
BGJ15 Revisited: Sieving with Streamed
Memory Access

Ziyu Zhao1, Jintai Ding2(B), and Bo-Yin Yang3

1 Department of Mathematical Science, Tsinghua University, Beijing, China,
ziyuzhao0008@outlook.com

2 Yau Mathematical Center, Tsinghua University, Beijing, China,
jintai.ding@gmail.com

3 Academia Sinica, Taipei, Taiwan,
by@crypto.tw

Abstract. The focus of this paper is to tackle the issue of memory
access within sieving algorithms for lattice problems. We have conduct-
ed an in-depth analysis of an optimized BGJ sieve (Becker-Gama-Joux
2015), and our findings suggest that its inherent structure is significant-
ly more memory-efficient compared to the asymptotically fastest BDGL
sieve (Becker-Ducas-Gama-Laarhoven 2016). Specifically, it necessitates
merely 20.2075n+o(n) streamed (non-random) main memory accesses for
the execution of an n-dimensional sieving. We also provide evidence
that the time complexity of this refined BGJ sieve could potentially
be 20.292n+o(n), or at least something remarkably close to it. Actually,
it outperforms the BDGL sieve in all dimensions that are practically
achievable. We hope that this study will contribute to the resolution of
the ongoing debate regarding the measurement of RAM access overhead
in large-scale, sieving-based lattice attacks.

The concept above is also supported by our implementation. Actually, we
provide a highly efficient, both in terms of time and memory, CPU-based
implementation of the refined BGJ sieve within an optimized sieving
framework4. This implementation results in approximately 40% savings
in RAM usage and is at least 24.5 times more efficient in terms of gate
count compared to the previous 4-GPU implementation (Ducas-Stevens-
Woerden 2021). Notably, we have successfully solved the 183-dimensional
SVP Darmstadt Challenge in 30 days using a 112-core server and ap-
proximately 0.87TB of RAM. The majority of previous sieving-based
SVP computations relied on the HK3-sieve (Herold-Kirshanova 2017),
hence this implementation could offer further insights into the behavior
of these asymptotically faster sieving algorithms when applied to large-
scale problems. Moreover, our refined cost estimation of SVP based on
this implementation suggests that some of the NIST PQC candidates,
such as Falcon-512, are unlikely to achieve NIST’s security requirements.

4 To attest to the authenticity of our work, we present a solution for the 183-
dimensional challenge with seed 0 in Section 6.4.

2 Ziyu Zhao, Jintai Ding(B), and Bo-Yin Yang

1 Introduction

The concrete hardness estimation of the shortest vector problem (SVP) plays a
central role in the security analysis of lattice-based cryptosystems. There are two
main strategies used to solve SVP: enumeration and sieving. The enumeration
algorithms [28,21], and their optimized variants [18,11] solve SVP using super-
exponential time and polynomial space. Although asymptotically faster sieving
algorithms were proposed by Ajtai et al. [1] in 2001, enumeration has long been
the most practical method for solving SVP. Around 2018, sieving algorithms
finally caught up after a long line of asymptotic improvements on sieving it-
self [27,26,5,23,4], and better sieving frameworks [12,16,2] were proposed. Now,
BKZ algorithm [33,32] with a sieving-based SVP subroutine is widely used in
the estimation of the concrete hardness of lattice-based cryptosystems.

However, the memory requirements of sieving algorithms grow exponentially
with the dimension of the lattice, which can pose a significant challenge for
their application to large-scale problems. Typically, each random access to a
2-D massive storage array containing N bits of data incurs an O(N

1
2) cost,

both in terms of time and energy. The question of how to assess the impact of
this communication cost on the overall complexity, and whether it should be
considered at all, has been a subject of ongoing debate [7,8].

Indeed, numerous sieving algorithms, including the state-of-the-art BDGL
sieve [4], use a randomized divide-and-conquer approach to accelerate the process
of searching for reducing pairs. For example, in the BDGL sieve, the vectors in
the main memory are first divided into many small buckets (subexponential in
the dimension of the lattice), and the search for reducing pairs is conducted
within each bucket. This strategy is very efficient in terms of time complexity,
but it requires a larger number of random memory accesses in the reduction step,
a cost that already cannot be ignored in real-world sieving implementations. As
shown in [15], the BDGL sieve does not outperform the asymptotically slower,
but more memory-friendly, HK3 sieve [19] in all achievable dimensions, due to the
limited CPU-GPU bandwidth. Hence, at present, the majority of computations
for the sieving-based SVP Darmstadt Challenges [31] are conducted using sieving
algorithms that are far from being asymptotically optimal. The behavior of these
asymptotically faster sieving algorithms in large-scale problems remains unclear.

Contributions. This work presents a detailed analysis of an optimized version
of the BGJ sieve [6], demonstrating its significant theoretical and practical in-
terest. Intuitively, the BGJ sieve applies successive random filters to create a
series of progressively smaller buckets from the main database, and searches for
reducing pairs only in the smallest buckets. We found that such a structure can
be implemented in a highly memory-efficient way for large-scale sieving attacks.
The key idea is that the bucket size decreases by several orders of magnitude
after each filtering, allowing the sub-buckets to be stored in a much smaller, and
therefore faster, storage device. No communication between these sub-buckets is
necessary. Under reasonable assumptions, we show that the most costly filter-
ing and reducing steps can be performed with only 20.2075n+o(n) streamed main

BGJ15 Revisited: Sieving with Streamed Memory Access 3

memory accesses, where n is the lattice’s dimension. This concept is also sup-
ported by our implementation results. We also discuss how to insert the shorter
vectors found during the reducing step back to the main database in a streamed
manner.

One should keep in mind that streamed memory access is significantly cheap-
er than random access. Therefore, in terms of memory, this result is much better
than the BDGL sieve, which requires at least 20.292n+o(n) random memory ac-
cesses. And it makes the implementation of a large-scale BGJ sieve reasonable.
However, to argue that the memory cost should not be considered in the concrete
security estimation of lattice-based cryptosystems, one also needs to show that
the time complexity of the refined BGJ sieve is no worse than that of BDGL.

Following the idea of the bgj1 sieve in [2], our refined BGJ sieve replaces
the original filters with spherical cap-shaped filters. That is, a vector v can
pass the filter Fc,α if |⟨v, c⟩| > α∥v∥∥c∥, where Fc,α is the filter with center c
and radius α. Generally, a sieving algorithm based on locality sensitive filters
can achieve the asymptotically optimal [22] time complexity 20.292n+o(n) if the
following conditions are met:

– The bucket, within which the reducing pairs are searched, has a size of 2o(n).
– The cost of producing these buckets is less than the cost of searching for

reducing pairs.
– The buckets correspond to spherical cap-shaped filter regions on the unit

ball.
– The centers of these filter regions are uniformly distributed.

For example, the BDGL sieve satisfies all of the above conditions except the
last one. As estimated in [13], the overhead caused by the non-uniformity is
approximately 26 for sieving dimensions around 380. Conversely, our refined
BGJ sieve satisfies all but the third condition; in our case, the filter region is the
intersection of several spherical caps. Due to the complex geometric shapes of
these filter regions, we fail to provide theoretical proof that the overhead caused
by the non-spherical filter regions is subexponential. However, both theoretical
and practical evidence suggest that the time complexity of this refined BGJ
sieve could potentially be 20.292n+o(n), or something remarkably close to it. Most
importantly, our implementation shows that the BDGL sieve is still much slower
than the refined BGJ sieve for SVP with dimensions around 200, and it seems
unlikely that the BDGL sieve will outperform in those dimensions (around 400)
of cryptographic interest.

Optimized Sieving Framework. Furthermore, we propose some improvements
that can be applied to general sieving algorithms. First, our implementation
shows that high-precision floating-point numbers are not indispensable in the
most costly steps of sieving. By appropriately scaling and rounding, the co-
ordinates of the lattice vectors are stored as 8-bit signed integers. We use a
”dual-LLL-reduced” basis to efficiently recover the coefficients of these rounded
vectors when necessary. Using a lower precision representation can save not only
time and memory but, more importantly, memory bandwidth.

4 Ziyu Zhao, Jintai Ding(B), and Bo-Yin Yang

We also provide a unified concept for sieving and enumeration. During the
current sieving process on a local projected lattice, one will find numerous short
vectors that are not short enough to be inserted back into the main database.
However, if one finds such vectors during enumeration, they will definitely be
lifted to see if they yield a shorter vector in the original lattice. So we choose to
further push the idea of on-the-fly-lifting [2] by directly inserting back into the
main database the vectors that are still short after lifting. This strategy saves
both time and memory by offering a much larger dimension for free.

Implementation and Performance. The implementation constituted the most
labor-intensive aspect of our work. We have developed a low-level optimized,
multi-threaded, and memory-efficient CPU implementation of the bgj1, bgj2, and
bgj3 sieves, which correspond to the BGJ sieve with 1, 2, and 3 levels of filtering,
respectively. Our implementation also includes a dual hash [15] optimized with
a locality sensitive filter. All these algorithms can be invoked via a command-
line interface, with parameters such as the number of threads, maximum sieving
dimension, sieving context, and so forth, passed as arguments. We aim to provide
a tool that is user-friendly and can offer the community deeper insights into these
sieving algorithms.

In terms of performance, the bgj3 sieve solved a 169-dimensional SVP Darm-
stadt Challenge in 3.4 days using a 112-core server. This is already several orders
of magnitude faster than the previous highest records based on CPU, which re-
quired 8 months with 224 cores to solve a 166-dimensional challenge. We further
implemented a three-level BGJ sieve on the latest Intel architectures, which we
refer to as bgj3-amx. The bgj3-amx is approximately 7 times faster than the bgj3,
and it managed to solve the 179-dimensional SVP Darmstadt Challenge in just
11.2 days. This is about 4 times faster than the previous 4-GPU implementation
[15], and the RAM cost is also reduced by 40%. Considering the significantly
higher computational power of the GPUs, we actually achieve an efficiency gain
of about 24.5, as shown in Table 5.

Refined Security Analysis. A refined concrete hardness estimation for SVP, based
on our implementation, is given in Section 7. It shows that some of the NIST
PQC candidates, such as Falcon-512, are unlikely to achieve the required security
level. We suggest, for instance in the case of Falcon-512, to modify the parameters
to balance the hardness of forgery and key recovery attacks if a security level of
143 bits is truly necessary.

Roadmap. In Section 2, we introduce necessary notations and basic definition-
s. Subsequently, the refined BGJ sieve is presented in Section 3, followed by
an analysis of its performance in Section 4. Section 5 is dedicated to discussing
optimizations for the general sieving framework. The specifics of our implemen-
tation, along with its performance, are detailed in Section 6. In Section 7, we
provide a refined security analysis of SVP based on our implementation. Finally,
we conclude our work and discuss future directions in Section 8.

BGJ15 Revisited: Sieving with Streamed Memory Access 5

2 Preliminaries

2.1 Lattices and the Shortest Vector Problem

We start counting at zero. All vectors are denoted by bold lowercase letters and
are to be read as column vectors. Matrices are denoted by bold capital letters.
For a full rank matrix B = (b0,b1, · · · ,bn−1), we denote the lattice generated
by the basis B as L(B) = {Bx|x ∈ Zn}. The dual lattice of L(B) is defined to
be L(B∨) where B∨ = (b∨

0 ,b
∨
1 , · · · ,b∨

n−1) such that the dot product ⟨b∨
i ,bj⟩

equals to 1 iff i = j, and span⟨b∨
0 ,b

∨
1 , · · · ,b∨

n−1⟩ = span⟨b0,b1, · · · ,bn−1⟩.
The Euclidean norm of a vector v is denoted by ∥v∥, and the volume of a

lattice L(B) is Vol(L(B)) =
√
det(BTB). For a lattice L, λ1(L) denotes the

length of the shortest nonzero vector in L.

Definition 1 (Shortest Vector Problem (SVP)). Given a lattice basis B,
the shortest problem asks to find a nonzero vector v ∈ L(B) such that ∥v∥ =
λ1(L(B)).

The hardness of the shortest vector problem is the cornerstone of the security
of lattice-based cryptosystems. No efficient (quantum) algorithm is known for
solving SVP. However, the length of the shortest vector in random lattices can
be efficiently estimated as follows

Theorem 1 (Gaussian Heuristic). Suppose K is a measurable body in Rn,
for ”random” full-rank lattice L ⊂ Rn, the number of lattice points in K is ap-
proximately Vol(K)/Vol(L). In particular, λ1(L) ≈

√
n/(2πe)Vol(L) 1

n =: gh(L).

2.2 Local Projected Lattices, Sieving and Dimension For Free

The Gram-Schmidt orthogonalization of a lattice basis B is denoted by B∗ =
(b∗

0,b
∗
1, · · · ,b∗

n−1), which satisfies

µij =
⟨b∗

j ,bi⟩
⟨b∗

j ,b
∗
j ⟩

and b∗
i = bi −

i−1∑
j=0

µijb
∗
j .

We denote the projection orthogonally to span⟨b∗
0,b

∗
1, · · · ,b∗

i−1⟩ by πi, for i =
0, 1, · · · , n − 1. For 0 6 l 6 r 6 n − 1, if L is the lattice generated by B,
the local projected lattice L[l,r] is defined as the lattice generated by B[l,r] =
(πl(bl), πl(bl+1), · · · , πl(br−1)). Also, for v ∈ L[l′,r] where l′ 6 l, we denote
πl(v) by v[l,r].

Given a vector v ∈ L[l,r], l
′ 6 l, assuming v =

∑r−1
i=l λiπl(bi), then ṽ =∑r−1

i=l λiπl′(bi) is a vector in L[l′,r]. Thus, one can efficiently obtain a lifted
vector from ṽ which we denote by Liftl′(v) through a ”size-reduction”. That is,

repeating the process ṽ = ṽ − ⌈ ⟨ṽ,b∗
j ⟩

∥b∗
j ∥2 ⌋πl′(bj) for j = l − 1, · · · , l′.

Now we briefly recall the concept of sieving and dimension for free. Sieving
algorithms, first proposed by Ajtai et al. [1], are the asymptotically fastest algo-
rithms for solving SVP. The time and space complexities of sieving algorithms

6 Ziyu Zhao, Jintai Ding(B), and Bo-Yin Yang

are both exponentially large in the dimension of the lattice. A generic form of
sieving is summarized in Algorithm 1. By ”saturate the ball of radius R”, we
mean that a constant ratio of the lattice points within the ball are found. The
saturation radius is typically chosen to be

√
4/3 · gh(L).

Algorithm 1 Sieving Algorithm [27,2]

Require: The basis B of an n-dimensional lattice L, a saturation radius R.
Ensure: A list L of lattice vectors.
1: L ← a set of 20.2075n+o(n) random vectors in L.
2: while L does not saturate the ball of radius R do
3: for each pair u,v ∈ L do
4: if ∥u− v∥ < supw∈L ∥w∥ then
5: replace the longest vector in L with u− v.
6: return L

The sieving algorithm starts with an exponentially large database of lattice
vectors. Then it tries to find reducing pairs, i.e., pairs of vectors whose difference
is short, and replaces those longer vectors in the list with the difference, until
the list saturates the ball of radius R. After the sieving procedure, for example,
50% of the lattice points in the ball of radius R will be found, which contains
the shortest vector with high probability.

To reduce time and memory costs, it is suggested in [12] to first sieve on a
locally projected lattice L[l,n], and then lift all the vectors in the list to L[0,n].
Note that if v is a short vector in L[0,n], then vl,n is likely also short, and thus
contained in the list. Therefore, we may successfully find the shortest vector in
L[0,n] by sieving on L[l,n], thereby gaining l dimensions ”for free”. This is the
so-called ”dimension for free” technique. According to heuristic analysis, the free

dimension l is asymptotically n ln(4/3)
ln(n/2πe) . In practice, as demonstrated in [12,15],

it can reach up to n/ ln(n).

3 The Sieving Algorithms

3.1 Sieving with locality sensitive filters

The most time-consuming step in Algorithm 1 is the search for reducing pairs. A
naive approach that checks all pairs would lead to a time complexity quadratic in
the size of the list. Since practical sieving algorithms like [26,27] were proposed,
a long series of work [5,6,23,4] has been dedicated to accelerating the search for
reducing pairs. The key idea is to use a randomized divide-and-conquer approach
called locality sensitive filters.

Generally speaking, after the initial database of lattice vectors is generated,
the locality sensitive filter based sieving algorithms repeat three steps, filtering,
reducing, and inserting, until the list saturates the ball of radius R. In the filter-
ing step, the vectors in the list are filtered into many small buckets, such that

BGJ15 Revisited: Sieving with Streamed Memory Access 7

neighboring vectors are more likely to enter the same bucket. For example, the
state-of-the-art BDGL sieve uses filters that correspond to spherical cap-shaped
filter regions in the unit ball. That is, a vector v can pass the filter Fc,α with
center c and radius α if and only if |⟨v, c⟩| > α∥v∥∥c∥. Then, in the reducing
step, the vectors in the same buckets are pairwise checked for reducing pairs.
Finally, during the inserting step, the longest vectors in the list are replaced with
the shorter vectors found in the reducing step.

3.2 The Refined BGJ Sieve

The original BGJ sieve, introduced by Becker, Gama, and Joux in 2015 [6], has
a time complexity of 20.311n+o(n). This algorithm efficiently generates buckets by
applying a series of random filters to the main database, creating progressively
smaller buckets. The search for reducing pairs is confined to the smallest buckets.

In the following sections, we will use ”AllPairSearch” to denote the procedure
that identifies a significant portion of reducing pairs, such as 50% or 99% of
all possible pairs in the vector list, with high probability. The primary distinc-
tion among most sieving algorithms lies in how they implement AllPairSearch.
Therefore, our focus will be on this procedure.

Algorithm 2 AllPairSearch - BGJ15
Require: A list L of N lattice vectors, a minimum number Nmin, a number of repe-

titions B, a goal norm ℓ, and a set of filters F .
Ensure: A list of neighboring vector pairs in L with a sum/difference shorter than ℓ.
1: if N 6 Nmin then
2: return (v,u) ∈ L2 s.t. ∥v ± u∥ < ℓ.
3: N ← ∅.
4: for i = 0, 1, · · · , B − 1 do
5: Pick a random filter f from F
6: L′ is defined as the set of vectors v in L that can pass the filter f .
7: N ← N ∪ AllPairSearch(L′, Nmin, B, ℓ,F).
8: return N .

Algorithm 2 shows the AllPairSearch used in BGJ15, without specifying the
details of the filters. We replace the original filters with spherical cap-shaped
filters in our refined BGJ sieve, as these filters have been shown to be optimal
in terms of time complexity in [22], and the bgj1 sieve in [2] has proven efficient
in practice.

We will refer to the refined BGJ sieve with 1, 2, and 3 levels of filtering
as bgj1, bgj2, and bgj3, respectively. A general version with k levels of filtering
will be denoted by bgjk. Algorithm 3 illustrates the AllPairSearch used in bgj3.
From Algorithm 3, it should be clear what bgjk with a number of repetitions
(B0, · · · , Bk−1) and filter radius (α0, · · · , αk−1) looks like.

Note that the notation Fc,α used in Algorithm 3 was mentioned in Sec-
tion 3.1. Now, we discuss how we choose the parameters αi’s and Bi’s in our

8 Ziyu Zhao, Jintai Ding(B), and Bo-Yin Yang

Algorithm 3 AllPairSearch - bgj3

Require: A list L ofN0 lattice vectors, number of repetitions (B0, B1, B2), filter radius
(α0, α1, α2) and a goal norm ℓ.

Ensure: A list of neighboring vector pairs in L with a sum/difference shorter than ℓ.
1: N ← ∅.
2: for i = 0, 1, · · · , B0 − 1 do
3: Pick a random filter center c0 from L.
4: Compute Li := {v ∈ L|v can pass Fc0,α0}
5: for j = 0, 1, · · · , B1/B0 − 1 do
6: Pick a random filter center c1 from Li.
7: Compute Lij := {v ∈ Li|v can pass Fc1,α1}
8: for k = 0, 1, · · · , B2/B1 − 1 do
9: Pick a random filter center c2 from Lij .
10: Compute Lijk := {v ∈ Lij |v can pass Fc2,α2}
11: N ← N ∪ {(u,v) ∈ L2

ijk|∥u± v∥ < ℓ}.
12: return N .

implementation. In a real implementation, we do not need to find almost all
reducing pairs at once, so the choice of Bi’s is quite flexible. Usually, we do
insertions and resort the database according to length after 0.025N0 reducing
pairs are found. The key points are that the Bi’s should be large enough to en-
sure that sufficient computations occur each time we read the vectors from the
database, thereby minimizing the memory access overhead. They should also be
small enough to keep the RAM usage by these temporary buckets acceptable.
Typical values of Bi/Bi−1 range from 64 to 512, and this largely depends on the
architecture.

The choice of the αi’s is more delicate. The goal is to balance the cost of
the filtering and the quality of the buckets. As shown for the case of bgj1 in
[2], the asymptotically optimal choice (α0 = 0.366) can be far from the practi-
cal optimum (α0 = 0.315 ∼ 0.325). We directly provide the optimal values we
selected for our bgj1, bgj2, bgj3, and bgj3-amx in Table 1. These values were
obtained through a brute force search, meaning we ran the codes with all rea-
sonable choices of αi’s and chose the fastest one. It’s worth noting that even a
small change of approximately 0.01 in αi’s can result in a noticeable slowdown.

Table 1. Chosen Filter Radius in bgj1, bgj3, bgj3, and bgj3-amx

Algorithm α0 α1 α2

bgj1 0.325 - -

bgj2 0.257 0.280 -

bgj3 0.200 0.210 0.280

bgj3-amx 0.210 0.215 0.285

BGJ15 Revisited: Sieving with Streamed Memory Access 9

4 Performance Analysis

4.1 Time Complexity

The time complexity of the algorithm in Algorithm 2 is intrinsically tied to
the class of filters, F . Following the notation in [6], we use Pf to represent
the probability that a vector will pass a random filter from F , and Pp is used
to denote the probability that a pair of vectors, which form an angle of π/3,
are both accepted by the same random filter. The effectiveness of the filters
is typically assessed by the exponent ρ such that P ρ

f = Pp, to which the time
complexity is tightly related.

Theorem 2 (Complexity of AllPairSearch-BGJ15, Theorem 1 in [6]).
Suppose L is a list of N uniformly random vectors in the sphere of dimension
n, ρ is the exponent such that P ρ

f = Pp, then the time complexity of Algorithm 2

is Õ(Nρ).

In our case, F is a set of spherical cap-shaped filters Fc,α for random centers
c and a certain radius α. To compute Pf and Pp in this case, we need to know the
volume of spherical caps Cc,α = {x ∈ Rn|∥x∥2 = 1, ⟨x, c⟩ > α∥c∥} and wedges
(i.e. intersections of spherical caps) Wc1,α1,c2,α2 = Cc1,α1 ∩ Cc2,α2 .

Lemma 1 (Volume of spherical caps and wedges, Lemma 2.1, 2.2 in
[4]). Let µ be the canonical Lebesgue measure over Rn, Sn−1 be the unit sphere
in Rn, then for any α ∈ (0, 1) we have

µ(Cc,α)
µ(Sn−1)

= poly(n) ·
(√

1− α2
)n

.

Furthermore, if the angle between c1 and c2 is θ, then

µ(Wc1,α,c2,α)

µ(Sn−1)
= poly(n) ·

(√
1− 2α2

1 + cos θ

)n

.

According to Lemma 1, we have Pf = poly(n) · (1−α2)n/2 and Pp = poly(n) ·
(1− 4

3α
2)n/2. This implies that asymptotically

ρ ≈ ln(1− 4

3
α2)/ ln(1− α2)

This equation suggests that by choosing a very small α and using multiple levels
of filters, our AllPairSearch can achieve the asymptotically optimal [22] time
complexity of Õ(N4/3) in the sparse regime (N = 2o(n)). However, it is not
guaranteed that filters optimal in the sparse regime will remain optimal in the
dense regime (N = 2O(n)), i.e. in the case of lattice sieving. For instance, cross-
polytope hashing is known to be optimal in the sparse regime [35,3], but it leads
to a suboptimal time complexity of 20.2972n+o(n) [24] when applied to lattice
sieving. Nevertheless, given that the ρ value of our filters is significantly smaller

10 Ziyu Zhao, Jintai Ding(B), and Bo-Yin Yang

than that of the original BGJ sieve (ρ = 1.5), it is reasonable to anticipate that
the complexity of the refined BGJ sieve could potentially be 20.292n+o(n), or
something remarkably close to it (like 20.2972n+o(n)). Anyway, it should be less
than the 20.311n+o(n) of the original BGJ sieve.

More importantly, our main interest lies in the practical performance of siev-
ing for dimensions related to cryptography (approximately 380). It turns out
that the refined BGJ sieve is not only memory-friendly, but also has a much
smaller constant factor than the BDGL sieve.

Fig. 1. Comparation of bgj1, bgj2 and bgj3

We ran a left progressive sieve [2] on a 100-dimensional lattice using the bgj1,
bgj2, and bgj3 sieves. The tests were conducted on a machine equipped with an
Intel Xeon Gold 6338 CPU, running at around 2.8GHz, using a single thread.
The results are shown in Figure 1. The timings represent the amount of time
spent in each sieving dimension before reaching a saturation of 37.5% with a
database size of 3.2 · 20.2075n. We can see that the crossover point between bgj1
and bgj2 is only around 77, and the crossover point between bgj2 and bgj3 is
around 92. That is, the refined BGJ sieve quickly benefits from the improved
bucket quality provided by the second and third levels of filtering.

For sieving dimension 140, which is close to the largest practical sieving
dimension, we compare our bgj3-amx with 2-bdgl gpu from [15]. To run a left
progressive sieve up to a sieving dimension of 140 with a saturation ratio of
37.5%, our bgj3-amx takes approximately 215.2 seconds using 112 threads on
a dual Intel Xeon Platinum 8479 CPU server. In contrast, 2-bdgl gpu requires
about twice the wall time (estimated from Fig.7 of [15]) and around eight times
more floating-point operations. Even with a sieving dimension 240 larger, the
BDGL sieve would only gain 2240·(0.2972−0.2925) = 21.3 and 2240·(0.3112−0.2925) =
24.5 times more speed up than the cross-polytope hashing based example and
the original BGJ sieve, respectively. Therefore, it’s unlikely that the BDGL sieve

BGJ15 Revisited: Sieving with Streamed Memory Access 11

can outperform the refined BGJ sieve in a sieving dimension of 380, unless more
improvements are made in the o(n) term of 20.292n+o(n).

4.2 Solving the Memory Access Issue

In this section, we provide a detailed analysis of the memory access overhead in
bgjk sieves. It turns out that 20.2075n+o(n) streamed main memory accesses are
sufficient for the entire sieving process, and the memory access overhead can be
negligible.

Firstly, we note that streamed memory access is inexpensive, and unlike
random access, its speed should not decrease by a factor square root in the size
of the storage device. If an attacker can afford the GPUs for conducting the
computations in sieving for dimension 380 within a reasonable time, for example
within 10 years, then such an attacker should certainly be able to afford the disks
to store the database of the lattice vectors. The data in different disks can be
streamed out in parallel. Therefore, it is reasonable to assume that the streamed
memory access only slows down by a constant factor, regardless of the size of
the sieving database.

Before go through each steps, we illustrate the key idea by giving a compari-
son with the BDGL sieve. If n is the sieving dimension, BDGL uses a single filter
layer to generate 2O(n) small buckets. Putting the vectors in the main database
into some of these buckets requires randomly accessing the exponentially large
space for these buckets. However, if BGJ uses O(log(n)) successive filter layers
to generate progressively smaller buckets, the number of subbuckets for each
bucket can be 2O(n/ log(n)), which is subexponential (in practice 64 512, see
Page 8). Thus, BGJ only needs to randomly access a subexponential space for
the subbuckets, which is clearly more efficient.

Now we address the most costly part of sieving, the filtering and reducing
steps. To compute all the subbuckets from a large database (a larger bucket or
the main database), it is sufficient to stream the vectors in the larger database
once to a machine that contains all the centers of the filters. This machine checks
whether the streamed vectors can pass those filters. The pairwise dot product in
the last-level buckets in the reducing step is just a matrix multiplication, which
can be implemented in a streamed manner trivially. Therefore, all memory access
in these steps can be done in a streamed manner, and only 20.2075n+o(n) accesses
to the main database are necessary. To make the memory access overhead negli-
gible, we need to further ensure that the memory access cost of generating each
subbucket is less than the cost of further computations within this subbucket.
Note that the computations required are superlinear (with an exponent range
from 0.292/0.2075 ≈ 1.4 to 2) in the size of the subbucket. Thus, as long as
the subbucket size is larger than some constant, the memory access overhead
caused by the streamed memory access, which is only linear in the bucket size,
is negligible.

For the last several levels of very small buckets, the memory access may slow
down the computations if the hardware architectures are not well designed. A
similar phenomenon can already be observed in our bgj3-amx implementation.

12 Ziyu Zhao, Jintai Ding(B), and Bo-Yin Yang

Intel’s AMX instructions were initially designed for AI applications, and thus are
not entirely suitable for sieving, where we need to compute many dot products
of vectors with no more than 160 entries. It only provides 8 tmm registers, so
each register can only be used in 2 ∼ 3 tdpbssd instructions after loading the
data from the cache. As a result, our bgj3-amx suffers significantly from the
latency of tileloadd and tilestored instructions. Nevertheless, this slowdown can
only be at most a constant factor, and such a problem, which is only related
to the speed and size of small caches, is completely different from the issue of
accessing random vectors from an exponentially large database. We also note
that this problem is minor for most of the current CPU (with AVX2 or even
AVX512) and GPU architectures.

The insertion step, although it only requires 20.2075n+o(n) computations, is
somewhat tricky to implement in a streamed manner. Current sieving implemen-
tations usually maintain a hash table to check whether a vector is already in the
list. Such a check, although it has a constant time complexity, requires random
memory access. If we do not check for duplicates before a vector is inserted into
the list, the list will soon be ”polluted” by duplicated vectors. Our solution is to
first use a mergesort to sort the list vectors and the newly found short vectors
together, and then remove the duplicates and the longest ones. This procedure
can be done in a streamed manner at the cost of slightly increasing the time com-
plexity of the insertion step toO(20.2075n+o(n) log(20.2075n+o(n))) = 20.2075n+o(n),
which should be acceptable.

The concept in this subsection is also demonstrated in our bgj3-amx imple-
mentation. Actually, the authors’ idea of how to address the memory access issue
in sieving was initially inspired by the implementation. The detailed computa-
tion speed, time, and bucket size for different steps are listed in Table 2. Data
were collected while sieving in dimension 140 with 112 threads on the dual Intel
Xeon Platinum 8479 CPU server. From this, we can see that although the speed
of the first two filters suffers heavily from the poor RAM bandwidth, this cost
only slightly affects the overall performance, because most of the computations
happen when the buckets get small enough to fit into faster caches, where the
memory bandwidth is no longer a bottleneck.

Table 2. Profiling Data of bgj3-amx

Step Filter-0 Filter-1 Filter-2 Reducing

Speed (TOPS) 11.81 11.10 39.19 116.4

Bucket size 278.8GB 3.386GB 80.75MB 556.7KB

Data in RAM RAM L3-Cache L2-Cache

Total Time 544.7s 451.4s 762.4s 3397s

BGJ15 Revisited: Sieving with Streamed Memory Access 13

5 Optimizations

5.1 Sieving with Low Precision

In all of the sieving algorithms we implemented (bgj1, bgj2, bgj3, bgj3-amx),
the entries of the lattice vectors in the main sieving database are stored as 8-
bit signed integers. Most of the computationally intensive parts of the sieving,
including the filtering and reducing steps, are also performed with 8-bit precision.
Only during the insertion step do we recover the newly found vectors with 32-bit
precision. These vectors are then properly scaled, rounded, and carefully checked
before being inserted into the main database. Vectors that do not pass the check
are discarded (e.g., because the norm is too large or not all the entries lie in
the range [−127, 127]). It turns out that if one carefully maintains the main
database, the relative error of the dot product results is typically less than 1%
and the outliers are rejected during the check before being inserted into the
main database. Thus the precision loss does not significantly affect the sieving
procedure.

We provide details on the most intricate parts of the 8-bit implementation.
For the choice of the scaling factor, if B is the basis of the lattice, using the
notation in Section 2, the scaling factor in our implementation is chosen to
be 254.0 · (sup06i6n−1 ∥b∗

i ∥)−1. To recover the accurate vectors from the 8-bit
representations, we first use short dual vectors of the basis to compute the integer
coefficients with respect to the basis B. We then recover the vector using these
coefficients. Such short dual vectors can be obtained by first computing the dual
basis of B, and running the LLL algorithm [25] on the dual basis. The LLL
algorithm here is necessary.

Compared to previous sieving implementations based on 32-bit floating-point
numbers, the use of 8-bit precision leads to a 2 ∼ 4 times improvement, both in
terms of speed and memory usage. These improvements contribute significantly
to the refined security estimation in Section 7.

5.2 Seeking More Dimension for Free

From Dual Hash to LSF-based Dual Hash. In practice, to reduce both time and
memory costs, a common strategy is to aim for more dimension for free, i.e., to
find short enough vectors with a smaller sieving dimension. One way to achieve
this is by using the dual hash technique proposed in [15]. Once sieving on the
local projected lattice L[l,n] is complete, i.e., exponentially many short vectors
in L[l,n] have been found, the dual hash technique suggests lifting all pairwise
sums/differences of these vectors to L[0,l]. The lifting is done cleverly: a hash
value is computed for each vector, and only the ”lift-worthy” vector pairs with
hash values close to each other are lifted. Checking for hash value pairs is much
faster than lifting, thus the dual hash technique can significantly reduce the
lifting cost and works well in the GPU implementation in [15].

However, the cost of the dual hash technique is nevertheless quadratic in the
size of the list. In our preliminary CPU implementation, we tried the dual hash

14 Ziyu Zhao, Jintai Ding(B), and Bo-Yin Yang

technique and found it to be unacceptably slow in sieving dimensions only around
120. A natural idea to improve this is to use locality sensitive filters. We choose to
use the filters Gc,ℓ such that v ∈ L[l,n] can pass Gc,ℓ iff ∥Lift0(v±c)∥2−∥v±c∥2 <
ℓ2. Pairwise checks for the dual hash values are only done for vectors that can
pass the same filter. This leads to a 2 ∼ 10 times improvement in efficiency for
sieving dimensions ranging from 100 to 140. However, even the LSF-based dual
hash still takes extra time at least comparable to the time for sieving itself, thus
not ”free”, which is still unsatisfactory.

Observations. Our current solution is based on two simple observations. Firstly,
we propose a unified concept for the left progressive sieve and enumeration.
During the sieving process on a local projected lattice, numerous found vectors
are not short enough to be inserted back into the main database. However, many
of these vectors are only slightly longer (for example, 5%∼10% longer) than the
threshold. If such short vectors in the local projected lattice L[l,n] are found
during enumeration, they will certainly be lifted to see if they yield a short
vector in L[l′,n] for some l′ 6 l. In our preliminary implementation, these vectors
are simply discarded, wasting potential short vectors that could be helpful in
enumeration. This suggests that our implementation may not be optimal and
could benefit from these short vectors.

The second observation is that if a vector v ∈ L[l,n] is short after lifting to
L[0,n], then it cannot be too long. According to Gaussian heuristics, if we are
sieving on L[l,n] and lifting all sums/differences of the vectors in the list to L[0,n],
we suggest estimating the minimal length of those lifted vectors as follows:

min
06α60.5

((
N2 · (1− α2)n/2

)−2/l

· gh(L[0,l])
2 + (2− 2α) ·

(
1.18 · gh(L[l,n])

)2)1/2

where N is the size of the list, and the number 1.18 is chosen because after
the sieving is done, the median length of the vectors in the list is around 1.18 ·
gh(L[l,n]). This estimation is slightly pessimistic, as many vectors in the list
are much shorter than the median length. In practice, this estimated length
can be achieved on average after exhausting 15%∼25% of the search space. If
we are targeting a dimension for free of around 30, it turns out that the α to
minimize the estimation formula is typically larger than 0.4, even larger than
0.45 when the sieving dimension is large (e.g., 140). This suggests that even if a
pair of vectors pass the dual hash test, they are still unlikely to be ”lift-worthy”
because the cosine of the angle between them is usually much less than 0.4, i.e.,
the sum/difference of the two vectors is already too long without lifting. This
observation suggests that it may be possible to further reduce the number of
lifts while maintaining comparable lifting quality.

Our Solution. In our final implementation, we assign a score to each vector in
the list, rather than naively using the length to assess the quality of the vectors.

BGJ15 Revisited: Sieving with Streamed Memory Access 15

The score of a vector v ∈ L[l,n] is computed as

score(v) = inf
06l′6l.

∥Liftl′(v)∥
gh(L[l′,n])

Vectors with smaller scores are preferred, and we use newly found vectors with
small scores to replace the vectors in the list with larger scores during the inser-
tion step. To find vectors with small scores, in the filtering and reducing steps,
if s is the score of a 77% quantile vector in the list, we aim to find vectors in
L[l,n] with a length less than 1.07 ·s ·gh(L[l,n]). During insertion, scores for these
vectors are computed and only 0.5% ∼ 2% of these collected vectors turn out to
have a small enough score to be inserted into the list. The score computing speed
in our implementation is about 221 ∼ 222 vectors/(second·core), and the overall
cost of computing the scores is typically less than 10% of the sieving time, which
is negligible.

In summary, our final implementation further pushes the idea of on-the-fly-
lifting [2] by directly inserting vectors that are short after lifting into the main
database. It turns out that the left progressive sieve procedure even becomes
slightly faster after enabling this new technique. Intuitively, this is because some
work in the next few sieving dimensions is done by reusing the vectors discarded
in the original implementation. Both the overall time and space cost for solving
SVP are significantly reduced by the larger dimension for free. For a comparison
with the state-of-the-art, one can compare the dimension for free of our Darm-
stadt SVP Challenge results (those challenges with dimension 6 162 were solved
with the preliminary code) in Section 6.4 with Table 1 in [15].

6 Implementation Details

6.1 General Design Principles

Our implementation, crafted in C++, extensively utilizes intrinsic functions for
low-level optimizations. We compile the code using the clang-17.0.6 compiler,
with the -O3 -march=native optimization flag enabled to support the latest Intel
CPU architectures. For multi-threading, we have opted for the OpenMP library.

Most of our implemented algorithms, including bgj1, bgj2, bgj3, bgj3-amx,
and the locality sensitive filter-based dual hash, are accessible directly from a
command-line interface. Parameters such as the number of threads, maximum
sieving dimension, sieving context, among others, can be passed as arguments.
Notably, all our SVP challenges were solved using this command-line tool, elim-
inating the need for direct interaction with the C++ interfaces. We anticipate
that this tool will be user-friendly and provide the community with deeper in-
sights into these sieving algorithms.

6.2 Vector Representation and Data Structures

In our implementation of the sieving algorithms, we manage the following data:
the lattice basis, the main database of lattice vectors, a unique identifier (uid)
hash table, and a list of ”compressed vectors” for sorting.

16 Ziyu Zhao, Jintai Ding(B), and Bo-Yin Yang

Each coordinate of the lattice basis is stored as the quad float type in NTL
[34], offering 106-bit precision. We perform the computation of Gram-Schmidt
orthogonalization, the local projected lattice, and the LLL reductions using the
quad float type to ensure the original basis remains unaffected by numerical er-
rors. Notably, we have developed inline assembly code based on AVX512 instruc-
tions for the basic quad float vector operations, which makes these basis-related
computations extremely fast.

For each vector in the main database, we record its coordinates (8-bit signed
integers, aligned to 32 bytes), the square of the norm (32-bit signed integers),
the sum of all coordinates (32-bit signed integers), and a 64-bit uid. Before
inserting a vector into the primary database, we first recover it to 32-bit precision
and then round it, preventing the accumulation of numerical errors during the
sieving procedure. Consequently, this most space-consuming part of the data
only requires 176 bytes per vector. The rationale for maintaining the sum of the
vector coordinates will be explained in Section 6.3.

The uid hash table serves to check whether a vector already exists in the main
database. We initially tried the std::unordered set in the standard C++ library,
and found it extremely inefficient in terms of RAM usage. It consumed 40 ∼ 50
bytes per uid, which is more than 25% of the space cost of the main database.
Therefore, we strongly recommend replacing the std::unordered set with a better
unordered set implementation, for instance, Sparsepp [29] to reduce both time
and RAM costs. Also, one should keep in mind that for sieving dimensions > 140,
the uid of different vectors may collide with a high probability.

To efficiently sort the vectors in the list, we follow the approach in [2] to
maintain a list of ”compressed vectors”. Our compressed vectors contain a 16-
bit norm/score of the vector and a 32-bit integer to record the address of the
corresponding vector in the main database. Sorting is only performed with these
”compressed vectors” to minimize the cost of data movement.

6.3 Low-level Optimizations

In the ensuing subsection, we give details of those computationally intensive
parts of the sieving implementation. Predominantly, the computations involved
in the filtering and reduction phases consist of dot products followed by com-
parisons to check whether the result exceeds a predetermined threshold.

In our ”AVX2” implementations, namely bgj1, bgj2, and bgj3, the dot prod-
ucts of int8 t vectors are first computed by vpdpbusd on ymm registers. We then
use the vphaddd instruction to horizontally add the 32-bit results in the ymm
registers, simultaneously for 8 dot products. The final comparison is conduct-
ed using vpcmpgtd. As a result, the theoretical throughput for a dot product
computation is less than 4 clock cycles. Consequently, we have opted not to use
the simhash trick [10,17,12], which gives no improvement even in our preliminary
bgj1 implementation based on 32-bit floating-point numbers. Furthermore, in our
bgj2, bgj3, and particularly in the bgj3-amx implementation, we have chosen to
discard the 3-reductions [19] due to the excessive cost of additional comparisons
and data movements.

BGJ15 Revisited: Sieving with Streamed Memory Access 17

The vpdpbusd instruction, originally designed for AI applications, can only
compute the dot product of a uint8 t vector and a int8 t vector. Therefore, when
computing the dot product, we first need to add 0x80 to each entry of one of the
vectors to convert it into a uint8 t vector. Subsequently, we subtract 128 times
the sum of the entries of the other vector, after the the dot product is done.

In our bgj3-amx implementation, the dot products are computed using the
tdpbssd instruction in Intel’s Advanced Matrix Extensions (AMX). AMX is pri-
marily designed for efficiently computing large matrix multiplications, thus not
very suitable for sieving. In fact, while only 3 tdpbssd instructions are sufficient
to compute 256 dot products, a significant amount of time is spent on loading
the data and storing the results with tileloadd and tilestored. Additionally, we
need to transpose one of the 16 by 64 int8 t matrices before it is loaded into
the tmm registers for computing dot products. Our current implementation uses
vpunpckldq, vpunpckhdq, and vshufi64x2 instructions to accomplish this, which is
relatively slow. Furthermore, the comparisons performed after the dot products
are also costly. As a result, our bgj3-amx implementation only achieves a speedup
of 6 to 7 times compared to bgj3, which is not satisfactory. We plan to further
optimize the code to improve performance.

6.4 Performance and SVP Challenge results

We now proceed to showcase the results of the Darmstadt SVP challenge[31],
as a means to justify our work and compare it with the current state-of-the-art.
The specifics of the machines used for our SVP challenges are detailed in Table 3.
Most of the large-scale challenges were solved with a combination of CPU times
on X1 and X2, differing only in the amount of RAM, hence we do not distinguish
between them and simply refer to them as X in Table 4. Also, in our low-level
optimized implementations, hyperthreading does not offer any benefits.

Table 3. Details of the Machines Used in the Challenges

Machine CPUs base freq. cores RAM

D 2xIntel Xeon Gold 6338 2.00Ghz 64 256GB

Y 2xIntel Xeon Platinum 8336C 2.30Ghz 64 256GB

X1 2xIntel Xeon Platinum 8479 2.00Ghz 112 512GB

X2 2xIntel Xeon Platinum 8479 2.00Ghz 112 1024GB

The performance details of our implementation for solving Darmstadt SVP
Challenges are provided in Table 4. Here, ”D4F”, ”MSD”, and ”dh” denote
”dimension for free”, ”maximum sieving dimension” and ”locality-sensitive filter-
based dual hash” (see Section 5.2 for more details), respectively. The RAM
usage for most of the smaller challenges was not meticulously recorded, hence
it is not displayed in the table. We just report that our implementation only
requires 0.87TB of RAM for a sieving dimension of 146, with approximately

18 Ziyu Zhao, Jintai Ding(B), and Bo-Yin Yang

3.2 · (4/3)146/2 ≈ 232 vectors in the main database. This is merely 60% of the
RAM usage of the currently most memory-efficient implementation [15], and
only 25% of the RAM usage of previous CPU implementations.

As proof, we present our short vector for the 183-dimensional Darmstadt
SVP Challenge with seed 0:

(155, -136, 243, 312, -81, 355, -116, 714, -632, 102, -711, 48, 201, -224, -60, -672,
151, -45, 197, -223, -153, 143, 133, 38, -56, 133, -482, -41, -102, 201, 220, 87, -116,
-141, 116, -690, -246, 104, -209, 152, 422, 165, -51, -452, -308, -366, 424, 122, 308,
-109, -277, -244, -273, 30, 33, 221, -484, -19, -112, 116, 206, -151, 69, 63, 37, 111,
-240, 128, -48, 93, -157, -354, -216, 263, -87, -61, -212, 254, -120, 210, 309, -164,
52, -19, -6, 91, -124, -74, 181, 369, -237, 133, -10, -26, -607, -50, -132, -6, 123,

-345, -130, -147, -3, -64, 174, 65, -375, 57, -673, 466, 83, 51, -465, -254, -8, -221,
17, -159, -142, -524, 24, 284, 99, -32, 492, -95, 251, -68, -108, 29, -577, 984, 301,
111, -58, 394, -102, -330, 17, -225, -151, -46, -35, 381, -211, -24, -207, 304, 133,

-189, -37, 59, 245, -53, 44, -97, -94, 104, -475, 326, 271, -115, -575, -69, -330, 199,
-238, 2, 316, -170, -164, -100, 5, -66, -532, 64, 258, -316, 66, 315, 167, -236, 52)

As seen in Table 4, even without AMX accelerations, the plain bgj3 imple-
mentation is already extremely fast. It solved the 169-dimensional challenge in
just 3.43 days using 112 cores. This is several hundred times faster compared to
the previous highest record based on CPU, which took eight months with 224
cores to solve a 166-dimensional challenge. Moreover, when AMX acceleration is
enabled, bgj3-amx solved the 179-dimensional challenge in only 11.2 days. This
is approximately four times faster than the previous 4-GPU implementationin
[15], which solved the 180-dimensional challenge in 51.6 days.

We believe direct GPU-CPU time comparisons are not apples-to-apples due
to the significantly higher computational power of GPUs. A comparison of our
results with previous GPU-based records, in terms of gate count, is summarized
in Table 5. It shows our efficiency gain relative to [15] is approximately 24.5, as
fp16 > 2 ∗ int8.

7 Refined Security Analysis

Finally, we present a refined security analysis of lattice-based schemes based
on the results from the previous sections. We will mainly focus on Falcon [30],
Kyber [9], and Dilithium [14], which have been selected by NIST for the PQC
standardization process.

In Falcon’s document, the BKZ block size B required to forge a Falcon-

512 signature is estimated to be 411. The cost of BKZ is computed as n3

4B2

times the cost of solving the shortest vector problem instances in dimension B,
according to [2]. Taking into account the dimensions for free, the actual sieving

dimension B′ is estimated to be B −
⌊

B ln(4/3)
ln(B/2πe)

⌉
= 374. Therefore, considering

only the first asymptotic term in the complexity of a sieve leads to a number

of n3

4B2 · (
√
1.5)B

′ ≈ 2120.0 classical gates. Now the key point is, in Falcon’s
document, the constant term of the sieving complexity was estimated based on
the real performance of the sieving implementation in [2], which, however, has
been significantly reduced in our work.

BGJ15 Revisited: Sieving with Streamed Memory Access 19

Table 4. Darmstadt SVP Challenge Results

Dim D4F MSD Norm Norm/GH CPU time Wall time Machine Algorithm

100† 18 82 2214 0.87028 44.7s 44.7s‡ D bgj1

120† 21 99 2654 0.95660 73.7m 73.7m‡ D bgj2

130† 26 104 2812 0.97516 9.92h 11.2m D bgj2

140† 20 120 2875 0.96283 74.1h 77.3m D bgj3

150 31 119 3084 0.99791 14.5d 5.70h D bgj3&dh

151 24 127 3195 1.03167 58.2d 22.3h D bgj3&dh

153 20 133 3173 1.01477 109d 41.6h D bgj3&dh

157 23 134 3271 1.03367 185d 70.2h D bgj3

161 31 130 3344 1.04346 266d 4.20d Y bgj3&dh

162 26 136 3325 1.03752 211d 3.30d Y bgj3&dh

165∗ 40 125 3370 1.04215 117d 1.05d X bgj3

166∗ 28 138 3376 1.03988 352d 3.14d X bgj3

169∗ 33 136 3415 1.04120 1.05y 3.43d X bgj3

179∗ 32 147 3523 1.04651 3.40y 11.2d X bgj3-amx

183∗ 34 149 3536 1.04034 9.20y 30d X bgj3-amx&dh

† The seed is not zero.
‡ Only a single thread is used.
∗ The technique in Section 5.2 is enabled for these instances.

For example, on the dual Intel Gold 6338 server mentioned in Table 3, a
100-dimensional left progressive sieve with bgj3 takes only 1056.85 seconds on a
single core. It achieves a reducing speed of about 70G int8 t fused multiply-add
(FMA) operations per second and a filtering speed of 47G int8 t FMA operations
per second. Profiling data indicates that the total number of dot products during
the left progressive sieve does not exceed 650G. Therefore, if we model the gate
cost of an int8 t FMA operation as 2 · 82 + 8 = 136 classical gates, an upper
bound of the gate cost for a 100-dimensional left progressive sieve is

650 · 230 · 100 · 136 ≈ 223.8 · (
√
1.5)100,

which suggests the constant term to be at most around 223.8. Thus, the total
number of gates required to forge a Falcon-512 signature is now estimated to
be 2120.0 · 223.8 ≈ 2143.8, using the same methodology as in Falcon’s document,
without considering

1. The refined BKZ strategy, for example, as described in [36]. Expected influ-
ence on the gate-count estimate: 2−3.5 ∼ 2−2.

2. The simhash trick [10,17,12], which, although not beneficial in our implemen-
tation, can significantly reduce the cost if we focus solely on the gate count.
It’s possible to perform a gate-saving xor-popcnt check on the simhash val-
ues before each int8 t dot product, and only compute the dot product if the
xor-popcnt check passes. Expected influence on the gate-count: 2−3.5 ∼ 2−2.

20 Ziyu Zhao, Jintai Ding(B), and Bo-Yin Yang

Table 5. Comparison with Previous GPU Records

Dim Walltime Platform FLOP

179 11.2d 112 cores, no GPU∗ 266.0 ≈ 213.6 · (3/2)179/2 int8 operations

183 30d 112 cores, no GPU∗ 267.4 ≈ 213.9 · (3/2)183/2 int8 operations

180 51.6d 4 × Nvidia RTX 2080ti 269.9 ≈ 217.3 · (3/2)180/2 fp16 operations†

186 50.3d 4 × Nvidia A100 271.4 ≈ 217.0 · (3/2)186/2 fp16 operations‡

∗ The average speed is approximately 70TOPS.
† See Table 1 in [15] for more details.
‡ Unclear how many floating-point operations the 186 took. This number is estimated
as 269.9 · (50.3/51.6) · (312/107) ≈ 271.4, where 312/107 represents the ratio of the
theoretical performance of the A100 to the 2080ti.

3. The asymptotic slowdown of the BGJ sieve compared to the BDGL sieve. It’s
possible that the refined BGJ sieve has a complexity slightly worse than the
BDGL sieve, similar to the case for the cross-polytope hash-based example
mentioned in Section 4.1, which gets a 2(0.2972−0.2925)·274 ≈ 21.3 times more
slowdown for sieving dimension 374. Expected influence on the gate-count:
20 ∼ 23.

As a result, we estimate that the minimal number of classical gates required to
forge a Falcon-512 signature falls within the range [2136.8, 2142.8]. This is unlikely
to meet NIST’s security requirement of 143 bits for level 1 security. More im-
portantly, now the cost of memory access should no longer be used to argue for
even one more bit of security in this range. We suggest modifying the parameters
for Falcon-512 to balance the difficulty of forgery and key recovery attacks if a
security level of 143 bits is truly necessary.

In the end, in Table 6, we present our refined bit security estimates for Falcon,
Kyber, and Dilithium, taking into account the three factors mentioned in the
previous paragraph. Specifically, an upper bound of log2(gates) is estimated as
log2(n

3/4B2) + log2(1.5) · B′/2 + 23.8 − 2 − 2 + 3. The BKZ block size B and
the sieving dimension B′ in the table are directly taken from their respective
documents without any modifications.

Table 6. Refined Estimation of Bit Security

Falcon-512 Kyber-512 Dilithium-2

B 411 413 433

B′ 374 375 394

log2(gates) [136.8, 142.8] [137.1, 143.1] [145.5, 151.5]

BGJ15 Revisited: Sieving with Streamed Memory Access 21

8 Conclusion and Future Directions

In this work, we revisit the BGJ sieve, which proves to be of both theoretical and
practical interest. We show that the BGJ sieve is inherently memory-friendly and
exhibits performance comparable to the state-of-the-art BDGL sieve, at least for
problem scales related to cryptography. This could provide a solution to the long-
debated issue of estimating RAM access overhead in large-scale, sieving-based
lattice attacks. Supported by our implementation, it suggests that some of the
NIST PQC candidates, such as Falcon-512, are unlikely to meet NIST’s security
requirements. Parameter adjustments are recommended if 143 bits security is
really necessary. A deeper theoretical analysis of the refined BGJ sieve could be
a direction for future work.

From a practical perspective, we have provided a highly optimized implemen-
tation of the BGJ sieves based solely on CPU, which even surpasses the current
state-of-the-art GPU implementations. The improvement stems from the small-
er o(n) term of the BGJ sieve, smaller bucket size, better locality, an improved
sieving framework, and a highly optimized implementation. Such an implementa-
tion should be helpful for a deeper understanding of these asymptotically faster
sieving algorithms.

Finally, we would like to note that our choice to implement the BGJ sieve
solely based on CPU does not mean that a GPU implementation is infeasible.
Indeed, if one uses a 20 to 30 TB disk to store the main database, places the
buckets after the first filter in a 1 to 2 TB system RAM, and puts the buckets
after further filters in each RTX 4090 GPU’s 24GB with ECC memory, one
may be able to do a disk-based bgj3- or bgj4-gpu that gets close to the GPUs’
theoretical throughput. This is because the buckets transferred to the GPU RAM
are still very large and should not suffer much from the poor bandwidth from
system RAM to GPU RAM, which led to a significant slowdown in the case
of 2-bdgl gpu in [15]. We estimate that the 1.05-Hermite-SVP challenge with
dimensions ranging from 200 to 210 should be solvable in a reasonable time,
for example, on an 8x Nvidia RTX 4090 machine, which has a theoretical peak
performance of 8 · 660 = 5280TOPS for 8-bit precision, with a sieving dimension
of 160 to 170. However, for dimensions greater than 210, the challenge should be
considered hard due to the bottleneck of computational resources, even though
increasing the disk space for a larger sieving dimension is not too difficult.

Nevertheless, such an implementation is by no means easy. Therefore, we
have chosen to develop a CPU-based implementation, which is much easier to
develop, tune, debug, and use. Moreover, it is sufficient to illustrate most of the
concepts we aim to demonstrate, and it is already fast enough to validate the
improvements.

Parallel Work. We recently became aware of a parallel work by Samuel Jaques
[20], which also explores the memory access cost of sieving algorithms. [20] fo-
cuses more on the theoretical side, while our research is rooted in and supported
by concrete implementation. Although our approaches and findings are indepen-
dent and differ significantly, we appreciate the contributions of their research,

22 Ziyu Zhao, Jintai Ding(B), and Bo-Yin Yang

and believe that both our works collectively advance the understanding of the
concrete cost of lattice attacks.

References

1. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Symposium on the Theory of Computing (2001), https://doi.
org/10.1145/380752.380857

2. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction. In:
Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2019. p-
p. 717–746. Springer International Publishing, Cham (2019), https://doi.org/10.
1007/978-3-030-17656-3 25

3. Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I., Schmidt, L.: Practical and
optimal lsh for angular distance. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama,
M., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 28.
Curran Associates, Inc. (2015), https://proceedings.neurips.cc/paper files/paper/
2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf

4. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest
neighbor searching with applications to lattice sieving. In: Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 10–
24. SODA ’16, Society for Industrial and Applied Mathematics, USA (2016),
https://doi.org/10.1137/1.9781611974331.ch2

5. Becker, A., Gama, N., Joux, A.: Solving shortest and closest vector problems:
The decomposition approach. Cryptology ePrint Archive, Paper 2013/685 (2013),
https://eprint.iacr.org/2013/685

6. Becker, A., Gama, N., Joux, A.: Speeding-up lattice sieving without increasing the
memory, using sub-quadratic nearest neighbor search. Cryptology ePrint Archive,
Paper 2015/522 (2015), https://eprint.iacr.org/2015/522

7. Bernstein, D.J.: round 2 official comment: crystals-kyber (2020), https://groups.
google.com/a/list.nist.gov/g/pqc-forum/c/o2roJXAlsUk/m/69c5Ph9vCAAJ

8. Bernstein, D.J.: Structure of memory access in sieving (2023), https://groups.
google.com/a/list.nist.gov/g/pqc-forum/c/sqyLiTAAHik

9. Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Stehlé, D.: CRYSTALS-KYBER. Technical report, National Institute
of Standards and Technology, 2019. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/selected-algorithms-2022

10. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:
Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Com-
puting. pp. 380–388. STOC ’02, Association for Computing Machinery, New Y-
ork, NY, USA (2002). https://doi.org/10.1145/509907.509965, https://doi.org/10.
1145/509907.509965

11. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) Advances in Cryptology - ASIACRYPT 2011 - 17th International
Conference on the Theory and Application of Cryptology and Information Security,
Seoul, South Korea, December 4-8, 2011. Proceedings. Lecture Notes in Computer
Science, vol. 7073, pp. 1–20. Springer (2011). https://doi.org/10.1007/978-3-642-
25385-0 1

https://doi.org/10.1145/380752.380857
https://doi.org/10.1145/380752.380857
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://proceedings.neurips.cc/paper_files/paper/2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf
https://doi.org/10.1137/1.9781611974331.ch2
https://eprint.iacr.org/2013/685
https://eprint.iacr.org/2015/522
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/o2roJXAlsUk/m/69c5Ph9vCAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/o2roJXAlsUk/m/69c5Ph9vCAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/sqyLiTAAHik
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/sqyLiTAAHik
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1145/509907.509965
https://doi.org/10.1145/509907.509965
https://doi.org/10.1145/509907.509965
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1

BGJ15 Revisited: Sieving with Streamed Memory Access 23

12. Ducas, L.: Shortest vector from lattice sieving: A few dimensions for free. In:
Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2018.
pp. 125–145. Springer International Publishing, Cham (2018), https://doi.org/10.
1007/978-3-319-78381-9 5

13. Ducas, L.: Estimating the hidden overheads in the bdgl lattice sieving algorith-
m. In: Cheon, J.H., Johansson, T. (eds.) Post-Quantum Cryptography. pp. 480–
497. Springer International Publishing, Cham (2022), https://doi.org/10.1007/
978-3-031-17234-2 22

14. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: CRYSTALS-DILITHIUM. Technical report, National Institute of S-
tandards and Technology, 2019. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/selected-algorithms-2022

15. Ducas, L., Stevens, M., van Woerden, W.: Advanced lattice sieving on gpus, with
tensor cores. In: Canteaut, A., Standaert, F.X. (eds.) Advances in Cryptology –
EUROCRYPT 2021. pp. 249–279. Springer International Publishing, Cham (2021),
https://doi.org/10.1007/978-3-030-77886-6 9

16. Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free (talk)
(April 2018), https://eurocrypt.iacr.org/2018/Slides/Monday/TrackB/01-01.pdf

17. Fitzpatrick, R., Bischof, C., Buchmann, J., Dagdelen, Ö., Göpfert, F., Mariano,
A., Yang, B.Y.: Tuning gausssieve for speed. In: Aranha, D.F., Menezes, A. (eds.)
Progress in Cryptology - LATINCRYPT 2014. pp. 288–305. Springer International
Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-16295-9 16

18. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) Advances in Cryptology – EUROCRYPT 2010. pp. 257–278.
Springer Berlin Heidelberg, Berlin, Heidelberg (2010), https://doi.org/10.1007/
978-3-642-13190-5 13

19. Herold, G., Kirshanova, E.: Improved algorithms for the approximate k-list problem
in euclidean norm. In: Fehr, S. (ed.) Public-Key Cryptography – PKC 2017. pp.
16–40. Springer Berlin Heidelberg, Berlin, Heidelberg (2017), https://doi.org/10.
1007/978-3-662-54365-8 2

20. Jaques, S.: Memory adds no cost to lattice sieving for computers in 3 or more
spatial dimensions. Cryptology ePrint Archive, Paper 2024/080 (2024), https://
eprint.iacr.org/2024/080

21. Kannan, R.: Improved algorithms for integer programming and related lattice
problems. In: Johnson, D.S., Fagin, R., Fredman, M.L., Harel, D., Karp, R.M.,
Lynch, N.A., Papadimitriou, C.H., Rivest, R.L., Ruzzo, W.L., Seiferas, J.I. (ed-
s.) Proceedings of the 15th Annual ACM Symposium on Theory of Computing,
25-27 April, 1983, Boston, Massachusetts, USA. pp. 193–206. ACM (1983). http-
s://doi.org/10.1145/800061.808749

22. Kirshanova, E., Laarhoven, T.: Lower bounds on lattice sieving and information
set decoding. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtu-
al Event, August 16-20, 2021, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 12826, pp. 791–820. Springer (2021). https://doi.org/10.1007/978-3-
030-84245-1 27

23. Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology
– CRYPTO 2015. pp. 3–22. Springer Berlin Heidelberg, Berlin, Heidelberg (2015),
https://doi.org/10.1007/978-3-662-47989-6 1

https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-031-17234-2_22
https://doi.org/10.1007/978-3-031-17234-2_22
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-030-77886-6_9
https://eurocrypt.iacr.org/2018/Slides/Monday/TrackB/01-01.pdf
https://doi.org/10.1007/978-3-319-16295-9_16
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-662-54365-8_2
https://doi.org/10.1007/978-3-662-54365-8_2
https://eprint.iacr.org/2024/080
https://eprint.iacr.org/2024/080
https://doi.org/10.1145/800061.808749
https://doi.org/10.1145/800061.808749
https://doi.org/10.1007/978-3-030-84245-1_27
https://doi.org/10.1007/978-3-030-84245-1_27
https://doi.org/10.1007/978-3-662-47989-6_1

24 Ziyu Zhao, Jintai Ding(B), and Bo-Yin Yang

24. Laarhoven, T., Weger, B.: Faster sieving for shortest lattice vectors using spherical
locality-sensitive hashing. In: Lauter, K., Rodŕıguez-Henŕıquez, F. (eds.) Progress
in Cryptology - LATINCRYPT 2015 (Fourth International Conference on Cryp-
tology and Information Security in Latin America, Guadalajara, Mexico, August
23-26, 2015). pp. 101–118. Lecture Notes in Computer Science, Springer, Germany
(2015). https://doi.org/10.1007/978-3-319-22174-8 6

25. Lenstra, A.K., Lenstra, H.W., Lovász, L.M.: Factoring polynomials with ratio-
nal coefficients. Mathematische Annalen 261, 515–534 (1982), https://doi.org/10.
1007/BF01457454

26. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest
vector problem. In: Proceedings of the Twenty-First Annual ACM-SIAM Sympo-
sium on Discrete Algorithms. pp. 1468–1480. SODA ’10, Society for Industrial and
Applied Mathematics, USA (2010)

27. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem
are practical. Journal of Mathematical Cryptology 2(2), 181–207 (2008). http-
s://doi.org/doi:10.1515/JMC.2008.009, https://doi.org/10.1515/JMC.2008.009

28. Pohst, M.: On the computation of lattice vectors of minimal length, successive
minima and reduced bases with applications. SIGSAM Bull. 15(1), 37–44 (feb
1981). https://doi.org/10.1145/1089242.1089247

29. Popovitch, G.: Sparsepp: A fast, memory efficient hash map for c++. https://
github.com/greg7mdp/sparsepp

30. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin,
T., Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Technical report,
National Institute of Standards and Technology, 2019. available at https://csrc.
nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022

31. Schneider, M., Gama, N.: Darmstadt svp challenges (2010), https://www.
latticechallenge.org/svp-challenge/index.php

32. Schnorr, C., Euchner, M.: Lattice basis reduction: Improved practical algorithm-
s and solving subset sum problems. Math. Program. 66, 181–199 (1994). http-
s://doi.org/10.1007/BF01581144

33. Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci. 53(2), 201–224 (jun 1987)

34. Shoup, V.: Ntl: A library for doing number theory. https://libntl.org/
35. Terasawa, K., Tanaka, Y.: Spherical lsh for approximate nearest neighbor search

on unit hypersphere. In: Dehne, F., Sack, J.R., Zeh, N. (eds.) Algorithms and
Data Structures. pp. 27–38. Springer Berlin Heidelberg, Berlin, Heidelberg (2007),
https://doi.org/10.1007/978-3-540-73951-7 4

36. Zhao, Z., Ding, J.: Practical improvements on bkz algorithm. In: Dolev, S., Gudes,
E., Paillier, P. (eds.) Cyber Security, Cryptology, and Machine Learning. pp. 273–
284. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-
031-34671-2 19

https://doi.org/10.1007/978-3-319-22174-8_6
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/doi:10.1515/JMC.2008.009
https://doi.org/doi:10.1515/JMC.2008.009
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1145/1089242.1089247
https://github.com/greg7mdp/sparsepp
https://github.com/greg7mdp/sparsepp
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://www.latticechallenge.org/svp-challenge/index.php
https://www.latticechallenge.org/svp-challenge/index.php
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://libntl.org/
https://doi.org/10.1007/978-3-540-73951-7_4
https://doi.org/10.1007/978-3-031-34671-2_19
https://doi.org/10.1007/978-3-031-34671-2_19

	BGJ15 Revisited: Sieving with Streamed Memory Access

