
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 0, No. 0, pp. 0–0. DOI:10.46586/tosc.v0.i0.0-0

Improved Conditional Cube Attacks on Ascon
AEADs in Nonce-Respecting Settings

with a Break-Fix Strategy

Kai Hu
1 School of Cyber Science and Technology, Shandong University, Qingdao, Shandong, China

kai.hu@sdu.edu.cn
2 School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore,

Singapore
3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,

Shandong University, Jinan, China

Abstract. The best-known distinguisher on 7-round Ascon-128 and Ascon-128a
AEAD uses a 60-dimensional cube where the nonce bits are set to be equal in the third
and fourth rows of the Ascon state during initialization (Rohit et al. ToSC 2021/1).
It was not known how to use this distinguisher to mount key-recovery attacks. In
this paper, we investigate this problem using a new strategy called break-fix for
the conditional cube attack. The idea is to introduce slightly-modified cubes which
increase the degrees of 7-round output bits to be more than 59 (break phase) and
then find key conditions which can bring the degree back to 59 (fix phase). Using
this idea, key-recovery attacks on 7-round Ascon-128, Ascon-128a and Ascon-80pq
are proposed. The attacks have better time/memory complexities than the existing
attacks, and in some cases improve the weak-key attacks as well.
Keywords: Ascon · AEAD · Conditional Cube Attack

1 Introduction
Ascon [DEMS21], designed by Dobraunig, Eichlseder, Mendel, and Schläffer, is a family
of lightweight Authenticated Encryptions with Associated Data (AEAD) and hash func-
tions. Ascon has been selected as the NIST lightweight cryptography (LWC) standard
recently [Ann], so it is crucial to understand its security in more depth.

This paper studies the security of the Ascon-AEADs against conditional cube attacks.
The cube attack was originally proposed by Dinur and Shamir on stream ciphers [DS09].
Huang et al. adapted it to analyze the security of the permutation-based ciphers such as
the Keccak keyed mode [HWX+17]. The technique chooses a set of input variables called
the cube variables and observes the value of the coefficient of the maximal-degree term of
these cube variables, a.k.a. superpoly. By carefully selecting cube variables, the value of
a superpoly can be controlled by some specific key equations, so it can reveal some key
information. This technique has been widely used in analyzing the sponge-based AEADs
such as [LBDW17, DLWQ17, SGSL18, SG18].

The original version of Ascon has two AEADs: the Ascon-128 (the primary recom-
mendation) and Ascon-128a. In its version 1.2, a new variant Ascon-80pq was added to
increase the resistance against the quantum key-search. Most attacks were developed for
Ascon-128 but are also applicable to the other members. Analyses of Ascon-AEADs can
be divided into several categories according to which part is attacked. For the initialization
phase composed of 12 rounds, the most effective attack is the cube-like attack. In [DEMS15],

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/10.46586/tosc.v0.i0.0-0
mailto:kai.hu@sdu.edu.cn
http://creativecommons.org/licenses/by/4.0/

the designers proposed a cube key-recovery attack on up to 6 rounds with the borderline
cube technique where the superpoly of a specific cube involves only a corresponding subpart
of the key bits. In [LDW17], Li et al. improved the attacking record to 7 rounds using
the conditional cube attack. This attack is based on a 65-dimensional cube, which means
its data complexity cannot be smaller than 264, which is the security claim set by the
designers [DEMS21, Chapter 2, Page 9]. The first attack with 264 data complexity was
proposed by Rohit et al. [RHSS21] which was also a cube attack where a partial polynomial
multiplication and the borderline cube technique were leveraged to efficiently compute the
superpoly. In the same paper, the authors also gave a cube distinguisher whose dimension
is only 60. In [RS21], Rohit and Sarkar further studied the weak-key properties of the
Ascon initialization. More efficient distinguishing and key-recovery attacks were found up
to 7 rounds (when the weak-key conditions are satisfied). Besides the cube-like attacks,
there are also (higher-order) differential-linear attacks on the Ascon-AEAD initialization
up to 5 rounds with better complexities [Tez20, DEMS15, LLL21, HPTY22]. All these
attacks on the initialization phase are nonce-respecting.

When it comes to the encryption phase, most attacks are nonce-misuse, i.e., they
assume that a single nonce will be used for several initializations with the same key (which
is forbidden by the designers’ security claims). The state recovery is usually the first target
of attacks on the encryption phase such as in [LZWW17, BCP22, CHKT23]. There are also
some attacks on the finalization phase, such as the forgery attack in [GPT21]. A complete
enumeration of attacks on Ascon can be found in the latest NIST report [TMC+23].

Of these attacks, the most relevant to this paper is the cube distinguisher for the
7-round Ascon initialization in [RHSS21]. This distinguisher uses a special construction
that requires the first 64 bits and the last 64 bits of the nonce to be equal. Then, a division
property model [HLM+20, Tod15] finds that the algebraic degrees of the 7-round output
bits are at most 59. Unfortunately, it was not known how to utilize this distinguisher
to mount a key-recovery attack. On the one hand, its specific structure does not satisfy
the borderline cube property [DEMS15], thus the superpoly (according to the current
theory) involves all key variables, which makes a cube attack based on it impossible. On
the other hand, the cube variables in this structure spread fast, such that it is difficult
to detect a set of key conditions that can separate one variable from the others to stop
the maximal-degree (59-degree) cube term from appearing, as in other conditional cube
attacks.

Our contributions. The previous conditional cube attacks [LBDW17, DLWQ17, SGSL18,
SG18, LDW17] tend to use an elimination strategy: there should be a d-degree term in
the superpoly, then by carefully selecting a set of cube variables, the d-degree term can be
eliminated when some (simple) key conditions are satisfied. This strategy does not work
for the 60-dimensional cube distinguisher given in [RHSS21]. To address this problem,
we introduce a new strategy called break-fix. In the break phase, we break the special
structure of the 60-dimensional cube (by introducing a slightly modified cube structure),
to make the algebraic degrees of the output bits to be greater than 59. Then, in the fix
phase, we identify a set of key conditions that fixes the changes caused by the “broken”
cube structure and the algebraic degrees can return to 59 again. During the break-fix
process, by observing if the algebraic degrees go back to 59, corresponding key information
can be recovered.

Our first new conditional cube attack focuses on Ascon-128, but it also applies to
Ascon-128a. We introduce 64 proper structures each of which breaks the original 60-
dimensional cube structure. By identifying the key conditions that can fix the changes,
we manage to perform the key-recovery attacks. For about 2127.97 (out of 2128) keys,
our attack can recover the 128-bit key with 270 data and 272.4 time complexities. For
the remaining keys, our attack works with 270 data complexity and at worst 2104.7 time

1

complexity.
Considering the data limit set by the designers that one key can at most protect 264

blocks of data, we also adapt our attack to a weak-key version to meet the requirement.
The first attack works for a 2127.3-size weak-key space and can recover all key bits with a
264 data complexity and 2120 time complexity. The second attack works for a 2125-size
weak-key space and can recover all key bits with a 263.32 data complexity and 2115 time
complexity. The memory cost of our attacks is negligible.

Our second conditional cube attack targets the Ascon-80pq version only. By intro-
ducing another set of 32 cube structures that break the 60-dimensional cube structure,
we can recover the 32-bit key in the first word of the Ascon-80pq initialization with 265

data and time complexity. This process is conducted independently of the above attack on
Ascon-128 and Ascon-128a. In other words, after recovering the 32-bit key in the first
word, we continue to recover the remaining 128-bit key in the same way as the previous
attack on Ascon-128 and Ascon-128a. Consequently, for about 2127.97+32 = 2159.97 (out
of 2160) keys, our attack can recover the 160-bit key with 270 data complexity and 272.4

time complexity. For remaining keys, our attack can work with 270 data complexity and
at worst 2104.7 time complexity to recover all the 160 bits of the key. Again, our attacks
require negligible memory cost.

Complexity comparison with previous attacks. Table 1 gives a comprehensive compar-
ison between our attacks and previous ones on Ascon-AEADs. As we mentioned, the
key-recovery attack on Ascon-80pq is the first in the nonce-respecting setting, so the
following comparison focuses on the case of Ascon-128/Ascon-128a. Compared to Li et
al.’s conditional cube attacks [LDW17], our techniques require a lower data complexity (270

versus 277.2). The time complexity is 272.4 for 2127.97 keys while theirs is 277 for 2117 keys.
While in the worst case the time complexity of our attacks (2104.7) is slightly larger than
theirs (2103.9), this occurs only with a small probability of about (2128−2127.97)/2128 ≈ 2−6.
Hence, we believe our attacks represent an important improvement of [LDW17].

Compared to Rohit et al.’s cube attacks [RHSS21], our techniques require a larger
data complexity (270 versus 264), but with a significantly lower time complexity (272.4

versus 2123 for almost all keys). Compared to Rohit and Sarkar’s weak-key recovery
attacks [RS21], our techniques under the weak-key setting can work for a larger fraction
of weak keys and require negligible memory cost, with comparable data/time complexity
(considering attacks with a data complexity lower than 264).

Outline of the paper. In Section 2, we introduce the notations and some necessary
background knowledge. Section 3 gives a brief specification of the Ascon-AEADs and
discusses some of their useful properties. We describe our new conditional cube attacks on
Ascon-128/Ascon-128a in Section 4 and on Ascon-80pq in Section 5. In Section 6, we
discuss the assumption that our attacks rely on. Section 7 concludes this paper.

2 Preliminaries
Notations. Let I be a set, we use |I| to represent the size of I. Let F2 = {0, 1} be the
finite field with two elements and f : Fn2 → F2 be a Boolean function whose algebraic
normal form (ANF) is f(x) =

∑
u∈Fn

2
aux

u, where x = (x0, . . . , xn−1), au ∈ F2, and
xu =

∏n−1
i=0 xi

ui . Given a set I ⊆ {0, . . . , n−1} of indexes, x[I] denotes the set of variables
{xi : i ∈ I} and xI denotes the monomial

∏
i∈I xi. wt(x) is the Hamming weight of x,

which is the number of 1 in all bits of x. We use “+” to denote all kinds of additions
(of integers, field elements, Boolean functions, etc.), the actual meaning of a specific use
instance should be clear from the context.

2

Table 1: Summary of attacks on Ascon-AEAD. The column Var. represents the Ascon
variant, including Ascon-128, Ascon-128a and Ascon-80pq. The column Valid N and
Valid D describe if the attack violates the nonce-respecting and data limitation (≤ 264)
requirements, respectively. The memory complexity is measured with a unit of 128-bit
blocks and “0” means the memory cost is negligible. In the Method column, “(H)DL”
means (higher-order) differential-linear, “Con.” is short for conditional.

Phase Var. Type #R Complexity
D/T/M #Key Method Valid

N D Source

Init.

all key-rec. 4 218/218/0 2128 DL 3 3 [DEMS15]

all key-rec. 5 236/236/0 2128 DL 3 3 [DEMS15]
all key-rec. 5 235/235/217 2128 Cube 3 3 [DEMS15]
all key-rec. 5 226/226/0 2128 Con.DL 3 3 [LLL21]
all key-rec. 5 224/236/0 2128 Con.cube 3 3 [LDW17]
all key-rec. 5 222/222/0 2128 Con.HDL 3 3 [HPTY22]

all key-rec. 6 266/266/233 2128 Cube 3 3 [DEMS15]
all key-rec. 6 240/240/0 2128 Con.cube 3 3 [LDW17]

128(a) key-rec. 7 277.2/2103.9/0 2128 Con.cube 3 7 [LDW17]
128(a) key-rec. 7 277.2/277/0 2117 Con.cube 3 7 [LDW17]
all key-rec. 7 264/2123/294 2128 Cube 3 3 [RHSS21]
all key-rec. 7 264/297/263 2116.34 Cube 3 3 [RS21]
all key-rec. 7 263/2115.2/262 2116.34 Cube 3 3 [RS21]

128(a) key-rec. 7 270/272.4/0 2127.97 Con.cube 3 7 Sect. 4
128(a) key-rec. 7 270/2104.7/0 2128 Con.cube 3 7 Sect. 4
128(a) key-rec. 7 264/2120/0 2127.3 Con.cube 3 3 Sect. 4
128(a) key-rec. 7 263.32/2115/0 2125 Con.cube 3 3 Sect. 4
80pq key-rec. 7 270/272.4/0 2159.97 Con.cube 3 7 Sect. 5
80pq key-rec. 7 270/2104.7/0 2160 Con.cube 3 7 Sect. 5

Enc.

128a Forgery 3 2117/2117/0 – Diff. 3 7 [GPT21]

all State-rec. 5 266/266/249 – Cube-like 73 [LZWW17]
all key-rec. 5 233/297/249 2128 Cube-like 77 [LZWW17]

all State-rec. 6 244.8/2128/? – Con.cube 73 [CHKT23]
80pq key-rec. 6 239.6/2128/232 2128 Cube 73 [CHKT23]

all State-rec. 7 239.6/239.6/0 – Cube-like 73 [BCP22]
all key-rec. 7 2117/2116.2/232 2128 Cube 77 [CHKT23]

Fin.

all Forgery 3 234/234/0 – Diff. 3 3 [DEMS15]
all Forgery 3 232.67/232.67/0 – Diff. 3 3 [GPT21]
128a Forgery 3 220/220/0 – Diff. 3 3 [GPT21]

all Forgery 4 2102/2102/9 – Diff. 3 3 [DEMS15]
all Forgery 4 296.61/296.61/0 – Diff. 3 3 [GPT21]
all Forgery 4 29/29/0 – Cube-like 73 [LZWW17]

all Forgery 5 217/217/0 – Cube-like 73 [LZWW17]

all Forgery 6 233/233/0 – Cube-like 73 [LZWW17]

Cube attack and division property. The cube attack was proposed at EUROCRYPT
2009 by Dinur and Shamir to analyze black-box tweakable polynomials [DS09]. Given
a keyed Boolean function f(x, k) with n-bit public input x ∈ Fn2 and m-bit secret input
k ∈ Fm2 , for a set I ⊆ {0, . . . , n− 1} with its complementary set Ī = {0, . . . , n− 1} − I, we
have

f(x, k) = xI · pI(x[Ī], k) + q(x, k),

3

where each term of q(x, k) misses some variables in x[I]. We call xI the cube term and
pI(x[Ī], k) the superpoly of xI in f(x, k). If we set the variables in x[Ī] to some fixed
constants, the superpoly pI(x[Ī], k) is a Boolean function of k. Concerning the superpoly,
we have the following lemma.

Lemma 1 ([DS09]). For a set I ⊆ {0, . . . , n− 1} and a keyed Boolean function

f(x, k) =
∑
u∈Fn

2

au(k)xu = xI · pI(x[Ī], k) + q(x, k),

we have pI(x[Ī], k) =
∑
x[I]∈F|I|2

f(x, k).

According to Lemma 1, when x[Ī] is fixed to a constant, the value of pI(x[Ī], k) can be
derived by performing 2|I| evaluations of f . Usually, a key-recovery attack based on the
superpoly is called a cube attack. When the superpoly is zero, the cube sum is always
zero, then it can serve as a distinguisher which is called a cube tester [ADMS09].

Algebraic degree. Given a polynomial f(x, k) =
∑
u∈Fn

2
au(k)xu where k is secret and

x is public. Since k is an unknown constant, au(k) ∈ F2, we only consider the algebraic
degree of f in the public variable, i.e.,

deg(f) = max
u
{wt(u) | au(k) 6≡ 0}.

Division property. A critical cryptanalytic technique in cube attacks is Todo’s division
property proposed at EUROCRYPT 2015 [Tod15] as a generalization of integral cryptanaly-
sis. Its bit-based variants [TM16] as well as their automatic search methods [XZBL16] have
been found to have great potential in probing the structure of a Boolean function described
as a sequence of composition of Boolean functions whose overall ANF is too complicated
to compute [TIHM17, WHT+18, WHG+19, HLM+20]. In particular, bit-based division
property can detect the presence or absence of a monomial in the target Boolean function,
and therefore can be used to (partially) determine the algebraic structures of superpolies
in cube attacks [TIHM17, WHT+18, WHG+19, HLM+20, HLLT20, HSWW20]. In fact,
the division property has become a quite standard tool in assisting cube attacks (as well
as integral attacks). In this work, we take the MILP (Mixed Integer Linear Programming)
based approach [XZBL16] to search for division properties and calculate the degree upper
bounds.

3 Specification and Useful Properties of Ascon
In a high level, the Ascon AEAD algorithm takes as input a nonce N , a secret key K, an
associated data A and a plaintext or message M , and produces a ciphertext C and a tag
T . The authenticity of the associated data and message can be verified against the tag T .
Ascon adopts a MonkeyDuplex [Dae12] mode with a stronger keyed initialization and
keyed finalization phases as illustrated in Figure 1.1 The underlying permutations pa and
pb are iterative designs, whose round function p is based on the substitution permutation
network (SPN) design paradigm and consists of three simple steps pC , pS , and pL. The
round function p = pL ◦ pS ◦ pC operates on a 320-bit state arranged into five 64-bit words.
The steps pC , pS , and pL are visualized in Figure 2 and described as follows.

Addition of constants (pC). An 8-bit constant is XORed to the bit positions 56, . . . , 63 of
the 64-bit word x2 at each round.

1Thanks to TikZ for Cryptographers [Jea16]. All figures in this paper are created by TiKZ.

4

IV‖K0‖K1‖N0‖N1
320

pa

⊕

0∗‖K

c

⊕r

A1

pb
⊕

As

c
pb

⊕

0∗‖1

c

⊕r

P1 C1

pb
c

⊕

Pt−1 Ct−1

pb
⊕

Pt Ct

r

⊕

K‖0∗

c

pa

⊕

K

k
T

Initialization Associated Data Plaintext Finalization

Figure 1: The high-level structure of the Ascon-AEAD.

x4

x3

x2

x1

x0

pC
pS

pL

Figure 2: The demonstration of pC , pS and pL.

Substitution layer (pS). Update each slice of the 320-bit state by applying the 5-bit Sbox
defined by the algebraic normal forms in Figure 3.

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0

y2 = x4x3 + x4 + x2 + x1 + 1

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

y4 = x4x1 + x4 + x3 + x1x0 + x1

y0 ← Σ0(x0) = x0 + (x0 ≫ 19) + (x0 ≫ 28)

y1 ← Σ1(x1) = x1 + (x1 ≫ 61) + (x1 ≫ 39)

y2 ← Σ2(x2) = x2 + (x2 ≫ 1) + (x2 ≫ 6)

y3 ← Σ3(x3) = x3 + (x3 ≫ 10) + (x3 ≫ 17)

y4 ← Σ4(x4) = x4 + (x4 ≫ 7) + (x4 ≫ 41)

Figure 3: ANF of the Sbox (left) and the linear layer (right) of Ascon.

Linear diffusion layer (pL). Apply a linear transformation Σi to each 64-bit word xi with
0 ≤ i < 5, where Σi is defined in Figure 3.

Notations for describing the Ascon permutation states. The 320-bit output state of the
Ascon permutation after r rounds is denoted by S(r) = (pL ◦pS ◦pC)r(S(0)), where S(0) is
the input into the permutation. We also use S(r.5) to represent a half-round pS ◦ pC(S(r)).
Every state consists of 5 words as

S(r) = S
(r)
0 ‖S

(r)
1 ‖S

(r)
2 ‖S

(r)
3 ‖S

(r)
4 ,

where S(r)
i is the ith word (the ith row) of S(r); the jth bit of S(r)

i is denoted by S(r)
i,j where

0 ≤ i < 5, 0 ≤ j < 64, and S(r)
i,{j0,j1,...,js−1} represents the s bits S

(r)
i,j0
, S

(r)
i,j1
, . . . , S

(r)
i,js−1

. S(r)
0,0

is the leftmost bit of the first row of the state matrix S(r).

Ascon-128, Ascon-128a, and Ascon-80pq. The Ascon AEAD family consists of three
members, Ascon-128, Ascon-128a, and Ascon-80pq where Ascon-128 is the primary
recommendation. Both Ascon-128 and Ascon-128a use a 128-bit key while Ascon-80pq
takes a 160-bit one. For all the three variants, S(0)

3 ||S
(0)
4 is loaded with the 128-bit nonce.

For Ascon-128 and Ascon-128a, S(0)
1 ||S

(0)
2 is loaded with the 128-bit key and S

(0)
0 is

loaded with the 64-bit initial value (IV). Ascon-80pq takes a half of the IV positions to
allow 32 more key bits. Thus, S(0)

0,{32,33,...,63}||S
(0)
1 ||S

(0)
2 is initialized as a 160-bit key, and

S
(0)
0,{0,1,...,31} is the 32-bit IV. The rates of the Ascon-128 and Ascon-80pq are 64 bits

5

Table 2: Ascon-AEAD variants and their recommended parameters

Name State size Rate r
Size of Rounds IV

Key Nonce Tag pa pb

Ascon-128 320 64 128 128 128 12 6 80400c0600000000
Ascon-128a 320 128 128 128 128 12 8 80800c0800000000
Ascon-80pq 320 64 160 128 128 12 6 a0400c06

while 128 bits for Ascon-128a. The parameters are summarized in Table 2 and all three
variants provide 128-bit security.

The adversary can only access the rate part for Ascon-AEADs. Our paper considers
only the case where the first 64 bits of output are accessed and thus our attack works for
all three versions. Since the linear layer is applied to each row, we do not consider the
linear layer of the last round. In other words, for 7-round Ascon-AEAD, the output state
we consider is actually S(6.5) which is totally equivalent to S(7) in this paper.

Degree matrix of the Ascon permutation. In [HPTY22], Hu et al. introduced the degree
matrix to describe and trace the changes of algebraic degrees of the Ascon permutation
states.

Definition 1 (Degree Matrix of S(r) [HPTY22]). The algebraic degrees or their upper
bounds of the bits in the state S(r) are called a degree matrix of S(r), denoted by

DM(S(r)) =
(

deg(S(r)[i][j]), 0 ≤ i < 5, 0 ≤ j < 64
)
.

Considering the ANF of the Sbox and diffusion layer of the Ascon permutation, given
the degree matrix of S(r), we can quickly calculate the degree matrix of S(r+1) according
to the following Lemmas 2 and 3.

Lemma 2 (Degree Matrix Transition over pS [HPTY22]). With the knowledge of DM(S) =
(di,j , 0 ≤ i < 5, 0 ≤ j < 64), we have DM(pS(S)) = (d′i,j , 0 ≤ i < 5, 0 ≤ j < 64), where
d′i,j , 0 ≤ i < 5, 0 ≤ j < 64 are computed as

d′0,j = max(d4,j + d1,j , d3,j , d2,j + d1,j , d2,j , d0,j + d1,j , d1,j , d0,j)
d′1,j = max(d4,j , d3,j + d2,j , d3,j + d1,j , d3,j , d2,j + d1,j , d2,j , d1,j , d0,j)
d′2,j = max(d4,j + d3,j , d4,j , d2,j , d1,j , 0)
d′3,j = max(d4,j + d0,j , d4,j , d3,j + d0,j , d3,j , d2,j , d1,j , d0,j)
d′4,j = max(d4,j + d1,j , d4,j , d3,j , d1,j + d0,j , d1,j)

, 0 ≤ j < 64

Lemma 3 (Degree Matrix Transition over pL [HPTY22]). With the knowledge of DM(S) =
(d′i,j , 0 ≤ i < 5, 0 ≤ j < 64), we have DM(pL(S)) = (d′′i,j , 0 ≤ i < 5, 0 ≤ j < 64), where
d′′i,j , 0 ≤ i < 5, 0 ≤ j < 64 are computed as

d′′0,j = max(d′0,j+0, d′0,j−19 mod 64, d′0,j−28 mod 64)
d′′1,j = max(d′1,j+0, d′1,j−61 mod 64, d′1,j−39 mod 64)
d′′2,j = max(d′2,j+0, d′2,j− 1 mod 64, d′2,j− 6 mod 64)
d′′3,j = max(d′3,j+0, d′3,j−10 mod 64, d′3,j−17 mod 64)
d′′4,j = max(d′4,j+0, d′4,j− 7 mod 64, d′4,j−41 mod 64)

, 0 ≤ j < 64

4 New Conditional Cube Attack on Ascon-128(a)
In [RHSS21], new distinguishers for Ascon initialization were proposed by Rohit et al.
The inputs to these distinguishers have a special initial structure (for convenience, we

6

Table 3: Algebraic degrees or their upper bounds of Ascon in cube variables with the
structure IS−1 derived from the division properties [RHSS21]. Note in [RHSS21], the
degrees are given for S(r) (2 ≤ r ≤ 7) while here we focus on S(r.5) (1 ≤ r ≤ 6).

Round r
Degrees of words

S
(r)
0 S

(r)
1 S

(r)
2 S

(r)
3 S

(r)
4

0.5 1 1 0 0 1
1.5 2 1 1 2 2
2.5 3 3 4 4 3
3.5 7 8 7 7 6
4.5 15 15 13 14 15
5.5 30 29 29 30 30
6.5 59 59 60 60 59

will use IS−1 as its shorthand): the first and second 64-bit nonce are always equal and
regarded as 64-bit cube variables, i.e.,

IS−1 : (S(0)
3 [i], S(0)

4 [i]) = (vi, vi), 0 ≤ i < 64. (1)

With IS−1, the upper bounds on the algebraic degrees of S(r) are calculated by the division
properties [HLM+20, Tod15]. These upper bounds are given in Table 3. Therefore, the
7-round Ascon initialization can be distinguished with 260 nonces, which is the best
distinguisher for 7-round Ascon-AEAD so far. As we mentioned in the introduction, this
distinguisher, unfortunately, is difficult to be utilized in a key-recovery attack as it does
not satisfy the borderline cube properties [DEMS15]. To use it in a key-recovery attack,
new techniques are necessary.

We notice that the degrees in Table 3 heavily rely on the input structure of Equation 1,
i.e., IS−1. Therefore, we take a break-fix strategy to transpose this distinguisher into a
key-recovery attack on 7-round Ascon.

4.1 Phase 1: Break
We introduce 64 new initial structures ISj , 0 ≤ j < 64 for the nonce, each of which is
slightly adapted from Equation 1,

ISj :
(
S

(0)
3 [i], S(0)

4 [i]
)

=
{

(vi + 1, vi) if i = j

(vi, vi) if i 6= j
, 0 ≤ i < 64 (2)

Note that for a specific ISj where 0 ≤ j < 64, the two bits of the nonce S(0)
3 [j] and S(0)

4 [j]
are set to different forms, which breaks IS−1. Such a break will have an effect on the
degrees of the Ascon initializations. With a similar modeling strategy as [RHSS21], we
use the MILP-based division properties [XZBL16] to calculate the degrees of the states
after r.5 (0 ≤ r ≤ 6) rounds. The results are provided in Table 4.

Comparing Table 3 and Table 4, we can find that the degrees resulted from ISj
(0 ≤ j < 64) are in general larger than those from IS−1. The differences between the
two tables are actually all due to the differences of the first two rounds (this will be
clearly stated by Proposition 2 later). We analyze the reason for the difference in the first
and second rounds. According to the ANFs of the Ascon Sbox, the IS−1 that requires
S

(0)
3,i = S

(0)
4,i will make S(1)

2,i and S(1)
3,i be independent of any nonce bits, for 0 ≤ i < 64. In

other words, the algebraic degrees of the 128 bits of S(1)
2 and S(1)

3 are all zero. Note that
all quadratic terms of the second ANF of the Sbox (y1 in the left part of Figure 3) are
related to x2 and x3, thus, for the IS−1, the degrees of all 64 bits of S(1.5)

1 are still 1.

7

Table 4: Algebraic degrees of Ascon in cube variables with the structure ISj (0 ≤ j < 64)
derived from the division properties. “x/y” means that the degrees of some bits of that
word are x and others are y.

Round r
Degrees of words

S
(r)
0 S

(r)
1 S

(r)
2 S

(r)
3 S

(r)
4

0.5 1 1 1/0 0 1
1.5 2 2/1 1 2 2
2.5 4/3 4/3 4 4 4/3
3.5 8/7 8 8/7 8/7 7/6
4.5 16/15 16/15 14 15/14 16/15
5.5 31 30 30 31 31
6.5 60 60 61 61 60

However, for a specific ISj , (0 ≤ j < 64), we have S(0)
3,j = S

(0)
4,j + 1, thus there will be one

nonce bit remaining in S(0.5)
2,j making the degree of S(0.5)

2,j be 1. After the diffusion layer,
the 1-degree bit spreads to 3 positions. Therefore, the pS of the second round will multiply
these 3 1-degree bits with the existing ones, leading to three 2-degree bits for S(1.5)

1 . An
illustration for the case of IS0 is given in Figure 4.

As a result, the degree upper bounds after 7 rounds are 59 for IS−1 and 60 for ISj
(0 ≤ j < 64), so we can use the gap to mount a conditional cube attack.

Remark. There are more kinds of methods to break IS−1, e.g.,

IS′j :
(
S

(0)
3 [i], S(0)

4 [i]
)

=
{

(x, y) if i = j

(vi, vi) if i 6= j
, 0 ≤ i < 64

where (x, y) ∈ {(vi, 0), (0, vi), (vi, vi + 1)}. We tried all of them and found Equation 2 is
the one that requires the least key conditions for the attack.

4.2 Phase 2: Fix
In this phase, our task is to identify key conditions that can reset the degrees of S(6.5)

back to 59. The differences between the two tables first appear in the first round (see the
top part of Figure 4). For ISj (0 ≤ j < 64), the degree of S(0.5)

2,0 is 1. Denote the 128-bit
key loaded into S(0)

1 ||S
(0)
2 by k0, k1, . . . , k127, the ANF of S(0.5)

2,j is

S
(0.5)
2,j = vj + kj + kj+64 + 1,

Algebriac degrees of S(0.5)

Algebriac degrees of S(1.5)

0-degree bits 1-degree bits 2-degree bits

Figure 4: Algebraic degrees of bits in S(0.5) and S(1.5) resulted from IS0. For the other
ISj (1 ≤ j < 64), similar results can be obtained by rotating the bits.

8

which means the degree of S(0.5)
2,j is impossible to be controlled by any key conditions. We

have to handle the second round. At the second round the algebraic degrees of S(1.5)
1

can be 2 for ISj (0 ≤ j < 64) whereas they are always 1 for IS−1, so if we can reset the
algebraic degrees of S(1.5)

2 to 1, the degrees of S(6.5)
0 will return to 59. This is guaranteed

by the following proposition.

Proposition 1. If the algebraic degrees of the five words of S(1.5) are (2, 1, 1, 2, 2), the
upper bounds on the algebraic degrees of the five words of S(6.5) are (59, 59, 60, 60, 59).

Proof. Note that the pC operation does not influence the degree matrix of a state in this
case. The proposition can be proved by a direct application of Lemmas 2 and 3.

We take IS0 as an example. The bottom part of Figure 4 gives the concrete algebraic
degrees of S(1.5) bits resulted from IS0. It can be seen that there are three 2-degree bits
in S(1.5)

1 . The ANFs of these three 2-degree bits when j = 0 are

S
(1.5)
1,0 = v0v3(k3 + k67) + v0v25(k25 + k89) + L0(v0, v1, . . . , v63)

S
(1.5)
1,1 = v0v1(k1 + k65) + v0v4(k4 + k68) + v0v26(k26 + k90) + L1(v0, v1, . . . , v63)

S
(1.5)
1,6 = v0v6(k6 + k70) + v0v9(k9 + k73) + v0v31(k31 + k95) + L6(v0, v1, . . . , v63)

(3)

where Li(·) for i = 0, 1, 6 are three linear functions. To reset the algebraic degrees of the
three 2-degree bits to 1, we need to eliminate all the quadratic terms in S(1.5)

1,0 , S(1.5)
1,1 and

S
(1.5)
1,6 . For other j ∈ {0, . . . , 64}, the situation are similar. We list all their quadratic terms

in Table 5. Note that due to the pC in the first round, 4 key coefficients have constant
1 terms (the constant for the first round is 0xf0, so there are 4 key coefficients that are
affected), they have no influence on our analysis (actually, we can even completely ignore
the pC in the first round with an equivalent key technique).

According to Tables 3 and 4, if all these quadratic terms are canceled, the degrees of
the 7-round Ascon are 59; otherwise, the degrees are 60. Therefore, the dimension of the
cube we choose in our attack should be 60. In other words, 4 cube variables will be set
as constants. Concretely, if we set any four out of the 8 cube variables (the indices are
modulo 64)

vj+3, vj+25, vj+1, vj+4, vj+26, vj+6, vj+9, vj+31

to be zero and construct a 60-dimensional cube, we can use this cube to test if the
corresponding four key coefficients are all zero. Taking the above j = 0 as an example
again, if we set v3 = v25 = v1 = v4 = 0, we derive a 60-dimensional cube with the remaining
cube variables vi (i ∈ {0, . . . , 63}\{3, 25, 1, 4}). Then if the cube tester on the 7-round
Ascon is zero, we determine that k26 + k90 = k6 + k70 = k9 + k73 = k31 + k95 = 0.

For the sake of a clear description, we introduce the definitions of key set and good/bad
key set.

Definition 2 (Key Set and Good/Bad Key Set). Given a 128-bit key, we call the 8 key
coefficients in Table 5 derived from a specific ISj (0 ≤ j < 64) the j-th key set (KS). A KS
that contains at least four zero key coefficients is called a good key set (GKS), otherwise a
bad key set (BKS).

When a KS is good, we can detect the four zero key coefficients with at most testing(8
4
)

= 70 different 60-dimensional cube testers as described above. Once we detect a
GKS and have known the four zero key coefficients, it is easy to use the four known key
coefficients to recover the remaining four key coefficients. Taking Equation 3 as an instance,
if k3 + k67, k25 + k89, k1 + k65 and k4 + k68 are zero and we have detected them with a
cube that satisfies v26 = v6 = v9 = v31 = 0, we can observe the cube sum of the cube tester

9

Table 5: Quadratic terms in the ANFs of bits in S(1.5)
1 resulted from ISj (0 ≤ j < 64).

Note that some key coefficients have a constant 1 term which is caused by the pC of the
first round, but they do not influence our analysis.

Settings Quad. bits Quad. terms Key Coef.

ISj

S
(1.5)
1,j

vjvj+3 kj+3 + kj+67 ♣
vjvj+25 kj+25 + kj+89 [

S
(1.5)
1,j+1

vjvj+1 kj+1 + kj+65 ♦
vjvj+4 kj+4 + kj+68 ∠
vjvj+26 kj+26 + kj+90 ‡

S
(1.5)
1,j+6

vjvj+6 kj+6 + kj+70]
vjvj+9 kj+9 + kj+73 \
vjvj+31 kj+31 + kj+95 †

† when j ∈ {25, 26, 27, 28}, the key coefficient is kj+31 + kj+95 + 1
‡ when j ∈ {30, 31, 32, 33}, the key coefficient is kj+26 + kj+90 + 1
[when j ∈ {31, 32, 33, 34}, the key coefficient is kj+25 + kj+89 + 1
\ when j ∈ {47, 48, 49, 50}, the key coefficient is kj+9 + kj+73 + 1
] when j ∈ {50, 51, 52, 53}, the key coefficient is kj+6 + kj+70 + 1
∠ when j ∈ {52, 53, 54, 55}, the key coefficient is kj+4 + kj+68 + 1
♣ when j ∈ {53, 54, 55, 56}, the key coefficient is kj+3 + kj+67 + 1
♦ when j ∈ {55, 56, 57, 58}, the key coefficient is kj+1 + kj+65 + 1

that satisfies v1 = v6 = v9 = v31 = 0 to determine the value of k26 + k90. Actually, when
we set v1 = v6 = v9 = v31 = 0, the key coefficients of the quadratic terms in Equation 3
are k3 + k67, k25 + k89, k4 + k68 and k26 + k90. Since we have known the first three key
coefficients are zero, the cube sum of this cube tester will tell us the value of k26 + k90
directly. Note that all these operations are already done when we check the 70 different
60-dimensional cube testers, so no additional complexities are required.

To conclude, if a KS is good, we can do (at most) 70 60-dimensional cube testers to
recover all its 8 key coefficients. In our attack, we will try 70 cube testers for each of
the 64 KS, to recover the keys in those good ones. Thus, in total we need to conduct
64× 70 = 4, 480 different cube testers.

The whole attack process is summarized in Algorithm 1. In this algorithm, we first
compute all 64 ×

(8
4
)

= 4, 480 cubes and derive their cube sums. If the cube sum is
zero, then we know the corresponding 4 key coefficients are all zero (Line 9). Otherwise,
(0, 0, 0, 0) is not considered as their candidates. What’s more, if we have known four
key coefficients are not all zero but three of them have been known as zero, then we
determine the remaining one as 1 (Line 15). In the exhaustive search phase, for those
undetermined key coefficient tuples, we already know they cannot be all zero. Since for
each ISj , 0 ≤ j < 64, the data complexity is at most 264, the whole data complexity is
264 × 64 = 270 chosen nonces. The time complexity is influenced by the time complexity
of the exhaustive search phase (denoted by Te) as

T = 64× 70× 260 + Te ≈ 272.1 + Te.

The memory complexity is negligible.

Note that this attack works under an assumption that before the fixing process the
algebraic degree of the 7-round Ascon is really 60 and the cube sum is not highly biased.
The assumption is concluded as Assumption 1.

Assumption 1. The cube sum of a 60-dimensional cube that satisfies ISj (0 ≤ j < 64)
is not zero when the corresponding four coefficients are not all zero.

10

Algorithm 1 Conditional cube attack on Ascon-128/Ascon-128a
1: procedure ConCubeAttack-128(IV)
2: Initialize two sets K and N
3: for 0 ≤ j < 64 do
4: Construct cube with the structure ISj (Equation 2)
5: for 4 variables from {vj+3, vj+25, vj+1, vj+4, vj+26, vj+6, vj+9, vj+31} do .

(8
4

)
choices

6: Derive the 60-dimensional cube by setting the 4 selected variables as 0
7: Compute the cube sum of this cube
8: if the cube sum is 0 then
9: Add the corresponding 4 key coefficients into K
10: else
11: Add the corresponding 4 key coefficients into N
12: end if
13: end for
14: end for
15: Check every 4-tuple in N to see if there are 3 elements that have appeared in a certain

4-tuple in K. If so, determine the value of the last key coefficient as 1 and remove the 4 tuple
from N

16: Brute-force search the unknown key information, for those 4 tuples in N, (0, 0, 0, 0) should
not be considered . exhaustive search

17: return 128-bit key
18: end procedure

A detailed discussion on this assumption will be given in Section 6.

4.3 Time Complexity Analysis
Obviously, we want the complexity of the exhaustive search to be significantly smaller than
272.1. Equivalently, we need to recover more than 128− 72.1 = 55.9 bits of key information
from Algorithm 1. For the sake of simplification, in the following we study the probability
of such an event that we can recover 58 bits of key information from Algorithm 1 (in this
case, the whole time complexity is T = 272.1 + 2128−58 ≈ 272.4).

To this end, we need to study: (1) The distribution of the GKS as the number of GKS
directly influence the key information we will get. (2) Notice that some KS may contain
linearly-dependent key coefficients. For example, both two KS from IS0 and IS2 contain
the same key coefficient k3 + k67. Thus, we also need to estimate how many GKS we need
to accumulate sufficient independent key coefficients.

The distribution of the number of GKS. Let xi for 0 ≤ i < 64 be a random variable
satisfying

xi =
{

1 the i-th KS is good
0 the i-th KS is bad

Define X =
∑63
i=0 xi be a random variable representing the number of GKS. Our task is

to find a proper distribution of X.
From the plot in Figure 5, we observe that the points form a curve that is very similar to

the normal distribution but with a small skewness. Thus, we use a skew-normal distribution
to describe X, denoted by SN (ξ, η, λ).

The skew-normal distribution is a relatively new distribution. In [Azz85], Azzalini
introduces the skew-normal class as one being able to reflect varying degrees of skewness,
which is mathematically tractable and which includes the normal distribution as a special
case. A random variable Z follows a standard skew-normal distribution with the parameter

11

0 10 20 30 40 50 60
Number of good key sets #X

0.00

0.01

0.02

0.03

0.04

skewed-normal pdf
practical

Figure 5: The skew-normal distribution
for the number of GKS. The blue dots
are the experimental values, whereas the
red line is the skewed-normal distribution
SN (48.88204620, 12.19456124,−1.52220805).

0 5 10 15 20 25 30
Number of key sets g

0.0

0.2

0.4

0.6

0.8

1.0

Pr
o.

 o
f h

av
in

g
58

 in
de

pe
nd

en
t k

ey
 c

oe
f. (20, 0.991)

Figure 6: The probability for the number
of KS we need for 58 independent key coef-
ficients. When g = 20, the probability has
been 0.991.

λ (called the shape parameter) is denoted by Z ∼ SN (λ). The density is of the form,

ϕ(x;λ) = 2φ(x)Φ(λx), −∞ < x <∞,−∞ ≤ λ <∞. (4)

where φ(·) and Φ(·) denote the standard normal density and distribution functions,
respectively. The case λ = 0 corresponds to the standard normal distribution. The
standard skew-normal contribution can be generalized by the inclusion of location and
scale parameters denoted by ξ and η, respectively. Thus, if Z ∼ SN (λ), Y = ξ + ηZ is a
random variable that follows SN (ξ, η, λ).

Next, we estimate the parameters ξ, η, λ for the skew-normal distribution according to
our case. In the one hand, according to [Azz85], for a random variable Y ∼ SN (ξ, η, λ),
the first three moments of Y are:

E(Y) = ξ + bηδ (5)
E(Y 2) = ξ2 + 2bξηδ + η2 (6)
E(Y 3) = ξ3 + 3bξ2ηδ + 3ξη2 + 3bη3δ − bη3 (7)
D(Y) = η2(1− b2δ2) (8)

where b =
√

2
π and δ = λ√

1+λ2 ,−1 ≤ δ < 1. The coefficient of skewness for Y is the same
as that for Z, namely,

γ1 = bδ3(2b2 − 1)
3
√

(1− b2δ2)2
, −0.99527 < γ1 < 0.99527.

On the other hand, since X =
∑63
i=0 xi and the expectation of xi is

E(xi) =
∑
j≥4

(8
j

)
256 = 163

256 ,

thus, the mean of X is

E(X) =
63∑
i=0

E(xi) = 64× 163
256 = 40.75. (9)

12

The second moment of X, i.e., E(X2) can be computed as follows,

E(X2) = E

(63∑
i=0

xi

)2

=
∑

0≤i,j<64
E(xixj).

Due to the rotational property of the Ascon state, for a fixed 0 ≤ d < 64, E(xixi+d) are
all the same for any 0 ≤ i < 64. Thus,

E(X2) = 64×
∑

0≤j<64
E(x0xj) ≈ 0.63671875. (10)

E(X3) can be computed in a similar way,

E(X3) = E

(63∑
i=0

(xi)
)3

= 64×
∑

0≤j,k<64
E(x0xjxk) ≈ 77532.16384887. (11)

The variance of X is then

D(X) = E(X2)− (EX)2 ≈ 82.57714843. (12)

The skewness coefficient is usually computed by2

γX = E(X − E(X))2

2
√
D(X)3

≈ −0.30759064.

By equating the above corresponding statistical properties of SN (ξ, δ, λ) and X (i.e.,
Equations 5 and 9, Equations 6 and 10, Equations 7 and 11, Equations 8 and 12), we can
derive the values of the parameters of SN ,

ξ ≈ 48.88204620, η ≈ 12.19456124, λ ≈ −1.52220805.

Thus, we derive the corresponding SN (ξ, η, λ). The density curve of this distribution is
shown in Figure 5, it can be seen it fits the scatted points well.

The number of GKS for 58 independent key coefficients. We denote by Pg the prob-
ability that g KS can generate at least 58 independent key coefficients. For each g, we
randomly choose 220 g KS and calculate the number of independent key coefficients. The
curve for Pg is shown in Figure 6, according to which we find P20 ≈ 0.991. Thus, if a key
has 20 GKS, it can accumulate at least 58 independent key coefficients with a probability
about 0.991.

We use the skew-normal distribution SN (ξ, η, λ) specified above to predict the key
space with equal or more than 20 GKS. With the help of the scipy.stats.skewnorm class
in the scipy library for python3, we have

Pr[X ≥ 20] = 1− Pr[X ≤ 19] ≈ 0.986.

We use 220 randomly-generated keys to practically test Pr[X ≥ 20], and the experimental
probability is about 0.986 which is extremely close to our theoretical value.

Consequently, with a probability about Pr[X ≥ 20] · P20 ≈ 0.977, we can accumulate
at least 58 independent key coefficients. Thus, the exhaustive search would cost at most
2128−58 = 270 time complexity. Together with the time complexity of Algorithm 1, the
whole time complexity is about 272.4. In other words, we can recover the 128-bit key with
a time complexity of 272.4 Ascon initializations for about 2128 × 0.977 ≈ 2127.97 keys.

2http://brownmath.com/stat/shape.htm
3https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewnorm.html

13

http://brownmath.com/stat/shape.htm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewnorm.html

The worst case. When we cannot obtain 58 bits of key information from Algorithm 1,
the time complexity will increase. For sake of simplification, we directly calculate the
time complexity for the worst case, i.e., there is no GKS in the secret key. When a KS is
not good, then we know any four key coefficients cannot be zero simultaneously. Thus,∑
i≥4
(8
i

)
= 163 out of all 256 possibilities can be excluded. We only need to search for the

remaining key values by brute force. With testing 232 randomly-chosen 128-bit keys, we
detect 420 keys that lead to such worst case. Thus, the percentage of such keys is about
2−23.3. In other words, if none of the KS are good, we know that only 2128−23.3 = 2104.7

keys that are possible to be candidates. Therefore, the time complexity of the worst case
is about 2104.7.

4.4 Weak-Key Attacks Satisfying the Data Limitation
The designers of Ascon have established a security claim as follows,

“The number of processed plaintext and associated data blocks protected by the
encryption algorithm is limited to a total of 264 blocks per key ...” ([DEMS21,
Chapter 2, Page 9])

Consequently, the maximal number of nonces we can use should be limited within 264.
While at the present stage we should encourage attacks even they do not comply with this
restriction to gain a better understanding of Ascon’s security features, it is also valuable
to explore whether an attack can be adapted to meet this requirement whenever possible.
We provide two kinds of attacks on Ascon both of which satisfy the data limit.

Weak-key attack 1. Let us focus on only one certain ISj . If four coefficients of its key
set are zero, we can recover values of all these 8 key coefficients. For one ISj , the data
complexity is 264, so this satisfies the data limit. The time complexity of this attack is
dominated by the exhaustive search process which is 2120 Ascon initializations. The above
event happens with a probability

∑
i≥4
(8

4
)
/256 ≈ 0.63, thus the size of the weak-key space

is about 2128 × 0.63 ≈ 2127.3.

Weak-key attack 2. When we have known that three key coefficients in a key set are
zero, we can combine the three with another one in the same key set to obtain the value
of the latter by conducting a corresponding cube tester.

When j = 0, the 8 key coefficients in the key set are

k3 + k67, k25 + k89, k1 + k65, k4 + k68, k26 + k90, k6 + k70, k9 + k73, k11 + k75.

When j = 2, the 8 key coefficients are

k5 + k69, k27 + k91, k3 + k67, k6 + k70, k28 + k92, k8 + k72, k11 + k75, k13 + k77,

Hence, there are three common key coefficients in the two key sets.
As a result, for the following 2125-size key space,

K =
{
k ∈ F128

2 : k3 + k67 = 0, k6 + k70 = 0, k11 + k75 = 0
}
,

we can do 10 cube testers to recover the other 10 key coefficients in the two key sets for
j ∈ {0, 2}. The remaining 115 bits of key information can be recovered by an exhaustive
search. The data and time complexities of this attack are 10× 260 ≈ 263.2 which are less
than the data limitation 264.

Comparing with Rohit and Sarkar’s key-recovery attacks under the weak-key setting
[RS21], our attack works for a significantly larger weak-key space (2127.3/2125 versus
2116.34).

14

Table 6: Algebraic degrees of Ascon-80pq in cube variables with the structure IS′j
(32 ≤ j < 64) derived from the division properties. “x/y” means that the degrees of some
bits of that word are x and others are y.

Round r
Degrees of words

S
(r)
0 S

(r)
1 S

(r)
2 S

(r)
3 S

(r)
4

0.5 1 1 0 1 1
1.5 2 2/1 2/1 2 2
2.5 4/3 4/3 4 4 4/3
3.5 8/7 8 8/7 8/7 7/6
4.5 16/15 16/15 14 15/14 16/15
5.5 31 30 30 31 31
6.5 60 60 61 61 60

5 Conditional Cube Attack on Ascon-80pq
Ascon-80pq is a relatively new member of Ascon-AEAD family. The main difference
between Ascon-80pq and Ascon-128/Ascon-128a is that it uses the second 32 bits of
IV positions for another 32 bits of key. Our attack in this section is designed to recover
the 32-bit key. For the sake of convenience, we denote the 32-bit key by k′32, k

′
33, . . . , k

′
63

(the indices starts from 32 because they are loaded into S(0)
0,32, . . . , S

(0)
0,63). Once the 32-bit

key is recovered, the previous conditional cube attack on Ascon-128 and Ascon-128a in
Section 4 can be used to recover the remaining 128 key bits k0, . . . , k127.

To attack Ascon-80pq, we also take advantage of the 60-dimensional cube distinguisher
of IS−1 with the break-fix strategy.

5.1 Phase 1: Break
32 new structures IS′j (32 ≤ j < 64) are introduced to break IS−1 as follows (we prefer
32 ≤ j < 64 rather than 0 ≤ j < 32 to match the positions of the 32-bit key in the first
word),

IS′j :
(
S

(0)
3 [i], S(0)

4 [i]
)

=
{

(vi, 0) if i = j

(vi, vi) if i 6= j
, 32 ≤ i < 64

According to the ANFs of Ascon’s Sbox, the ANF of the 4th output bit is

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0.

For IS−1 where x3 = x4, both x3 and x4 will be canceled, always leaving the degree of y3
be 0. However, for IS′j (32 ≤ j < 64) where x4 is set as 0 for the jth Sbox, there will be a
term x3(x0 + 1) in its 4th output bit of the jth Sbox. The ANF of this output bit of the
jth Sbox is then

S
(0.5)
3,j = vj(k′j + 1) + kj + kj+64 + k′j . (13)

Thus, the value of k′j will directly control the degree of S(0.5)
3,j . After the diffusion layer,

this bit spreads to another 3 positions, and is multiplied by the pS of the second round
with other 1-degree bits to cause some 2-degree bits. With a similar division property
model as [RHSS21], we calculate the degrees for Ascon-80pq with IS′j which are shown
in Table 6.

5.2 Phase 2: Fix
For IS′j (32 ≤ j < 64), if we reset the degree of S(0.5)

3,j to 0, the degrees of S(6.5)
0 will return

to 59. This can be guaranteed by the following proposition,

15

Proposition 2. If the algebraic degrees of the five words of S(0.5) are (1, 1, 0, 0, 1), the
upper bounds on the algebraic degrees of the five words of S(6.5) are (59, 59, 60, 60, 59).

Proof. Note that the pC operation does not influence the degree matrix of a state in this
case. Therefore, the proposition can be proved by a direct application of Lemmas 2 and
3.

According to Equation 13, if k′j + 1 = 0, i.e., k′j = 1, deg(S(0)
3,0) = 0, otherwise,

deg(S(0)
3,0) = 1. Thus, we can observe the cube sum derived from IS′j (32 ≤ j < 64) to

determine the value of k′j . After trying all IS′j (32 ≤ j < 64), the 32-bit key k′32, k
′
33, . . . , k

′
64

are recovered.
Note that the concrete IV bits only contribute to the constant terms and do not appear

in the coefficients of the maximal-degree cube variables in the first and second rounds, so
they do not affect our attack in Section 4 on Ascon-128/Ascon-128a. Consequently, after
recovering the 32-bit key in the first word, we apply Algorithm 1 to recover the remaining
128-bit key in the second and third words of the initial state.

Complexity. Since the recovery of the 32-bit key in the first word is completely an
independent process which costs only 32× 260 = 265 data and time complexities, the main
part of the complexities is determined by the recovery phase of the remaining 128-bit
key. Thus, the data and time complexities are as the same as the attacks on Ascon-
128/Ascon-128a in Section 4. In other words, for 232+127.97 = 2159.97 keys, the data and
time complexities are respectively 270 and 272.4. At the worst case, the time complexity
can be as large as 2104.2. The memory cost is negligible.

6 Discussions on Assumptions in Our Attacks
Our attacks in Sections 4 and 5, like all previous conditional cube attacks, rely on some
common assumptions. In our case, the assumption for 7-round Ascon initialization has
been concluded in Assumption 1.

This assumption relies on how complex the superpolies of the cubes are. In our attacks
on 7-round Ascon, the superpolies are the coefficients of the corresponding 60-degree
cube terms, so, unfortunately, this assumption is hard to practically verify due to the huge
complexity (practically verifying it needs to perform several 260 Ascon initializations).
Therefore, we test the validity of Assumption 1 for 5 and 6 rounds of Ascon. Although
the experiments show that the assumption is not perfect for 5- and 6-round Ascon, we
observe a clear trend that the likelihood of Assumption 1 grows sharply with increasing
the number of rounds, which gives us the confidence that it still has a decent chance to be
valid for 7 rounds.

6.1 Experiments on 5 and 6 Rounds of Ascon
According to Tables 3 and 4, the degree upper bounds for 5 rounds are 15 and 16 (some
bits of S(4.5)

1 have degrees of 16), for 6 rounds are 30 and 31, for IS−1 and ISj , 0 ≤ j < 64,
respectively. According to the degree details of S(1.5) which have been shown in Figure 4
and the ANFs of the three 2-degree bits given in Equation 3, if we set

v26, v6, v9, v31,

as constants whereas v0, v1, v3, v25, v4 as variables, the degrees of 5- and 6-round outputs
are determined by the values of

k1 + k65, k3 + k67, k25 + k89, and k4 + k68.

16

If the four key coefficients are all zero, the 5-round degree is 15 and the 6-round degree is
30; otherwise, the degree can be 16 and 31 for 5 and 6 rounds, respectively.

To check the validity of Assumption 1 for 5- and 6-round Ascon, we randomly generate
100 keys where the four values

k1 + k65, k3 + k67, k25 + k89, and k4 + k68

are not zero. Then, we generate the cube by taking all different values of

v0, v1, v3, v25, v4, vj1 , vj2 , . . . , vjn
,

where jn = 16 − 5 for 5-round Ascon and jn = 31 − 5 for 6-round, and letting the
remaining variables be constants for each of the 100 keys. If Assumption 1 works well, the
cube sums for the 100 experiments will be non-zero.

For 5-round Ascon, unfortunately, all the 100 cube sums are zero. Therefore, Assump-
tion 1 is definitely not valid for 5-round Ascon. The cube distinguisher cannot be used
in a key-recovery attack by our break-fix strategy for 5 rounds. For 6-round Ascon,
54 experiments lead to non-zero cube sums. This means Assumption 1 holds with some
probability for 6-round Ascon.

What about the case of 7-round Ascon? Although Assumption 1 is still not good for
6-round Ascon, it has become much better than the 5-round cases: Indeed, in the 5-round
experiments, all 100 experiments lead to zero cube sums, while in the 6-round experiments,
more than a half of experiments succeed. This is not a coincidence. The cube sum is the
value of the superpolies of the cube term, i.e., the coefficients of the product of the cube
variables. Thus, it is natural that as the number of rounds gets larger, the superpolies
become more and more random. As the dimension of cubes used in our attacks is 60,
we cannot practically verify Assumption 1 for 7-round Ascon. However, the results of
our experiments on 5 and 6 rounds of Ascon show a clear trend that Assumption 1 is
becoming more and more promising as the number of rounds increases.

The validity of Assumption 1 is crucial for the success of our attack on 7-round attack,
while all cube-like attacks rely on similar assumptions (except for some with small cubes
that can be verified by experiments). In the extremest case where there is no GKS, we need
all the 4,480 cubes in our attacks to lead to non-zero cube sums. To this end, suppose that
the probability for a cube sum to be zero when the four corresponding key coefficients are
not all zero is smaller than p, then all the 4,480 cube sums are non-zero with a probability
of about (1 − p)4,480. For p = 2−20, (1 − p)4,480 ≈ 0.996 which shows the successful
probability has been close to 1. Note that if we assume the 7-round Ascon is ideal, p
should be 2−64, so we believe that p = 2−20 is not an overly harsh condition.

6.2 Key-Recovery Attack on 6-Round Ascon
Note that in our 100 experiments for 6-round Ascon, more than a half of them lead to a
non-zero cubes. Thus, our break-fix strategy can be used to perform a key-recovery attack
on 6-round Ascon. This experiments show that our break-fix strategy is useful as long
as Assumption 1 is not entirely wrong. In this subsection, we describe this attack and
practically verify it.

According to Tables 3 and 4, the degree upper bounds for 6 rounds are 30 and 31 for
IS−1 and ISj , 0 ≤ j < 64, respectively. We take IS0 as an example. The degree details of
S(1.5) has been shown in Figure 4 and the ANFs of three 2-degree bits given in Equation 3.
Therefore, if we set

v3, v25, v4, v26, v6, v9, v31,

as constants whereas v0 and v1 as variables, the degree of the 6-round output is determined
by the value of k1 + k65. If k1 + k65 = 0, then the 6-round degree is 30, otherwise, the
degree is 31. As a result, we perform the following experiments to recover k1 + k65.

17

1. Choose v0, v1 and vj0 , vj1 , . . . , vj28 , vji
/∈ {v3, v25, v4, v26, v6, v9, v31} for any 0 ≤ i <

29 as the 31 cube variables.

2. Prepare a cube where v0, v1 and vj0 , vj1 , . . . , vj28 take all possible values and the
remaining cube variables are set as random constants.

3. Apply the 6-round Ascon initialization to the cube, and summarize the results to
observe the cube sum.

If the cube sum is non-zero, k1 + k65 = 1; otherwise k1 + k65 = 0. Due to the rotational
property of the Ascon state, we can perform the above process for all ISj to recover
kj+1 + k64+j+1.

What’s more, for ISj , we can recover keys by setting another set of 7 cube variables
from

vj+1, vj+3, vj+25, vj+4, vj+26, vj+6, vj+9, vj+31

to be constants. For example, if we choose vj , vj+3 together with 29 variables chosen from
{v0, . . . , v63}\{vj , vj+1, vj+3, vj+25, vj+4, vj+26, vj+6, vj+9, vj+31} as cube variables and the
remaining variables as constants, the cube sums will reflect the values of kj+3 + kj+67.

Obviously, in total we have 8 opportunities to recover kj + kj+64 by setting different
variables as constants. Thus, we repeat the above attack process 8 times, each of which
uses v0, vj , vj0 , . . . , vj29 as cube variables and the remaining as constants. Also, we can
repeat trying s different vj0 , . . . , vj29 to increase the precision of the key-recovery attack.
If kj + kj+64 is found as 1 in any of the 8s times of experiments, kj + kj+64 is recognized
as 1; otherwise, it is recognized as 0.

The whole time complexity (to recover the 64 key coefficients) of this attack 231 × 64×
8 × s = 240s 6-round Ascon initializations. We practically perform this attack for 100
random keys. When setting s = 23, the 64 bits of information kj + kj+64 were recovered
successfully for all the 100 keys. The code for the experiments is given in the git repository:

https://github.com/hukaisdu/Ascon_6R_Experiments.git

Discussion on 7-round attack. Similar to the 6-round case, whenever Assumption 1 is
not entirely wrong, it will be useful for the key-recovery attack on 7-round Ascon. For
7-round attack, when we choose 60 cube variables, the remaining 4 variables are set as
constants. The 4 varaibles are actually related to 8 nonce bits where different values of
these 8 nonce bits will affect the values of the cube sums (note that two constant nonce bits
ni and ni+64 should not be equal, otherwise they will not affect the cube sum). As a result,
we can repeat the attack process with different constant values to increase the successful
probability with an increasing data and time complexity. Suppose we repeat the attack
with 16 different values of these 8 nonce bits, and the cube sum is zero with a probability
of 0.5 (0.5 is from the 6-round experiment, which should be reasonable considering the
trend). Then, the probability of the event that all 16 times of experiments lead to zero
cube sum is 2−16 only. In our worst case, all 4,480 cubes should lead to non-zero cubes,
the probability is (1 − 2−16)4,480 ≈ 0.93. That is to say, we can increase the successful
probability to 0.93 with a cost of increasing the data/time complexity by a factor of 16.
In this case, the complexity is still better than [LDW17].

7 Conclusion
In this paper, we proposed a new break-fix strategy for the conditional cube attack, which
for the first time succeeded in transforming the cube distinguisher provided in [RHSS21]
to a key-recovery attack, which was thought to be difficult before this paper. Thanks
to the lower dimension of the cube distinguisher, our attacks led to improvements over

18

https://github.com/hukaisdu/Ascon_6R_Experiments.git

the previous attacks on Ascon-128 and Ascon-128a, and gave the first key-recovery
attack on Ascon-80pq. The break-fix strategy provides new insights into the conditional
cube attacks. Different from most previous conditional cube attacks that tend to use
an elimination strategy, we construct a higher-degree term by breaking the special cube
structure and then fix the break to force the degree to go back. The basic idea of our
attack is generic, so we believe that this strategy can find usage in other ciphers, which
will be a direction of our future works. Besides, verifying Assumption 1 for the 7-round
Ascon is also an interesting future work.

Acknowledgments.

The author is grateful to Thomas Peyrin for his valuable comments on this paper. The
author also wants to thank the anonymous referees for their comments that improved
the quality of this article significantly. The authors are supported by the Program of
Qilu Young Scholars of Shandong University, the France-Singapore NRF-ANR research
grant NRF2020-NRF-ANR072, the Singapore NRF Investigatorship research grant NRF-
NRFI08-2022-0013, the National Key Research and Development Program of China (Grant
No. 2018YFA0704702), the National Natural Science Foundation of China (Grant No.
62032014, U2336207), the Major Basic Research Project of Natural Science Foundation
of Shandong Province, China (Grant No. ZR202010220025), Department of Science &
Technology of Shandong Province (No.SYS202201), Quan Cheng Laboratory (Grant No.
QCLZD202301, QCLZD202306).

References
[ADMS09] Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube

testers and key recovery attacks on reduced-round MD6 and trivium. In Orr
Dunkelman, editor, Fast Software Encryption, 16th International Workshop,
FSE 2009, Leuven, Belgium, February 22-25, 2009, Revised Selected Papers,
volume 5665 of Lecture Notes in Computer Science, pages 1–22. Springer,
2009.

[Ann] Announcing Lightweight Cryptography Selection | CSRC.
https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-
ascon.

[Azz85] Adelchi Azzalini. A class of distributions which includes the normal ones.
Scandinavian journal of statistics, pages 171–178, 1985.

[BCP22] Jules Baudrin, Anne Canteaut, and Léo Perrin. Practical cube attack against
nonce-misused Ascon. IACR Trans. Symmetric Cryptol., 2022(4):120–144,
2022.

[CHKT23] Donghoon Chang, Deukjo Hong, Jinkeon Kang, and Meltem Sönmez Turan.
Resistance of Ascon family against conditional cube attacks in nonce-misuse
setting. IEEE Access, 11:4501–4516, 2023.

[Dae12] Joan Daemen. Permutation-based Encryption, Authentication and Authenti-
cated Encryption. DIAC 2012, 2012.

[DEMS15] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläf-
fer. Cryptanalysis of Ascon. In Topics in Cryptology - CT-RSA 2015, The
Cryptographer’s Track at the RSA Conference 2015, San Francisco, CA, USA,
April 20-24, 2015. Proceedings, pages 371–387, 2015.

19

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Lightweight Authenticated Encryption and Hashing. J. Cryptol.,
34(3):33, 2021.

[DLWQ17] Xiaoyang Dong, Zheng Li, Xiaoyun Wang, and Ling Qin. Cube-like attack on
round-reduced initialization of Ketje Sr. IACR Trans. Symmetric Cryptol.,
2017(1):259–280, 2017.

[DS09] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials.
In Advances in Cryptology - EUROCRYPT 2009, 28th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Cologne, Germany, April 26-30, 2009. Proceedings, pages 278–299, 2009.

[GPT21] David Gérault, Thomas Peyrin, and Quan Quan Tan. Exploring differential-
based distinguishers and forgeries for ASCON. IACR Cryptol. ePrint Arch.,
page 1103, 2021.

[HLLT20] Phil Hebborn, Baptiste Lambin, Gregor Leander, and Yosuke Todo. Lower
bounds on the degree of block ciphers. IACR Cryptol. ePrint Arch., 2020:1051,
2020.

[HLM+20] Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang.
Modeling for three-subset division property without unknown subset - im-
proved cube attacks against trivium and grain-128aead. In Anne Canteaut
and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 - 39th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I,
volume 12105 of Lecture Notes in Computer Science, pages 466–495. Springer,
2020.

[HPTY22] Kai Hu, Thomas Peyrin, Quan Quan Tan, and Trevor Yap. Revisiting higher-
order differential-linear attacks from an algebraic perspective. Cryptology
ePrint Archive, 2022.

[HSWW20] Kai Hu, Siwei Sun, Meiqin Wang, and Qingju Wang. An algebraic formulation
of the division property: Revisiting degree evaluations, cube attacks, and
key-independent sums. IACR Cryptol. ePrint Arch., 2020:1048, 2020.

[HWX+17] Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan
Zhao. Conditional Cube Attack on Reduced-Round Keccak Sponge Function.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryp-
tology - EUROCRYPT 2017 - 36th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Paris, France, April
30 - May 4, 2017, Proceedings, Part II, volume 10211 of Lecture Notes in
Computer Science, pages 259–288, 2017.

[Jea16] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/
tikz/, 2016.

[LBDW17] Zheng Li, Wenquan Bi, Xiaoyang Dong, and Xiaoyun Wang. Improved
Conditional Cube Attacks on Keccak Keyed Modes with MILP Method.
In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology
- ASIACRYPT 2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes in
Computer Science, pages 99–127. Springer, 2017.

20

https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/

[LDW17] Zheng Li, Xiaoyang Dong, and Xiaoyun Wang. Conditional cube attack on
round-reduced ASCON. IACR Trans. Symmetric Cryptol., 2017(1):175–202,
2017.

[LLL21] Meicheng Liu, Xiaojuan Lu, and Dongdai Lin. Differential-linear cryptanalysis
from an algebraic perspective. In Tal Malkin and Chris Peikert, editors, Ad-
vances in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings,
Part III, volume 12827 of Lecture Notes in Computer Science, pages 247–277.
Springer, 2021.

[LZWW17] Yanbin Li, Guoyan Zhang, Wei Wang, and Meiqin Wang. Cryptanalysis of
round-reduced ASCON. Sci. China Inf. Sci., 60(3):38102, 2017.

[RHSS21] Raghvendra Rohit, Kai Hu, Sumanta Sarkar, and Siwei Sun. Misuse-free
key-recovery and distinguishing attacks on 7-round Ascon. IACR Trans.
Symmetric Cryptol., 2021(1):130–155, 2021.

[RS21] Raghvendra Rohit and Santanu Sarkar. Diving deep into the weak keys of
round reduced Ascon. IACR Trans. Symmetric Cryptol., 2021(4):74–99, 2021.

[SG18] Ling Song and Jian Guo. Cube-Attack-Like Cryptanalysis of Round-Reduced
Keccak Using MILP. IACR Trans. Symmetric Cryptol., 2018(3):182–214,
2018.

[SGSL18] Ling Song, Jian Guo, Danping Shi, and San Ling. New MILP Modeling:
Improved Conditional Cube Attacks on Keccak-Based Constructions. In
Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology
- ASIACRYPT 2018 - 24th International Conference on the Theory and
Application of Cryptology and Information Security, Brisbane, QLD, Australia,
December 2-6, 2018, Proceedings, Part II, volume 11273 of Lecture Notes in
Computer Science, pages 65–95. Springer, 2018.

[Tez20] Cihangir Tezcan. Analysis of Ascon, DryGASCON, and Shamash permutations.
IACR Cryptol. ePrint Arch., page 1458, 2020.

[TIHM17] Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks
on non-blackbox polynomials based on division property. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 -
37th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 20-24, 2017, Proceedings, Part III, volume 10403 of Lecture Notes in
Computer Science, pages 250–279. Springer, 2017.

[TM16] Yosuke Todo and Masakatu Morii. Bit-based division property and application
to simon family. In Thomas Peyrin, editor, Fast Software Encryption - 23rd
International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers, volume 9783 of Lecture Notes in Computer Science,
pages 357–377. Springer, 2016.

[TMC+23] Meltem Sönmez Turan, Kerry McKay, Donghoon Chang, Lawrence E Bassham,
Jinkeon Kang, Noah D Waller, John M Kelsey, and Deukjo Hong. Status
report on the final round of the nist lightweight cryptography standardization
process. 2023.

[Tod15] Yosuke Todo. Structural evaluation by generalized integral property. In
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 287–314, 2015.

21

[WHG+19] Senpeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. Milp-aided
method of searching division property using three subsets and applications.
In Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptology
- ASIACRYPT 2019 - 25th International Conference on the Theory and
Application of Cryptology and Information Security, Kobe, Japan, December
8-12, 2019, Proceedings, Part III, volume 11923 of Lecture Notes in Computer
Science, pages 398–427. Springer, 2019.

[WHT+18] Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and
Willi Meier. Improved division property based cube attacks exploiting alge-
braic properties of superpoly. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Pro-
ceedings, Part I, volume 10991 of Lecture Notes in Computer Science, pages
275–305. Springer, 2018.

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying
MILP method to searching integral distinguishers based on division property
for 6 lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and Information
Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, volume
10031 of Lecture Notes in Computer Science, pages 648–678, 2016.

22

	Introduction
	Preliminaries
	Specification and Useful Properties of Ascon
	New Conditional Cube Attack on Ascon-128(a)
	Phase 1: Break
	Phase 2: Fix
	Time Complexity Analysis
	Weak-Key Attacks Satisfying the Data Limitation

	Conditional Cube Attack on Ascon-80pq
	Phase 1: Break
	Phase 2: Fix

	Discussions on Assumptions in Our Attacks
	Experiments on 5 and 6 Rounds of Ascon
	Key-Recovery Attack on 6-Round Ascon

	Conclusion

