows exponentially according to the number of rounds and the number of
branches. Figure 4 shows the Gröbner basis computation time of the systems ob-
tained from a single input-output pair. For the systems obtained from multiple
input-output pairs, see Supplementary Material D.
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Fig. 4: Gröbner basis computation time of the systems on toy parameters. The
number of rounds and branches are denoted by r and ℓ, respectively. The key
size is set to 4ℓ bits, which is half the actual key size.

5.1.4 Other Algebraic Attacks

The fast exhaustive search attack [14] can be seen as an optimized variant of
the brute-force search. It evaluates Boolean equations of degree d in n variables
using d ·2n bit operations. However, the key length of 256 bits mitigates the fast
exhaustive search attack against FRAST.

The polynomial method [7] is a technique for solving a system of multivariate
polynomial equations. For a system of Boolean equations of degree d in n vari-
ables, its time complexity is estimated as n2 ·2(1−1/(2.7d))n in bit operations [28].
The polynomial method is also infeasible for FRAST using a secret key of 256
bits.

The interpolation attack [38] is to establish an encryption polynomial only in
plaintext variables by considering the secret key as an (unknown) constant. The
input to FRAST is fixed as constant ic and the encryption function is distinct
for every encryption, so it seems infeasible to apply the interpolation attack
in a straightforward manner. On the other hand, one might try to establish a
polynomial in the XOF outputs (that determine the random S-boxes). In this
case, however, the number of variables is much larger and the degree growth by
lookup operation on the random S-box is much faster compared to the systems
only in key variables described in Section 5.1.1.

5.2 Linear Attacks

The linear attack was originally introduced for binary spaces [41], but it can
also be applied to non-binary spaces [3]. The linear probability of a function
E : Zℓ

p → Zℓ
p with input and output masks a,b ∈ Zℓ

p is defined as follows:

LPE(a,b) =

∣∣∣∣Ex

[
exp

{
2πi

p
(−⟨a,x⟩+ ⟨b,E(x)⟩)

}]∣∣∣∣2
where x is uniformly distributed over Zℓ

p. We refer to [3] for the details.
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Traditional linear cryptanalysis that requires many input-output pairs of a
fixed function does not apply to FRAST since the keystream generating function
of FRAST changes for each keystream block. So in order to analyze the resistance
of FRAST against linear cryptanalysis, we consider the following three strategies
to be combined with linear attacks.

1. Applying nonzero linear masks on the XOF outputs generating the random
S-boxes of FRAST.

2. Collecting input-output pairs that can be analyzed by the same linear trail.

3. Collecting input-output pairs whose random S-boxes have linear relations.

In this section, we show how the above strategies are mitigated by the randomly
generated S-boxes of FRAST.

Nonzero Linear Masks on the XOF Outputs. The first approach is to
apply nonzero linear masks on the XOF outputs that determine the random
S-boxes of FRAST. Although the XOF outputs themselves are not controllable
by an attacker, they can be considered as additional inputs in the KPA model
since they are publicly known. Using this approach, one can apply the linear
cryptanalysis to FRAST by considering it as a fixed function whose input size
is larger than its output size. For example, a negacyclic random S-box S it-
self can be described by its function values (S(0), . . . , S(7)), and the function
LookUpk(x, S) = S(x+ k) can be described as a function from Z16 ×Z8

16 to Z16

defined by

LookUpk(x, S) =
7∑

i=0

(1 {x+ k = i} − 1 {x+ k = i+ 8})S(i)

where 1 {x+ k = i} = 1 if x+k = i and 0 otherwise. From this point of view, the
linear probability of FRAST with additional linear masks on the XOF outputs
is well-defined.

However, unlike the traditional linear cryptanalysis model, the resulting lin-
ear probability depends on the relation between the linear masks (on the XOF
outputs) and the round keys. Hence, the masks should be chosen carefully consid-
ering the relation with the round keys. Otherwise, the linear probability becomes
zero.

One possible choice is to use a trail with nonzero linear probability regardless
of the round keys. We find it possible to build such a trail when only one S-box
is activated for each round, and its linear probability is 2−6 for each round. As
FRAST has 32 rounds of random S-boxes, the linear probability of the trail be-
comes 2−192. If more than two S-boxes are activated, then the linear masks and
the round key should satisfy a certain relation. To build a linear trail satisfying
the relation, the attacker should guess at least one round key (or a difference
between round keys). Since there are 32 rounds of random S-boxes, it requires
guessing at least 128 bits of the round keys. We refer to Supplementary Mate-
rial E.1 for the details.
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Using Compatible Input-Output Pairs. The next approach is to apply the
traditional linear cryptanalysis on data that can be analyzed under the same
linear trail. Suppose one finds a good linear trail on a single input/output pair
of FRAST. In general, applying the trail on the other input/output pair does
not work since the randomly generated S-boxes are different for the two data.
However, if the S-boxes of two data work identically with respect to the linear
approximation by the trail, one can analyze two data using the trail.

To consider such a case, we define two S-boxes S1 and S2 are compatible with
respect to the output linear mask b if b(S1 − S2) is constant

16. The probability
that two randomly chosen negacyclic S-boxes are compatible is at most 2−7.
Since there is at least one active S-box in the non-trivial linear trail of FRAST,
the probability that two data are compatible with respect to a linear trail is at
most 2−224, which is negligible under 128-bit security. We refer to Supplementary
Material E.2 for the details.

Using Linear Relations of Random S-boxes. One might use data from
multiple instances of FRAST whose random S-boxes have certain linear relations.
If the S-box has a linear relation such as ax+ bS(x) = c for all x, then one can
construct input/output linear masks of linear probability 1 for the corresponding
round. When all the active S-boxes have linear relation, then one can use a
linear trail whose linear probability depends only on the fixed rounds. Since
the probability that a random negacyclic S-box has a linear relation is at most
2−6 (see Supplementary Material E.3 for the details), the probability that all
the active random S-boxes have such linear relations is at most 2−192, which is
sufficiently small at the security level of 128 bits.

Zero-Correlation Attack. In contrast to the classical linear attack finding
a high linear correlation, Bogdanov and Rijmen [9] proposed a variant of linear
attack using linear hulls with correlation zero. This attack is based on the as-
sumption that there might be a linear hull of correlation zero for every secret
key (due to a certain specific structure of the block cipher), while it is not the
case for a truly random permutation. Hence if one knows such a linear hull of
correlation zero and collects 2n−1 input-output pairs under the same key, then
the block cipher can be distinguished from a random permutation. Later, Bog-
danov and Wang [10] reduced the data complexity down to O(2n/

√
ℓ), where ℓ

is the number of the linear hulls with correlation zero.

The zero-correlation attack is not applicable to FRAST since the output
keystream blocks of FRAST are not produced by a fixed permutation. To gen-
erate keystream blocks of FRAST, we feed a fixed input ic to different encryp-
tion functions based on random S-boxes. If each keystream block of FRAST is
regarded as an output of an independent permutation, then there will be no
correlation between the keystream blocks, giving no distinguishing advantage to
an adversary.

16 b(S1−S2) need not to be zero since the constant difference does not affect the linear
probability.
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6 Performance Evaluation

In this section, we evaluate the server-side performance of FRAST in the transci-
phering framework with TFHE and compare it with Elisabeth (and their patches)
and Kreyvium. We omit the previous result for FiLIP proposed by Hoffmann et
al. [36] since it takes more than a second to evaluate a single bit, which is far
slower than Elisabeth and Kreyvium. Méaux et al. [44] proposed a FINAL-based
FiLIP evaluation method with a notable performance in terms of computation
time, while we believe that it is hard to make an apples-to-apples comparison
of the benchmark since it requires much larger key size of about 1 GB17 (even
might be larger in the TFHE scheme). For the patches of Elisabeth, we only
consider Elisabeth-b and Gabriel since Margrethe requires to evaluate a lookup
table of 18-bit inputs, which is impractical18.

The source codes of the server-side computation are developed in Rust with
tfhe-rs library [50] which supports the TFHE scheme. The extendable out-
put function XOF has been instantiated with SHAKE256. Our experiments are
executed in Intel i5-13600K @ 3.90 GHz19.

For homomorphic evaluation of FRAST, the default parameters of tfhe-rs
library for shortint type, named PARAM MESSAGE 2 CARRY 2, are used along
with some chosen parameters for the GLWEtoGGSW conversion. Specifically,
the following parameters have been used.

– GenPBS parameter

• LWE parameters: n = 742, σLWE = 7.06984× 10−6

• GLWE parameters: k = 1, N = 2048, σGLWE = 2.94036× 10−16

• PBS parameters: logBPBS = 23, ℓPBS = 1

• Keyswitching parameters: logBKS = 3, ℓKS = 5

– GLWEtoGGSW parameter

• GGSW parameters of the GLWE secret key: logBSK = 9, ℓSK = 5

• GLWE keyswitching parameters: logBsubs = 9, ℓsubs = 5

• GGSW parameters of the round key bits: logBrk = 7, ℓrk = 3

With the above parameters, 128-bit security is achieved and the error probability
is upper bounded by 2−40. See Supplementary Material H for detailed error
analysis. For Elisabeth and Kreyvium, the TwoKS parameters in [25] and the
parameters in [4] are used, respectively. For the performance evaluation, we
consider the case where the actual parameters after the transciphering are the
default parameters of tfhe-rs library for shortint type as in [4].

17 The PARAM MESSAGE 2 CARRY 2 parameters correspond to the case of p = 25 with
Set-II.

18 The authors also left the homomorphic evaluation of Margrethe as an open problem.
19 It has 6 P-cores @ 5.30 GHz and 8 E-cores @ 3.90 GHz, and we only used the 8

E-cores for the benchmark.
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6.1 Benchmark and Comparison

The transciphering framework with a stream cipher requires only simple subtrac-
tion in the online phase, while, when it comes to TFHE, additional computation
is required after the subtraction for plaintext encoding such as clearing carry bits
and matching the plaintext encoding. Kreyvium clears the carry bit after sub-
traction by a single KSthenGenPBS operation [4]. When it comes to Elisabeth
producing ciphertexts of 4-bit keystream blocks without padding, Cosseron et al.
proposed to use one-bit smaller plaintext space with padding for the resulting ci-
phertext [25]. Although the online phase only requires homomorphic subtraction
for this plaintext encoding, it is not commonly used in TFHE. Most importantly,
the ciphertext expansion ratio becomes greater than 1 since each ciphertext of
4 bits only contains a plaintext of 3 bits.

FRAST produces ciphertexts of 4-bit keystream blocks without padding, too.
In order to support various types of plaintext encoding without ciphertext expan-
sion, we add a bit extraction process at the end of the offline phase; a ciphertext
of 4 bits is decomposed into 4 ciphertexts of a single bit whose plaintext encoding
supports 1-bit plaintext space without carry and padding space. This plaintext
encoding is also called 2-encoding in [11]. This extraction can be done homo-
morphically at the cost of almost one PBS by the multi-value PBS [18] since the
extraction functions are negacyclic under the 2-encoding.

The online phase computes homomorphic subtraction, a single PBS operation
to match the plaintext encoding of the resulting ciphertext, and a keyswitching
to the final TFHE parameters. We note that the online phase performance does
not depend on the cipher, but on the TFHE parameters it uses. Hence, by using
a faster bootstrapping key for the online phase, the online performance can
be improved. For FRAST, we use the bootstrapping key of Kreyvium for the bit
extraction and the online phase. The bootstrapping key of Elisabeth has a similar
performance to that of Kreyvium, so we can say that all the ciphers have almost
the same online performance.

Cipher Setup (s)
Keystream Evaluation

Lat. (ms) Thrp. (bit/s)

Elisabeth - 2049 (per 4-bit) 1.955
Elisabeth-b - 5538 (per 4-bit) 0.749
Gabriel - 4662 (per 4-bit) 0.858

Kreyvium 44.09 (4 threads) 134.0 (per 1-bit) 7.465

FRAST 24.99 (8 threads) 6194 (per 128-bit) 20.66

Table 3: Server-side offline phase performance. The setup time of Kreyvium is
optimized in 4 threads. Keystream evaluation is performed in a single thread.
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Offline Phase. The offline phase consists of the setup phase and the keystream
evaluation phase. The setup phase is performed only once so that the latency
(optimized by multithreading) should be seen as a more appropriate metric than
the throughput. The setup time of Kreyvium is estimated as 1152 cycles for the
main loop, where each cycle is estimated by 2 KSthenGenPBS operations using
4 threads20. The setup time of FRAST is spent to convert the GLWE ciphertexts
packing round key bits into GGSW ciphertexts of each round key bit, which can
be optimized by using multiple threads. On the other hand, Elisabeth and its
patches have no setup phase.

The latency for the keystream evaluation can be reduced by using multiple
threads, while it is more efficient to evaluate each keystream block independently
by each thread in terms of throughput. The offline performance of Kreyvium is
estimated by only 7 KSthenGenPBS operations, evaluating a single keystream
bit. The offline performance of Elisabeth is estimated by 96 KSthenGenPBS
operations, evaluating a 4-bit keystream block, followed by 1 KSthenGenPBS
operations for bit extraction. In case of Elisabeth-b (resp. Gabriel), evaluating
4-bit keystream block requires 252 (resp. 220) KSthenGenPBS operations, and
the bit extraction requires 1 KSthenGenPBS. The result is summarized in Ta-
ble 3. One can see that FRAST outperforms Elisabeth and Kreyvium in terms of
throughput by factors of 10.57 and 2.768, respectively.

Online Phase. For all the ciphers, the online performance is estimated by two
GenPBS operations followed by a single keyswitching to the default parameters
for a ciphertext of a 2-bit message, and it only depends on the online phase
parameters. In our setting, we obtain the latency of 46.08 ms for a ciphertext of
a 2-bit message, which implies the throughput of 43.40 bit/s.

Communication Overload. Communication overload is mainly due to ho-
momorphic ciphertexts of the secret keys and the TFHE evaluation keys for
the transciphering. The communication overload of Kreyvium (resp. Elisabeth) is
estimated as 10.72 MB (resp. 12.29 MB).

When it comes to FRAST, the bootstrapping keys for the default parameters
can be recycled in the actual usecase after transciphering, reducing the overall
communication overload. Instead, the bootstrapping keys of Kreyvium are used
for the bit extraction and the online phase, and additional evaluation keys for
the double blind rotation are required. In this way, the communication overload
for FRAST is estimated as 11.88 MB. See Supplementary Material G for details.
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(F4). Journal of Pure and Applied Algebra 139(1-3), 61–88 (1999).
https://doi.org/10.1016/S0022-4049(99)00005-5

[31] Faugère, J.C.: A new efficient algorithm for computing Gröbner bases with-
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Supplementary Material

A Keyschedule Matrix of FRAST

The following is the invertible 64× 64 matrix M over Z16 to generate the round
keys for FRAST in hex. The j-th hex digit in the i-th row denotes Mi,j .

[

123e2d4f0a68befe1b7d2a8a858a011cc4f75074a6112874974ea0ed3f003e97,

78c9a6ca9af337f6c16d9b8d9651790a672aff5a4ddf5ef53801e55d71111a3a,

688b7691e958404437ef1190b84aae2a289ce0aeff6ddde8899e9db73770bfb0,

b9dfd3ad6350b7b68b59249681939dea07d3e1897052989f651d8f902cbd2e6d,

d88befa672f89f48ae8827afb8c57350d05d44f09f858ffb309c33e4fcbc2b7c,

3390d1a59bbc7345f617dd5d1d242b7ca5d59fb237c28e91a4d1d9e03aa526ac,

cf01a1143779cdca5a2d909144dad777a5f1bdf10d0b4355b46950aea6810c28,

54db8d16b878595f09aaa5569293f1e16453923dd9d639df690d545cb34eb287,

e33d69fe80adfd18b16f0885ce5a83e2cf08a35d785c22755a2aee03c5364d19,

7733b2708ef22719a886ef7e83909fbff6ad122e08d876646f85ca5e737a9784,

6b56dda75fa664d45b8eed98bfc10aa0a73c756b2826c88a5734beb6d458a635,

7c764e4ee7ea41d2ab2e52e65dae1258633fab9f9824eeda7461bd1e5d9d5dfa,

274929e465b09f096a890853505f4422e732d34cc6ad11df6b9a318834567981,

43f45459c7eb531181f9069772106b4700a14264378d8a1188c519444dc412b4,

56030bb64d3e51e69a52d0e6d835fb6fde71190fe0990c50506269b4fb53c50e,

8ecece73caf1f42a311ed490388e62f5f51b878d1ad2c3cf49091b97e771428d,

f798b7780d3528223e64577a4e93067bd70b94c563caa1b02843942c7eab2e0d,

88208a47bd7348fd3711dc63fa4b51c3c78a124f147f13aecae38dcaec6434c6,

4bd72876ca5df876a90965429c591904bcdc46b2472ca6a8a5a8a71611fc3a38,

81145d688175a61195940fa86398e5b18f209595179454709aeade1e0206731a,

5056684dc7d6598511e9a67f5f131f11e096754fc7fd992f0c9428121c2cab55,

8045cd6a51f879e0ad1fac41eb4935f5393d64c4170b413de21a6862a162d5c8,

81c639033f98b85f1b0da21c235971e1329c7bbca555d3d948fb8ec788f2ea92,

d900297fad1be4ec5c1b941e486ad8d2378ab5150c31444665eda786407fafbe,

80deccafb5db083163d050859df830017953c9e39bb3ac1f0af14d519538d16f,

2ddbb2af637f17c67ff5ecee151edde07a3cccfee1ce610ef843d6f131502812,

13bb3c0c389e5d1b64e51becd6b1a7ec80ba13eac4d90a81c87a316425249b7f,

bd2de0f717cf1d713430da20fc4b425ec482a79ef9b360f9e55b71dbd44ad6f4,

d16221d21e6889f3d4666f735aa2ca9bf02adee153cd79d64cd307015eab836a,

31d26500d305b0ec48a681aba0de1a51b4433c2d50f19e74dff72d2e4147a655,

64f97ff5ddf77ecc9af0b9a169158fba74928ad5ad8262dd300741d8ae686551,

5e94a56cc8643dec58df4605bcbe2e15564bd2b59735efbab6ec7b0955e3c24a,

6c5bcd35dd82eba1421f985324092acb190739956c86399f1bdcf1d060a8f583,

32b43d7d456a82b38cb09b1af9b1a927934b8abb1120e48c1823bb3ce41bc3e6,

67ef894f2d1c96525a8313fcae3ea323f7676a02d5c77276a62a9084a35171f8,

6d91fb6ec05b7ebf023cc5f194c89252a1a7c57a23fed84801c9aa8730daf1d3,

c22ea03a5e77a62e7a938d43b3aa3a2afb681fe7bbb585a3d0a13f4abfeb7235,

8d1b6b34141a0681f984a3c1a531a3f89b90ca8f9500ee34c6ba15e3ae102a5a,

68d0a550478363bc5f184798bd9eda8bead7fa2da1c8a05190619676138a9220,
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cc5d2c6e0fc017d51dd55f15487505e6c8e49c8d5254552bf99e9f027a157d0d,

e46d369567e85730d69850b5a66381e8b351683333b7506ad2a7255b64d73d62,

28c59e68559ee74a28b004315653ee7b60201141119be7f6c9c5db6a9426aa84,

f8a619ee67f02c28240731427c7a73510de95c8d14bd535615124f7f2ea28536,

08cc2655daa1166a3e1e27e4d32e1964f4668906105704f16674e05f454674ac,

824b77fb8ebac0cfd6e501ebdd8399ffc6d3fdfaa252c546f07b2fcb3211c44b,

338ee3c9b964f458368b12fb5dda0a21d71b82895f344c84d79a209d2a8a2e9e,

11f895bcaa829a35766a9df798f76fdb75f52acf844b38e29843b3c4cba641e0,

76d3864ea625fa5162e954ee2e21de7d2b31f5c2a848b055f9a8d2ce3c4d602a,

8d2f7999216bb4ccb0ab4d2f3ea49216e3806f68911777716c5a3f57f39ad5ab,

932be23c972a02d874c896c8bdd9f9e8f25c7597255c785febb36f39f21e6047,

2af439cffb90a7e3cd449b98b4e41986c62feeeac893e948f6d39bccbaea882c,

b2ce76fa91b65528128fc2f75cb210d627de1a60405a99fe68049adf26ce6290,

90199dbacdbc4cd27d89078cb88488c953e8aafe40f9fdf145ac4126807ce2bb,

1e9edf31bc7674add23dc865f2b7e459fce2855b725168b709246198b67c28bc,

365c951b8f9157c59975fe4e2b2fe6d20559e8945cc951f2d66fa60189181705,

6ae54a50a73127b6e384b823cd5f7274c499db4357aa984134fcb8d7a2263a1c,

af24aab01b444a3a8d1959a200051f61b154411a9318d26f3c9fc9089dc5a15e,

a7c8d71ff32d30c5da29787bc37f7faf3ec301db0ee66623d73a44cf0a5221fc,

8db8ecc3b85043eb2c092b39393a501b286fe5133f2f13182b262c3fd5fb0ffe,

824d35b5f8343f86fcb4c850113c7b1c57c500cbe3c7d3dd57c2fffeaa472d73,

255bf17ef996b37e6a2031faeb3ebb5171db7b3a9edc299b1fc7b068acf41e67,

123e3ef3ce478c12792754b8fc94ba37dc7331415b0e1ad8fef70b4002500580,

fde6a170a8ba8349a6f366f26e5bdf1a4979c94ca8800c4875d3ef6e3314fac3,

cecab9b85ef7b9fbe7792d72c43b144ccc1cabc24a3403c38e00d8763610b6bb

];

B Algebraic Representations of the FRAST Fixed S-box

Let (x0, . . . , x3) ∈ F4
2 (resp. (y0, . . . , y3) ∈ F4

2) be the input (resp. output) of S
where x0 (resp. y0) is the LSB of the input (resp. output). The explicit repre-
sentation of S over F2 is given as follows.

y0 = x0x1x3 + x0x2x3 + x0 + x1x2 + x1 + x3

y1 = x0x1x2 + x0x1x3 + x0x1 + x0 + x1x2x3 + x1x2 + x1x3 + x2x3 + x2

y2 = x0x1 + x0x2x3 + x0x2 + x0x3 + x1x2x3 + x1x2 + x1x3 + x1 + x2 + x3

y3 = x0x1x2 + x0x1 + x0x2 + x1x2 + x2x3 + x3

All the output bits are of degree 3 with respect to the input bits, and all the
input bits work nonlinearly to the output as described in [46]. For the backward
direction, we obtain the following equations which have the same properties with
the forward ones.

x0 = y0y1y3 + y0y2y3 + y0y2 + y1y3 + y1 + y2 + y3

x1 = y0y1y3 + y0y1 + y0y3 + y1y2y3 + y1 + y2y3 + y2 + y3

x2 = y0y2y3 + y0y2 + y0 + y1y2y3 + y1y3 + y1 + y2y3

x3 = y0y1y2 + y0y2y3 + y0y3 + y0 + y1 + y2y3 + y2
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The implicit representations over F2 are given as follows.

x3x2 + x3y3 + x3y1 + x3y0 = 0

x3x2 + x2x1 + x2x0 + x3y2 + x3y0 + x2 + x1 + y3 + y1 + y0 = 0

x3x2 + x2y3 + x3y2 + x3y0 + x2 + x1 + y3 + y1 + y0 = 0

x2x1 + x3x0 + x2y2 + x2 + y2 + y1 + y0 = 0

x3x2 + x3x1 + x3x0 + x3y3 + x3y2 + x2y1 + x1 + y3 + y1 + y0 = 0

x3x1 + x3y3 + x2y0 + x2 + x0 + y3 + y1 = 0

x3x0 + x1x0 + x3 + y3 + y2 + y1 + y0 = 0

x1y3 + x3y0 + x3 + x1 + x0 + y3 + y2 + y1 = 0

x2x1 + x3x0 + x3y3 + x1y2 + x3y0 + x2 + x1 + x0 + y1 = 0

x3x2 + x3x1 + x1y1 + x3y0 + x3 + x2 + x1 + y3 + y2 = 0

x2x1 + x3x0 + x3y3 + x3y2 + x3y0 + x1y0 + x1 + y3 + y2 + y1 + y0 = 0

x3x0 + x0y3 + x3y0 + x3 + x2 + x0 + y2 + y0 = 0

x3x2 + x3x1 + x2x1 + x3y3 + x3y2 + x0y2 + x3 + x2 + x0 + y3 + y2 + y0 = 0

x3x2 + x3x1 + x3x0 + x3y3 + x0y1 + x3 + x2 + y2 + y0 = 0

x2x1 + x3x0 + x3y2 + x3y0 + x0y0 + x2 + y1 = 0

x3x2 + x3x1 + x3x0 + x3y2 + y3y2 + x3 + x2 + x0 + y3 + y2 + y0 = 0

x3x1 + x3x0 + y3y1 = 0

x3x1 + y3y0 + x1 + x0 + y2 + y1 = 0

x3x2 + x3x1 + x3x0 + y2y1 + x3y0 + x3 + x1 + y3 + y1 + y0 = 0

x3x2 + x2x1 + y2y0 + x1 + y3 + y2 + y1 + y0 = 0

x3x1 + y1y0 + x2 + y2 + y0 = 0

There are 21 linearly independent quadratic equations for S, which is the mini-
mum for 4-bit S-boxes.

C The Number of Monomials on Toy Parameters

In this section, we show the experimental result of the number of monomials
appearing in the system of equations for the XOR-variant of FRAST in the key
variables. We used toy parameters of ℓ = 4 and the key size of 4ℓ bits where ℓ is
the number of branches.

We chose 100 random inputs, represented the corresponding outputs for a
single and two fixed rounds of the XOR-variant of FRAST as polynomials in
the key variables, and counted the number of monomials according to their
degrees. Table 4 summarize the results. One can see that more than 90% of
monomials of degree d appear in the system where d is the lower bound proposed
in Section 5.1.1.

We also experimented in the backward direction considering the meet-in-the-
middle attack, and summarized the results in Table 5. One can see that more
than 90% of monomials of degree d appear after two rounds in the backward
direction where d is the lower bound proposed in Section 5.1.1.
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Degree Total
Single Round Two Rounds

First Ratio Others Ratio First Ratio Others Ratio

1 16 15.24 0.953 16.00 1.000 14.91 0.932 16.00 1.000
2 120 112.74 0.940 119.80 0.998 112.52 0.938 119.93 0.999
3 560 524.99 0.937 542.68 0.969 525.45 0.938 559.78 0.999
4 1820 1707.71 0.938 - - 1705.61 0.937 1819.62 0.999
5 4368 4091.44 0.937 - - 4093.88 0.937 4367.08 0.999
6 8008 7485.90 0.935 - - 7506.56 0.937 8006.04 0.999
7 11440 9989.81 0.873 - - 10725.53 0.938 11437.21 0.999
8 12870 10852.44 0.843 - - 12068.20 0.938 12866.73 0.999
9 11440 5254.97 0.459 - - 10725.86 0.938 11428.58 0.999
10 8008 - - - - 7505.68 0.937 7863.41 0.982
11 4368 - - - - 4095.01 0.938 3930.39 0.900
12 1820 - - - - 1705.20 0.937 - -
13 560 - - - - 524.46 0.937 - -
14 120 - - - - 112.95 0.941 - -
15 16 - - - - 14.17 0.886 - -
16 1 - - - - 0.89 0.890 - -

Table 4: The (average) number of monomials appearing in the fixed round func-
tions of FRAST in the forward direction according to degrees. ‘Total’ denotes
the total number of monomials, ‘First’ (resp. ‘Others’) denotes the number of
monomials appearing in the first branch (resp. the other branches), and ‘Ratio’
denotes its ratio to the total number of monomials. The bold fonts denote the
lower bound of the degree proposed in Section 5.1.1.
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Degree Total
Single Round Two Rounds

First Ratio Others Ratio First Ratio Others Ratio

1 16 16.00 1.000 16.00 1.000 14.97 0.936 16.00 1.000
2 120 108.07 0.901 119.92 0.999 112.53 0.938 119.96 0.999
3 560 409.45 0.731 558.90 0.998 524.48 0.937 559.88 0.999
4 1820 - - 1815.19 0.997 1706.24 0.937 1819.42 0.999
5 4368 - - 4213.67 0.965 4096.11 0.938 4366.93 0.999
6 8008 - - - - 7504.14 0.937 8005.58 0.999
7 11440 - - - - 10718.37 0.937 11437.00 0.999
8 12870 - - - - 12049.91 0.936 12866.47 0.999
9 11440 - - - - 9945.95 0.869 11436.99 0.999
10 8008 - - - - 6671.91 0.833 8006.18 0.999
11 4368 - - - - 1987.14 0.455 4366.63 0.999
12 1820 - - - - - - 1810.18 0.995
13 560 - - - - - - 529.75 0.946

Table 5: The (average) number of monomials appearing in the fixed round func-
tions of FRAST in the backward direction according to degrees. ‘Total’ denotes
the total number of monomials, ‘First’ (resp. ‘Others’) denotes the number of
monomials appearing in the first branch (resp. the other branches), and ‘Ratio’
denotes its ratio to the total number of monomials. The bold fonts denote the
lower bound of the degree proposed in Section 5.1.1.

D Gröbner Basis Computation on Toy Parameters

In this section, we summarize the experimental result of the Gröbner basis com-
putation time on toy parameters. The source codes of the experiment are devel-
oped in MAGMA [13], and are executed in AMD Ryzen 7 2700X @ 3.70 GHz with
128 GB memory. Let r, ℓ, and m denote the number of rounds, branches, and
input/output pairs used to build a system, respectively.

Figure 5 shows the Gröbner basis computation time according to r when
ℓ = 3 for the system introducing new variables for all the intermediate states
and the system introducing new variables for the states of the first branch. The
key size is set to 4ℓ, which is half of the actual key size, to run the experiment on
various parameters. One can see that the computation time grows exponentially
according to r, and using larger m increases computation time.

Figure 6 shows the Gröbner basis computation time for the system by guess-
ing the values of the first branch according to ℓ when r = 8. The key size is
set to 8ℓ, which is the actual key size21. One can see that the computation time
grows exponentially according to ℓ. The peak at (ℓ,m) = (3, 3) is caused by some
outliers in the data.

Conversely to the previous systems, using larger m tends to decrease the
Gröbner basis computation time. The reason is that the number of variables

21 The graph in Figure 4 uses the key size of 4ℓ.
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Fig. 5: Gröbner basis computation time of the systems introducing new variables
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size is 4ℓ bits.
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of the first branches. The number of round r is 8 and the key size is 8ℓ bits.
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does not change while the number of equations increases according to m. That
said, this does not imply using larger m is advantageous for the attack since the
number of guessing 24rm increases much faster.

Remark 3. The whole running time of the Gröbner basis computing program is
much longer than the Gröbner basis computing time denoted in the graph, so
we could not run the experiment on larger parameters.

E Linear Cryptanalysis on FRAST

In this section, we describe the linear cryptanalysis on FRAST in detail. Before
going into the details, we recap the condition on input/output linear masks for
some linear operations. For a branching operation x 7→ (x, x) with input mask
u and output mask (v1, v2), u = v1 + v2 should be satisfied. For an addition
operation (x1, x2) 7→ x1 + x2 with input mask (u1, u2) and output mask v,
u1 = u2 = v should be satisfied. See Figure 7.

x

x

x

u
v1

v2

(a) Branching: u = v1 + v2

x1

x2

x1 + x2

u1

u2

v

(b) Addition: u1 = u2 = v

Fig. 7: Linear masks for branching and addition

E.1 Analysis with Linear Masks on XOF Outputs

The first approach is to apply nonzero linear masks on the XOF outputs that
determine random S-boxes of FRAST. Although the XOF outputs themselves
are not controllable by an attacker, they can be considered as additional inputs
in the KPA model since they are publicly open. Using this approach, one can
apply the linear cryptanalysis to FRAST by considering it as a fixed function
whose input size is larger than its output size. A negacyclic random S-box S
itself can be described by its function values (S(0), . . . , S(7)), and the function
LookUpk(x, S) = S(x+ k) can be described as a function from Z16 ×Z8

16 to Z16

defined by

LookUpk(x, S) =
7∑

i=0

(1 {x+ k = i} − 1 {x+ k = i+ 8})S(i)
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where 1 {x+ k = i} = 1 if x+k = i and 0 otherwise. From this point of view, the
linear probability of FRAST with additional linear masks on the XOF outputs
is well-defined.

For (x, Serf , Scrf) ∈ Zℓ
16 × Z8

16 × Z8
16, define RF[k](x, Serf , Scrf) = y ∈ Zℓ

16 as
follows.

yj = xj + LookUprkj
(x1, Serf) for j = 2, . . . , ℓ,

y1 = x1 + LookUprk1
(y2 + · · ·+ yℓ, Scrf),

where rk = (rk1, . . . , rkℓ) ∈ Zℓ
16 is a round key derived from the master key

k, x = (x1, . . . , xℓ) ∈ Zℓ
16, y = (y1, . . . , yℓ) ∈ Zℓ

16, and Serf and Scrf are the
negacyclic S-boxes derived from the XOF. As Serf and Scrf are independently
sampled, we separate the round function RF into two parts for simplicity: RFerf

and RFcrf .

x1 x2 x3 xℓ

y1 y2 y3 yℓ

rk2

S
(nc; i)
erf

rk3

S
(nc; i)
erf

rkℓ

S
(nc; i)
erf

S
(nc; i)
crf

rk1

· · ·

...

RFerf

RFcrf

a1 a2 a3 aℓ

b1 b2 b3 bℓ

c1 c2 c3 cℓ

(β0, . . . , β7)

(α0, . . . , α7)

(α0, . . . , α7)

(α0, . . . , α7)

Fig. 8: Linear masks in a single round of the FRAST considering XOF.

RFerf is the expanding part of the round function. For (x, Serf) ∈ Zℓ
16 × Z8

16,
RFerf [k](x, Serf) = y ∈ Zℓ

16 is defined as follows.

yj = xj + LookUprkj
(x1, Serf) for j = 2, . . . , ℓ,

y1 = x1,

where (rk2, . . . , rkℓ) ∈ Zℓ−1
16 is a round key derived from the master key k,

x = (x1, . . . , xℓ) ∈ Zℓ
16, y = (y1, . . . , yℓ) ∈ Zℓ

16, and Serf is the negacyclic S-box
derived from the XOF.
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RFcrf is the contracting part of the round function. For (x, Scrf) ∈ Zℓ
16 ×Z8

16,
RFcrf [k](x, Scrf) = y ∈ Zℓ

16 is defined as follows.

yj = xj for j = 2, . . . , ℓ,

y1 = x1 + LookUprk1
(x2 + · · ·+ xℓ, Scrf),

where rk1 ∈ Z16 is a round key derived from the master key k, x = (x1, . . . , xℓ) ∈
Zℓ
16, y = (y1, . . . , yℓ) ∈ Zℓ

16, and Scrf is the negacyclic S-box derived from the
XOF.

Then, the round function RF can be described as a composition of RFerf and
RFcrf as follows.

RF[k](x, Serf , Scrf) = RFcrf [k] (RFerf [k](x, Serf), Scrf) .

We depict the relation between RF, RFerf and RFcrf in Figure 8. By separating
RF into RFerf and RFcrf , we can compute the linear probability of RF from that
of RFerf and RFcrf .

Let a = (a1, . . . , aℓ) be an input mask to x, α = (α0, . . . , α7) (resp. β =
(β0, . . . , β7)) be an input mask to Serf (resp. Scrf), and b = (b1, . . . , bℓ) be an
output mask to y. To represent the linear probability of RF with respect to those
of RFerf and RFcrf , let c = (c1, . . . , cℓ) be an output (resp. input) mask of RFerf

(resp. RFcrf) (see Figure 8). Then, the linear relation on RF forces cj = aj for
all j = 2, . . . , ℓ, c1 = b1, and c2 − b2 = · · · = cℓ − bℓ. For such c, we obtain the
following.

LPRF[k]((a,α,β), c) = LPRFerf [k]((a,α), c) · LPRFcrf [k]((c,β),b).

Linear Probability of RFerf . Let (a,α) ∈ Zℓ
16 × Z8

16 be the input mask and
c ∈ Zℓ

16 be the output mask to RFerf [k] where cj = aj for j = 2, . . . , ℓ. Then, the
linear probability of RFerf [k] is given as follows.

LPRFerf [k]((a,α), c) =
1

162

∣∣∣∣ 15∑
x1=0

exp

(
2πi

16
(c1 − a1)x1

)

× 1
{

∀j∈{0,...,7}∑ℓ
i=2 ci(1{x1+rki=j}−1{x1+rki=j+8})=αj

} ∣∣∣∣2
where (rk2, . . . , rkℓ) is a part of the round key derived from k. One can see that
the above linear probability depends on the relation between the masks and the
keys, which is not the case in traditional linear cryptanalysis. Hence, the masks
should be chosen carefully to satisfy the following relation.

∃x1 ∈ Z16;

ℓ∑
i=2

ci (1 {x1 + rki = j} − 1 {x1 + rki = j + 8}) = αj ∀j = 0, . . . , 7.

(10)
Otherwise, the linear probability would be zero.
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For an attacker who does not know the round key, there are two possible
ways to build a trail of nonzero linear probability: a trivial linear trail such that
α = 0, and a linear trail such that only one component of α is nonzero.

The first approach is to build a linear trail that does not activate the LookUp
function by setting α = 0 and c2 = · · · = cℓ = 0, which also implies that a2 =
· · · = aℓ = 0. Then, by setting c1 = a1 ̸= 0, one obtain LPRFerf [k]((a,α), c) = 1 for
nonzero input/output masks. This is the trivial linear trail of linear probability
1 on RFerf .

The other approach is to set only one component of (c2, . . . , cℓ) and α to
8 and the others to 0. Then, regardless of the round key, there exists a unique
z ∈ {0, . . . , 7} such that (10) holds for x1 = z and x1 = z + 8. By setting

2 | (c1 − a1), one obtain LPRFerf [k]((a,α), c) = 2−6.

Linear Probability of RFcrf . Let (c,β) ∈ Zℓ
16 × Z8

16 be the input mask and
b ∈ Zℓ

16 be the output mask to RFcrf [k] where c1 = b1 and c2−b2 = · · · = cℓ−bℓ.
Then the linear probability of RFcrf [k] is given as follows.

LPRFcrf [k]((c,β),b) =
1

162

∣∣∣∣ 15∑
x=0

exp

(
2πi

16
(b2 − c2)x

)

× 1
{

∀j∈{0,...,7}
b1(1{x+rk1=j}−1{x+rk1=j+8})=βj

} ∣∣∣∣2
where rk1 is the first component of the round key derived from k. The masks
should be chosen carefully to satisfy the following to build a linear trail of nonzero
linear probability.

∃x ∈ Z16; b1 (1 {x+ rk1 = j} − 1 {x+ rk1 = j + 8}) = βj ∀j = 0, . . . , 7. (11)

Similar to the case of RFerf , an attacker can build two kinds of linear trails
of nonzero linear probability without knowing the round key. One is the trivial
linear trail to set β = 0 and b1 = c1 = 0, obtaining LPrkcrf [k]((b,β),b) = 1. The
other nontrivial trail is to set b1 = 8, only one component of β by 8 and the
others by 0, obtaining the linear probability of 2−6 provided that 2 | (c2 − b2).

Combining two results. One can build a linear trail on RF by combining
those on RFerf and RFcrf . However, combining two trivial trails on RFerf and
RFcrf is impossible since it implies that all the input/output masks are zero.
Instead, it is possible to combine one of the trivial trails and the other nontrivial
trail, resulting in the linear trail of linear probability 2−6. Such trail activates
only one LookUp function.

If more than two LookUp functions are activated, then the attacker should
know the difference between the round keys used in the activated LookUp func-
tions. The attacker might try to guess them, but it is infeasible since more than
128 bits need to be guessed for 32 random rounds of FRAST.
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E.2 Analysis on Compatible Data

The linear attack is a kind of statistical attack that requires many input-output
pairs of a fixed function. In FRAST, negacyclic S-boxes are independent randomly
selected. Hence, we need to compute the probability that two input-output pairs
of FRAST from independent random round functions can be used together to
measure the linear bias for a given linear approximation.

x1 x2 x3 xℓ

y1 y2 y3 yℓ

rk2

S
(nc; i)
erf

rk3

S
(nc; i)
erf

rkℓ

S
(nc; i)
erf

S
(nc; i)
crf

rk1

· · ·

...

a1 a2 a3 aℓ

b1 b2 b3 bℓ

u2 v2

u3 v3

uℓ vℓ

v1 u1

wℓ

w3w2

Fig. 9: Linear masks in a single round of the FRAST without considering XOF.

Linear Masks for the FRAST Round Function. Suppose that an input
linear mask a = (a1, a2, . . . , aℓ) and an output linear mask b = (b1, b2, . . . , bℓ)
are used for a single round of FRAST. Let ui denote an input mask and let vi
denote an output mask of an S-box whose output is added to xi (see Figure 9).
From the properties of the branching and addition operations, the following
conditions must hold for the input and output masks to have a nonzero linear
probability.

v1 = b1 and vi = ai for i = 2, 3, . . . , ℓ, (12)

u1 = wj = aj − bj for all j = 2, 3, . . . , ℓ. (13)

Suppose that there are nonzero input and output masks a = (a1, a2, . . . , aℓ)
and b = (b1, b2, . . . , bℓ) activating no S-box. Since all the S-boxes are not ac-
tivated, we have b1 = 0 and a2 = a3 = · · · = aℓ = 0 by (12). We also have
b2 = b3 = · · · = bℓ by (13). Then the linear probability LPRF(a,b) of the round
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function for the masks a and b is given as follows.

LPRF(a,b) =
1

162ℓ

∣∣∣∣∣∣
∑

x2,··· ,xℓ∈Z16

exp

{
2πi

16
(b2 (x2 + · · ·+ xℓ))

}∣∣∣∣∣∣
2

×

∣∣∣∣∣∣
∑

x1∈Z16

exp

2πi

16

b2

ℓ∑
j=2

S
(nc; i)
erf (x1 + rkj)− a1x1


∣∣∣∣∣∣
2

= 1 {a1 = b2 = 0}

where 1 {a1 = b2 = 0} is 1 if a1 = b2 = 0 and 0 otherwise, S
(nc; i)
erf is the randomly

generated S-box used in the round function and rkj is the round key added to
the input of the S-box whose output is added to the j-th branch. So we conclude
that the input and output masks activating no S-box cannot be both nonzero
and trivial.

Compatibility of a Linear Trail. Even for a round function using different
negacyclic S-boxes, we can estimate its linear bias using the following condition:
given two input-output pairs, suppose that their i-th round functions use S-
boxes S1 and S2, respectively. Since S1 and S2 work identically with respect to
the output masks, one can use both pairs together to see if b(S1(x) − S2(x))
is constant for all x ∈ {0, 1, . . . , 7} ⊂ Z16 and for every nonzero output mask
b for these negacyclic S-boxes. When S1 and S2 satisfy this condition, we say
that S1 and S2 are compatible with respect to the output mask b ̸= 0. If all
the active S-boxes in the round functions are compatible with respect to their
output masks, then we say that the round functions are compatible.

For independently sampled S1 and S2, we can compute the probability that
these two S-boxes are compatible with respect to b. The probability is maximized
when b = 8, which is 2−7. The compatibility with respect to the output mask
of 8 means that the LSBs of the outputs of the two S-boxes are either identical
or all different. Since every pair of nontrivial input and output masks for the
FRAST round function has at least one active S-box, the probability that two
round functions are compatible is also upper bounded by 2−7.

Now, consider a linear trail T = (a(i))ri=0 for r random rounds of FRAST,

where a(i) = (a
(i)
1 , a

(i)
2 , . . . , a

(i)
ℓ ) ∈ Zℓ

16 for i = 0, 1, . . . , r. So a(i−1) and a(i)

become an input and an output mask for the i-th round function, respectively,
and the linear probability of the trail is given by the product of LP(a(i−1),a(i))
for all i = 1, 2, . . . , r. To apply the trail on two input-output pairs, every round
function for the two pairs should be compatible with respect to the output
masks obtained by the trail. In this case, we say the two pairs are compatible
with respect to the trail. The probability that the two pairs are compatible is
upper bounded by 2−7r, hence FRAST achieves 128-bit security against the linear
attack if it has at least 19 random rounds.
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E.3 Analysis with Random S-boxes Having Linear Relations

Suppose a negacyclic S-box S on Z16 has a linear relation ax+ bS(x) = c for all
x = 0, 1, . . . , 15. Then, the following holds from the negacyclic property of S.

a(x+ 8) + bS(x+ 8) = ax+ 8a− bS(x) = c

over Z16 for all x = 0, 1, . . . , 7. Combined with the original linear relation, one
obtain

(2x+ 8)a = 2c

over Z16 for all x = 0, 1, . . . , 7. It can holds only if a, c ∈ {0, 8}. In this case, the
function bS(x) should be identical to one of 0, 8, 8x, and 8x+ 8, which implies
that bS(0) and bS(1) determines bS(i) for i = 2, 3, . . . , 7. Hence, a negacyclic
S-box over Z16 has a linear relation with a probability at most 2−6.

F Function Decomposition of New WoP-PBS

For a t-bit integer m ∈ J0, 2tJ, let FlipMSBt(m) = (m + 2t−1) mod 2t ∈ J0, 2tJ.
Given an arbitrary function f on J0, pJ for a power-of-two p, f can be decomposed
into log p functions f0, f1, . . . , flog p−1 and one constant flog p such that

f(x) =

log p−1∑
j=0

fj(x mod p/2j) + flog p

where fj is a negacyclic function on J0, p/2jJ defined as

fj(x) =
1

2j+1

2j−1∑
a=0

(
f(a · 2j + x)− f(a · 2j + FlipMSBlog p−j(x))

)
for j = 0, . . . , log p− 1, and flog p is the constant given by

flog p =
1

p

p−1∑
a=0

f(a).

This decomposition can be obtained by applying the decomposition of f into
1
2 (fmsb-odd + fmsb-even) described in Section 4.1 recursively on fmsb-even.

For example, let f be a function defined on J0, 4J. Then f is decomposed into
two functions f0, f1 and one constant f2. The function f0 on J0, 4J is given by

f0(0) =
1

2
(f(0)− f(2)),

f0(1) =
1

2
(f(1)− f(3)),

f0(2) =
1

2
(f(2)− f(0)),

f0(3) =
1

2
(f(3)− f(1)),
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the function f1 on J0, 2J is given by

f1(0) =
1

4
(f(0) + f(2)− f(1)− f(3)),

f1(1) =
1

4
(f(1) + f(3)− f(0)− f(2)),

and the constant f2 is given by

f2 =
1

4
(f(0) + f(1) + f(2) + f(3)).

G Communication Overload

In this section, we describes the communication overload of FRAST in the tran-
sciphering framework. The communication overload of the transciphering with
TFHE consists of two parts: one for the homomorphic ciphertexts of the secret
key, and the other for the TFHE evaluation keys only used for the transciphering.
Since FRAST uses GLWEtoGGSW conversion in the setup phase, the evaluation
keys for the conversion become additional communication overload.

Ciphertext Size. An LWE ciphertext (a1, . . . , an, b) ∈ Zn+1
q consists of n+ 1

elements in Zq, so its size is given by (n + 1) log q bits. If the LWE ciphertext
is a fresh ciphertext such that no homomorphic operation is performed on it
yet, the one can compress the random mask a into a seed for generating it.
Such LWE ciphertexts are called seeded LWE ciphertexts. Ignoring the seed size
by assuming that one seed generates all the random masks for multiple seeded
ciphertexts, the size of the seeded LWE ciphertext is only log q.22 In case of a
GLWE ciphertext (A1, . . . , Ak, B) ∈ Rk+1

q,N , it is size of (k+1)N log q bits. When
it compressed similarly, the seeded GLWE ciphertext is of size N log q bits. For

a GGSW ciphertext C ∈ Rℓ(k+1)×(k+1)
q,N , it can be considered as a vector of

ℓ(k + 1) GLWE ciphertexts. The size of a GGSW ciphertext is ℓ(k + 1)2N log q
bits, and that of a compressed GGSW ciphertext is ℓ(k+1)N log q bits. Table 6
summarizes the size of each type of TFHE ciphertexts.

LWE GLWE GGSW

Normal (n+ 1) log q (k + 1)N log q ℓ(k + 1)2N log q
Seeded log q N log q ℓ(k + 1)N log q

Table 6: Size of TFHE ciphertexts in bits. The size of seeds or auxiliary infor-
mation is ignored.

22 In the tfhe-rs library, auxiliary information such as the LWE dimension or cipher-
text modulus type is saved together. We ignore such additional data size assuming
that it is fixed in the transciphering framework.
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GenPBS Keysize. The evaluation keys for the GenPBS operation consist of
the bootstrapping key and the keyswitching key. Given an LWE secret key
s = (s1, . . . , sn) ∈ Bn and a GLWE secret key S′ = (S′

1, . . . , S
′
k) ∈ BN [X]k,

the bootstrapping key is a set of GGSW ciphertexts {GGSWS′(si)}ni=1 with the
decomposition base BPBS and level ℓPBS. Since the GGSW ciphertexts are fresh,
the bootstrapping key can be compressed into seeded GGSW ciphertexts, re-
sulting in the size of ℓPBS(k + 1)nN log q bits. Let s′ = (s′1, . . . , s

′
kN ) ∈ BkN be

the LWE secret key induced from S′. The keyswitching key is a set of LWE ci-
phertexts {LWEs(s

′
i · q/Bj

KS)}(i,j)∈[kN ]×[ℓKS] where BKS and ℓKS are keyswitching
decomposition base and level, respectively. As a set of seeded LWE ciphertexts,
the keyswitching key is of size ℓKSkN log q bits. Table 7 summarizes the size of
the evaluation keys for the GenPBS operation.

Bootstrapping Key Keyswitching Key

Normal ℓPBS(k + 1)2nN log q ℓKSk(n+ 1)N log q
Seeded ℓPBS(k + 1)nN log q ℓKSkN log q

Table 7: Size of the GenPBS evaluation keys in bits. The size of seeds or auxiliary
information is omitted.

GLWEtoGGSW Keysize. For the GLWEtoGGSW conversion proposed in
[19], two types of evaluation keys are needed; one is the GLWEtoGLWE keyswitch-
ing keys, and the other is the GGSW ciphertext GGSWS(−S). The GLWEtoG-
GSW conversion rotates the coefficients in a GLWE ciphertext by switching
a GLWE ciphertext under the secret key S(Xm) to the GLWE ciphertext of
the same plaintext under a secret key S(X) for m = N/2i−1 + 1 where i =
1, . . . , logN . A GLWEtoGLWE keyswitching key that switches a GLWE cipher-
text under S = (S1, . . . , Sk) to the GLWE ciphertext under S′ = (S′

1, . . . , S
′
k)

23 is

a set of GLWE ciphertexts {GLWES′(Si · q/Bj
subs)}(i,j)∈[k]×[ℓsubs] where Bsubs and

ℓsubs are the decomposition base and level of the GLWEtoGLWE keyswitching in
the GLWEtoGGSW conversion. Since the GLWEtoGGSW conversion requires
logN keyswitching keys, the size for them is ℓsubskN logN log q bits as seeded
GLWE ciphertexts. The seeded GGSW ciphertext GGSWS(−S) with the de-
composition base BSK and level ℓSK is of size ℓSK(k + 1)N log q bits. Table 8
summarizes the size of the evaluation keys for the GLWEtoGGSW conversion.

Communication Overload for FRAST. Transciphering with FRAST requires
two bootstrapping keys: one of the default parameters of size 23.19 MB for
FRAST keystream evaluation, and the other of the Kreyvium parameters of size
10.72 MB for the bit extraction and the online phase24. The bootstrapping key

23 In general, S′ may have different GLWE dimension.
24 There are keyswitching keys used inside the bootstrapping keys and between the

bootstrapping keys, but we ignore them since their sizes are of several KBs.
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GLWEtoGLWE Keyswitching Key GGSWS(−S)

Normal ℓsubsk(k + 1)N logN log q ℓSK(k + 1)2N log q
Seeded ℓsubskN logN log q ℓSK(k + 1)N log q

Table 8: Size of the GLWEtoGGSW evaluation keys in bits. The size of seeds or
auxiliary information is omitted.

of the default parameters is not taken into account for the communication over-
load since it is used in the actual usecase after the transciphering. To use double
blind rotation technique, FRAST requires additional evaluation keys: the GLWE-
toGLWE keyswitching keys of 880 KB, and the GGSW ciphertext GGSWS(−S)
of 160 KB. The round keys of 4808 bits are packed in ⌈4808/N⌉ · ℓrk GLWE
ciphertexts of 144 KB, and the remaining round keys of 312 bits are sent to
the server in 78 LWE ciphertexts of size 624 B (see Supplementary Material H).
Hence, the total communication overload for FRAST is 11.88 MB.

H TFHE Evaluation Methods of FRAST with Error
Analysis

In this section, we describe the TFHE evaluation of FRAST using the default
parameters described in Section 6, and the error probability of it. For simplicity,
we only describe how to evaluate the fixed round functions as evaluating the
random round functions using negacyclic S-boxes is simpler.

H.1 TFHE Evaluation of FRAST

The FRAST round function consists of two parts: evaluating multiple S-boxes
fed with the first branch added by multiple round keys and evaluating the last
S-box of which output is added to the first branch. These two parts are called the
expanding and the contracting parts of the round function, respectively. After
evaluating FRAST, each bit of the keystream is extracted.

Let (x1, . . . , xℓ) be input, (y1, . . . , yℓ) be output of the FRAST fixed round
function of which S-box is S. We consider the ciphertext modulus of q = 264,
the message modulus of p = 16, and the scaling factor of ∆ = q/p = 260.

The input xi ∈ J0, pJ is given as an LWE ciphertext scaled by ∆ without
padding, namely, LWE(∆ · xi), for i = 1, . . . , ℓ. It can be also regarded as a
ciphertext of 2xi ∈ J0, 2pJ with a scaling factor of ∆/2 since

[∆ · xi]q = [(∆/2) · (2xi)]q.

H.1.1 Expanding Part

The expanding part of the FRAST round function is evaluated by the double
blind rotation as mentioned in Section 4.2. That said, for the first round, it is
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possible to evaluate the S-boxes without computing GenPBS on x1 since the
input to the first round is the known constant ic. By giving GGSW ciphertexts
of the round key bits used in the expanding part of the first round, one can
evaluate the expanding part of the first round in a much smaller number of the
CMux gates.

For the other rounds, decompose S into Smsb-odd and Smsb-even. Since Smsb-odd is
negacyclic, it is possible to compute LWE(∆·Smsb-odd(x1+rkj)) for all j = 2, . . . , ℓ
in a single GenPBS operation using the double blind rotation. Although the
range of Smsb-odd itself is not J0, pJ, one can regard LWE(∆ · Smsb-odd(x)) as
an LWE ciphertext of 2Smsb-odd(x) ∈ J0, 2pJ with a scaling factor of ∆/2 as
mentioned above.

During the evaluation of Smsb-odd on the input x1, it is also possible to extract
the MSB bit of x1 for free using PBSmanyLUT [22].25 The extracted MSB bit
of x1 is subtracted from x1, obtaining an LWE ciphertext of ClearMSB(x1) ∈
J0, p/2J that will be fed into Smsb-even.

To compute Smsb-even on ClearMSB(x1) is possible with a single GenPBS
operation using the cleared MSB bit of x1, while one more padding bit is required
for the double blind rotation since ∆ · (ClearMSB(x1) + ClearMSB(rki)) might
exceed q/2, filling the padding bit of the ciphertext. Since Smsb-even is of only
3-bit precision, we address this issue by giving one more padding bit to the
ciphertext of ClearMSB(x1). Computing LWE((∆/2) · ClearMSB(x1)) using one
more GenPBS operation, one can apply the double blind rotation using GenPBS
of 4-bit precision since ∆

2 (ClearMSB(x1) + ClearMSB(rki)) ∈ Jq/25, q/2J.

It is also possible to refresh the ciphertext of ClearMSB(x1) simultaneously
during the double blind rotation. Adding the refreshed ciphertext of the MSB
of x1 and ClearMSB(x1), which is obtained during adjusting its scaling factor
from ∆ to ∆/2 to evaluate Smsb-even, one can refresh the first state before adding
S(y2 + · · ·+ yℓ + rk1), making it possible to use PBSmanyLUT on the input of
the first branch.

The number of the CMux gates also can be reduced with a simple tweak: to
compute the blind rotation on S(x1+ rk2) instead of S(x1). Then S(x1+ rkj) is
computed by the second blind rotation by the bits of rkj − rk2 for j = 3, . . . , ℓ.
It reduces the number of round key bits to be packed on the GLWE ciphertext,
but rk2 (for each round) should be sent to the server as an LWE ciphertext.
Refreshing the state of the first branch also requires additional subtraction by
rk2 since the ciphertext of x1 + rk2 is refreshed. In summary, evaluating the
expanding part of the FRAST round function requires 2 GenPBS operations
followed by 7(ℓ− 2) CMux gates.

25 The success probability of PBSmanyLUT is sensitive to the parameter and the error
contained in the input when N is small, so that it should be used carefully. For
FRAST, we have checked that PBSmanyLUT can be used with negligible failure
probability.
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H.1.2 Contracting Part

The contracting part computes S(y2 + · · · + yℓ + rk1). If the summation is di-
rectly computed from y2, . . . , yℓ, the magnitude of the error inside the summation
increases with the round. Instead, we use another variable, dubbed crfsum, to
manage the noise for the summation.

At first, crfsum is initialized by the trivial encryption of
∑ℓ

j=2 ic[j]. In the
expanding part, the output ciphertexts of S(x1 + rkj) for j = 2, . . . , ℓ are added
to crfsum. Then crfsum added by rk1 becomes the input of the S-box S in the
contracting part, which can be evaluated in 3 GenPBS operations using our WoP-
PBS. Using the same idea to refresh the first branch, one can refresh crfsum by
one more GenPBS operation. By the help of PBSmanyLUT, both evaluating the
S-box and refreshing crfsum can be done using 2 GenPBS operations.

H.1.3 Bit Extraction

A ciphertext containing a FRAST keystream word of 4 bits is decomposed into
4 ciphertexts containing each keystream bit scaled by q/2 using the multi-value
PBS [18]. Let x = b0 + 2b1 + 22b2 + 23b3 be a keystream word where bi ∈ {0, 1}
for i = 0, . . . , 3. The MSB b3 can be extracted by the negacyclic function

x 7→ (−1)b3+1 · q
2
,

followed by an addition of q/2. The other bits bi can be extracted by the nega-
cyclic functions

x 7→ bi ·
q

2

for i = 0, 1, 2. All the extraction functions evaluate negacyclic functions on the
same input x, so they can be evaluated at the cost of almost one PBS by the
multi-value PBS [18].

H.2 Error Analysis

In this section, we analyze the error growth in homomorphic keystream evalua-
tion of FRAST. We use the following conventions as in [22].

– Var(E) ≤ σ2 for E ∈ Rq,N if all coefficients of E have variances at most σ2.
– Var(c) ≤ σ2 for a GLWE ciphertext c if its phase E satisfies Var(E) ≤ σ2.
– Var(C) ≤ σ2 for a GGSW ciphertext C =

(
C(i,j)

)
(i,j)∈[k+1]×[ℓ]

if all of its

GLWE ciphertext components C(i,j) satisfies Var(C(i,j)) ≤ σ2.

Every error associated with those ciphertexts follows a zero-mean distribution
in this section. We note that the error analysis in [19] uses a different conven-
tion in terms of describing the error, so we properly translated its result to the
convention used in this paper with slightly improved bound used in [22]. The
formal proof described in [22] is way complicated, so we only give a sketch of
how the results in [22] can be applied in the following lemmas.
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Lemma 2 (Theorem 4.1 in [19]). Suppose GLWEtoGLWE keyswitching keys

KSm =

{
GLWES(Xm)

(
Si ·

q

Bj
subs

)}
(i,j)∈[k]×[ℓsubs]

such that Var(KSm) ≤ σ2
subs for all m = N/2i−1 + 1, i = 1, . . . , logN are given.

For an input c = GLWES(
∑N−1

i=0 biX
i), Algorithm 3 in [19] outputs a set of

ciphertexts {cj = GLWEs(Nbj)}N−1
j=0 with noise variance

Var(cj) ≤ N2 Var(c) +
N2 − 1

3
Vsk

where

Vsk =
kN

2

(
q2

12B2ℓsubs
subs

− 1

12

)
+

kN

16
+ kNℓsubsσ

2
subs

B2
subs + 2

12
.

Proof. The noise increment Vsk of the GLWEtoGLWE keyswitching can be esti-
mated by the result of Appendix D in [22] with a slight modification. For each
iteration on i in Algorithm 3 in [19], the noise increases by Vsk for each GLWE-
toGLWE keyswitching. Then one can obtain the above upper bound following
the proof of Theorem 4.1 in [19] (considering the difference of the convention as
mentioned before).

Lemma 3 (Theorem 4.2 in [19]). Let A = GGSWS(−S) be a GGSW cipher-
text of −S with the base BSK and level ℓSK. For inputs A and GLWE ciphertexts

{cj = GLWES(
∑N

i=0
biX

i

NBj+1
rk

)}ℓrkj=1, Algorithm 4 in [19] outputs GGSW cipher-

texts Ci = GGSWS(bi) with the base Brk and level ℓrk of which noise variance
is given by

Var(Ci) ≤ N2 Var(c) +
N2 − 1

3
Vsk + ℓSK(k + 1)N

B2
SK + 2

12
Var(A)

+
q2 −B2ℓSK

SK

12B2ℓSK
SK

(
1 +

kN

2

)
+

kN

8
+

1

4

(
1− kN

2

)2

(14)

for all i = 0, . . . , N − 1.

Proof. One can obtain the above bound following the proof of Theorem 4.2
in [19] directly (considering the difference of the convention as mentioned before),
except that the GGSW ciphertexts A and Ci have different decomposition base
and level.

We denote the upper bound in (14) by σ2
dbr for the rest of this section.

Lemma 4 (Theorem 4 in [22]). The noise variance of the GenPBS output is

Var(PBS) = nℓ(k + 1)N
B2

PBS + 2

12
σPBS

2

+ n
q2 −B2ℓPBS

PBS

24B2ℓPBS
PBS

(
1 +

kN

2

)
+

nkN

32
+

n

16

(
1− kN

2

)2
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where σPBS is the noise variance of the bootstrapping key, and BPBS and ℓPBS
are the base and level of GenPBS, respectively.

Lemma 5. Let Ci be a GGSW ciphertext of noise variance at most σ2 of the
base B and the level of ℓ for i = 1, . . . , t. Let c be a GLWE ciphertext of noise
variance at most σ2

prev. When the nested external products on c by c′ = Ct �
· · · (C2 � (C1 � c)) is well-defined, the noise variance of c′ is bounded by

V ar(c′) ≤ σ2
prev + t2ℓ(k + 1)N

B2 + 2

12
σ2

+ t

(
q2 −B2ℓ

12B2ℓ

(
1 +

kN

2

)
+

kN

8
+

1

4

(
1− kN

2

)2
)
.

Proof. Following the analysis of Appendix B in [22] similarly with a partial As-
sumption 3.11(Independence heuristic) in [20], we may claim the term appearing
in Step (1) of Appendix B has at most quadratic growth over the iteration of ex-
ternal products, and the term appearing in Step (2) has a linear growth because
of their relative independence.

Lemma 6. In the double blind rotation, t nested CMux gates by GGSW cipher-
texts of noise variance at most σdbr after the common blind rotation increases
the output noise variance by

VDBR,t ≤ t2ℓrk(k + 1)N
B2

rk + 2

12
σ2
dbr

+ t

(
q2 −B2ℓrk

rk

12B2ℓrk
rk

(
1 +

kN

2

)
+

kN

8
+

1

4

(
1− kN

2

)2
)
.

where Brk and ℓrk are the base and level of the GGSW ciphertext, respectively.

Proof. The noise increment by the CMux gate can be estimated by the result
of Appendix B in [22] along with Lemma 5. The above upper bound is for the
worst-case such that the distribution of the plaintext of the GGSW ciphertext
is unknown over B, considering the dependency of the round key bits in FRAST
obtained from its master key.

Using the above lemmas, one can upper bound the noise variance of the S-box
outputs obtained by the double blind rotation as described in Section H.1.1. After
decomposing the S-box S into Smsb-odd and Smsb-even, one computes the common
blind rotation for Smsb-odd and Smsb-even on the input x1+rk2 and ClearMSB(x1+
rk2), respectively. Then, 4 (resp. 3) CMux gates follow using GGSW ciphertexts
of each bit of rkj − rk2 (resp. ClearMSB(rkj − rk2)) for j = 3, . . . , ℓ. From
Lemma 6, the noise variance of the output ciphertext of Smsb-odd(x1+rkj) (resp.
Smsb-even(ClearMSB(x1+rkj))) by the double blind rotation is given as Var(PBS)
increased by VDBR,4 (reps. VDBR,3).

In the evaluation of the FRAST round function, the noisiest ciphertext is one
for the input to the S-box in the contracting part of the fixed round function,
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which is named crfsum in Section H.1.1. Considering the output noise variance
of the resulting ciphertexts of the blind rotation, one can upper bound the noise
increment of crfsum in each round by

2(ℓ− 1)2 Var(PBS) + (ℓ− 2)(VDBR,3 + VDBR,4)

assuming that there is no correlation between the noises resulting from the com-
mon blind rotation and the GGSW ciphertexts of the round key bits, while there
is clear dependence on the noises from the common blind rotation.

Considering additional noise increments such as the initial noise in refreshed
crfsum, the noise in rk1 and the keyswitching noise before the GenPBS opera-
tion26, all of which do not affect the failure probability significantly, we obtain
noise of standard deviation 254.17 for crfsum, small enough compared to the scal-
ing factor ∆ = 260. We observed the upper bound of noise coincides empirically
with our result as Figure 10 shows the result of noise measurement to crfsum
in 1000 evaluations of FRAST for each round. The failure probability of the
GenPBS operation on the input of crfsum computed by Theorem 3 in [22] is
negligible, and even PBSmanyLUT with ϑ = 1, i.e., computing two functions on
the same input in a single GenPBS call, can be used with failure probability less
than 2−80.
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Fig. 10: The magnitude of error of crfsum in each round of FRAST evaluation.
The experiment is performed 1000 times.

26 It can be computed by Theorem 2 in [22].
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