
An NVMe-based Secure Computing Platform
with FPGA-based TFHE Accelerator

Yoshihiro Ohba1, Tomoya Sanuki1, Claude Gravel2 and Kentaro Mihara2

1 KIOXIA Corporation
2 EAGLYS Inc.

Abstract.
In this paper, we introduce a new approach to secure computing by implementing a
platform that utilizes an NVMe-based system with an FPGA-based Torus FHE ac-
celerator, SSD, and middleware on the host-side. Our platform is the first of its kind
to offer complete secure computing capabilities for TFHE using an FPGA-based ac-
celerator. We have defined secure computing instructions to evaluate 14-bit to 14-bit
functions using TFHE, and our middleware allows for communication of ciphertexts,
keys, and secure computing programs while invoking secure computing programs
through NVMe commands with metadata. Our CMux gate implementation features
an optimized NTT/INTT circuit that eliminates pre-NTT and post-INTT operations
by pre-scaling and pre-transforming constant polynomials such as the bootstrapping
and private-functional key-switching keys. Our performance evaluation demonstrates
that our secure computing platform outperforms CPU-based and GPU-based plat-
forms by 15 to 120 times and by 2.5 to 3 times, respectively, in gate bootstrapping
execution time. Additionally, our platform uses 7 to 12 times less electric energy
consumption during the gate bootstrapping execution time compared to CPU-based
platforms and 1.15 to 1.2 times less compared to GPU-based platforms.
Keywords: FHE · TFHE · FPGA · Accelerator · NVMe · SSD

1 Introduction
Securing data is vital as public and private organizations recognize it as an asset when
collecting, using, and sharing information. For this reason, data protection regulations are
growing worldwide, and the demand for global privacy and requirements is also increasing.

Along with these trends, there is a highly increasing demand for secure computation,
also known as privacy-preserving methods. Gentry’s seminal work introduced a class
of cryptographic methods known as Fully Homomorphic Encryption (FHE) [18], and it
is considered one of the most compelling technologies in secure computing. FHE-based
privacy-preserving methods do not require computing nodes to decrypt encrypted data
to perform secure computation, and therefore, the computing nodes are free from side-
channel attacks.

Since its inception, FHE has sparked significant interest, leading to the emergence of
novel constructions following Gentry’s idea. This evolution has culminated in the develop-
ment of four FHE schemes, namely, BGV [10], BFV [9, 16], CGGI (also known as TFHE
(Torus FHE)) [13], and CKKS [8, 12], which are considered the most representative and
are currently undergoing international standardization under ISO [30]. This progression
showcases the growing interest in FHE and the continuous advancements in the field,
making it an exciting area of research.

One of the critical components of FHE is bootstrapping, or a procedure to decrease
the ciphertext error by homomorphically evaluating a decryption circuit [18]. The usual

2 An NVMe-based Secure Computing Platform with FPGA-based TFHE Accelerator

computation in bootstrapping is an inner product of two vectors encoding polynomials.
One vector is a transformation of a ciphertext, and the other vector is an encryption of
the secret key used for generating the ciphertext. The computational complexity of the
polynomial multiplications is N times larger than the one for decrypting the ciphertext,
where N is the degree of the ideal of the polynomial ring. Since N typically ranges from
210 to 216 depending on the FHE mechanism and security parameters [13, 20], there is a
strong demand for speeding up the bootstrapping procedure. Some FHE accelerators were
built for this purpose using Graphical Processing Units (GPU), Field Programmable Gate
Arrays (FPGA), or Application Specific Integrated Circuit (ASIC). All FHE accelerators
listed in [20] implement Number Theoretic Transform (NTT) into hardware. However,
more work must be done on FHE-based secure computing platforms integrating TFHE
accelerators.

We design and implement a Non-Volatile Memory express (NVMe)-based secure com-
puting platform with an FPGA-based TFHE accelerator, Solid State Drive (SSD), and
a host-sided middleware. We implement TFHE to speed up non-linear operations and
bit-wise operations. Our secure computing platform uses NVMe commands for reading,
writing, and executing secure computing programs containing a sequence of secure com-
puting instructions. The NVMe commands also read and write both ciphertexts and keys.
We define a set of secure computing instructions to evaluate any 14-bit to 14-bit function
using TFHE.

Our accelerator has an optimized circuit for performing N -point NTT or INTT with
N = 16384 operating at 200MHz using the method described in [28] to eliminate bit-
reversal operations, precomputing twiddle factors, and to properly normalize. We develop
an optimized CMux gate using a linear sum of the pre-scaled and pre-transformed constant
polynomials as input parameters. We show that bootstrapping and private-functional key-
switching keys are such polynomials. Section 6 shows that our secure computing platform
outperforms CPU-based platforms and GPU-based platforms by 15 to 120 times and by
2.5 to 3 times, respectively, in gate bootstrapping execution time, and by 7 to 12 times
and by 1.15 to 1.2 times, respectively, in electric energy consumption during the gate
bootstrapping execution time.

The rest of this paper is as follows. Section 2 discusses existing work related to
this paper and clarifies our contributions to FHE-based secure computing. Section 3
describes the basic architecture of our secure computing platform. Section 4 and Section 5
explain the design and implementation of our accelerator and middleware, respectively, in
detail. Section 6 provides the performance evaluation of our secure computing platform
implementation. Finally, Section 7 summarizes this paper and mentions our future work.

2 Related Work
A detailed survey on FHE is in [23]. There is also a survey on FHE accelerators in [20].
There are three works related to FHE-based secure computing platforms. In [34], an
FPGA-based accelerator called SmartSSD [21] implements the basic operations needed
for CKKS. In [15], a secure computing platform is implemented with an FPGA-based ac-
celerator for NTT, focusing on accelerating the Chinese Remainder Transform (CRT) and
using Direct Memory Access (DMA) for using host DRAM for communicating commands
and data between CPU and FPGA. In contrast to [15], our platform focuses on speeding
up NTT in a TFHE-specific way. However, a RISC-based secure computing platform
for TFHE is developed from [25], mainly focusing on accelerating CMux-tree operations
without accelerating the bootstrapping procedure.

Among FHE accelerators based on GPU [5, 6, 27, 35], ASIC [3, 32], and FPGA [2, 7,
15,17,29,31,33,34], we have chosen FPGA as our hardware since bootstrapping is known
as a memory-bandwidth-bound workload for CPU with its arithmetic intensity (the ratio

Yoshihiro Ohba , Tomoya Sanuki, Claude Gravel and Kentaro Mihara 3

between the number of executed operations and the number of bytes transferred between
the CPU and the memory) being less than 1, see [11]. FPGA or ASIC is more suitable
for such a workload than GPU because it allows multiple arithmetic logics to access the
different internal memory blocks or caches simultaneously. FPGA is more suitable than
ASIC for the initial pre-standard deployment phase.

There are several works on FPGA-based accelerators implementing NTT for TFHE [7,
17], CKKS [2, 29], and BGV/BFV [31, 33]. For instance, an FPGA-based TFHE accel-
erator [7] uses fixed-point Fast Fourier Transform (FFT), aiming for high throughput
and low control overhead. Another FPGA-based TFHE accelerator [19] uses approximate
multiplication-less integer FFT. Another FPGA-based TFHE accelerator [37] introduces
an optimization technique called bootstrapping key unrolling designed on the tradeoff be-
tween the performance of bootstrapping and FPGA resource consumption. These three
FPGA-based TFHE accelerators are implemented for smaller N (N = 1024). In con-
trast, our FPGA-based TFHE accelerator has a different design goal of speeding up the
multiplication of polynomials without losing precision for a large value of N . In [17], an
FPGA-based programmable vector engine that supports processing an application-specific
instruction set is designed without accelerating the bootstrapping procedure. In [26], a
TFHE accelerator on a commodity CPU-FPGA hybrid machine is designed for paral-
lel execution of multiple homomorphic boolean gates to increase processing throughput,
however, without reducing latency. We focus on reducing latency in the execution of
bootstrapping.

The work in [19] has extensively evaluated the performance of an FPGA-based accel-
erator during bootstrapping, focusing on latency, throughput, and power consumption.
However, a significant gap remains in the literature, as no study has yet comprehensively
assessed an FHE-based secure computing platform, which includes an accelerator and a
host CPU, in terms of these performance metrics.

Our major contributions are as follows.

• We are the first to provide a full-fledged secure computing platform for TFHE using
an FPGA-based accelerator. The platform defines virtual registers for manipulat-
ing secure computing instructions designed for TFHE and a host-sided middleware
to communicate ciphertexts, keys, and programs to compute. We can invoke a se-
cure computing program over the accelerator through the middleware using NVMe
commands with metadata.

• We are also the first to provide, instead of a processor-level comparison among
different processors such as CPU, GPU, and FPGA, a platform-level comparison
showing that a secure computing platform with an FPGA-based accelerator can
outperform software-based and GPU-based secure computing platforms in terms
of speed and energy consumption for executing bootstrapping operations for large
values of N . We have shown especially that NTT and Inverse NTT (INTT) with
N = 16384 are momory-I/O-bound workloads for GPU.

3 Basic Architecture
Figure 1 shows the basic architecture of our secure computing platform. This architecture
has been chosen to process data close to its location. The architecture comprises a Host,
an Accelerator, and NVMe SSDs (hereafter SSDs).

A secure computing application running on the host controls the behavior of the accel-
erator through middleware and an API by using NVMe Read/Write commands. Firstly,
the accelerator intercepts each NVMe Read/Write command issued for the SSDs. Sec-
ondly, it holds a copy of the data carried in the command. Thirdly and finally, depending

4 An NVMe-based Secure Computing Platform with FPGA-based TFHE Accelerator

on the command type and the properties of the command data, referred to as secure com-
puting metadata, it runs a program for homomorphic calculation and returns the result.
The main reason for using NVMe as the carrier for secure computing data and metadata is
to reduce overall latency for FHE-based secure computing by performing storage I/O and
computing in a single I/O command, avoiding unnecessary data transfer from the host
main memory to the accelerator after the host reads the data from the storage or the ac-
celerator to the host main memory before the host writes the data to the storage. In other
words, our accelerator is a computing storage accelerator. Also, unlike SmartSSD [21],
in which an FPGA and an SSD are standalone PCIe devices connected under a PCIe
switch, our architecture further avoids "double transfer" of the same data over the same
PCIe segment between the FPGA and the PCIe switch, one for transferring the data
between the host and FPGA and another for transferring the data between the FPGA
and SSD, which halves the I/O throughput [22]. Instead, our architecture maintains the
I/O throughput by physically separating the PCIe segment between the host and FPGA
and the downstream PCIe segment between the FPGA and SSD. The basic architecture
uses Peripheral Component Interconnect (PCIe) or NVMe over Fabrics (NVMe-oF) as an
NVMe transport. In implementing the basic architecture, PCIe is the NVMe transport
between the host and the accelerator and between the accelerator and the SSDs. Future
work will extend the basic architecture to have multiple hosts and accelerators.

 NVMe SSDsHost

NVMe
Bridge

Secure
Computing

Engine
 SSD

 SSD

NVMe
Read/Write
w/Metadata

NVMe
Read/Write
w/Metadata

Accelarator

NVMe
Transport

 Middleware

OS and
Hardware

Secure
Computing
Application

NVMe
Transport

Figure 1: Basic architecture

4 Accelerator
The block diagram of our accelerator implementation is in Figure 2. Our accelerator
is implemented on a HiTech Global HTG-937 board equipped with a Xilinx XCVU47P
FPGA with three Super Logic Regions (SLRs) and 16GB of High Bandwidth Memory
(HBM). The accelerator consists of a Secure Computing Engine (hereafter the computing
engine) and an NVMe Bridge. The computing engine first inputs an NVMe Command or
Completion with its associated data to the NVMe bridge; it extracts the secure computing
data and metadata from the input and stores the secure computing data in a Virtual
Register (VR). Secondly, the engine executes a program containing a sequence of secure
computing instructions, depending on the type of secure computing data indicated in the
secure computing metadata and the type of the NVMe Command. Thirdly, the engine
outputs the NVMe Command or Completion and its associated data containing either the
input or computed data to the NVMe bridge.

The computing engine has the following components.
• Main Memory stores VRs, a VR table, and page tables. It also has a stack region

used by Push and Pop instructions, defined in Section 4.4. HBM is the memory

Yoshihiro Ohba , Tomoya Sanuki, Claude Gravel and Kentaro Mihara 5

device that provides sufficient memory access bandwidth. The main memory is
partitioned into a persistent area for which paging is not applied and a non-persistent
area for which paging is used. See Section 4.3 for details on paging.

• Cache Memory consists of many Block Random Access Memory (BRAM) blocks for
high-speed distributed memory access.

• Data Movers move secure computing data and metadata among the main memory,
cache memory, central processor, and module processor. Data movers have First-In
First-Out (FIFO) buffers.

• Module Processor provides ring or vector operations. Multiple logic blocks in the
module processor can access simultaneously different BRAM blocks in the cache
memory. The module operations supported by the module processor are listed
in Table 1. All module operations are implemented as High-Level Synthesis (HLS)
modules, except for NTT and INTT. The NTT/INTT circuit is implemented as RTL
(Register Transfer Level) modules and described in Section 4.5. Module operations
are performed element-wise except for NTT, RING_ROT, VECTOR_ROT, and
SAMPLE_EXT. The module processor has one MicroBlaze soft-core microprocessor
for processing some module operations.

• Central processor executes microprograms to control the data movers and module
processor and manage the main memory. One MicroBlaze soft-core microprocessor
is used as the central processor.

• Multiplexers and Demultiplexsors exchange NVMe Commands and Completions
with their associated data input from the NVMe bridge among the soft-core mi-
croprocessor, data movers, and NVMe bridge.

The NVMe bridge provides a bridging function of NVMe commands; that is, it forwards
an NVMe command from the host to an SSD, either forwards Write Data from the host
to the SSD or forwards Read Data from the SSD to the host, and forwards an NVMe
Completion received from the SSD to the host. Before forwarding an NVMe Command
or Completion, the NVMe bridge passes the NVMe Read/Write data to the computing
engine for copying and data computation. The NVMe bridge has one MicroBlaze soft-core
microprocessor.

Computing Engine

NVMe
Bridge

Host-side Processor SSD-Side Processor

Mux/Demux
(Multiplexors and Demultiplexers)

Module
Processor

Data
Movers

Central
Processor

Cache Memory
(BRAM blocks)

Main Memory (HBM)

CMD WDATA CMP RDATA CMD WDATA CMP RDATA

VRs
(Virtual Registers) VR Table Page Table

VRs

Stack

Figure 2: Accelerator block diagram

6 An NVMe-based Secure Computing Platform with FPGA-based TFHE Accelerator

Table 1: Module processor operations. NTT operation is implemented as Register Trans-
fer Level (RTL) modules. All other operations are implemented as High Level Synthesis
(HLS) modules.

Name of
Internal

Operation

Module
Type Description

NTT Ring NTT and Inverse NTT

MULMOD64 Vector 64-bit element-wise multiplication modulo prime p =
264 − 232 + 1 for CMux

ADDMOD64 Vector 64-bit element-wise addition modulo prime p = 264 −
232 + 1 for CMux

KEY_SWITCH Vector Public functional KS
DECOMP Vector Gadget Decomposition

ADD32_ACC Vector 32-bit element-wise addition to ACC
SUB32_ACC Vector 32-bit element-wise subtraction to ACC
ADD32_VR Vector 32-bit element-wise addition to VR
SUB32_VR Vector 32-bit element-wise subtraction to VR

INT_MULT32 Vector 32-bit element-wise scalar multiplication to VR
RING_ROT Ring Circular rotation of ring coefficients

VECTOR_ROT Vector Circular rotation of Vector elements
SAMPLE_EXT Ring Sample Extract

ACC: Accumulator, KS: Key-Switching

4.1 Secure computing metadata

Each secure computing data (hereafter sc_data) accompanies secure computing metadata
(hereafter sc_metadata) containing the Type of the sc_data, the Key Identifier identify-
ing the set of keys associated with the sc_data, the Data Identifier of the sc_data, and
the Size of the sc_data. The domain of the Type field is in Table 2.

Table 2: Secure computing metadata types

Type Type Name Description
0 PRG Secure computing program
1 TV Test vector
2 KEY Key used for TFHE bootstrapping operations
3 TLWE-CoR TLWE ciphertext invoking Compute-on-Read (CoR) operation

4 TLWE-CoW TLWE ciphertext invoking Compute-on-Write (CoW) opera-
tion

Any sc_data carried in an NVMe Read/Write Command data is stored in the VR
corresponding to the associated sc_metadata. In addition, a sc_data of Type 3 (TLWE-
CoR) carried with an NVMe Read Command or Type 4 (TLWE-CoW) carried with an
NVMe Write Command invokes execution of a secure computing program stored in the
VR register of Type 0, or the program register (see Figure 3).

Yoshihiro Ohba , Tomoya Sanuki, Claude Gravel and Kentaro Mihara 7

Host Accelarator NVMe
SSDs

(1) NVMe Read

(7) NVMe Completion
(6) RDATA

(2) NVMe Read
(3) RDATA

(4) NVMe Completion

NVMe Read Command processing

(5) Store RDATA (Read Data) into VR. For type 3 (TLWE-
CoR) data, also execute a program in the program (PRG)
register, and output the result into RDATA.

Host Accelarator NVMe
SSDs

(1) NVMe Write

(7) NVMe Completion
(2) WDATA

(4) NVMe Write
(5) WDATA

(6) NVMe Completion

NVMe Write Command processing

(3) Store WDATA (Write Data) into a VR. For type 4
(TLWE-CoW) data, also execute a program in the
program register, and output the result into WDATA.

Figure 3: NVMe Read/Write command processing

4.2 Virtual registers and virtual addressing
Virtual Registers (VRs) are variable-length data structures maintained inside the accel-
erator and manipulated via NVMe Read/Write commands. VRs are distinguished from
soft-core microprocessor registers in that the size of a VR can be so large that its entire
part does not fit in FPGA logical elements. For example, a TFHE bootstrapping key can
be a few gigabytes.

A VR number identifies each VR, uniquely calculated from the Type, Key Identi-
fier, and Data Identifier contained in the sc_metadata associated with the corresponding
sc_data. The VR table stores the pair of the VR number and the virtual address for each
VR.

The type and data identifier specified in Table 3 determines the size of a VR. We
use a 32-bit integer to encode an element in T = R/Z for all data types other than the
NTT-applied keys, which use 64-bit integers to multiply ring polynomials using NTT.

The accelerator uses a 38-bit virtual address with a 26-bit page number and a 12-bit
offset. BKNTT, KSK, and PrvKSKNTT denote keys. BKNTT is the bootstrapping key
transformed linearly; more specifically, it is NTT applied to the bootstrapping key. KSK
is the key used in the public-functional key-switching mechanism of TFHE. PrvKSKNTT
is the key used in the private-functional key-switching mechanism of TFHE and is trans-
formed linearly in the same way as BKNTT. Parameters N , k, n, ℓ, and t denote the
degree of the polynomial representing the ideal, the number of polynomials encoding a
secret key in a Torus Ring Learning with Errors (TRLWE) sample, the bit length of the
Torus LWE (TLWE) a secret key, the number of digits in the radix Bg of the Gadget
Decomposition [13], and the number of digits in the binary-decomposed TLWE samples,
respectively.

4.3 Paging
Like legacy computers, the accelerator invokes a paging function when its main memory
is full. The paging algorithm implemented on the accelerator uses the SSDs as its swap
area. It maintains the contents of received VRs to be stored in the main memory or
the swap area in the following way. Each VR content sent initially to the accelerator

8 An NVMe-based Secure Computing Platform with FPGA-based TFHE Accelerator

Table 3: Virtual register sizes (BKNTT: NTT-applied bootstrapping key, KSK: key-
switching key, PrvKSKNTT: NTT-applied private-functional key-switching key)

Type Data Identifier VR Size in bytes
0 (PRG) 0 configurable
1 (TV) any (k + 1) ·N · 4

2 (KEY)
1 (BKNTT) n ·N · ℓ · (k + 1)2 · 8

2 (KSK) (n+ 1) · t ·N · 4
3 (PrvKSKNTT) (k + 1) · (n+ 1) · t ·N · 8

3 (TLWE-CoR) any (n+ 1) · 4
4 (TLWE-CoW) any (n+ 1) · 4

through an NVMe command is temporarily held in a FIFO queue in the cache memory
and then moved to the main memory. Suppose the central processor of the accelerator
tries to access a VR, say x. Suppose neither x is in the main memory nor enough space
is available to store x. In that case, the paging algorithm (i) selects some other VR, say
y, stored in a page of the main memory and copies the page’s content to the swap area,
and then (ii) copies x to the page. Paging operations (i) and (ii) are page-out and page-in,
respectively. The copy source of a page-in operation is either the swap area for previously
received VR or the cache memory for newly received VR.

The accelerator includes a page table that is dedicated to VRs of Type 3 (TLWE-
CoR) and Type 4 (TLWECoW), with a page size that matches the VR size. All other
VRs are stored in the persistent area of the main memory, meaning that they do not
require paging. Essentially, paging is only necessary for TLWE samples. Each entry in
the page table contains a flag and a physical address for the corresponding page. If the flag
is unset, the physical address field will contain the physical address of the main memory.
If the flag is set, it will contain an LBA of the swap area. Page-in and page-out operations
rely on NVMe Read/Write commands to transfer pages between the accelerator and SSDs.
To avoid conflicts between host-issued and accelerator-issued NVMe commands, we have
implemented a mechanism where the accelerator issues the NVMe commands for page-in
and page-out operations. Then the accelerator:

1. Suspends forwarding of the NVMe Completion for the paging trigger command

2. Uses the Command Identifier of the paging trigger command for the accelerator-
issued NVMe commands used for paging operations

3. Resumes forwarding of the suspended NVMe Completion once the paging operations
terminate

Note that host-issued NVMe commands that are not paging trigger commands are not
suspended during paging.

4.4 Secure computing instruction set
The accelerator supports the following secure computing instructions, summarized in Ta-
ble 4.

Return sends the content of the VR register n containing a TLWE sample to the host or
SSD.

Move moves the content of the VR register n2 containing a TLWE sample to VR register
n1.

Yoshihiro Ohba , Tomoya Sanuki, Claude Gravel and Kentaro Mihara 9

Push Moves the content of the VR register n containing a TLWE sample to the top of
the stack and increments the stack pointer.

Pop moves the content of the stack top to VR register n and decrements the stack pointer.

Bootstrap uses the content of VR register tv containing a TFHE test vector, performs
Gate Bootstrapping (GBS) [13] for the VR register n containing a TLWE sample,
and stores the output to VR register n. Note that GBS also realizes Programmable
Bootstrapping (PBS) [14] for a function f(x) provided by the TFHE test vector, in
which case the default TFHE test vector for the identity function is replaced with
the provided one. Note that a pair of a bootstrapping key and a key-switching key
used for GBS is identified by the Key ID field of the sc_metadata associated with
VR register n.

HomAdd adds the content of VR register n2 containing a TLWE sample and VR regis-
ter n1 containing another TLWE sample and stores the result to VR register n1.
HomAdd internally calls ADD32_VR module processor operation.

HomSub subtracts the content of VR register n2 containing a TLWE sample from VR
register n1 containing another TLWE sample and stores the result to VR register
n1. HomSub internally calls SUB32_VR module processor operation.

HomIntMult multiplies the content of VR register n containing a TLWE sample by value
v and stores the result to VR register n. HomIntMult internally calls INT_MULT32
module processor operation.

Table 4: Secure computing instruction set (VRs n, n1, and n2, each containing a TLWE
sample. VR tv contains a TFHE test vector.)

Name Type Arg. 1 Arg. 2 Description
Return 0 n none return n
Move 1 n1 n2 n1 ← n2
Push 2 n none ++stackptr← n
Pop 3 n none n← stackptr--

Bootstrap 4 tv n perform GBS or PBS for n with tv
HomAdd 5 n1 n2 n1 ← n1 + n2
HomSub 6 n1 n2 n1 ← n1 − n2

HomIntMult 7 n v n← n · v

Table 5 shows the sequence of instructions of a secure computing program that homo-
morphically performs a multiplication of two integers, x and y. Also, Table 6 shows an
example sequence of NVMe commands used for running the example secure computing
program. Note that once VRs are loaded into the accelerator via NVMe Read/Write
Commands, they only need to be reloaded once they need to be updated. For exam-
ple, steps 1 through 6 in Table 6 are not required for the next run of another secure
computing program using the same BK, KSK, and TV1. Also, for SSDs supporting the
NVMe Metadata feature, the number of NVMe Commands in the sequence is reduced by
half by having sc_metadata and its associated sc_data in the same NVMe Read/Write
Command.

10 An NVMe-based Secure Computing Platform with FPGA-based TFHE Accelerator

Table 5: An example of a secure computing program for computing xy = {(x+ y)2/4−
(x − y)2/4} homomorphically (ri is the VR number for TLWE sample si. tv is the VR
number for the test vector representing the function f(z) = z2/4. TLWE samples s2 and
s3 contain encrypted data for x and y, respectively. VR r1 stores a temporal result and
a final result to return.)

No. Instruction Argument(s) No. Instruction Argument(s)
1 mov r1, r2 5 bootstrap tv, r2
2 homadd r1, r3 6 homsub r1, r2
3 bootstrap tv, r1 7 return r1
4 homsub r2,r3

Table 6: An example sequence of NVMe commands (Write(d) represents an NVMe
Write command with data d. Read(d) represents an NVMe Read command with data
d. MD(x, y, z) represents the metadata of Type x, Key Identifier y, and Data Identifier
z. An NVMe Completion (not shown in the figure) is returned for each NVMe command.
Abbreviations: BK: bootstrapping key. KSK: key-switching key. PRG: secure computing
program.)

No. NVMe Command Comment
1 Write(MD(2,0,1)) BKNTT
2 Write(k0) BKNTT data
3 Write(MD(2,0,2)) KSK
4 Write(k1) KSK data
5 Write(MD(1,0,0)) TV1
6 Write(v1) TV1 data
7 Write(MD(0,0,0)) PRG
8 Write(p) PRG data
9 Write(MD(3,0,1)) TLWE-CoR

10 Write(s1) TLWE-CoR data for TLWE sample s1 encrypting value x
11 Write(MD(4,0,2)) TLWE-CoW

12 Write(s2) TLWE-CoW data for TLWE sample s2 to be used for encrypt-
ing f(x). Secure computing program p is invoked here.

13 Read(MD(4,0,2)) TLWE-CoW
14 Read(s2) TLWE-CoW data for TLWE sample s2 encrypting value f(x)

4.5 NTT implementation and optimized CMux
Since bootstrapping is the most time-consuming operation in TFHE, the NTT/INTT
circuit in the module processor is implemented as an RTL module to optimize its circuit
design. The NTT/INTT circuit supports N -point NTT/INTT with N = 16384. The
NTT/INTT circuit implements an optimized scheme described in [28], which eliminates
pre-FFT (Fast Fourier Transform) processing and post-IFFT (Inverse FFT) processing
(including bit reversing) by merging NTT twiddle factors {ψi |0 ≤ i < N} and FFT
twiddle factors {ωi|0 ≤ i < N} where ω is a primitive Nth primitive root of unity
and ω is a primitive 2N -th primitive root of unity, and thus ψ = ω2. For readers’
convenience, the NTT and INTT constructions for N = 8 are shown in Figure 4. The
constructions are similar to those in Figure 1 of [28], except we use Gentleman-Sande

Yoshihiro Ohba , Tomoya Sanuki, Claude Gravel and Kentaro Mihara 11

(GS) butterfly for NTT and Cooley-Tukey (CT) butterfly for INTT, which eliminates
bit-reversing FFT twiddle factors. In our implementation, ω = 10930245224889659871
and ψ = 3333600369887534767. Appndix A gives mathematical derivations for the two
types of optimized butterfly elements.

For a complete INTT operation, a normalization factor of 1/N is required for each
output element of INTT in Figure 4. This scaling can be precomputed for the input of
NTT depending on the arithmetic operation that uses NTT [28] in its implementation.
In TFHE, CMux gate [13], defined as follows, is such an operation.

CMux(C, d0, d1) =
(k+1)ℓ∑

i=1
ui · Ci + d0 = ⟨u,C⟩+ d0

where C = (Ci)1≤i<(k+1)ℓ is a Torus Ring GSW (TRGSW) sample, d0 and d1 are TRLWE
samples, and u = (u1, u2, ..., u(k+1)ℓ) ∈ (Z[X]/(XN +1))(k+1)ℓ is the output of the Gadget
Decomposition for d1 − d0 and ⟨x, y⟩ denotes the inner product of two vectors x and y.

In [13], CMux gates are used inside the Blind Rotate algorithm, which is invoked from
Gate Bootstrapping (Case 1) or the Vertical Packing algorithm used together with Circuit
Bootstrapping [13] (Case 2). In Case 1, Ci is the ith TRGSW sample of a bootstrapping
key BK. In Case 2, Ci is the ith TRGSW sample of the output of Circuit Bootstrap-
ping, calculated as a linear sum of the elements of a private-functional key-switching key
PrvKSK. Since Ci is generally a linear sum of constant polynomials in both cases and
taking advantage of the linearity property of NTT, our optimized CMux gate uses pre-
scaled and pre-transformed key keyntt = (keyntti)i = (NTT(N)(keyi/N))i, where keyi is
the ith element of BK or PrvKSK, as follows.

⟨u,C⟩ = 1
N

(k+1)ℓ∑
i=1

INTT(N)
(

NTT(N)(ui)⊙NTT(N)(Ci)
)

= INTT(N)

(k+1)ℓ∑
i=1

NTT(N)(ui)⊙NTT(N)(Ci/N)

= INTT(N)

(k+1)ℓ∑
i=1

NTT(N)(ui)⊙ ⟨c′
i, keyntt⟩

 (1)

Here, NTT(N)(·) and INTT(N)(·) are N -point NTT and INTT functions, respectively. ⊙
denotes the Hadamard product. c′

i = (c′
i,j)1≤j≤(n+1)t is an integer vector with c′

i,j = δij

for Case 1 where δij is Kronecker delta function, and c′
i,j = −c̃i,j−1 div t,j−1 mod t for

Case 2 where (c̃i,j,k)1≤j≤n+1,1≤k≤t are t bit-decomposed TLWE samples generated from
the i-th TLWE sample in private-functional key-switching [13]. This optimization halves
the number of NTT operations performed in CMux. For now, we only implemented
Case 1.

Figure 5 shows two types of radix-2 butterfly calculation elements, one for NTT and
the other for INTT. Our implementation integrates the two types of butterfly calculation
elements in a single integrated butterfly circuit, as in Figure 6. The integrated butterfly
circuit has the same construction as the NTT and INTT parts of the unified butterfly
circuit described in [36].

Figure 7 shows the pipeline and parallel processing model for computing NTT and
INTT in the module processor. The NTT/INTT circuit in the module processor has
32 integrated butterfly circuits operating in parallel at 200MHz, and is partitioned into
two sub-circuit of 16 integrated butterfly circuits, where each sub-circuit processes one
of the two polynomials in a sample (a, b) ∈ {Z[X]/(XN + 1)}2. Data processing within

12 An NVMe-based Secure Computing Platform with FPGA-based TFHE Accelerator

each integrated butterfly circuit is pipelined so that BRAM reads for the subsequent
coefficients and twiddles are done during butterfly calculation for the current coefficients
and twiddles. Each integrated butterfly circuit performs 512 butterfly calculations in the
pipeline to compute one row of NTT or INTT. Note that transferring coefficients between
the HBM and BRAM is performed by the data mover in the background of the module
processor pipeline, and it never causes a pipeline stall thanks to the high-bandwidth nature
of HBM.

Figure 8 shows accelerator’s die layout. Two design policies are applied to reduce data
transfer among SLRs. First, each sub-circuit of the module processor is laid out in a
different SLR (i.e., SLR#2 and SLR#3 in Figure 8). Second, the data movers are placed
in SLR#1, the closest SLR to HBM, as the data movers are the interface between HBM
and other FPGA logics.

row 3

row 2

row 1

f(ω0)

f0

+

+

+

f(ω4)

f1

+

+

−

ψ4

∗

f(ω2)

f2

+

−

ψ2

∗

+

f(ω6)

f3

+

−

ψ2ω2

∗

−

ψ4

∗

f(ω1)

f4

−

ψ

∗

+

+

f(ω5)

f5

−

ψω1

∗

+

−

ψ4

∗

f(ω3)

f6

−

ψω2

∗

−

ψ2

∗

+

f(ω7)

f7

−

ψω3

∗

−

ψ2ω2

∗

−

ψ4

∗

NTT (based on Gentleman-Sande)

row 1

row 2

row 3

f0

f(ω0)

+

+

+

f1

f(ω4)

−

ψ−4

∗

+

+

f2

f(ω2)

+

−

ψ−2

∗

+

f3

f(ω6)

−

ψ−4

∗

−

ψ−2
ω−2

∗

+

f4

f(ω1)

+

+

−

ψ−1

∗

f5

f(ω5)

−

ψ−4

∗

+

−

ψ−1

ω−1

∗

f6

f(ω3)

+

−

ψ−2

∗

−

ψ−1

ω−2

∗

f7

f(ω7)

−

ψ−4

∗

−

ψ−2
ω−2

∗

−

ψ−1

ω−3

∗

INTT (based on Cooley-Tukey)

Figure 4: N -point NTT and INTT constructions for N = 8 (ω and ψ are Nth and 2Nth
roots of unity, respectively. {ωi : 0 ≤ i < N} and {ψi : 0 ≤ i < N} are FFT twiddle and
NTT twiddle factors, respectively. fi is the ith input element in the time domain. f(ωi)
is the value in the frequency domain for fi. INTT’s row number is in reverse order of
NTT’s row number.)

4.6 Computing modulo prime p = 264 − 232 + 1

Although NTT for 32-bit Torus can use any prime number that is greater than 232, we
choose a Proth prime p = 264−232 +1 = 18446744069414584321 as used in existing open-
source TFHE implementations because modulo calculation for a Proth prime requires no
integer multiplication calculation. For two integers x, y ∈ [0, p), z = xy can be decomposed
into three parameters a, b ∈ [0, 232) and c ∈ [0, 264) as z = a ·296 +b ·264 +c, z mod p for z

Yoshihiro Ohba , Tomoya Sanuki, Claude Gravel and Kentaro Mihara 13

fj

fj + fj+n/2

fj+n/2

(fj − fj+n/2)ψnωn
j

+ −

ψnωn
j

∗

fj

fj + fj+n/2ψ
−1
n ωn

j

fj+n/2

fj − fj+n/2ψ
−1
n ωn

−j

ψ−1
n ωn

−j

∗

+ −

Figure 5: Two types of radix-2 butterfly circuits at row log2 n (left: NTT butterfly,
Right: INTT butterfly, n = 2, 4, . . . , 2i, . . . , N, 0 ≤ j < n/2, ωn = ωN/n, ψn = ψN/n. N is
a power of 2.)

Selector

Selector

NTT

Input
Data

A

Twiddle
Factor

W

Input
Data

B

Output
Data

A

Output
Data

B

NTT/INTT
selector

input

INTT

Selector

NTT

INTT

NTT: A+B
INTT: A+B*W

NTT NTT: (A-B)*W
INTT: A-B*W

INTT

Figure 6: Integrated Butterfly Circuit

is calculated by using addition, subtraction, shift, and comparison operations as follows.

z mod p =

m(z), if z < 2p
m

(
m(b · 232)+
m

(
m(c) + p−m(a+ b)

))
, otherwise

where

m(j) =
{
j, if j < p
j + unit32(−1), if j ∈ [p, 2p).

5 Middleware
To set/get sc_metadata and sc_data to/from the accelerator and let the accelerator
execute secure computing programs via NVMe commands, the middleware of our platform
uses the Blobstore feature of Storage Performance Development Kit (SPDK) (https:
//spdk.io/). Figure 9 shows the middleware architecture. The middleware API functions
and the internal API functions from SPDK and SPDK Blobstore (hereafter the blobstore)
are callback-based functions to achieve high-performance and nonblocking NVMe storage
access; functions directly or indirectly interact with an abstraction thread library primarily
based on the Portable Operating System Interface (POSIX).

https://spdk.io/
https://spdk.io/

14 An NVMe-based Secure Computing Platform with FPGA-based TFHE Accelerator

Data
Read for

Coeffients
Data

Read for
Twiddles

Data
Write for

Coefficients
data #1

data #2

data #3

…

data #512

…

Butterfly Calculation

Data
Read for

Coefficients
Data

Read for
Twiddles

Data
Write for

Coefficients
Butterfly Calculation

T [cycle]

Integrated
Butterfly Circuit

#1

Integrated
Butterfly Circuit

#16

…

Integrated
Butterfly Circuit

#17

Integrated
Butterfly CIrcuit

#32

…NTT/INTT for
polynomial b

NTT/INTT for
polynomial a

Pipeline
processing

in each integrated
butterfly circuit

Data
Read for

Coefficients
Data

Read for
Twiddles

Data
Write for

Coefficients
Butterfly Calculation

Data
Read for

Coefficients
Data

Read for
Twiddles

Data
Write for

Coefficients
Butterfly Calculation

Parallel Processing
among multiple integrated
butterfly circuits

Figure 7: Pipeline and Parallel Processing Model for NTT and INTT (upper: pipelining
within each integrated butterfly circuit, lower: parallel processing among multiple inte-
grated butterfly circuits)

SLR#3

SLR#1

SLR#2

HBM (8GB)HBM (8GB)

Module Processor (NTT)
Module Processor (Others)
Data Movers
Central Processor

Other functions
NVMe Bridge

C
om

pu
tin

g
En

gi
ne

Figure 8: Accelerator die layout

Yoshihiro Ohba , Tomoya Sanuki, Claude Gravel and Kentaro Mihara 15

The blobstore manages user data as blobs. A blob consists of blob data containing the
user data and blob metadata describing the attributes, such as the size of the blob data.
The blob data and metadata are stored as clusters, each consisting of one or more pages
stored in consecutive logical blocks. The first cluster stores pieces of blob metadata in
its corresponding region and the remaining clusters store pieces of blob data. The host’s
RAM keeps a copy of the blob metadata region.

Our accelerator can assemble VRs without overhead due to accessing the blob meta-
data region of the disk or maintaining a copy of the blob metadata region in its HBM or
BRAM (1) by using the extended portion of blob metadata for passing secure comput-
ing metadata between the middleware API and the Blobstore API, and (2) by mapping
between the blob metadata and sc_metadata in one of the following ways.

The mapping is straightforward for SSDs supporting NVMe Metadata; the middleware
places the sc_metadata into the NVMe Metadata part of an NVMe Read/Write Command
for reading or writing a page or pages of a cluster. For other SSDs not supporting NVMe
Metadata, the middleware partitions the entire NVMe LBA space into two equally-sized
LBA subspaces, using the first LBA subspace to store all clusters, and the second LBA
subspace to store sc_metadata. Let L = log2(Smax) where Smax is the maximum size
of the blob storage, p(i, j, k) be the kth page of the jth cluster of the ith blob, a(i, j, k)
be the LBA of p(i, j, k), respectively. Then, the LBA of the secure metadata for the jth
cluster of the ith blob is calculated as a(i, j, 0)+2L−1, as shown in Figure 10. Our current
middleware and accelerator implementation is based on the latter scheme. Note that more
space-efficient subspace management is possible for the latter scheme by packing pieces
of sc_metadata into consecutive logical blocks in the second LBA subspace to give more
room for the first LBA subspace.

The middleware API functions are written in Rust (https://www.rust-lang.org/)
and listed in Table 7. Since the blob sizes for some VRs, such as BKNTT, can be large,
two methods are defined for blob read and write commands. One method specifies a file
name as the source and destination of the blob data in write_blob1 and read_blob1,
respectively. The other method specifies a memory address as the source and destination
of the blob data in write_blob2 and write_blob2, respectively.

U
se

r S
pa

ce

Middleware API (Rust program)

Secure Computing Applications (User Space)

SPDK Blobstore API (C program)

SPDK Library (C program)

 NVMe Transport Module (PCIe, NVMe-oF, etc.)

Figure 9: Middleware architecture

6 Performance Evaluation
Along with our contribution to developing a full-fledged secure computing platform for
TFHE using an FPGA-based accelerator, we provide a system-level comparison among
FPGA-based, GPU-based and CPU-based secure computing platforms. This section

https://www.rust-lang.org/

16 An NVMe-based Secure Computing Platform with FPGA-based TFHE Accelerator

Table 7: Middleware API functions (md is sc_metadata, blobid is blob identifier,
spdk_blob_op_complete and spdk_blob_op_with_id_complete are callback functions,
and mut* c_void is mutable pointer to arguments of callback functions.)

Function Arguments

create_blob
- md: Metadata
- cb_fn: spdk_blob_op_with_id_complete
- cb_arg: *mut c_void

delete_blob
- blobid: BlobId
- cb_fn: spdk_blob_op_complete
- cb_arg: *mut c_void

write_blob1

- blobid: BlobId
- data_file: String
- cb_fn: spdk_blob_op_complete
- cb_arg: *mut c_void

write_blob2

- blobid: BlobId
- data: &mut Vec<u8>
- cb_fn: spdk_blob_op_complete
- cb_arg: *mut c_void

read_blob1

- blobid: BlobId
- data_file: String
- cb_fn: spdk_blob_op_complete
- cb_arg: *mut c_void

read_blob2

- blobid: BlobId
- data: &mut Vec<u8>
- cb_fn: spdk_blob_op_complete
- cb_arg: *mut c_void

Blob
Metadata
Region p(

0,
0,

0)
p(

0,
0,

1)

......

Blob #0

p(
0,

1,
0)

p(
0,

1,
1)

...

Cluster #(X+1)Cluster #X

p(
1,

0,
0)

p(
1,

0,
1)

...

Blob #1

p(
1,

1,
0)

p(
1,

1,
1)

...

Cluster #(Y+1)Cluster #Y

0 2L-1-1

2L-1
sc_metadata for

Blob #0

... ...

2L-1

a(0,0,0)
a(0,0,0)+2L-1

a(0,1,0)
a(0,1,0)+2L-1

a(1,0,0)
a(1,0,0)+2L-1

a(1,1,0)

a(1,1,0)+2L-1

sc_metadata for
Blob #1

Cluster #0

... ...

Figure 10: NVMe logical address space map

uses the following TFHE parameters for evaluating our secure computing platform with

Yoshihiro Ohba , Tomoya Sanuki, Claude Gravel and Kentaro Mihara 17

an FPGA-based accelerator: n = 800, α = 2−19, N = 16384, k = 1, Bg = 26,
l = 5, t = 7 where α is the standard deviation of the noise. This parameter set pro-
vides 128-bit classical security [4] using a lattice parameter estimator tool (https:
//github.com/malb/lattice-estimator). Table 8 shows the sizes of fixed-length VRs
with this parameter set.

Table 8: Evaluated virtual register sizes (BK: bootstrapping key, BKNTT: NTT-applied
bootstrapping key, KSK: key-switching key)

Type Data
Identifier VR Size in bytes

2 (KEY) 1 (BKNTT) 2.10GB
2 (KSK) 367MB

3 (TLWE-CoR) any 3.2KB
4 (TLWE-CoW) any 3.2KB

6.1 Amount of FPGA resources
Table 9 shows the amount of FPGA resources. BRAM resources are the most utilized
resource in the FPGA. Table 10 shows the amount of FPGA logic resources per function.
The computing engine uses over triple as many resources as the NVMe bridge.

Table 9: FPGA resources (LUT: Look-Up Table, FF: Flip Flop, BRAM: Block RAM,
URAM: Ultra RAM, DSP: Digital Signal Processor)

Resource Utilization Available Utilization (%)
LUTs 625520 1303680 47.98
FFs 763718 2607360 29.29

BRAM Blocks 1265.50 2016 62.72
URAM Blocks 96 960 10.00

DSP Slices 1564 9024 17.33

Table 10: Breakdown of FPGA resources (NB: NVMe Bridge, CE: Computing Engine.
Registers are constructed from FFs.)

Name LUTs Registers BRAM URAM DSP
Blocks Blocks Slices

NB 134504 115600 233 0 9
CE 461123 615303 1023.5 64 1549

Other 29893 32818 8 32 6

6.2 Secure computing instruction execution time
Table 11 shows the average, minimum, and maximum execution times of each secure
computing instruction by our accelerator. Table 12 shows the average execution times

https://github.com/malb/lattice-estimator
https://github.com/malb/lattice-estimator

18 An NVMe-based Secure Computing Platform with FPGA-based TFHE Accelerator

of GBS for comparing among a software-based platform, a GPU-based platform and our
FPGA-based platform.

Our FPGA-based platform uses AMD Ryzen 9 5950X (3.4-4.9GHz/16-core/32-thread/
64MB cache) CPU with 128GB RAM as its host-side CPU. We took 10 runs for each secure
computing instruction on our accelerator.

The software-based platform uses TFHEpp, an open-source TFHE implementation [24],
running on two CPU architectures; one is AMD Ryzen 9 5950X (the same CPU as the
host-side CPU of our FPGA-based platform), and the other is Apple M1 (an ARM-based
system-on-a-chip (SoC) processor) with 16GB RAM. As the pen-source software, we use
the gatebootstrappingntt test suite from the TFHPpp [24] with commit c6c5a38, using the
same parameter set as our accelerator. We took 10 of measurements for the gatebootstrap-
pingntt test suite on the CPU.

As for the GPU, we use Tesla T4 on AWS EC2 g4dn.2xlarge running a modified version
of cuFHE library [1] to add support for N = 16384. Note that the original cuFHE library
only supports GBS for N = 1024 and contains several flaws in their NTT implementation,
such as a lack of multiplication by a twiddle factor inside radix-2 butterfly. We also fixed
the flaws for fair comparison. We implemented two different schemes for GPU, namely
Scheme 1 and Scheme 2. In Scheme 1, each thread performs 1 butterfly calculation at
each butterfly stage of NTT/INTT by allocating 8 Streaming Multiprocessors (SMs) for
each NTT and INTT, and at most 8(k+1)(= 16) NTT or INTT operations run in parallel
on 16 SMs. In Scheme 2, each thread sequentially performs 8 butterfly calculations at
each stage of NTT/INTT by allocating 1 SM for each NTT, and at most (k + 1)ℓ(= 10)
NTT or INTT operations run in parallel on 10 SMs. Scheme 1 achieves higher parallelism
than Scheme 2, whereas Scheme 2 avoids device-level thread synchronization during GBS
processing, including NTT and INTT. In both schemes, there are 1024 threads per SM.
Both schemes are implemented to generate less than 1024 ·M instantaneous threads where
M is the maximum number of SMs and M = 40 for Tesla T4. For the GPU, we took 100
measurements for GBS.

We note that device-level thread synchronization is required among threads across
multiple SMs. We also note that the entire NTT or INTT input or output data for
N = 16384 coefficients of a polynomial fits into the L2 cache of the GPU device while the
data does not fit into the L1 cache of a single SM. In terms of GBS processing time for
N = 16384, our accelerator outperforms CPU-based platforms and GPU-based platforms
by 15 to 120 times and by 2.5 to 3 times, respectively.

Figure 11 shows the GPU and FPGA processing breakdowns of GBS. The GPU is
3 to 4 times slower than the FPGA for processing NTT and INTT, while there is no
significant difference for non-NTT/INTT operations. Figure 12 shows the GPU processing
breakdown of NTT and INTT. Comparing Scheme 1 and 2 in Figure 12 shows a tradeoff
between parallelism and synchronization in GPU. Figure 12 also reveals that NTT and
INTT are memory-bandwidth-bound workloads for GPU.

Our FPGA outperforms the GPU in terms of GBS processing time for large degree
(such as N = 16384) polynomials because (i) our FPGA allows multiple integrated butter-
fly circuits to access different BRAM blocks in parallel, (ii) our FPGA pipelines butterfly
calculation and memory access, and (iii) our FPGA does not require device-level thread
synchronization.

6.3 Secure computing program execution time
Table 13 shows the execution time of a secure computation program on our platform.
We use the secure computing program listed in Table 5. According to Table 13, since the
program contains two Bootstrap instructions, each taking 249.96ms, Bootstrap dominates
the overall performance of the execution time of a secure computing program compared

Yoshihiro Ohba , Tomoya Sanuki, Claude Gravel and Kentaro Mihara 19

Table 11: Secure computation instruction execution time on our accelerator. The mini-
mum and maximum values for Bootstrap execution time are within ±10us of the average
value.

Instruction Average Minimum Maximum
Bootstrap 249.96ms 249.96ms 249.97ms
HomAdd 124us 124us 125us
HomSub 124us 124us 125us

HomIntMult 90us 90us 90us

Table 12: GBS execution time comparison

Software-based GPU-based Our FPGA-based PlatformPlatform Platform
Ryzen 9 Apple M1 Scheme 1 Scheme 2

3.97s 30.8s 617ms 754ms 250ms

GPU Scheme 1 GPU Scheme 2 FPGA

200

400

600

79 71 71

538

683

179Pr
oc

es
sin

g
tim

e
(m

s)

Non-NTT/INTT operations
NTT/INTT operations

Figure 11: GPU and FPGA Processing Breakdown for GBS

to the execution time of other instructions and the processing time of the NVMe Write
Command for invoking the program and writing the program’s output to the SSD.

6.4 Power and energy consumption
Tables 14 and 15 show the electric power and energy consumption of the software-based,
GPS-based, and FPGA-based platforms, respectively.

The power consumption of the Ryzen 9 CPU is measured using the AMD µProf tool
(https://www.amd.com/en/developer/uprof.html). The power consumption of the
Apple M1 CPU is measured using the Mx Power Gadget tool (https://www.seense.com/
menubarstats/mxpg/). The power consumption of the GPU is measured using nvidia-smi

https://www.amd.com/en/developer/uprof.html
https://www.seense.com/menubarstats/mxpg/
https://www.seense.com/menubarstats/mxpg/

20 An NVMe-based Secure Computing Platform with FPGA-based TFHE Accelerator

Scheme 1

10%
40%

50%

Butterfly calculation
Device synchronization
Memory access

Scheme 2

46%
4%

50%

Butterfly calculation
Device synchronization
Memory access

Figure 12: GPU Processing Breakdown for NTT and INTT

Table 13: Secure computation execution time on our platform for a program homomor-
phically computing xy. The total includes the computing time and the processing time
of the NVMe Write Command for invoking the program and writing the TLWE sample
carrying the return value to the SSD.

Computing time Total
500.39ms 502.28ms

command. Since the virtual Performance Monitoring Unit (vPMU) feature is disabled in
the AWS hypervisor, the CPU’s power data hosting the GPU is unavailable. The power
consumption of our FPGA accelerator board is measured using a Tektronics A622 current
probe and a PicoScope 3206A oscilloscope. The energy consumption is calculated using
the power consumption and the GBS execution time shown in Section 6.2.

Table 16 shows the breakdown of the power consumption on the FPGA chip (XCVU47P)
of our accelerator estimated using the Xilinx Vivado tool (https://www.xilinx.com/
products/design-tools/vivado.html), with a default toggle rate of 12.5%, where a
toggle rate reflects how often outputs of gates change per clock cycle on average. The
estimated total on-chip power in Table 16(a) is less than the measured power of the FPGA
board during GBS in Table 14 because Table 16(a) is calculated based on the reference
clock frequency of 150MHz, whereas we use the feature of dynamic clock reconfiguration
of Phase-Locked Loop (PLL) to increase the operating frequency to 200MHz.

Our FPGA-based platform may consume more power when idle or processing GBS
than software-based and GPU-based platforms. However, during GBS execution, our
platform consumes less energy than the other platforms. Our platform uses 12 times
less energy than Ryzen 9 and 7 times less energy than Apple M1. It also uses 1.15 to
1.2 times less energy than GPU. Our platform offers higher GBS throughput per watt
than any other platform. As illustrated in Table 16, HBM consumes over 50% of the
dynamic power of the FPGA chip. Since NTT and INTT are memory-bandwidth-bound
workloads, our accelerator is optimally designed to utilize power where it’s most needed.

https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

Yoshihiro Ohba , Tomoya Sanuki, Claude Gravel and Kentaro Mihara 21

In future work, we plan to explore implementing a power-saving scheme to reduce energy
consumption during idle states.

Table 14: Comparison of power consumption

State
Software-based GPU Our FPGA-based PlatformPlatform

Ryzen 9 Apple M1 Scheme 1 Scheme 2 CPU+Acclerator (Accelerator)
Idle 18.61W 0.082W 14.36W 14.36W 60.84W (42.23W)
GBS 63.08W 4.64W 43.56W 41.7W 77.79W (59.18W)

Table 15: Comparison on energy consumption per GBS

Software-based GPU Our FPGA-based PlatformPlatform
Ryzen 9 Apple M1 Scheme 1 Scheme 2 CPU+Acclerator (Accelerator)
250.42J 143J 23.44J 22.46J 19.44J (14.80J)

Table 16: Breakdown of the power consumption on FPGA chip

(a) On-Chip Power
Element Power %
Hard IP 0.59W 1%
Dynamic 45.63W 88%

Static 5.89W 11%
Total 52.11W 100%

(b) Dynamic Power
Element Power %
Clocks 3.71W 8%
Signals 5.75W 13%
Logic 4.47W 10%

BRAM 2.07W 5%
URAM 0.24W 1%

DSP 0.73W 2%
I/O 0.03W < 1%

HBM 25.27W 52%
Other 3.36W 9%
Total 45.63W 100%

7 Summary and Future Work
We have successfully developed and implemented an exceptionally secure computing plat-
form that utilizes NVMe technology, an FPGA-based TFHE accelerator, SSD, and a
middleware on the host side. Our platform stands out from the crowd as it supports a set
of secure computing instructions that enable the evaluation of any 14-bit to 14-bit func-
tion using TFHE and virtual registers. Our performance evaluations have demonstrated
that our platform outperforms CPU and GPU-based platforms by 15 to 120 times and
by 2.5 to 3 times, respectively, in gate bootstrapping execution time. Furthermore, our
platform has lower electric energy consumption during the gate bootstrapping execution
time, outperforming CPU and GPU-based platforms by 7 to 12 times and by 1.15 to 1.2
times, respectively.

22 An NVMe-based Secure Computing Platform with FPGA-based TFHE Accelerator

Moving forward, we are confident in our ability to develop a compiler and assembler
that will convert applications into instructions that can be executed on our secure com-
puting platform via our middleware API. We are also planning to enhance the platform’s
architecture to include clusters of FPGA-based accelerators and SSDs interconnected by
a high-speed network. By using NVMe-oF, we aim to increase our platform’s scalability,
while Kubernetes will support partial or complete reconfiguration of FPGA and dynamic
scheduling of secure computing tasks. Finally, we are confident in our capacity to extend
the platform’s capabilities to support secure computing for 16-bit to 16-bit functions.

References
[1] V. Group, Cuda-accelerated fully homomorphic encryption library, 2019.
[2] Agrawal, R., de Castro, L., Yang, G., Juvekar, C., Yazicigil, R., Chandrakasan, A., Vaikun-

tanathan, V., and Joshi, A., FAB: An FPGA-based accelerator for bootstrappable fully homomor-
phic encryption, 2023 IEEE international symposium on high-performance computer architecture
(HPCA), 2023, pp. 882–895.

[3] Aikata, A., Mert, C. A., Kwon, S., Deryabin, M., and Roy, S. S., Reed: Chiplet-based scalable hardware
accelerator for fully homomorphic encryption, 2023.

[4] Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi, S., Hoffstein, J.,
Laine, K., Lauter, K., Lokam, S., Micciancio, D., Moody. D, Morrison, T, Sahai, A, and Vaikun-
tanathan, V., Homomorphic encryption security standard, HomomorphicEncryption.org, 2018.

[5] Al Badawi, A., Veeravalli, B., Lin, J., Xiao, N., Kazuaki, M., and Mi, A. K. M., Multi-GPU design
and performance evaluation of homomorphic encryption on GPU clusters, IEEE Transactions on
Parallel and Distributed Systems 32 (2020), no. 2, 379–391.

[6] Al Badawi, A., Veeravalli, B., Mun, C. F., and Aung, K. M. M., High-performance FV somewhat
homomorphic encryption on GPUs: An implementation using CUDA, IACR Transactions on Cryp-
tographic Hardware and Embedded Systems (2018), 70–95.

[7] Beirendonck M. V., D’Anvers, J., and Verbauwhede, I., FPT: a fixed-point accelerator for torus fully
homomorphic encryption, Cryptology ePrint Archive 2022 (2022), 1635.

[8] Bossuat,J.-P., Mouchet, C., Troncoso-Pastoriza, J., and Hubaux, J.-P., Efficient bootstrapping for
approximate homomorphic encryption with non-sparse keys, Cryptology ePrint Archive 2020 (2020),
1203.

[9] Brakerski, Z., Fully homomorphic encryption without modulus switching from classical gapsvp, Ad-
vances in cryptology-crypto 2012, 2012, pp. 868–886.

[10] Brakerski, Z., Gentry, C., and Vaikuntanathan, V., (leveled) fully homomorphic encryption without
bootstrapping, ACM Transactions on Computation Theory (TOCT) 6 (2014), no. 3, 1–36.

[11] de Castro, L., Agrawal, R., Yazicigil, R., Chandrakasan, A., Vaikuntanathan, V., Juvekar, C.,
and Joshi, A., Does fully homomorphic encryption need compute acceleration?, arXiv preprint
arXiv:2112.06396 (2021).

[12] Cheon, J. H., Kim, A., Kim, M., and Song, Y., Homomorphic encryption for arithmetic of approxi-
mate numbers, Advances in cryptology – asiacrypt 2017, 2017, pp. 409–437.

[13] Chillotti, I, Gama N., Georgieva M., and Izabachène, M., TFHE: Fast fully homomorphic encryption
over the torus, Journal of cryptology, 2020, pp. 34–91.

[14] Chillotti, I., Ligier, D., Orfila, J.-B., and Tap, S., Improved programmable bootstrapping with larger
precision and efficient arithmetic circuits for tfhe, IACR Cryptology ePrint Archive 2021 (2021),
315.

[15] Cousins, D. B., Rohloff, K., and Sumorok, D., Designing an FPGA-accelerated homomorphic en-
cryption co-processor, IEEE Transactions on Emerging Topics in Computing 5 (2017), no. 2, 193–
206.

[16] Fan, J. and Vercauteren, F., Somewhat practical fully homomorphic encryption, IACR Cryptol.
ePrint Arch. 2022 (2012), 144.

[17] Gener, S., Newton, P., Tan, D., Richelson, S., Lemieux, G., and Brisk, P., An FPGA-based pro-
grammable vector engine for fast fully homomorphic encryption over the torus, SPSL: Secure and
private systems for machine learning (ISCA workshop), 2021.

[18] Gentry, C., Fully homomorphic encryption using ideal lattices, Proceedings of the forty-first annual
acm symposium on theory of computing, 2009, pp. 169–178.

Yoshihiro Ohba , Tomoya Sanuki, Claude Gravel and Kentaro Mihara 23

[19] Jiang, L., Lou, Q., and Joshi, N., MATCHA: A fast and energy-efficient accelerator for fully homo-
morphic encryption over the Torus, Proceedings of the 59th ACM/IEEE design automation confer-
ence, 2022, pp. 235–240.

[20] Latibari, B. S., Gubbi, K. I., Homayoun, H., and Sasan, A., A survey on FHE acceleration, 2023
IEEE 16th Dallas circuits and systems conference (DCAS), 2023, pp. 1–6.

[21] Lee, J. H., Zhang, H., Lagrange, V., Krishnamoorthy, P., Zhao, X., and Ki, Y. S., SmartSSD: FPGA
Accelerated Near-Storage Data Analytics on SSD, IEEE Computer Architecture Letters 19 (2020),
no. 2, 110–113.

[22] Lee, Y., Chung, J., and Rhu, M., SmartSAGE: Training large-scale graph neural networks using
in-storage processing architectures, arXiv preprint arXiv:2205.04711 (2022).

[23] Marcolla, C., Sucasas, V., Manzano, M., Bassoli, R., Fitzek, F. H. P, and Aaraj, N., Survey on fully
homomorphic encryption, theory, and applications, Cryptology ePrint Archive 2022 (2022), 1602.

[24] Matsuoka, K., TFHEpp: pure C++ implementation of TFHE cryptosystem, 2020.

[25] Matsuoka, K., Banno, R., Matsumoto, N., Sato, T., and Bian, S., Virtual secure platform: A Five-
Stage pipeline processor over TFHE, 30th USENIX security symposium (USENIX Security 21), 2021,
pp. 4007–4024.

[26] Nam, K., Oh, H., Moon, H., and Paek, Y., Accelerating N-bit Operations over TFHE on Commodity
CPU-FPGA, 2022 IEEE/ACM international conference on computer aided design (ICCAD), 2022,
pp. 1–9.

[27] Özerk, Ö., Elgezen, C., Mert, A. C., Öztürk, E., and Savaş, E., Efficient number theoretic transform
implementation on GPU for homomorphic encryption, The Journal of Supercomputing 78 (2022),
no. 2, 2840–2872.

[28] Pöppelmann, T., Oder, T., and Güneysu, T., High-performance ideal lattice-based cryptography on
8-bit atxmega microcontrollers, Progress in cryptology – latincrypt 2015, 2015, pp. 346–365.

[29] Riazi, M. S., Laine, K., Pelton, B., and Dai, W., HEAX: An architecture for computing on en-
crypted data, Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020, pp. 1295–1309.

[30] Rohloff, K., The HomomorphicEncryption.org Community and the Applied Fully Homomorphic En-
cryption Standardization Efforts, 2023.

[31] Roy, S. S., Turan, F., Jarvinen, K., Vercauteren, F., and Verbauwhede, I., FPGA-based high-
performance parallel architecture for homomorphic computing on encrypted data, 2019 IEEE In-
ternational symposium on high performance computer architecture (HPCA), 2019, pp. 387–398.

[32] Samardzic, N., Feldmann, A., Krastev, A., Devadas, S., Dreslinski, R., Peikert, C., and Sanchez, D.,
F1: A fast and programmable accelerator for fully homomorphic encryption, Micro-54: 54th annual
ieee/acm international symposium on microarchitecture, 2021, pp. 238–252.

[33] Turan, F., Roy, S. S., and Verbauwhede, I., HEAWS: An Accelerator for Homomorphic Encryption
on the Amazon AWS FPGA, IEEE Transactions on Computers 69 (2020), no. 8, 1185–1196.

[34] Yang, Y., Lu, H., and Li, X., Poseidon-NDP: Practical Fully Homomorphic Encryption Accelerator
Based on Near Data Processing Architecture, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (2023), 1–1.

[35] Zhai, Y., Ibrahim, M., Qiu, Y., Boemer, F., Chen, Z., Titov, A., and Lyashevsky, A., Accelerating
encrypted computing on Intel GPUs, 2022 IEEE international parallel and distributed processing
symposium (IPDPS), 2022, pp. 705–716.

[36] Yufei Xing and Shuguo Li, A compact hardware implementation of cca-secure key exchange mecha-
nism crystals-kyber on fpga, IACR Transactions on Cryptographic Hardware and Embedded Systems
2021 (2021Feb.), no. 2, 328–356.

[37] Tian Ye, Rajgopal Kannan, and Viktor K. Prasanna, FPGA acceleration of fully homomorphic
encryption over the Torus, 2022 IEEE high performance extreme computing conference (HPEC),
2022, pp. 1–7.

A Number Theoretic Transform
This section provides equations and algorithms that lead to the NTT and INTT construc-
tions described in 4.5.

24 An NVMe-based Secure Computing Platform with FPGA-based TFHE Accelerator

A.1 Equations

We derive equations used as the basis for NTT and INTT butterflies shown in Figures 4,
5, and 6. Let ωN = ω and ψN = ψ. We use the following equations in this section:
ω2

N = ωN/2, ψ2
N = ψN/2, ωN

N = 1, and ω
N/2
N = −1.

A.1.1 Equations for NTT butterfly

We denote NTT(N)
i (f) and DFT(N)

i (f) the ith output of N -point NTT and Discrete
Fourier Transform (DFT) for time-domain input vector f = (fi)0≤i<N , respectively.

An NTT butterfly is composed using Gentleman-Sande (GS) butterfly by partition-
ing the output vector into two subvectors, one containing even elements and the other
containing odd elements. Equations used for NTT butterfly are derived as follows.

NTT(N)
i (f) = ψi

N DFT(N)
i (f) = ψi

N

N−1∑
j=0

fjω
ij
N

To compose an NTT butterfly, we partition the output vector NTT(N)(f) into two subvec-
tors, one containing even elements of NTT(N)(f) and the other containing odd elements
of NTT(N)(f). Let g = (gj)0≤j<N/2 = (fj + fj+N/2)0≤j<N/2 and h = (hj)0≤j<N/2 =
((fj − fj+N/2)ψNω

j
N)0≤j<N/2.

(i) For i = 2r such that 0 ≤ r < N/2,

NTT(N)
2r (f) = ψ2r

N

N/2−1∑
j=0

fjω
2rj
N

+
N/2−1∑

j=0
fj+N/2ω

2r(j+N/2)
N

= ψr

N/2

N/2−1∑
j=0

fjω
rj
N/2

+
N/2−1∑

j=0
fj+N/2ω

rj
N/2

= ψr

N/2

N/2−1∑
j=0

(
fj + fj+N/2

)
ωrj

N/2

= NTT(N/2)
r (g)

Yoshihiro Ohba , Tomoya Sanuki, Claude Gravel and Kentaro Mihara 25

(ii) For i = 2r + 1 such that 0 ≤ r < N/2,

NTT(N)
2r+1(f) = ψ2r+1

N

N/2−1∑
j=0

fjω
(2r+1)j
N

+
N/2−1∑

j=0
fj+N/2ω

(2r+1)(j+N/2)
N

= ψr

N/2ψN

N/2−1∑
j=0

fjω
j
Nω

rj
N/2

−
N/2−1∑

j=0
fj+N/2ω

j
Nω

rj
N/2

= ψr

N/2

N/2−1∑
j=0

(
(fj − fj+N/2)ψNω

j
N

)
ωrj

N/2

= NTT(N/2)
r (h)

Each pair of fj and fj+N/2 (0 ≤ j < N/2) are the inputs of an NTT butterfly with a
pair of (fj + fj+N/2) and (fj − fj+N/2)ψNω

j
N as its outputs.

A.1.2 Equations for INTT butterfly

We denote INTT(N)
i (F) and uIDFT(N)

i (F) the ith output of N -point, unnormalized
Inverse NTT and unnormalized Inverse DFT for frequency-domain input vector F =
(Fi)0≤i<N , respectively.

Equations used for INTT butterfly are derived as follows.

INTT(N)
i (F) = IDFT(N)

i (F ⊙Ψ−1) =
N−1∑
j=0

(Fjψ
−j
N)ω−ij

N

An INTT butterfly is composed using Cooley-Tukey (CT) butterfly by partitioning the in-
put vector F into two subvectors Fev and Fod where Fev contains even elements of F and
Fod contains odd elements of F . Let Ai = INTT(N/2)

i (Fev) and Bi = INTT(N/2)
i (Fod)

(0 ≤ i < N/2). The INTT butterfly is composed as follows.

26 An NVMe-based Secure Computing Platform with FPGA-based TFHE Accelerator

(i) For 0 ≤ i < N/2,

INTT(N)
i (F) =

N/2−1∑
j=0

(F2jψ
−2j
N)ωi(−2j)

N

+
N/2−1∑

j=0
F2j+1ψ

−(2j+1)
N ω

−i(2j+1)
N

=
N/2−1∑

j=0
F2jψ

−j
N/2ω

−ij
N/2

+ ψ−1
N ωi

N

N/2−1∑
j=0

F2j+1ψ
−j
N/2ω

−ij
N/2

= INTT(N/2)
i (Fev) + ψ−1

N ωi
N INTT(N/2)

i (Fod)
= Ai + ψ−1

N ωi
NBi

(ii) For N/2 ≤ i < N ,

INTT(N)
i (F) =

N/2−1∑
j=0

(f2jψ
−2j
N)ωi(−2j)

N

+
N/2−1∑

j=0
F2j+1ψ

−(2j+1)
N ω

−(N/2+i)(2j+1)
N

=
N/2−1∑

j=0
F2jψ

−j
N/2ω

−ij
N/2

− ψ−1
N ω−i

N

N/2−1∑
j=0

F2j+1ψ
−j
N/2ω

−ij
N/2

= INTT(N/2)
i (Fev)− ψ−1

N ω−i
N INTT(N/2)

i (Fod)
= Ai − ψ−1

N ω−i
N Bi

Each pair ofAi andBi are the inputs of an INTT butterfly having a pair of
(
Ai + ψ−1

N ω−i
N Bi

)
and

(
Ai − ψ−1

N ω−i
N Bi

)
as its outputs for 0 ≤ i < N/2 and N/2 ≤ i < N , respectively.

A.2 Algorithms
Algorithm 1 below computes the NTT of a vector of length N . Algorithm 1 computes in
place. Outputs from Algorithm 1 remain in bit-reversed order; we remind the reader that
our goal is to compute the convolution of polynomials represented as vectors. Readers
can refer to Equation (1) from Section 4.5 for the definition of convolution. If the bits
of an output from Algorithm 1 are in canonical order, it would incur an additional cost
when computing convolutions. Algorithms 1 and 2 do not output normalized transforms
to save time when calculating convolutions.

Algorithm 1 Number Theoretic Transform
Input: N , length of transform (N is a power of 2.)
Input: Φ = (ψN/2r+1

ωjN/2r+1)0≤r<log2 N,0≤j≤r, two-dimensional list of pre-computed
twiddles with the second dimension listed in bit-canonical order.

Yoshihiro Ohba , Tomoya Sanuki, Claude Gravel and Kentaro Mihara 27

Input: a, data vector of length N in bit-canonical order
Output: NTT(a) in bit-reversed order

1: m← N/2
2: r ← log2 N − 1 // NTT Row number minus 1
3: k ← 1
4: while m ≥ 1 do
5: for 0 ≤ i < m do
6: j1 ← 2ik
7: j2 ← j1 + k − 1 // Interval length is k − 1
8: for j1 ≤ j ≤ j2 do // Butterfly operations here
9: t← aj

10: u← aj+k

11: aj ← (t+ u) mod p
12: aj+k ← (t− u)Φr,j mod p
13: end for
14: end for
15: m← m/2
16: r ← r − 1
17: k ← 2k
18: end while

Algorithm 2 Inverse Number Theoretic Transform
Input: N , length of transform (N is a power of 2.)
Input: Φ∗ = (ψ−N/2r+1

ω−jN/2r+1)0≤r<log2 N,0≤j≤r, two-dimensional list of
pre-computed twiddles with the second dimension listed in bit-canonical order.

Input: a, data vector of length N in bit-reversed order
Output: INTT(a) in bit-canonical order

1: m← 1
2: r ← 0 // INTT Row number minus 1
3: k ← N/2
4: while m < N do
5: for 0 ≤ i < m do
6: j1 ← 2ik
7: j2 ← j1 + k − 1 // Interval length is k − 1
8: for j1 ≤ j ≤ j2 do // Butterfly operations here
9: t← aj

10: u← aj+kΦ∗
r,j

11: aj ← t+ u mod p
12: aj+k ← t− u mod p
13: end for
14: end for
15: m← 2m
16: r ← r + 1
17: k ← k/2
18: end while

Algorithms 1 and 2 are similar to Algorithms 8 and 7, respectively, from [28]. However,
we point out that Algorithms 7 and 8 from [28] contain errors corrected here.

	Introduction
	Related Work
	Basic Architecture
	Accelerator
	Secure computing metadata
	Virtual registers and virtual addressing
	Paging
	Secure computing instruction set
	NTT implementation and optimized CMux
	Computing modulo prime p=264-232+1

	Middleware
	Performance Evaluation
	Amount of FPGA resources
	Secure computing instruction execution time
	Secure computing program execution time
	Power and energy consumption

	Summary and Future Work
	Number Theoretic Transform
	Equations
	Algorithms

