BGJ15 Revisited: Sieving with Streamed Memory Access

Ziyu Zhao¹, Jintai Ding^{$2(\boxtimes)$}, and Bo-Yin Yang³

¹ Department of Mathematical Science, Tsinghua University, Beijing, China, ziyuzhao0008@outlook.com
² Yau Mathematical Center, Tsinghua University, Beijing, China,

jintai.ding@gmail.com

³ Academia Sinica, Taipei, Taiwan,

by@crypto.tw

Abstract. The focus of this paper is to tackle the issue of memory access within sieving algorithms for lattice problems. We have conducted an in-depth analysis of an optimized BGJ sieve (Becker-Gama-Joux 2015), and our findings suggest that its inherent structure is significantly more memory-efficient compared to the asymptotically fastest BDGL sieve (Becker-Ducas-Gama-Laarhoven 2016). Specifically, it necessitates merely $2^{0.2075n+o(n)}$ streamed (non-random) main memory accesses for the execution of an *n*-dimensional sieving. We also provide evidence that the time complexity of this refined BGJ sieve could potentially be $2^{0.292n+o(n)}$, or at least something remarkably close to it. Actually, it outperforms the BDGL sieve in all dimensions that are practically achievable. We hope that this study will contribute to the resolution of the ongoing debate regarding the measurement of RAM access overhead in large-scale, sieving-based lattice attacks.

The concept above is also supported by our implementation. Actually, we provide a highly efficient, both in terms of time and memory, CPU-based implementation of the refined BGJ sieve within an optimized sieving framework⁴. This implementation results in approximately 40% savings in RAM usage and is at least 2^{4.5} times more efficient in terms of gate count compared to the previous 4-GPU implementation (Ducas-Stevens-Woerden 2021). Notably, we have successfully solved the 183-dimensional SVP Darmstadt Challenge in 30 days using a 112-core server and approximately 0.87TB of RAM. The majority of previous sieving-based SVP computations relied on the HK3-sieve (Herold-Kirshanova 2017), hence this implementation could offer further insights into the behavior of these asymptotically faster sieving algorithms when applied to large-scale problems. Moreover, our refined cost estimation of SVP based on this implementation suggests that some of the NIST PQC candidates, such as Falcon-512, are unlikely to achieve NIST's security requirements.

 $^{^4}$ To attest to the authenticity of our work, we present a solution for the 183dimensional challenge with seed 0 in Section 6.4.

1 Introduction

The concrete hardness estimation of the shortest vector problem (SVP) plays a central role in the security analysis of lattice-based cryptosystems. There are two main strategies used to solve SVP: enumeration and sieving. The enumeration algorithms [28,21], and their optimized variants [18,11] solve SVP using super-exponential time and polynomial space. Although asymptotically faster sieving algorithms were proposed by Ajtai et al. [1] in 2001, enumeration has long been the most practical method for solving SVP. Around 2018, sieving algorithms finally caught up after a long line of asymptotic improvements on sieving itself [27,26,5,23,4], and better sieving frameworks [12,16,2] were proposed. Now, BKZ algorithm [33,32] with a sieving-based SVP subroutine is widely used in the estimation of the concrete hardness of lattice-based cryptosystems.

However, the memory requirements of sieving algorithms grow exponentially with the dimension of the lattice, which can pose a significant challenge for their application to large-scale problems. Typically, each random access to a 2-D massive storage array containing N bits of data incurs an $\mathcal{O}(N^{\frac{1}{2}})$ cost, both in terms of time and energy. The question of how to assess the impact of this communication cost on the overall complexity, and whether it should be considered at all, has been a subject of ongoing debate [7,8].

Indeed, numerous sieving algorithms, including the state-of-the-art BDGL sieve [4], use a randomized divide-and-conquer approach to accelerate the process of searching for reducing pairs. For example, in the BDGL sieve, the vectors in the main memory are first divided into many small buckets (subexponential in the dimension of the lattice), and the search for reducing pairs is conducted within each bucket. This strategy is very efficient in terms of time complexity, but it requires a larger number of *random* memory accesses in the reduction step, a cost that already cannot be ignored in real-world sieving implementations. As shown in [15], the BDGL sieve does not outperform the asymptotically slower, but more memory-friendly, HK3 sieve [19] in all achievable dimensions, due to the limited CPU-GPU bandwidth. Hence, at present, the majority of computations for the sieving-based SVP Darmstadt Challenges [31] are conducted using sieving algorithms that are far from being asymptotically optimal. The behavior of these asymptotically faster sieving algorithms in large-scale problems remains unclear.

Contributions. This work presents a detailed analysis of an optimized version of the BGJ sieve [6], demonstrating its significant theoretical and practical interest. Intuitively, the BGJ sieve applies successive random filters to create a series of progressively smaller buckets from the main database, and searches for reducing pairs only in the smallest buckets. We found that such a structure can be implemented in a highly memory-efficient way for large-scale sieving attacks. The key idea is that the bucket size decreases by several orders of magnitude after each filtering, allowing the sub-buckets to be stored in a much smaller, and therefore faster, storage device. No communication between these sub-buckets is necessary. Under reasonable assumptions, we show that the most costly filtering and reducing steps can be performed with only $2^{0.2075n+o(n)}$ streamed main

memory accesses, where n is the lattice's dimension. This concept is also supported by our implementation results. We also discuss how to insert the shorter vectors found during the reducing step back to the main database in a streamed manner.

One should keep in mind that streamed memory access is significantly cheaper than random access. Therefore, in terms of memory, this result is much better than the BDGL sieve, which requires at least $2^{0.292n+o(n)}$ random memory accesses. And it makes the implementation of a large-scale BGJ sieve reasonable. However, to argue that the memory cost should not be considered in the concrete security estimation of lattice-based cryptosystems, one also needs to show that the time complexity of the refined BGJ sieve is no worse than that of BDGL.

Following the idea of the bgj1 sieve in [2], our refined BGJ sieve replaces the original filters with spherical cap-shaped filters. That is, a vector \mathbf{v} can pass the filter $\mathcal{F}_{\mathbf{c},\alpha}$ if $|\langle \mathbf{v}, \mathbf{c} \rangle| \ge \alpha ||\mathbf{v}|| ||\mathbf{c}||$, where $\mathcal{F}_{\mathbf{c},\alpha}$ is the filter with center \mathbf{c} and radius α . Generally, a sieving algorithm based on locality sensitive filters can achieve the asymptotically optimal [22] time complexity $2^{0.292n+o(n)}$ if the following conditions are met:

- The bucket, within which the reducing pairs are searched, has a size of $2^{o(n)}$.
- The cost of producing these buckets is less than the cost of searching for reducing pairs.
- The buckets correspond to spherical cap-shaped filter regions on the unit ball.
- The centers of these filter regions are uniformly distributed.

For example, the BDGL sieve satisfies all of the above conditions except the last one. As estimated in [13], the overhead caused by the non-uniformity is approximately 2^6 for sieving dimensions around 380. Conversely, our refined BGJ sieve satisfies all but the third condition; in our case, the filter region is the intersection of several spherical caps. Due to the complex geometric shapes of these filter regions, we fail to provide theoretical proof that the overhead caused by the non-spherical filter regions is subexponential. However, both theoretical and practical evidence suggest that the time complexity of this refined BGJ sieve could potentially be $2^{0.292n+o(n)}$, or something remarkably close to it. Most importantly, our implementation shows that the BDGL sieve is still much slower than the refined BGJ sieve for SVP with dimensions around 200, and it seems unlikely that the BDGL sieve will outperform in those dimensions (around 400) of cryptographic interest.

Optimized Sieving Framework. Furthermore, we propose some improvements that can be applied to general sieving algorithms. First, our implementation shows that high-precision floating-point numbers are not indispensable in the most costly steps of sieving. By appropriately scaling and rounding, the coordinates of the lattice vectors are stored as 8-bit signed integers. We use a "dual-LLL-reduced" basis to efficiently recover the coefficients of these rounded vectors when necessary. Using a lower precision representation can save not only time and memory but, more importantly, memory bandwidth.

4

We also provide a unified concept for sieving and enumeration. During the current sieving process on a local projected lattice, one will find numerous short vectors that are not short enough to be inserted back into the main database. However, if one finds such vectors during enumeration, they will definitely be lifted to see if they yield a shorter vector in the original lattice. So we choose to further push the idea of *on-the-fly-lifting* [2] by directly inserting back into the main database the vectors that are still short after lifting. This strategy saves both time and memory by offering a much larger dimension for free.

Implementation and Performance. The implementation constituted the most labor-intensive aspect of our work. We have developed a low-level optimized, multi-threaded, and memory-efficient CPU implementation of the bgj1, bgj2, and bgj3 sieves, which correspond to the BGJ sieve with 1, 2, and 3 levels of filtering, respectively. Our implementation also includes a dual hash [15] optimized with a locality sensitive filter. All these algorithms can be invoked via a commandline interface, with parameters such as the number of threads, maximum sieving dimension, sieving context, and so forth, passed as arguments. We aim to provide a tool that is user-friendly and can offer the community deeper insights into these sieving algorithms.

In terms of performance, the bgj3 sieve solved a 169-dimensional SVP Darmstadt Challenge in 3.4 days using a 112-core server. This is already several orders of magnitude faster than the previous highest records based on CPU, which required 8 months with 224 cores to solve a 166-dimensional challenge. We further implemented a three-level BGJ sieve on the latest Intel architectures, which we refer to as bgj3-amx. The bgj3-amx is approximately 7 times faster than the bgj3, and it managed to solve the 179-dimensional SVP Darmstadt Challenge in just 11.2 days. This is about 4 times faster than the previous 4-GPU implementation [15], and the RAM cost is also reduced by 40%. Considering the significantly higher computational power of the GPUs, we actually achieve an efficiency gain of about $2^{4.5}$, as shown in Table 5.

Refined Security Analysis. A refined concrete hardness estimation for SVP, based on our implementation, is given in Section 7. It shows that some of the NIST PQC candidates, such as Falcon-512, are unlikely to achieve the required security level. We suggest, for instance in the case of Falcon-512, to modify the parameters to balance the hardness of forgery and key recovery attacks if a security level of 143 bits is truly necessary.

Roadmap. In Section 2, we introduce necessary notations and basic definitions. Subsequently, the refined BGJ sieve is presented in Section 3, followed by an analysis of its performance in Section 4. Section 5 is dedicated to discussing optimizations for the general sieving framework. The specifics of our implementation, along with its performance, are detailed in Section 6. In Section 7, we provide a refined security analysis of SVP based on our implementation. Finally, we conclude our work and discuss future directions in Section 8.

2 Preliminaries

2.1 Lattices and the Shortest Vector Problem

We start counting at zero. All vectors are denoted by bold lowercase letters and are to be read as column vectors. Matrices are denoted by bold capital letters. For a full rank matrix $\mathbf{B} = (\mathbf{b}_0, \mathbf{b}_1, \cdots, \mathbf{b}_{n-1})$, we denote the lattice generated by the basis \mathbf{B} as $\mathcal{L}(\mathbf{B}) = \{\mathbf{Bx} | \mathbf{x} \in \mathbb{Z}^n\}$. The dual lattice of $\mathcal{L}(\mathbf{B})$ is defined to be $\mathcal{L}(\mathbf{B}^{\vee})$ where $\mathbf{B}^{\vee} = (\mathbf{b}_0^{\vee}, \mathbf{b}_1^{\vee}, \cdots, \mathbf{b}_{n-1}^{\vee})$ such that the dot product $\langle \mathbf{b}_i^{\vee}, \mathbf{b}_j \rangle$ equals to 1 iff i = j, and $\operatorname{span} \langle \mathbf{b}_0^{\vee}, \mathbf{b}_1^{\vee}, \cdots, \mathbf{b}_{n-1}^{\vee} \rangle = \operatorname{span} \langle \mathbf{b}_0, \mathbf{b}_1, \cdots, \mathbf{b}_{n-1} \rangle$.

The Euclidean norm of a vector \mathbf{v} is denoted by $\|\mathbf{v}\|$, and the volume of a lattice $\mathcal{L}(\mathbf{B})$ is $\operatorname{Vol}(\mathcal{L}(\mathbf{B})) = \sqrt{\det(\mathbf{B}^T\mathbf{B})}$. For a lattice $\mathcal{L}, \lambda_1(\mathcal{L})$ denotes the length of the shortest nonzero vector in \mathcal{L} .

Definition 1 (Shortest Vector Problem (SVP)). Given a lattice basis **B**, the shortest problem asks to find a nonzero vector $\mathbf{v} \in \mathcal{L}(\mathbf{B})$ such that $\|\mathbf{v}\| = \lambda_1(\mathcal{L}(\mathbf{B}))$.

The hardness of the shortest vector problem is the cornerstone of the security of lattice-based cryptosystems. No efficient (quantum) algorithm is known for solving SVP. However, the length of the shortest vector in *random* lattices can be efficiently estimated as follows

Theorem 1 (Gaussian Heuristic). Suppose K is a measurable body in \mathbb{R}^n , for "random" full-rank lattice $\mathcal{L} \subset \mathbb{R}^n$, the number of lattice points in K is approximately $\operatorname{Vol}(K)/\operatorname{Vol}(\mathcal{L})$. In particular, $\lambda_1(\mathcal{L}) \approx \sqrt{n/(2\pi e)} \operatorname{Vol}(\mathcal{L})^{\frac{1}{n}} =: \operatorname{gh}(\mathcal{L})$.

2.2 Local Projected Lattices, Sieving and Dimension For Free

The Gram-Schmidt orthogonalization of a lattice basis **B** is denoted by $\mathbf{B}^* = (\mathbf{b}_0^*, \mathbf{b}_1^*, \cdots, \mathbf{b}_{n-1}^*)$, which satisfies

$$\mu_{ij} = \frac{\langle \mathbf{b}_j^*, \mathbf{b}_i \rangle}{\langle \mathbf{b}_j^*, \mathbf{b}_j^* \rangle} \quad \text{and} \quad \mathbf{b}_i^* = \mathbf{b}_i - \sum_{i=0}^{i-1} \mu_{ij} \mathbf{b}_j^*.$$

We denote the projection orthogonally to $\operatorname{span}\langle \mathbf{b}_0^*, \mathbf{b}_1^*, \cdots, \mathbf{b}_{i-1}^* \rangle$ by π_i , for $i = 0, 1, \cdots, n-1$. For $0 \leq l \leq r \leq n-1$, if \mathcal{L} is the lattice generated by **B**, the local projected lattice $\mathcal{L}_{[l,r]}$ is defined as the lattice generated by $\mathbf{B}_{[l,r]} = (\pi_l(\mathbf{b}_l), \pi_l(\mathbf{b}_{l+1}), \cdots, \pi_l(\mathbf{b}_{r-1}))$. Also, for $\mathbf{v} \in \mathcal{L}_{[l',r]}$ where $l' \leq l$, we denote $\pi_l(\mathbf{v})$ by $\mathbf{v}_{[l,r]}$.

Given a vector $\mathbf{v} \in \mathcal{L}_{[l,r]}$, $l' \leq l$, assuming $\mathbf{v} = \sum_{i=l}^{r-1} \lambda_i \pi_l(\mathbf{b}_i)$, then $\tilde{\mathbf{v}} = \sum_{i=l}^{r-1} \lambda_i \pi_{l'}(\mathbf{b}_i)$ is a vector in $\mathcal{L}_{[l',r]}$. Thus, one can efficiently obtain a *lifted* vector from $\tilde{\mathbf{v}}$ which we denote by $\text{Lift}_{l'}(\mathbf{v})$ through a "size-reduction". That is, repeating the process $\tilde{\mathbf{v}} = \tilde{\mathbf{v}} - \lceil \frac{\langle \tilde{\mathbf{v}}, \mathbf{b}_j^* \rangle}{\|\mathbf{b}_j^*\|^2} \rfloor \pi_{l'}(\mathbf{b}_j)$ for $j = l - 1, \cdots, l'$.

Now we briefly recall the concept of sieving and dimension for free. Sieving algorithms, first proposed by Ajtai et al. [1], are the asymptotically fastest algorithms for solving SVP. The time and space complexities of sieving algorithms

are both exponentially large in the dimension of the lattice. A generic form of sieving is summarized in Algorithm 1. By "saturate the ball of radius R", we mean that a constant ratio of the lattice points within the ball are found. The saturation radius is typically chosen to be $\sqrt{4/3} \cdot \text{gh}(\mathcal{L})$.

Algorithm 1 Sieving Algorithm [27,2]

 $\mathbf{6}$

Require: The basis B of an <i>n</i> -dimensional lattice \mathcal{L} , a saturation radius <i>R</i> .
Ensure: A list L of lattice vectors.
1: $L \leftarrow a \text{ set of } 2^{0.2075n + o(n)}$ random vectors in \mathcal{L} .
2: while L does not saturate the ball of radius R do
3: for each pair $\mathbf{u}, \mathbf{v} \in L$ do
4: if $\ \mathbf{u} - \mathbf{v}\ < \sup_{\mathbf{w} \in L} \ \mathbf{w}\ $ then
5: replace the longest vector in L with $\mathbf{u} - \mathbf{v}$.
6: return L

The sieving algorithm starts with an exponentially large database of lattice vectors. Then it tries to find *reducing pairs*, i.e., pairs of vectors whose difference is short, and replaces those longer vectors in the list with the difference, until the list saturates the ball of radius R. After the sieving procedure, for example, 50% of the lattice points in the ball of radius R will be found, which contains the shortest vector with high probability.

To reduce time and memory costs, it is suggested in [12] to first sieve on a locally projected lattice $\mathcal{L}_{[l,n]}$, and then lift all the vectors in the list to $\mathcal{L}_{[0,n]}$. Note that if **v** is a short vector in $\mathcal{L}_{[0,n]}$, then $\mathbf{v}_{l,n}$ is likely also short, and thus contained in the list. Therefore, we may successfully find the shortest vector in $\mathcal{L}_{[0,n]}$ by sieving on $\mathcal{L}_{[l,n]}$, thereby gaining l dimensions "for free". This is the so-called "dimension for free" technique. According to heuristic analysis, the free dimension l is asymptotically $\frac{n \ln(4/3)}{\ln(n/2\pi e)}$. In practice, as demonstrated in [12,15], it can reach up to $n/\ln(n)$.

3 The Sieving Algorithms

3.1 Sieving with locality sensitive filters

The most time-consuming step in Algorithm 1 is the search for reducing pairs. A naive approach that checks all pairs would lead to a time complexity quadratic in the size of the list. Since practical sieving algorithms like [26,27] were proposed, a long series of work [5,6,23,4] has been dedicated to accelerating the search for reducing pairs. The key idea is to use a randomized divide-and-conquer approach called locality sensitive filters.

Generally speaking, after the initial database of lattice vectors is generated, the locality sensitive filter based sieving algorithms repeat three steps, *filtering*, *reducing*, and *inserting*, until the list saturates the ball of radius R. In the filtering step, the vectors in the list are filtered into many small buckets, such that neighboring vectors are more likely to enter the same bucket. For example, the state-of-the-art BDGL sieve uses filters that correspond to spherical cap-shaped filter regions in the unit ball. That is, a vector \mathbf{v} can pass the filter $\mathcal{F}_{\mathbf{c},\alpha}$ with center \mathbf{c} and radius α if and only if $|\langle \mathbf{v}, \mathbf{c} \rangle| \ge \alpha ||\mathbf{v}|| ||\mathbf{c}||$. Then, in the reducing step, the vectors in the same buckets are pairwise checked for reducing pairs. Finally, during the inserting step, the longest vectors in the list are replaced with the shorter vectors found in the reducing step.

3.2 The Refined BGJ Sieve

The original BGJ sieve, introduced by Becker, Gama, and Joux in 2015 [6], has a time complexity of $2^{0.311n+o(n)}$. This algorithm efficiently generates buckets by applying a series of random filters to the main database, creating progressively smaller buckets. The search for reducing pairs is confined to the smallest buckets.

In the following sections, we will use "AllPairSearch" to denote the procedure that identifies a significant portion of reducing pairs, such as 50% or 99% of all possible pairs in the vector list, with high probability. The primary distinction among most sieving algorithms lies in how they implement AllPairSearch. Therefore, our focus will be on this procedure.

Algorithm 2 AllPairSearch - BGJ15

Require: A list L of N lattice vectors, a minimum number N_{min} , a number of repetitions B, a goal norm ℓ , and a set of filters \mathcal{F} .

Ensure: A list of neighboring vector pairs in L with a sum/difference shorter than ℓ . 1: if $N \leq N_{min}$ then

2: return $(\mathbf{v}, \mathbf{u}) \in L^2$ s.t. $\|\mathbf{v} \pm \mathbf{u}\| < \ell$.

3: $\mathcal{N} \leftarrow \emptyset$.

4: for $i = 0, 1, \dots, B - 1$ do

5: Pick a random filter f from \mathcal{F}

6:
$$L'$$
 is defined as the set of vectors **v** in L that can pass the filter f.

7: $\mathcal{N} \leftarrow \mathcal{N} \cup \mathsf{AllPairSearch}(L', N_{min}, B, \ell, \mathcal{F}).$

8: return \mathcal{N} .

Algorithm 2 shows the AllPairSearch used in BGJ15, without specifying the details of the filters. We replace the original filters with spherical cap-shaped filters in our refined BGJ sieve, as these filters have been shown to be optimal in terms of time complexity in [22], and the bgj1 sieve in [2] has proven efficient in practice.

We will refer to the refined BGJ sieve with 1, 2, and 3 levels of filtering as bgj1, bgj2, and bgj3, respectively. A general version with k levels of filtering will be denoted by bgjk. Algorithm 3 illustrates the AllPairSearch used in bgj3. From Algorithm 3, it should be clear what bgjk with a number of repetitions (B_0, \dots, B_{k-1}) and filter radius $(\alpha_0, \dots, \alpha_{k-1})$ looks like.

Note that the notation $\mathcal{F}_{\mathbf{c},\alpha}$ used in Algorithm 3 was mentioned in Section 3.1. Now, we discuss how we choose the parameters α_i 's and B_i 's in our

Algorithm 3 AllPairSearch - bgj3

8

Require: A list L of N_0 lattice vectors, number of repetitions (B_0, B_1, B_2) , filter radius $(\alpha_0, \alpha_1, \alpha_2)$ and a goal norm ℓ .

Ensure: A list of neighboring vector pairs in L with a sum/difference shorter than ℓ . 1: $\mathcal{N} \leftarrow \emptyset$.

2: for $i = 0, 1, \dots, B_0 - 1$ do

3: Pick a random filter center \mathbf{c}_0 from L.

4: Compute $L_i := \{ \mathbf{v} \in L | \mathbf{v} \text{ can pass } \mathcal{F}_{\mathbf{c}_0, \alpha_0} \}$

5: **for** $j = 0, 1, \dots, B_1/B_0 - 1$ **do**

6: Pick a random filter center \mathbf{c}_1 from L_i .

- 7: Compute $L_{ij} := \{ \mathbf{v} \in L_i | \mathbf{v} \text{ can pass } \mathcal{F}_{\mathbf{c}_1, \alpha_1} \}$
- 8: **for** $k = 0, 1, \dots, B_2/B_1 1$ **do**

9: Pick a random filter center \mathbf{c}_2 from L_{ij} .

- 10: Compute $L_{ijk} := \{ \mathbf{v} \in L_{ij} | \mathbf{v} \text{ can pass } \mathcal{F}_{\mathbf{c}_2, \alpha_2} \}$ 11: $\mathcal{N} \leftarrow \mathcal{N} \cup \{ (\mathbf{u}, \mathbf{v}) \in L^2_{ijk} | || \mathbf{u} + \mathbf{v} || < \ell \}.$
- 11: $\mathcal{N} \leftarrow \mathcal{N} \cup \{(\mathbf{u}, \mathbf{v}) \in L^2_{ijk} | \|\mathbf{u} \pm \mathbf{v}\| < \ell\}.$ 12: return \mathcal{N} .

implementation. In a real implementation, we do not need to find almost all reducing pairs at once, so the choice of B_i 's is quite flexible. Usually, we do insertions and resort the database according to length after $0.025N_0$ reducing pairs are found. The key points are that the B_i 's should be large enough to ensure that sufficient computations occur each time we read the vectors from the database, thereby minimizing the memory access overhead. They should also be small enough to keep the RAM usage by these temporary buckets acceptable. Typical values of B_i/B_{i-1} range from 64 to 512, and this largely depends on the architecture.

The choice of the α_i 's is more delicate. The goal is to balance the cost of the filtering and the quality of the buckets. As shown for the case of bgj1 in [2], the asymptotically optimal choice ($\alpha_0 = 0.366$) can be far from the practical optimum ($\alpha_0 = 0.315 \sim 0.325$). We directly provide the optimal values we selected for our bgj1, bgj2, bgj3, and bgj3-amx in Table 1. These values were obtained through a brute force search, meaning we ran the codes with all reasonable choices of α_i 's and chose the fastest one. It's worth noting that even a small change of approximately 0.01 in α_i 's can result in a noticeable slowdown.

Algorithm	$lpha_0$	α_1	α_2
bgj1	0.325	-	-
bgj2	0.257	0.280	-
bgj3	0.200	0.210	0.280
bgj3-amx	0.210	0.215	0.285

Table 1. Chosen Filter Radius in bgj1, bgj3, bgj3, and bgj3-amx

4 Performance Analysis

4.1 Time Complexity

The time complexity of the algorithm in Algorithm 2 is intrinsically tied to the class of filters, \mathcal{F} . Following the notation in [6], we use P_f to represent the probability that a vector will pass a random filter from \mathcal{F} , and P_p is used to denote the probability that a pair of vectors, which form an angle of $\pi/3$, are both accepted by the same random filter. The effectiveness of the filters is typically assessed by the exponent ρ such that $P_f^{\rho} = P_p$, to which the time complexity is tightly related.

Theorem 2 (Complexity of AllPairSearch-BGJ15, Theorem 1 in [6]). Suppose L is a list of N uniformly random vectors in the sphere of dimension n, ρ is the exponent such that $P_f^{\rho} = P_p$, then the time complexity of Algorithm 2 is $\tilde{O}(N^{\rho})$.

In our case, \mathcal{F} is a set of spherical cap-shaped filters $\mathcal{F}_{\mathbf{c},\alpha}$ for random centers \mathbf{c} and a certain radius α . To compute P_f and P_p in this case, we need to know the volume of spherical caps $\mathcal{C}_{\mathbf{c},\alpha} = \{\mathbf{x} \in \mathbb{R}^n | \|\mathbf{x}\|^2 = 1, \langle \mathbf{x}, \mathbf{c} \rangle \ge \alpha \|\mathbf{c}\| \}$ and wedges (i.e. intersections of spherical caps) $\mathcal{W}_{\mathbf{c}_1,\alpha_1,\mathbf{c}_2,\alpha_2} = \mathcal{C}_{\mathbf{c}_1,\alpha_1} \cap \mathcal{C}_{\mathbf{c}_2,\alpha_2}$.

Lemma 1 (Volume of spherical caps and wedges, Lemma 2.1, 2.2 in [4]). Let μ be the canonical Lebesgue measure over \mathbb{R}^n , \mathcal{S}^{n-1} be the unit sphere in \mathbb{R}^n , then for any $\alpha \in (0, 1)$ we have

$$\frac{\mu(\mathcal{C}_{\mathbf{c},\alpha})}{\mu(\mathcal{S}^{n-1})} = \operatorname{poly}(n) \cdot \left(\sqrt{1-\alpha^2}\right)^n.$$

Furthermore, if the angle between \mathbf{c}_1 and \mathbf{c}_2 is θ , then

$$\frac{\mu(\mathcal{W}_{\mathbf{c}_1,\alpha,\mathbf{c}_2,\alpha})}{\mu(\mathcal{S}^{n-1})} = \operatorname{poly}(n) \cdot \left(\sqrt{1 - \frac{2\alpha^2}{1 + \cos\theta}}\right)^n.$$

According to Lemma 1, we have $P_f = \operatorname{\mathsf{poly}}(n) \cdot (1 - \alpha^2)^{n/2}$ and $P_p = \operatorname{\mathsf{poly}}(n) \cdot (1 - \frac{4}{3}\alpha^2)^{n/2}$. This implies that asymptotically

$$\rho \approx \ln(1 - \frac{4}{3}\alpha^2) / \ln(1 - \alpha^2)$$

This equation suggests that by choosing a very small α and using multiple levels of filters, our AllPairSearch can achieve the asymptotically optimal [22] time complexity of $\tilde{\mathcal{O}}(N^{4/3})$ in the sparse regime $(N = 2^{o(n)})$. However, it is not guaranteed that filters optimal in the sparse regime will remain optimal in the dense regime $(N = 2^{\mathcal{O}(n)})$, i.e. in the case of lattice sieving. For instance, crosspolytope hashing is known to be optimal in the sparse regime [35,3], but it leads to a suboptimal time complexity of $2^{0.2972n+o(n)}$ [24] when applied to lattice sieving. Nevertheless, given that the ρ value of our filters is significantly smaller

than that of the original BGJ sieve ($\rho = 1.5$), it is reasonable to anticipate that the complexity of the refined BGJ sieve could potentially be $2^{0.292n+o(n)}$, or something remarkably close to it (like $2^{0.2972n+o(n)}$). Anyway, it should be less than the $2^{0.311n+o(n)}$ of the original BGJ sieve.

More importantly, our main interest lies in the practical performance of sieving for dimensions related to cryptography (approximately 380). It turns out that the refined BGJ sieve is not only memory-friendly, but also has a much smaller constant factor than the BDGL sieve.

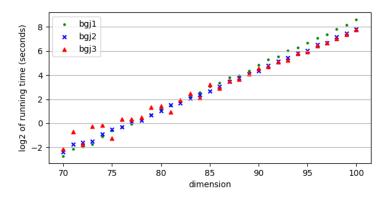


Fig. 1. Comparation of bgj1, bgj2 and bgj3

We ran a left progressive sieve [2] on a 100-dimensional lattice using the bgj1, bgj2, and bgj3 sieves. The tests were conducted on a machine equipped with an Intel Xeon Gold 6338 CPU, running at around 2.8GHz, using a single thread. The results are shown in Figure 1. The timings represent the amount of time spent in each sieving dimension before reaching a saturation of 37.5% with a database size of $3.2 \cdot 2^{0.2075n}$. We can see that the crossover point between bgj1 and bgj2 is only around 77, and the crossover point between bgj2 and bgj3 is around 92. That is, the refined BGJ sieve quickly benefits from the improved bucket quality provided by the second and third levels of filtering.

For sieving dimension 140, which is close to the largest practical sieving dimension, we compare our bgj3-amx with 2-bdgl_gpu from [15]. To run a left progressive sieve up to a sieving dimension of 140 with a saturation ratio of 37.5%, our bgj3-amx takes approximately $2^{15.2}$ seconds using 112 threads on a dual Intel Xeon Platinum 8479 CPU server. In contrast, 2-bdgl_gpu requires about twice the wall time (estimated from Fig.7 of [15]) and around eight times more floating-point operations. Even with a sieving dimension 240 larger, the BDGL sieve would only gain $2^{240 \cdot (0.2972 - 0.2925)} = 2^{1.3}$ and $2^{240 \cdot (0.3112 - 0.2925)} = 2^{4.5}$ times more speed up than the cross-polytope hashing based example and the original BGJ sieve, respectively. Therefore, it's unlikely that the BDGL sieve

can outperform the refined BGJ sieve in a sieving dimension of 380, unless more improvements are made in the o(n) term of $2^{0.292n+o(n)}$.

4.2 Solving the Memory Access Issue

In this section, we provide a detailed analysis of the memory access overhead in **bgjk** sieves. It turns out that $2^{0.2075n+o(n)}$ streamed main memory accesses are sufficient for the entire sieving process, and the memory access overhead can be negligible.

Firstly, we note that streamed memory access is inexpensive, and unlike random access, its speed should not decrease by a factor square root in the size of the storage device. If an attacker can afford the GPUs for conducting the computations in sieving for dimension 380 within a reasonable time, for example within 10 years, then such an attacker should certainly be able to afford the disks to store the database of the lattice vectors. The data in different disks can be streamed out in parallel. Therefore, it is reasonable to assume that the streamed memory access only slows down by a constant factor, regardless of the size of the sieving database.

Before go through each steps, we illustrate the key idea by giving a comparison with the BDGL sieve. If n is the sieving dimension, BDGL uses a single filter layer to generate $2^{\mathcal{O}(n)}$ small buckets. Putting the vectors in the main database into some of these buckets requires *randomly accessing* the exponentially large space for these buckets. However, if BGJ uses $\mathcal{O}(\log(n))$ successive filter layers to generate progressively smaller buckets, the number of subbuckets for each bucket can be $2^{\mathcal{O}(n/\log(n))}$, which is subexponential (in practice 64 512, see Page 8). Thus, BGJ only needs to randomly access a subexponential space for the subbuckets, which is clearly more efficient.

Now we address the most costly part of sieving, the filtering and reducing steps. To compute all the subbuckets from a large database (a larger bucket or the main database), it is sufficient to stream the vectors in the larger database *once* to a machine that contains all the centers of the filters. This machine checks whether the streamed vectors can pass those filters. The pairwise dot product in the last-level buckets in the reducing step is just a matrix multiplication, which can be implemented in a streamed manner trivially. Therefore, all memory access in these steps can be done in a streamed manner, and only $2^{0.2075n+o(n)}$ accesses to the main database are necessary. To make the memory access overhead negligible, we need to further ensure that the memory access cost of generating each subbucket is less than the cost of further computations within this subbucket. Note that the computations required are superlinear (with an exponent range from $0.292/0.2075 \approx 1.4$ to 2) in the size of the subbucket. Thus, as long as the subbucket size is larger than some constant, the memory access overhead caused by the streamed memory access, which is only linear in the bucket size, is negligible.

For the last several levels of very small buckets, the memory access may slow down the computations if the hardware architectures are not well designed. A similar phenomenon can already be observed in our bgj3-amx implementation.

Intel's AMX instructions were initially designed for AI applications, and thus are not entirely suitable for sieving, where we need to compute many dot products of vectors with no more than 160 entries. It only provides 8 tmm registers, so each register can only be used in $2 \sim 3$ tdpbssd instructions after loading the data from the cache. As a result, our bgj3-amx suffers significantly from the latency of tileloadd and tilestored instructions. Nevertheless, this slowdown can only be at most a constant factor, and such a problem, which is only related to the speed and size of small caches, is completely different from the issue of accessing random vectors from an exponentially large database. We also note that this problem is minor for most of the current CPU (with AVX2 or even AVX512) and GPU architectures.

The insertion step, although it only requires $2^{0.2075n+o(n)}$ computations, is somewhat tricky to implement in a streamed manner. Current sieving implementations usually maintain a hash table to check whether a vector is already in the list. Such a check, although it has a constant time complexity, requires random memory access. If we do not check for duplicates before a vector is inserted into the list, the list will soon be "polluted" by duplicated vectors. Our solution is to first use a mergesort to sort the list vectors and the newly found short vectors together, and then remove the duplicates and the longest ones. This procedure can be done in a streamed manner at the cost of slightly increasing the time complexity of the insertion step to $\mathcal{O}(2^{0.2075n+o(n)} \log(2^{0.2075n+o(n)})) = 2^{0.2075n+o(n)}$, which should be acceptable.

The concept in this subsection is also demonstrated in our bgj3-amx implementation. Actually, the authors' idea of how to address the memory access issue in sieving was initially inspired by the implementation. The detailed computation speed, time, and bucket size for different steps are listed in Table 2. Data were collected while sieving in dimension 140 with 112 threads on the dual Intel Xeon Platinum 8479 CPU server. From this, we can see that although the speed of the first two filters suffers heavily from the poor RAM bandwidth, this cost only slightly affects the overall performance, because most of the computations happen when the buckets get small enough to fit into faster caches, where the memory bandwidth is no longer a bottleneck.

Step	Filter-0	Filter-1	Filter-2	Reducing
Speed (TOPS)	11.81	11.10	39.19	116.4
Bucket size	$278.8 \mathrm{GB}$	$3.386 \mathrm{GB}$	$80.75\mathrm{MB}$	$556.7 \mathrm{KB}$
Data in	RAM	RAM	L3-Cache	L2-Cache
Total Time	544.7s	451.4s	762.4s	3397s

Table 2. Profiling Data of bgj3-amx

5 Optimizations

5.1 Sieving with Low Precision

In all of the sieving algorithms we implemented (bgj1, bgj2, bgj3, bgj3-amx), the entries of the lattice vectors in the main sieving database are stored as 8bit signed integers. Most of the computationally intensive parts of the sieving, including the filtering and reducing steps, are also performed with 8-bit precision. Only during the insertion step do we recover the newly found vectors with 32-bit precision. These vectors are then properly scaled, rounded, and carefully checked before being inserted into the main database. Vectors that do not pass the check are discarded (e.g., because the norm is too large or not all the entries lie in the range [-127, 127]). It turns out that if one carefully maintains the main database, the relative error of the dot product results is typically less than 1% and the outliers are rejected during the check before being inserted into the main database. Thus the precision loss does not significantly affect the sieving procedure.

We provide details on the most intricate parts of the 8-bit implementation. For the choice of the scaling factor, if **B** is the basis of the lattice, using the notation in Section 2, the scaling factor in our implementation is chosen to be $254.0 \cdot (\sup_{0 \le i \le n-1} \|\mathbf{b}_i^*\|)^{-1}$. To recover the accurate vectors from the 8-bit representations, we first use short dual vectors of the basis to compute the integer coefficients with respect to the basis **B**. We then recover the vector using these coefficients. Such short dual vectors can be obtained by first computing the dual basis of **B**, and running the LLL algorithm [25] on the dual basis. The LLL algorithm here is necessary.

Compared to previous sieving implementations based on 32-bit floating-point numbers, the use of 8-bit precision leads to a $2 \sim 4$ times improvement, both in terms of speed and memory usage. These improvements contribute significantly to the refined security estimation in Section 7.

5.2 Seeking More Dimension for Free

From Dual Hash to LSF-based Dual Hash. In practice, to reduce both time and memory costs, a common strategy is to aim for more dimension for free, i.e., to find short enough vectors with a smaller sieving dimension. One way to achieve this is by using the dual hash technique proposed in [15]. Once sieving on the local projected lattice $\mathcal{L}_{[l,n]}$ is complete, i.e., exponentially many short vectors in $\mathcal{L}_{[l,n]}$ have been found, the dual hash technique suggests lifting all pairwise sums/differences of these vectors to $\mathcal{L}_{[0,l]}$. The lifting is done cleverly: a hash value is computed for each vector, and only the "lift-worthy" vector pairs with hash values close to each other are lifted. Checking for hash value pairs is much faster than lifting, thus the dual hash technique can significantly reduce the lifting cost and works well in the GPU implementation in [15].

However, the cost of the dual hash technique is nevertheless quadratic in the size of the list. In our preliminary CPU implementation, we tried the dual hash

technique and found it to be unacceptably slow in sieving dimensions only around 120. A natural idea to improve this is to use locality sensitive filters. We choose to use the filters $\mathcal{G}_{\mathbf{c},\ell}$ such that $\mathbf{v} \in \mathcal{L}_{[l,n]}$ can pass $\mathcal{G}_{\mathbf{c},\ell}$ iff $\|\text{Lift}_0(\mathbf{v}\pm\mathbf{c})\|^2 - \|\mathbf{v}\pm\mathbf{c}\|^2 < \ell^2$. Pairwise checks for the dual hash values are only done for vectors that can pass the same filter. This leads to a $2 \sim 10$ times improvement in efficiency for sieving dimensions ranging from 100 to 140. However, even the LSF-based dual hash still takes extra time at least comparable to the time for sieving itself, thus not "free", which is still unsatisfactory.

Observations. Our current solution is based on two simple observations. Firstly, we propose a unified concept for the left progressive sieve and enumeration. During the sieving process on a local projected lattice, numerous found vectors are not short enough to be inserted back into the main database. However, many of these vectors are only slightly longer (for example, 5%~10% longer) than the threshold. If such short vectors in the local projected lattice $\mathcal{L}_{[l,n]}$ are found during enumeration, they will certainly be lifted to see if they yield a short vector in $\mathcal{L}_{[l',n]}$ for some $l' \leq l$. In our preliminary implementation, these vectors are simply discarded, wasting potential short vectors that could be helpful in enumeration. This suggests that our implementation may not be optimal and could benefit from these short vectors.

The second observation is that if a vector $\mathbf{v} \in \mathcal{L}_{[l,n]}$ is short after lifting to $\mathcal{L}_{[0,n]}$, then it cannot be too long. According to Gaussian heuristics, if we are sieving on $\mathcal{L}_{[l,n]}$ and lifting all sums/differences of the vectors in the list to $\mathcal{L}_{[0,n]}$, we suggest estimating the minimal length of those lifted vectors as follows:

$$\min_{0 \leqslant \alpha \leqslant 0.5} \left(\left(N^2 \cdot (1 - \alpha^2)^{n/2} \right)^{-2/l} \cdot \mathsf{gh}(\mathcal{L}_{[0,l]})^2 + (2 - 2\alpha) \cdot \left(1.18 \cdot \mathsf{gh}(\mathcal{L}_{[l,n]}) \right)^2 \right)^{1/2}$$

where N is the size of the list, and the number 1.18 is chosen because after the sieving is done, the median length of the vectors in the list is around $1.18 \cdot \text{gh}(\mathcal{L}_{[l,n]})$. This estimation is slightly pessimistic, as many vectors in the list are much shorter than the median length. In practice, this estimated length can be achieved on average after exhausting $15\%\sim25\%$ of the search space. If we are targeting a dimension for free of around 30, it turns out that the α to minimize the estimation formula is typically larger than 0.4, even larger than 0.45 when the sieving dimension is large (e.g., 140). This suggests that even if a pair of vectors pass the dual hash test, they are still unlikely to be "lift-worthy" because the cosine of the angle between them is usually much less than 0.4, i.e., the sum/difference of the two vectors is already too long without lifting. This observation suggests that it may be possible to further reduce the number of lifts while maintaining comparable lifting quality.

Our Solution. In our final implementation, we assign a score to each vector in the list, rather than naively using the length to assess the quality of the vectors.

The score of a vector $\mathbf{v} \in \mathcal{L}_{[l,n]}$ is computed as

$$\mathsf{score}(\mathbf{v}) = \inf_{0 \leq l' \leq l} \frac{\|\mathsf{Lift}_{l'}(\mathbf{v})\|}{\mathsf{gh}(\mathcal{L}_{[l',n]})}$$

Vectors with smaller scores are preferred, and we use newly found vectors with small scores to replace the vectors in the list with larger scores during the insertion step. To find vectors with small scores, in the filtering and reducing steps, if s is the score of a 77% quantile vector in the list, we aim to find vectors in $\mathcal{L}_{[l,n]}$ with a length less than $1.07 \cdot s \cdot \text{gh}(\mathcal{L}_{[l,n]})$. During insertion, scores for these vectors are computed and only $0.5\% \sim 2\%$ of these collected vectors turn out to have a small enough score to be inserted into the list. The score computing speed in our implementation is about $2^{21} \sim 2^{22}$ vectors/(second core), and the overall cost of computing the scores is typically less than 10% of the sieving time, which is negligible.

In summary, our final implementation further pushes the idea of on-the-flylifting [2] by directly inserting vectors that are short after lifting into the main database. It turns out that the left progressive sieve procedure even becomes slightly faster after enabling this new technique. Intuitively, this is because some work in the next few sieving dimensions is done by reusing the vectors discarded in the original implementation. Both the overall time and space cost for solving SVP are significantly reduced by the larger dimension for free. For a comparison with the state-of-the-art, one can compare the dimension for free of our Darmstadt SVP Challenge results (those challenges with dimension ≤ 162 were solved with the preliminary code) in Section 6.4 with Table 1 in [15].

6 Implementation Details

6.1 General Design Principles

Our implementation, crafted in C++, extensively utilizes intrinsic functions for low-level optimizations. We compile the code using the clang-17.0.6 compiler, with the -O3 -march=native optimization flag enabled to support the latest Intel CPU architectures. For multi-threading, we have opted for the OpenMP library.

Most of our implemented algorithms, including bgj1, bgj2, bgj3, bgj3-amx, and the locality sensitive filter-based dual hash, are accessible directly from a command-line interface. Parameters such as the number of threads, maximum sieving dimension, sieving context, among others, can be passed as arguments. Notably, all our SVP challenges were solved using this command-line tool, eliminating the need for direct interaction with the C++ interfaces. We anticipate that this tool will be user-friendly and provide the community with deeper insights into these sieving algorithms.

6.2 Vector Representation and Data Structures

In our implementation of the sieving algorithms, we manage the following data: the lattice basis, the main database of lattice vectors, a unique identifier (uid) hash table, and a list of "compressed vectors" for sorting.

15

Each coordinate of the lattice basis is stored as the quad_float type in NTL [34], offering 106-bit precision. We perform the computation of Gram-Schmidt orthogonalization, the local projected lattice, and the LLL reductions using the quad_float type to ensure the original basis remains unaffected by numerical errors. Notably, we have developed inline assembly code based on AVX512 instructions for the basic quad_float vector operations, which makes these basis-related computations extremely fast.

For each vector in the main database, we record its coordinates (8-bit signed integers, aligned to 32 bytes), the square of the norm (32-bit signed integers), the sum of all coordinates (32-bit signed integers), and a 64-bit uid. Before inserting a vector into the primary database, we first recover it to 32-bit precision and then round it, preventing the accumulation of numerical errors during the sieving procedure. Consequently, this most space-consuming part of the data only requires 176 bytes per vector. The rationale for maintaining the sum of the vector coordinates will be explained in Section 6.3.

The uid hash table serves to check whether a vector already exists in the main database. We initially tried the std::unordered_set in the standard C++ library, and found it extremely inefficient in terms of RAM usage. It consumed $40 \sim 50$ bytes per uid, which is more than 25% of the space cost of the main database. Therefore, we strongly recommend replacing the std::unordered_set with a better unordered set implementation, for instance, Sparsepp [29] to reduce both time and RAM costs. Also, one should keep in mind that for sieving dimensions ≥ 140 , the uid of different vectors may collide with a high probability.

To efficiently sort the vectors in the list, we follow the approach in [2] to maintain a list of "compressed vectors". Our compressed vectors contain a 16bit norm/score of the vector and a 32-bit integer to record the address of the corresponding vector in the main database. Sorting is only performed with these "compressed vectors" to minimize the cost of data movement.

6.3 Low-level Optimizations

In the ensuing subsection, we give details of those computationally intensive parts of the sieving implementation. Predominantly, the computations involved in the filtering and reduction phases consist of dot products followed by comparisons to check whether the result exceeds a predetermined threshold.

In our "AVX2" implementations, namely bgj1, bgj2, and bgj3, the dot products of int8_t vectors are first computed by vpdpbusd on ymm registers. We then use the vphaddd instruction to horizontally add the 32-bit results in the ymm registers, simultaneously for 8 dot products. The final comparison is conducted using vpcmpgtd. As a result, the theoretical throughput for a dot product computation is less than 4 clock cycles. Consequently, we have opted not to use the simhash trick [10,17,12], which gives no improvement even in our preliminary bgj1 implementation based on 32-bit floating-point numbers. Furthermore, in our bgj2, bgj3, and particularly in the bgj3-amx implementation, we have chosen to discard the 3-reductions [19] due to the excessive cost of additional comparisons and data movements. The vpdpbusd instruction, originally designed for AI applications, can only compute the dot product of a uint8_t vector and a int8_t vector. Therefore, when computing the dot product, we first need to add 0x80 to each entry of one of the vectors to convert it into a uint8_t vector. Subsequently, we subtract 128 times the sum of the entries of the other vector, after the the dot product is done.

In our bgj3-amx implementation, the dot products are computed using the tdpbssd instruction in Intel's Advanced Matrix Extensions (AMX). AMX is primarily designed for efficiently computing large matrix multiplications, thus not very suitable for sieving. In fact, while only 3 tdpbssd instructions are sufficient to compute 256 dot products, a significant amount of time is spent on loading the data and storing the results with tileloadd and tilestored. Additionally, we need to transpose one of the 16 by 64 int8_t matrices before it is loaded into the tmm registers for computing dot products. Our current implementation uses vpunpckldq, vpunpckhdq, and vshufi64x2 instructions to accomplish this, which is relatively slow. Furthermore, the comparisons performed after the dot products are also costly. As a result, our bgj3-amx implementation only achieves a speedup of 6 to 7 times compared to bgj3, which is not satisfactory. We plan to further optimize the code to improve performance.

6.4 Performance and SVP Challenge results

We now proceed to showcase the results of the Darmstadt SVP challenge[31], as a means to justify our work and compare it with the current state-of-the-art. The specifics of the machines used for our SVP challenges are detailed in Table 3. Most of the large-scale challenges were solved with a combination of CPU times on X_1 and X_2 , differing only in the amount of RAM, hence we do not distinguish between them and simply refer to them as X in Table 4. Also, in our low-level optimized implementations, hyperthreading does not offer any benefits.

Machin	ne CPUs	base freq.	cores	RAM
D	2xIntel Xeon Gold 6338	$2.00 \mathrm{Ghz}$	64	$256 \mathrm{GB}$
Y	2xIntel Xeon Platinum 8336C	$2.30 \mathrm{Ghz}$	64	$256 \mathrm{GB}$
X_1	2xIntel Xeon Platinum 8479	$2.00 \mathrm{Ghz}$	112	512 GB
X_2	2xIntel Xeon Platinum 8479	$2.00 \mathrm{Ghz}$	112	1024 GB

Table 3. Details of the Machines Used in the Challenges

The performance details of our implementation for solving Darmstadt SVP Challenges are provided in Table 4. Here, "D4F", "MSD", and "dh" denote "dimension for free", "maximum sieving dimension" and "locality-sensitive filterbased dual hash" (see Section 5.2 for more details), respectively. The RAM usage for most of the smaller challenges was not meticulously recorded, hence it is not displayed in the table. We just report that our implementation only requires 0.87TB of RAM for a sieving dimension of 146, with approximately $3.2 \cdot (4/3)^{146/2} \approx 2^{32}$ vectors in the main database. This is merely 60% of the RAM usage of the currently most memory-efficient implementation [15], and only 25% of the RAM usage of previous CPU implementations.

As proof, we present our short vector for the 183-dimensional Darmstadt SVP Challenge with seed 0:

 $\begin{array}{l} (155, -136, 243, 312, -81, 355, -116, 714, -632, 102, -711, 48, 201, -224, -60, -672, \\ 151, -45, 197, -223, -153, 143, 133, 38, -56, 133, -482, -41, -102, 201, 220, 87, -116, \\ -141, 116, -690, -246, 104, -209, 152, 422, 165, -51, -452, -308, -366, 424, 122, 308, \\ -109, -277, -244, -273, 30, 33, 221, -484, -19, -112, 116, 206, -151, 69, 63, 37, 111, \\ -240, 128, -48, 93, -157, -354, -216, 263, -87, -61, -212, 254, -120, 210, 309, -164, \\ 52, -19, -6, 91, -124, -74, 181, 369, -237, 133, -10, -26, -607, -50, -132, -6, 123, \\ -345, -130, -147, -3, -64, 174, 65, -375, 57, -673, 466, 83, 51, -465, -254, -8, -221, \\ 17, -159, -142, -524, 24, 284, 99, -32, 492, -95, 251, -68, -108, 29, -577, 984, 301, \\ 111, -58, 394, -102, -330, 17, -225, -151, -46, -35, 381, -211, -24, -207, 304, 133, \\ -89, -37, 59, 245, -53, 44, -97, -94, 104, -475, 326, 271, -115, -575, -69, -330, 199, \\ -238, 2, 316, -170, -164, -100, 5, -66, -532, 64, 258, -316, 66, 315, 167, -236, 52 \end{array}$

As seen in Table 4, even without AMX accelerations, the plain bgj3 implementation is already extremely fast. It solved the 169-dimensional challenge in just 3.43 days using 112 cores. This is several hundred times faster compared to the previous highest record based on CPU, which took eight months with 224 cores to solve a 166-dimensional challenge. Moreover, when AMX acceleration is enabled, bgj3-amx solved the 179-dimensional challenge in only 11.2 days. This is approximately four times faster than the previous 4-GPU implementationin [15], which solved the 180-dimensional challenge in 51.6 days.

We believe direct GPU-CPU time comparisons are not apples-to-apples due to the significantly higher computational power of GPUs. A comparison of our results with previous GPU-based records, in terms of gate count, is summarized in Table 5. It shows our efficiency gain relative to [15] is approximately $2^{4.5}$, as fp16 > 2 * int8.

7 Refined Security Analysis

Finally, we present a refined security analysis of lattice-based schemes based on the results from the previous sections. We will mainly focus on Falcon [30], Kyber [9], and Dilithium [14], which have been selected by NIST for the PQC standardization process.

In Falcon's document, the BKZ block size *B* required to forge a Falcon-512 signature is estimated to be 411. The cost of BKZ is computed as $\frac{n^3}{4B^2}$ times the cost of solving the shortest vector problem instances in dimension *B*, according to [2]. Taking into account the dimensions for free, the actual sieving dimension *B'* is estimated to be $B - \left\lfloor \frac{B \ln(4/3)}{\ln(B/2\pi e)} \right\rfloor = 374$. Therefore, considering only the first asymptotic term in the complexity of a sieve leads to a number of $\frac{n^3}{4B^2} \cdot (\sqrt{1.5})^{B'} \approx 2^{120.0}$ classical gates. Now the key point is, in Falcon's document, the constant term of the sieving complexity was estimated based on the real performance of the sieving implementation in [2], which, however, has been significantly reduced in our work.

 Table 4. Darmstadt SVP Challenge Results

Dim	D4F	MSD	Norm	$\mathrm{Norm}/\mathrm{GH}$	CPU time	Wall time	Machine	Algorithm
100^{\dagger}	18	82	2214	0.87028	44.7s	$44.7s^{\ddagger}$	D	bgj1
120^{\dagger}	21	99	2654	0.95660	73.7m	$73.7m^{\ddagger}$	D	bgj2
130^{\dagger}	26	104	2812	0.97516	9.92h	11.2m	D	bgj2
140^{\dagger}	20	120	2875	0.96283	74.1h	77.3m	D	bgj3
150	31	119	3084	0.99791	14.5d	5.70h	D	bgj3 & dh
151	24	127	3195	1.03167	58.2d	22.3h	D	bgj3 & dh
153	20	133	3173	1.01477	109d	41.6h	D	bgj3 & dh
157	23	134	3271	1.03367	185d	70.2h	D	bgj3
161	31	130	3344	1.04346	266d	4.20d	Y	bgj3 & dh
162	26	136	3325	1.03752	211d	3.30d	Y	bgj3 & dh
165^{*}	40	125	3370	1.04215	117d	1.05d	X	bgj3
166^{*}	28	138	3376	1.03988	352d	3.14d	X	bgj3
169^{*}	33	136	3415	1.04120	1.05y	3.43d	X	bgj3
179^{*}	32	147	3523	1.04651	3.40y	11.2d	X	bgj3-amx
183^{*}	34	149	3536	1.04034	9.20y	30d	X	bgj3-amx & dh

[†] The seed is not zero.

[‡] Only a single thread is used.

* The technique in Section 5.2 is enabled for these instances.

For example, on the dual Intel Gold 6338 server mentioned in Table 3, a 100-dimensional left progressive sieve with bgj3 takes only 1056.85 seconds on a single core. It achieves a reducing speed of about 70G int8_t fused multiply-add (FMA) operations per second and a filtering speed of 47G int8_t FMA operations per second. Profiling data indicates that the total number of dot products during the left progressive sieve does not exceed 650G. Therefore, if we model the gate cost of an int8_t FMA operation as $2 \cdot 8^2 + 8 = 136$ classical gates, an upper bound of the gate cost for a 100-dimensional left progressive sieve is

$$650 \cdot 2^{30} \cdot 100 \cdot 136 \approx 2^{23.8} \cdot (\sqrt{1.5})^{100}$$

which suggests the constant term to be at most around $2^{23.8}$. Thus, the total number of gates required to forge a Falcon-512 signature is now estimated to be $2^{120.0} \cdot 2^{23.8} \approx 2^{143.8}$, using the same methodology as in Falcon's document, without considering

- 1. The refined BKZ strategy, for example, as described in [36]. Expected influence on the gate-count estimate: $2^{-3.5} \sim 2^{-2}$.
- 2. The simhash trick [10,17,12], which, although not beneficial in our implementation, can significantly reduce the cost if we focus solely on the gate count. It's possible to perform a gate-saving xor-popent check on the simhash values before each int8_t dot product, and only compute the dot product if the xor-popent check passes. Expected influence on the gate-count: $2^{-3.5} \sim 2^{-2}$.

19

Dim	Walltime	Platform	FLOP
179	11.2d	112 cores, no GPU^*	$2^{66.0} \approx 2^{13.6} \cdot (3/2)^{179/2}$ int8 operations
183	30d	112 cores, no GPU^*	$2^{67.4} \approx 2^{13.9} \cdot (3/2)^{183/2}$ int8 operations
180	51.6d	4 × Nvidia RTX 2080ti	$2^{69.9} \approx 2^{17.3} \cdot (3/2)^{180/2}$ fp16 operations [†]
186	50.3d	4 \times Nvidia A100	$2^{71.4} \approx 2^{17.0} \cdot (3/2)^{186/2}$ fp16 operations [‡]

Table 5. Comparison with Previous GPU Records

* The average speed is approximately 70TOPS.

^{\dagger} See Table 1 in [15] for more details.

[‡] Unclear how many floating-point operations the 186 took. This number is estimated as $2^{69.9} \cdot (50.3/51.6) \cdot (312/107) \approx 2^{71.4}$, where 312/107 represents the ratio of the theoretical performance of the A100 to the 2080ti.

3. The asymptotic slowdown of the BGJ sieve compared to the BDGL sieve. It's possible that the refined BGJ sieve has a complexity slightly worse than the BDGL sieve, similar to the case for the cross-polytope hash-based example mentioned in Section 4.1, which gets a $2^{(0.2972-0.2925)\cdot274} \approx 2^{1.3}$ times more slowdown for sieving dimension 374. Expected influence on the gate-count: $2^{0} \sim 2^{3}$.

As a result, we estimate that the minimal number of classical gates required to forge a Falcon-512 signature falls within the range $[2^{136.8}, 2^{142.8}]$. This is unlikely to meet NIST's security requirement of 143 bits for level 1 security. More importantly, now the cost of memory access should no longer be used to argue for even one more bit of security in this range. We suggest modifying the parameters for Falcon-512 to balance the difficulty of forgery and key recovery attacks if a security level of 143 bits is truly necessary.

In the end, in Table 6, we present our refined bit security estimates for Falcon, Kyber, and Dilithium, taking into account the three factors mentioned in the previous paragraph. Specifically, an upper bound of $\log_2(\text{gates})$ is estimated as $\log_2(n^3/4B^2) + \log_2(1.5) \cdot B'/2 + 23.8 - 2 - 2 + 3$. The BKZ block size *B* and the sieving dimension *B'* in the table are directly taken from their respective documents without any modifications.

	Falcon-512	Kyber-512	Dilithium-2
В	411	413	433
B'	374	375	394
$\log_2(\text{gates})$	[136.8, 142.8]	$\left[137.1, 143.1\right]$	[145.5, 151.5]

 Table 6. Refined Estimation of Bit Security

8 Conclusion and Future Directions

In this work, we revisit the BGJ sieve, which proves to be of both theoretical and practical interest. We show that the BGJ sieve is inherently memory-friendly and exhibits performance comparable to the state-of-the-art BDGL sieve, at least for problem scales related to cryptography. This could provide a solution to the long-debated issue of estimating RAM access overhead in large-scale, sieving-based lattice attacks. Supported by our implementation, it suggests that some of the NIST PQC candidates, such as Falcon-512, are unlikely to meet NIST's security requirements. Parameter adjustments are recommended if 143 bits security is really necessary. A deeper theoretical analysis of the refined BGJ sieve could be a direction for future work.

From a practical perspective, we have provided a highly optimized implementation of the BGJ sieves based solely on CPU, which even surpasses the current state-of-the-art GPU implementations. The improvement stems from the smaller o(n) term of the BGJ sieve, smaller bucket size, better locality, an improved sieving framework, and a highly optimized implementation. Such an implementation should be helpful for a deeper understanding of these asymptotically faster sieving algorithms.

Finally, we would like to note that our choice to implement the BGJ sieve solely based on CPU does not mean that a GPU implementation is infeasible. Indeed, if one uses a 20 to 30 TB disk to store the main database, places the buckets after the first filter in a 1 to 2 TB system RAM, and puts the buckets after further filters in each RTX 4090 GPU's 24GB with ECC memory, one may be able to do a disk-based bgj3- or bgj4-gpu that gets close to the GPUs' theoretical throughput. This is because the buckets transferred to the GPU RAM are still very large and should not suffer much from the poor bandwidth from system RAM to GPU RAM, which led to a significant slowdown in the case of 2-bdgl_gpu in [15]. We estimate that the 1.05-Hermite-SVP challenge with dimensions ranging from 200 to 210 should be solvable in a reasonable time, for example, on an 8x Nvidia RTX 4090 machine, which has a theoretical peak performance of 8.660 = 5280 TOPS for 8-bit precision, with a sieving dimension of 160 to 170. However, for dimensions greater than 210, the challenge should be considered hard due to the bottleneck of computational resources, even though increasing the disk space for a larger sieving dimension is not too difficult.

Nevertheless, such an implementation is by no means easy. Therefore, we have chosen to develop a CPU-based implementation, which is much easier to develop, tune, debug, and use. Moreover, it is sufficient to illustrate most of the concepts we aim to demonstrate, and it is already fast enough to validate the improvements.

Parallel Work. We recently became aware of a parallel work by Samuel Jaques [20], which also explores the memory access cost of sieving algorithms. [20] focuses more on the theoretical side, while our research is rooted in and supported by concrete implementation. Although our approaches and findings are independent and differ significantly, we appreciate the contributions of their research,

and believe that both our works collectively advance the understanding of the concrete cost of lattice attacks.

References

- Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Symposium on the Theory of Computing (2001), https://doi. org/10.1145/380752.380857
- Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W., Stevens, M.: The general sieve kernel and new records in lattice reduction. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2019. pp. 717–746. Springer International Publishing, Cham (2019), https://doi.org/10. 1007/978-3-030-17656-3_25
- Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I., Schmidt, L.: Practical and optimal lsh for angular distance. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 28. Curran Associates, Inc. (2015), https://proceedings.neurips.cc/paper_files/paper/ 2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf
- Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor searching with applications to lattice sieving. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 10– 24. SODA '16, Society for Industrial and Applied Mathematics, USA (2016), https://doi.org/10.1137/1.9781611974331.ch2
- Becker, A., Gama, N., Joux, A.: Solving shortest and closest vector problems: The decomposition approach. Cryptology ePrint Archive, Paper 2013/685 (2013), https://eprint.iacr.org/2013/685
- Becker, A., Gama, N., Joux, A.: Speeding-up lattice sieving without increasing the memory, using sub-quadratic nearest neighbor search. Cryptology ePrint Archive, Paper 2015/522 (2015), https://eprint.iacr.org/2015/522
- Bernstein, D.J.: round 2 official comment: crystals-kyber (2020), https://groups. google.com/a/list.nist.gov/g/pqc-forum/c/o2roJXAlsUk/m/69c5Ph9vCAAJ
- 8. Bernstein, D.J.: Structure of memory access in sieving (2023), https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/sqyLiTAAHik
- Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Schwabe, P., Stehlé, D.: CRYSTALS-KYBER. Technical report, National Institute of Standards and Technology, 2019. available at https://csrc.nist.gov/projects/ post-quantum-cryptography/selected-algorithms-2022
- Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing. pp. 380–388. STOC '02, Association for Computing Machinery, New York, NY, USA (2002). https://doi.org/10.1145/509907.509965, https://doi.org/10. 1145/509907.509965
- Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and Application of Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings. Lecture Notes in Computer Science, vol. 7073, pp. 1–20. Springer (2011). https://doi.org/10.1007/978-3-642-25385-0_1

- Ducas, L.: Shortest vector from lattice sieving: A few dimensions for free. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2018. pp. 125–145. Springer International Publishing, Cham (2018), https://doi.org/10. 1007/978-3-319-78381-9_5
- Ducas, L.: Estimating the hidden overheads in the bdgl lattice sieving algorithm. In: Cheon, J.H., Johansson, T. (eds.) Post-Quantum Cryptography. pp. 480–497. Springer International Publishing, Cham (2022), https://doi.org/10.1007/978-3-031-17234-2_22
- Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-DILITHIUM. Technical report, National Institute of Standards and Technology, 2019. available at https://csrc.nist.gov/projects/ post-quantum-cryptography/selected-algorithms-2022
- Ducas, L., Stevens, M., van Woerden, W.: Advanced lattice sieving on gpus, with tensor cores. In: Canteaut, A., Standaert, F.X. (eds.) Advances in Cryptology – EUROCRYPT 2021. pp. 249–279. Springer International Publishing, Cham (2021), https://doi.org/10.1007/978-3-030-77886-6_9
- Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free (talk) (April 2018), https://eurocrypt.iacr.org/2018/Slides/Monday/TrackB/01-01.pdf
- Fitzpatrick, R., Bischof, C., Buchmann, J., Dagdelen, Ö., Göpfert, F., Mariano, A., Yang, B.Y.: Tuning gaussieve for speed. In: Aranha, D.F., Menezes, A. (eds.) Progress in Cryptology - LATINCRYPT 2014. pp. 288–305. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-16295-9_16
- Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning. In: Gilbert, H. (ed.) Advances in Cryptology – EUROCRYPT 2010. pp. 257–278. Springer Berlin Heidelberg, Berlin, Heidelberg (2010), https://doi.org/10.1007/ 978-3-642-13190-5_13
- Herold, G., Kirshanova, E.: Improved algorithms for the approximate k-list problem in euclidean norm. In: Fehr, S. (ed.) Public-Key Cryptography – PKC 2017. pp. 16–40. Springer Berlin Heidelberg, Berlin, Heidelberg (2017), https://doi.org/10. 1007/978-3-662-54365-8_2
- 20. Jaques, S.: Memory adds no cost to lattice sieving for computers in 3 or more spatial dimensions. Cryptology ePrint Archive, Paper 2024/080 (2024), https:// eprint.iacr.org/2024/080
- Kannan, R.: Improved algorithms for integer programming and related lattice problems. In: Johnson, D.S., Fagin, R., Fredman, M.L., Harel, D., Karp, R.M., Lynch, N.A., Papadimitriou, C.H., Rivest, R.L., Ruzzo, W.L., Seiferas, J.I. (eds.) Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston, Massachusetts, USA. pp. 193–206. ACM (1983). https://doi.org/10.1145/800061.808749
- Kirshanova, E., Laarhoven, T.: Lower bounds on lattice sieving and information set decoding. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12826, pp. 791–820. Springer (2021). https://doi.org/10.1007/978-3-030-84245-1_27
- Laarhoven, T.: Sieving for shortest vectors in lattices using angular localitysensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology - CRYPTO 2015. pp. 3–22. Springer Berlin Heidelberg, Berlin, Heidelberg (2015), https://doi.org/10.1007/978-3-662-47989-6_1

- 24 Ziyu Zhao, Jintai $Ding^{(\boxtimes)}$, and Bo-Yin Yang
- Laarhoven, T., Weger, B.: Faster sieving for shortest lattice vectors using spherical locality-sensitive hashing. In: Lauter, K., Rodríguez-Henríquez, F. (eds.) Progress in Cryptology - LATINCRYPT 2015 (Fourth International Conference on Cryptology and Information Security in Latin America, Guadalajara, Mexico, August 23-26, 2015). pp. 101–118. Lecture Notes in Computer Science, Springer, Germany (2015). https://doi.org/10.1007/978-3-319-22174-8_6
- Lenstra, A.K., Lenstra, H.W., Lovász, L.M.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 515–534 (1982), https://doi.org/10. 1007/BF01457454
- Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest vector problem. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 1468–1480. SODA '10, Society for Industrial and Applied Mathematics, USA (2010)
- Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are practical. Journal of Mathematical Cryptology 2(2), 181–207 (2008). https://doi.org/doi:10.1515/JMC.2008.009
- Pohst, M.: On the computation of lattice vectors of minimal length, successive minima and reduced bases with applications. SIGSAM Bull. 15(1), 37–44 (feb 1981). https://doi.org/10.1145/1089242.1089247
- 29. Popovitch, G.: Sparsepp: A fast, memory efficient hash map for c++. https://github.com/greg7mdp/sparsepp
- Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Technical report, National Institute of Standards and Technology, 2019. available at https://csrc. nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
- 31. Schneider, M., Gama, N.: Darmstadt svp challenges (2010), https://www. latticechallenge.org/svp-challenge/index.php
- Schnorr, C., Euchner, M.: Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994). https://doi.org/10.1007/BF01581144
- Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci. 53(2), 201–224 (jun 1987)
- 34. Shoup, V.: Ntl: A library for doing number theory. https://libntl.org/
- Terasawa, K., Tanaka, Y.: Spherical lsh for approximate nearest neighbor search on unit hypersphere. In: Dehne, F., Sack, J.R., Zeh, N. (eds.) Algorithms and Data Structures. pp. 27–38. Springer Berlin Heidelberg, Berlin, Heidelberg (2007), https://doi.org/10.1007/978-3-540-73951-7_4
- Zhao, Z., Ding, J.: Practical improvements on bkz algorithm. In: Dolev, S., Gudes, E., Paillier, P. (eds.) Cyber Security, Cryptology, and Machine Learning. pp. 273– 284. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-34671-2_19