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Abstract. In 1994, Shor introduced his famous quantum algorithm to factor integers and compute
discrete logarithms in polynomial time. In 2023, Regev proposed a multi-dimensional version of
Shor’s algorithm that requires far fewer quantum gates. His algorithm relies on a number-theoretic
conjecture on the elements in (Z/NZ)× that can be written as short products of very small prime
numbers. We prove a version of this conjecture using tools from analytic number theory such as
zero-density estimates. As a result, we obtain an unconditional proof of correctness of this improved
quantum algorithm and of subsequent variants.

1. Introduction

1.1. Context and quantum computing results. Public key cryptography has become a crucial
element of our global digital communication infrastructure. Notable examples include the Diffie-
Hellman key exchange [6] and the RSA (Rivest-Shamir-Adleman) cryptosystem [19], which rely on
the difficulty of finding discrete logarithms and factoring large numbers, respectively.

However, in 1994, Peter Shor [20] developed an algorithm capable of efficiently solving these prob-
lems using a quantum computer.

Theorem (Shor1). There is a quantum circuit having O(n2 log n) quantum gates and O(n log n)
qubits with the following property. There is a classical randomised polynomial-time algorithm that
solves the factoring problem

Input : a composite integer N 6 2n

Output : a non-trivial divisor of N

using O(1) calls to this quantum circuit, and succeeds with probability Θ(1).

Shor’s original article [20] also includes a similar algorithm to solve the discrete logarithm problem.
This advancement prompted the development of post-quantum cryptography, such as lattice-based
cryptography, to ensure the security of our communications in the face of potential quantum com-
puting breakthroughs [4].

Recently, Regev [18] devised a multidimensional variant of Shor’s factoring algorithm that reduces
the size of the quantum circuit, i.e. the number of quantum gates, to O(n3/2 log n). A distinctive
feature of Regev’s algorithm is that the quantum circuit must be called O(

√
n) times, rather than a

constant number of times for Shor’s algorithm. This is not considered to be a serious drawback as
the various complexity parameters of the quantum circuit are far more relevant metrics in quantum
computing.

However, this remarkable work of Regev initially came with two main limitations.

1The version of Shor’s algorithm stated here incorporates some small improvements from [21] (bounded number of
calls) and [10] (fast integer multiplication). The number of qubits in Shor’s algorithm can be brought down to O(n),
though this typically requires a larger number of quantum gates (see e.g. [8, 12]).
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First, the original version of Regev’s algorithm requires O(n3/2) qubits – many more than Shor’s
algorithm. The reason for this ultimately lies in the difficulty of performing classical computations
on quantum computers in a space-efficient manner, due to the need for any quantum computation to
be reversible. In a subsequent paper, Ragavan and Vaikuntanathan [17] improved Regev’s algorithm
to use only O(n log n) qubits, while maintaining the circuit size at O(n3/2 log n) quantum gates. This
work, inspired by ideas of Kalinski [13], essentially matches the space cost of Shor’s algorithm.

The second issue, which we address in this paper, is that Regev’s algorithm [18] does not have
theoretical guarantees, unlike Shor’s algorithm. The correctness of Regev’s algorithm is based on
an ad hoc number-theoretic conjecture which we describe below. This unproven assumption cannot
be avoided as it lies at the core of Regev’s improvement on the circuit size. The variant of Ragavan
and Vaikuntanathan [17] also crucially relies on this conjecture.

In this paper, we prove a version of Regev’s conjecture. This allows us to unconditionally prove
the correctness of (slightly modified versions of) the algorithms of Regev [18] and Ragavan and
Vaikuntanathan [17]. More precisely, we obtain the following algorithmic result.

Theorem 1.1. There is a quantum circuit having O(n3/2 log3 n) quantum gates and O(n log3 n)
qubits with the following property. There is a classical randomised polynomial-time algorithm that
solves the factoring problem

Input : a composite integer N 6 2n

Output : a non-trivial divisor of N

using O(
√
n) calls to this quantum circuit, and succeeds with probability Θ(1).

This unconditionally establishes the results in [17, 18] up to logarithmic factors.

Regev’s algorithm was adapted by Ekerå and Gärtner [7] to the discrete logarithm problem. Their
paper [7] also uses the space-saving arithmetic of Ragavan and Vaikuntanathan [17] to obtain a
quantum circuit with O(n3/2 log n) gates and O(n log n) qubits for computing discrete logarithms.

Once more, the correctness of the algorithm by Ekerå and Gärtner [7] relies on an unproven hy-
pothesis, which can be viewed as a stronger form of Regev’s conjecture. Our methods also apply
to this stronger statement (again, with minor technical adjustments). Thus, we get an analogue of
Theorem 1.1 for the discrete logarithm problem, i.e. an unconditional proof of the results in [7] up
to logarithmic factors.

Theorem 1.2. There is a quantum circuit having O(n3/2 log3 n) quantum gates and O(n log3 n)
qubits with the following property. There is a classical randomised polynomial-time algorithm that
solves the discrete logarithm problem

Input : an integer N 6 2n and elements g, y ∈ (Z/NZ)× such that y ∈ 〈g〉
Output : an integer x such that gx ≡ y (mod N)

using O(
√
n) calls to this quantum circuit, and succeeds with probability Θ(1).

Moreover, the slight technical modifications that we need to introduce to make all these quantum
algorithms unconditional are compatible with the error-correction results of [7, 17]. Finally, our
results extend to further variants of Regev’s algorithm, such as computing discrete logarithms or
multiplicative orders modulo N for several elements simultaneously (see [7]).

Remark 1.3. By being slightly more careful in the space usage of our quantum algorithms, it is
possible to reduce the number of qubits to O(n log2 n) for Theorems 1.1 and 1.2. We will not show
this here in order to reduce the quantum computing prerequisites to a minimum.



UNCONDITIONAL CORRECTNESS OF RECENT QUANTUM ALGORITHMS 3

1.2. An overview of Regev’s algorithm. Let us start by recalling the basic idea behind Shor’s
factoring algorithm [20].

Let N be the integer to be factored, say odd and with at least two distinct prime factors. The first
step is to generate a random integer 1 < a < N , which can be assumed to be coprime to N . Shor
proved that there is an efficient quantum algorithm to find the multiplicative order r of a modulo
N . It can be shown by elementary means that ar/2 is a non-trivial square root of 1 modulo N (here
we mean that 2 | r and ar/2 6≡ ±1) with probability > 1/2. Whenever this is the case, we get a
non-trivial divisor of N , namely gcd(N, ar/2 − 1).

The reason that Shor’s algorithm uses O(n2 log n) quantum gates, where n := dlog2Ne, comes
from the part of the quantum circuit that performs modular exponentiation. Consider the task
of computing a power aM (modN) on a classical computer, where 1 < a < N − 1 and M 6 N .
This computation can be performed efficiently using the well-known square-and-multiply method,
which involves O(logM) multiplications of two integers modulo N . Since two n-bit integers can
be multiplied in time O(n log n) by [10], the complexity of this modular exponentiation problem is
thus O(n2 log n).2 For Shor’s algorithm, a similar modular exponentiation needs to be performed
quantumly, which requires O(n2 log n) quantum gates.

Regev’s improvement of Shor’s algorithm is made possible by combining two key ideas.

The first idea in Regev’s algorithm is to work in higher dimensional space and replace the random
parameter a by several integers b1, . . . , bd (chosen in a specific way, as we explain below). Eventually,
the optimal choice of dimension turns out to be d �

√
logN . Similarly to Shor’s algorithm, the

problem of factoring N easily reduces to the task of finding a vector (e1, . . . , ed) ∈ Zd such that∏d
i=1 b

ei
i is a non-trivial square root of 1 modulo N .

Using additional tools such as the LLL lattice reduction algorithm, Regev [18] generalised Shor’s
quantum algorithm to efficiently find all such vectors (e1, . . . , ed) in a ball of radius NO(1/d) centred
at the origin.

Regev’s algorithm only succeeds if there indeed exists a vector v = (e1, . . . , ed) ∈ Zd such that

(i) ‖v‖2 6 NO(1/d), and

(ii)
∏d
i=1 b

ei
i is a non-trivial square root of 1 modulo N .

If the parameters b1, . . . , bd are “sufficiently multiplicatively independent” modulo N , one might
heuristically expect the existence of a vector v = (e1, . . . , ed) satisfying (i) and (ii). This is, roughly
speaking, what Regev needs to assume. To state his conjecture properly, it remains to specify how
the parameters b1, . . . , bd are chosen. This is a crucial point, as the idea of working in dimension d
does not, on its own, offer any advantage over Shor’s algorithm.

The second key insight of Regev is to choose b1, . . . , bd to be very small compared to N . We
mentioned that the most costly part of Shor’s quantum circuit lies in the modular exponentiation
step. Similarly, the number of gates of Regev’s circuit is dominated by the cost of computing an
expression of the form

(1)
d∏
i=1

bMi
i (modN)

in the quantum setting, where the exponentsM1, . . . ,Md are6 NO(1/d). Regev observed that (1) can
be computed classically in time O(n3/2 log n) if |bi| 6 (logN)O(1) for all i (for d �

√
n �
√

logN).
This can be achieved by cleverly ordering the intermediate multiplications so that most of them

2Note that, even if a is a small integer, say a = 2, this procedure still takes time O(n2 logn), because most
multiplications will involve n-bit integers.
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involve integers with much fewer than n bits. This classical procedure can then be turned into a
quantum version that uses O(n3/2 log n) gates.

Shor’s algorithm corresponds to the d = 1 case of Regev’s algorithm where the parameter b1 is
an element of (Z/NZ)× chosen uniformly at random. In this case, simple considerations from
elementary number theory immediately imply the existence of an integer e1 satisfying (i) and (ii)
with probability � 1. This would hold more generally for d > 1 if b1, . . . , bd were independent,
uniformly distributed random elements of (Z/NZ)×. However, for Regev’s algorithm, the bi’s are
far from uniformly distributed in (Z/NZ)× as they are constrained to lie in a very small subset of
(Z/NZ)×.

1.3. The number-theoretic conjecture behind Regev’s algorithm. Regev’s algorithm [18]
and its space-efficient variant [17] crucially rely on the possibility of choosing very small integers
b1, . . . , bd such that

∏d
i=1 b

ei
i is a non-trivial square root of 1 modulo N for some e1, . . . , ed with

|ei| 6 NO(1/d). We remind the reader that n � logN and d �
√
n.

The least restrictive bound3 on the bi’s that still allows for a quantum circuit with Õ(n3/2) gates is
to have |bi| 6 exp(Õ(d)), where the Õ(·) notation possibly hides a factor (log n)O(1). Moreover, it is
natural to set the bi’s to be prime numbers (as in [7, 17, 18]) in order to avoid obvious multiplicative
relations between them.

In this paper, we choose b1, . . . , bd to be independent random prime numbers less than d103d. With
these parameters, we can now state a version of Regev’s conjecture4 that follows from our results.

Corollary 1.4. Let N > 2 be an integer. Let d := d
√

logNe and X := d10
3d.

Let b1, . . . ,bd be i.i.d. random variables, each uniformly distributed in the set of primes 6 X not
dividing N .

Then, with high probability, every x ∈ 〈b1, . . . ,bd〉 can be expressed as

x ≡
d∏
i=1

beii (mod N)

for some integers ei with |ei| 6 eO(d) for all 1 6 i 6 d.

The analogue of Regev’s algorithm for the discrete logarithm problem, proposed by Ekerå and
Gärtner [7], relies on a stronger version of Regev’s conjecture. It concerns the geometry of a certain
lattice L which encodes all multiplicative dependencies between the bi’s (modulo N). We prove the
following version of it.5

Corollary 1.5. Let N > 2 be an integer. Let d := d
√

logNe and X := d10
3d.

Let b1, . . . ,bd be i.i.d. random variables, each uniformly distributed in the set of primes 6 X not
dividing N .

Let L be the random lattice defined by

(2) L :=
{

(e1, . . . , ed) ∈ Zd :
d∏
i=1

beii ≡ 1 (mod N)
}
.

Then, with high probability, this lattice L has a basis consisting of vectors of Euclidean norm 6 eO(d).

3The bound stated in Regev’s paper [18] is |bi| 6 (logN)O(1), but this condition can be relaxed somewhat, as
observed by Ragavan (private communication).

4Compare with [18, Theorem 1.1] or [17, Conjecture 3.1].
5Compare with [7, Assumption 1] or [17, Conjecture E.1]
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The main technical result of this paper is Theorem 2.18, of which Corollary 1.5 is a special case.
Corollary 1.4 is a direct consequence Corollary 1.5.

1.4. Subgroup obstructions. Corollary 1.4 shows that, with high probability, every element x in
the subgroup generated by b1, . . . ,bd can be written as a short product of these bi modulo N . To
obtain the full strength of Regev’s assumption [17, Conjecture 3.1], it would be necessary to show
that this subgroup 〈b1, . . . ,bd〉 contains a non-trivial square root of 1 modulo N .

Unfortunately, it is not possible to prove this in full generality without considerable advances on
the well-known least quadratic non-residue problem in number theory. For any prime number p,
write n(p) for the smallest positive integer a which is a quadratic non-residue (i.e. not a square)
modulo p. The best known asymptotic upper bound for n(p) is Burgess’s classical result [5] that

n(p)�ε p
1

4
√
e
+ε
.

For simplicity, suppose that the integer N to be factored is a product of two equally-sized primes
p1, p2 ≡ 3 (mod 4). Recall that, for Regev’s algorithm, the parameters bi are chosen to be less
than exp(Õ(d)). With current techniques, we cannot rule out the possibility that both n(p1) and
n(p2) are larger than this threshold. If this is the case, all bi will be quadratic residues modulo
both p1 and p2, which implies that 〈b1, . . . ,bd〉 is contained in the subgroup of squares modulo N .
In particular, since p1, p2 ≡ 3 (mod 4), the subgroup 〈b1, . . . ,bd〉 does not contain any non-trivial
square roots of 1 modulo N .

This issue can be approached from several perspectives.

(1) Assuming the Generalised Riemann Hypothesis, Ankeny proved the much stronger bound
n(p)� (log p)2 [2]. This suggests that quadratic residues may no longer be an obstruction
in this case, and indeed, under GRH, it is straightforward to show that 〈b1, . . . ,bd〉 contains
a non-trivial square root of 1 modulo N with high probability. Assuming GRH would also
considerably simplify the proof of Theorem 2.18 and remove a logarithmic factor for the gate
and qubit costs in Theorems 1.1 and 1.2. However, in this paper we seek fully unconditional
results.

(2) Using a grand zero-density estimate [11, Theorem 1 (1.8)] and the Landau-Page theorem
[15, Corollary 11.10], it is possible to prove the above result unconditionally for almost all
N , which would already have very interesting algorithmic consequences. More precisely, it
can be shown that there exists a set of exceptions E ⊂ N satisfying

|E ∩ [1, x]| � exp
(
(log x)1/2+o(1)

)
for x > 1, such that for every odd N 6∈ E with at least two prime factors, the subgroup
〈b1, . . . ,bd〉 (with bi = bi(N) as defined earlier) contains a non-trivial square root of 1
modulo N with high probability. From this and Corollary 1.4, it would follow that Regev’s
algorithm finds a non-trivial divisor of N with high probability for almost all N .

(3) In this paper, we follow a different approach to obtain a completely unconditional result that
applies to all N , by slightly modifying the algorithm itself. While the key to the efficiency
of Regev’s algorithm is that the bi’s are small, one can tolerate a bounded number of large
bi’s.6 We use this extra flexibility to overcome the subgroup obstructions. The simplest
way to proceed is to allow for one of the parameters, say b1, to be uniformly distributed in
(Z/NZ)×. As with Shor’s algorithm, this ensures that the subgroup 〈b1〉, and hence also
〈b1, . . . ,bd〉, contains a non-trivial square root of 1 with probability � 1.

6In fact, this observation was already needed to adapt Regev’s algorithm to the discrete logarithm problem [7].
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Remark 1.6. In his paper [18], Regev proposed to select the parameters b1, . . . , bd deterministically,
for example by setting bi to be the i-th smallest prime for 1 6 i 6 d. While such a deterministic
choice of parameters is likely to work for almost all N , this is probably very difficult to prove.

Remark 1.7. In this paper, the parameters bi are chosen to be random primes (not dividing
N) under a certain threshold X. Another natural choice would have been to let b1, . . . ,bd be
i.i.d. random variables uniformly distributed in the set of all integers 6 X coprime to N . The
proofs in this paper would carry over to this framework if an analogue of Proposition 2.9 for short
character sums

∑
n6x χ(n) were available. Assuming the Generalised Riemann Hypothesis, the work

of Granville and Soundararajan [9, Theorem 2] gives a bound of the required strength. However,
this approach does not seem sufficient to obtain an unconditional result (the bounds in [9] become
too weak when L(s, χ) has zeroes close to the line Re s = 1).

This paper is organised as follows. Our main technical result is Theorem 2.18, which shows that
lattices L similar to that in Corollary 1.5 have a basis of short vectors with high probability. Using
simple geometry of numbers (see Section 2.5), we reduce this problem to estimating the number
of lattice points in balls of growing radii. Unfortunately, we are unable to obtain a suitable lattice
point count for L directly. We resolve this by considering a different lattice LM from the start
of the argument (using the lemmas in Section 2.2). In Section 2.3, we expand the lattice point
count for LM in terms of Dirichlet characters modulo N . This produces a main term, which can be
estimated precisely, and an error term. The heart of the proof lies in using a zero-density estimate
for Dirichlet characters modulo N to bound this error term unconditionally. Finally, we prove our
quantum algorithmic applications (Theorems 1.1 and 1.2) in Section 3.
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2. Proof of the existence of a short lattice basis

2.1. Notation. We write f � g or f = O(g) if |f | 6 Cg for some absolute constant C > 0. If
instead, C depends on a parameter θ, we write f �θ g or f = Oθ(g). The notation f � g or
f = Θ(g) means that f � g and g � f .

A character of a finite abelian group G is a homomorphism χ : G→ C×. The order of χ, denoted
by ord(χ), is the least positive integer n such that χn is the trivial character 1. The group of all
characters of G is denoted by Ĝ. If g1, . . . , gk ∈ G, we write 〈g1, . . . , gk〉 for the subgroup of G
generated by these elements.

A non-trivial square root of 1 modulo N is an element a ∈ (Z/NZ)× such that a2 ≡ 1 (mod N)
and a 6≡ ±1 (mod N). Euler’s totient function and the prime counting function are denoted by ϕ
and π, respectively. We use the notation ‖·‖2 for the Euclidean norm. We write log for the natural
logarithm and log2 for the logarithm in base 2.

Random variables are typically written in bold font, such as b1, . . . ,bd. A statement will be said
to occur with high probability if it holds with probability tending to 1 as N →∞.

We refer the reader to [16] for a detailed textbook on quantum computing, and [4, Chapter 2] for a
brief overview.
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2.2. Restricting to a convenient subgroup of ̂(Z/NZ)×. The goal of this preliminary section
is to define a subgroup of the character group of (Z/NZ)× that does not have too many elements of
small order. This will be crucial for Section 2.4, to reduce the influence of potential counterexamples
to the Generalised Riemann Hypothesis. For example, we need to avoid having many characters
χ1, . . . , χk modulo N such that χ2

i = ψ for all i, where ψ is an exceptional character (in the sense
that L(s, ψ) has a zero very close to the line Re s = 1). The definition of the suitable subgroup
depends on the precise structure of (Z/NZ)×.

Notation 2.1. If G is a finite abelian group (written multiplicatively) and M > 1, we write
GM := {xM : x ∈ G} for the subgroup of Mth powers in G.7

Lemma 2.2. Let G be a finite abelian group (written multiplicatively) and M > 1. There is an
isomorphism

ι : ĜM
∼−→ ĜM

such that, for any χ ∈ ĜM , ι(χ) = χ̃M where χ̃ ∈ Ĝ is an arbitrary extension of χ to G.

Proof. Pontryagin duality for finite abelian groups is an equivalence of categories, and therefore an
exact functor. In simple terms, this implies that injections turn into surjections when switching
to the dual, and vice versa. Hence, the Mth power map G � GM , g 7→ gM , induces an injection
ι : ĜM ↪−→ Ĝ defined by

ι(χ)(g) := χ
(
gM
)

for every χ ∈ ĜM and g ∈ G. Moreover, the restriction map Ĝ→ ĜM is surjective, using exactness
of Pontryagin duality again. Thus, every χ ∈ ĜM can be extended to a character χ̃ on G, and

χ
(
gM
)

= χ̃(gM ) = χ̃M (g).

This implies that the image of ι is contained in ĜM . Since
∣∣ĜM ∣∣ =

∣∣GM ∣∣ =
∣∣ĜM ∣∣, the lemma

follows. �

Definition 2.3. Let N > 1. For every h > 1 we define

K(h) :=
|(Z/NZ)×|
|((Z/NZ)×)h|

.

In other words, K(h) is the size of the kernel of the hth power map in (Z/NZ)×.

Lemma 2.4. Let N > 2 be an integer and d := d
√

logNe.
For every prime p, define mp to be the largest non-negative integer such that

K(pmp) > pdmp/10.

Let M∗ = M∗(N) :=
∏
p p

mp . Then the following holds.

(1) We have M∗ 6 e10d.

(2) For every h > 1, we have K(M∗h)/K(M∗) 6 hd/10.

Proof. (1) For every prime p, since K(pmp) is a power of p dividing |(Z/NZ)×| = ϕ(N), we
have ∏

p

K(pmp) | ϕ(N).

7In particular, GM is not the M -fold direct product of G.
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By definition of mp, we know that K(pmp) > pdmp/10 for every p, and thus

M∗
d/10 =

∏
p

pdmp/10 6
∏
p

K(pmp) 6 ϕ(N) 6 N.

Recalling that d = d
√

logNe, it follows that M∗ 6 e10d.
(2) In any finite abelian group (written multiplicatively) and for any coprime integers a and b,

there is an isomorphism

ker
(
g 7→ ga

)
× ker

(
g 7→ gb

) ∼= ker
(
g 7→ gab

)
.

Thus, if h =
∏
p p

ep is the prime factorisation of h, we see that K(M∗) =
∏
pK(pmp) and

K(M∗h) =
∏
pK(pmp+ep), where all products are finite. Whenever ep > 1, we have

K(pmp+ep) < pd(mp+ep)/10, K(pmp) > pdmp/10

by definition of mp. Thus K(pmp+ep)/K(pmp) 6 pdep/10, and this last inequality also holds
when ep = 0. We conclude that

K(M∗h)

K(M∗)
=
∏
p

K(pmp+ep)

K(pmp)
6
∏
p

pdep/10 = hd/10.

as claimed. �

Lemma 2.5. Let N > 2, d := d
√

logNe, G := (Z/NZ)× and let M∗ > 1 be the integer defined in
the statement of Lemma 2.4.

Let h > 1. Let χ1, . . . , χn ∈ ĜM∗ be distinct characters such that

χh1 = χh2 = . . . = χhn,

Then n 6 hd/10.

Proof. Let fh : GM∗ → GM∗ be the hth power map, f(χ) := χh. By assumption, the n distinct
characters χ1χ

−1
n , χ2χ

−1
n , . . . , χnχ

−1
n lie in the kernel of f . Hence,

n 6
∣∣ker(f)

∣∣ =
|GM∗ |
|(GM∗)h|

=
|((Z/NZ)×)M∗ |
|((Z/NZ)×)M∗h|

=
K(M∗h)

K(M∗)
,

which is 6 hd/10 by Lemma 2.4. �

2.3. Lattice point counting via characters. To prove Theorem 2.18, we will need to study the
following quantities.

Definition 2.6. Let N > 1, G = (Z/NZ)× and χ ∈ Ĝ. For all d > 1 and b1, . . . , bd ∈ G, we define
the quantity

Fχ,H(b1, . . . , bd) :=
d∏
i=1

∑
|h|6H

χh(bi).

The following lemma relates these expressions to a lattice point counting problem.

Lemma 2.7. Let N,M, d,H > 1 be integers. Let b1, . . . , bd ∈ G := (Z/NZ)×. The number of
vectors (e1, . . . , ed) ∈ Zd ∩ [−H,H]d such that

d∏
i=1

bMei
i ≡ 1 (mod N)
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is equal to

(3)
1∣∣ĜM ∣∣ ∑

χ∈ĜM
Fχ,H(b1, . . . , bd).

Proof. By orthogonality of characters in the abelian group GM , we have

1∏
i b
Mei
i ≡1 (modN)

=
1∣∣ĜM ∣∣

∑
ψ∈ĜM

ψ

(
d∏
i=1

bMei
i

)
=

1∣∣ĜM ∣∣
∑
ψ∈ĜM

d∏
i=1

ψ
(
bMei
i

)
.

Observe that ψ
(
bMei
i

)
= ι(ψ)(beii ), where ι is the isomorphism ĜM

∼−→ ĜM defined in Lemma 2.2.
We may thus rewrite this equality as

1∏
i b
Mei
i ≡1 (modN)

=
1∣∣ĜM ∣∣ ∑

χ∈ĜM

d∏
i=1

χ
(
beii
)
.

Therefore, the number of vectors (e1, . . . , ed) ∈ Zd ∩ [−H,H]d such that
∏d
i=1 b

Mei
i ≡ 1 (mod N) is

∑
(e1,...,ed)∈Zd
maxi |ei|6H

1∏
i b

Mei
i ≡1 (modN)

=
1∣∣ĜM ∣∣ ∑

χ∈ĜM

∑
(e1,...,ed)∈Zd
maxi |ei|6H

d∏
i=1

χei(bi) =
1∣∣ĜM ∣∣ ∑

χ∈ĜM
Fχ,H(b1, . . . , bd)

as claimed. �

It is fairly straightforward to estimate Fχ,H(b1, . . . , bd) when χ is a character of small order in Ĝ.
The contribution of these small-order characters gives the expected main term for (3).

Lemma 2.8 (Main term). Let N,M, d > 1 be integers. Let b1, . . . , bd ∈ G := (Z/NZ)×. Uniformly
for all integers H > e31d, we have

(4)
1∣∣ĜM ∣∣ ∑

χ∈ĜM
Fχ,H(b) =

(
1 +O

(
e31d

H

))
(2H + 1)d∣∣〈bM1 , . . . , bMd 〉∣∣ +

1∣∣ĜM ∣∣ ∑
χ∈ĜM

ord(χ)>e10d

|Fχ,H(b)|,

where Fχ,H(b) is short for Fχ,H(b1, . . . , bd).

Proof. Define
〈b1, . . . , bd〉⊥ := {χ ∈ Ĝ : ∀i ∈ [d], χ(bi) = 1}.

Observe that

(5)
∣∣〈b1, . . . , bd〉⊥ ∩ ĜM ∣∣ =

∣∣{χ ∈ ĜM : ∀i ∈ [d], χ
(
bMi
)

= 1
}∣∣ =

∣∣GM ∣∣∣∣〈bM1 , . . . , bMd 〉∣∣
where the first equality follows from Lemma 2.2 and the second from the canonical isomorphism
H⊥1
∼= Ĝ1/H1 for any subgroup H1 of a finite abelian group G1.

Clearly, if χ ∈ 〈b1, . . . , bd〉⊥ ∩ ĜM , we have Fχ,H(b) = (2H + 1)d. Hence, by (5), those characters
contribute

1∣∣ĜM ∣∣ ∑
χ∈〈b1,...,bd〉⊥∩ĜM

Fχ,H(b) =
(2H + 1)d∣∣〈bM1 , . . . , bMd 〉∣∣

to the sum (4).
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For any character χ ∈ ĜM \ 〈b1, . . . , bd〉⊥ of order 6 e10d, and any i ∈ [d] such that χ(bi) 6= 1, we
can bound ∣∣∣∣∣∣

∑
|h|6H

χ(bi)
h

∣∣∣∣∣∣ 6 ord(χ) 6 e10d

by the geometric series formula. Thus, defining

Iχ := {i ∈ [d] : χ(bi) 6= 1},

we have
|Fχ,H(b)| 6 e10d|Iχ|(2H + 1)d−|Iχ|.

Consequently,

(6)
∑

χ∈ĜM\〈b1,...,bd〉⊥
ord(χ)6e10d

|Fχ,H(b)| �
∑
I⊂[d]
I 6=∅

e10d|I|(2H + 1)d−|I|
∑
χ∈ĜM

ord(χ)6e10d

Iχ=I

1.

Fix some non-empty set I ⊂ [d] and complex numbers (zi)i∈I . Let CI,(zi) be the set of all characters
χ ∈ ĜM such that

χ(bi) =

{
zi if i ∈ I
1 if i ∈ [d] \ I.

Note that CI,(zi) is either the empty set, or a coset of 〈b1, . . . , bd〉⊥ ∩ ĜM in ĜM . Moreover, if χ has
order 6 e10d, this set CI,(zi) can only be non-empty if all zi are roots of unity of order 6 e10d, and
there are 6 e20d such roots of unity. We conclude that∑

χ∈ĜM
ord(χ)6e10d

Iχ=I

1 6
∑

(zi)i∈I

∣∣CI,(zi)∣∣ 6 e20d|I|∣∣〈b1, . . . , bd〉⊥ ∩ ĜM ∣∣.

Thus, we can bound the right-hand side of (6) by

� (2H + 1)d
∣∣〈b1, . . . , bd〉⊥ ∩ ĜM ∣∣ ∑

I⊂[d]
I 6=∅

(
e30dH−1

)|I| � (2H + 1)d
∣∣〈b1, . . . , bd〉⊥ ∩ ĜM ∣∣2de30dH−1

where we used that H > e30d in the last step. By (5), this means that

1∣∣ĜM ∣∣ ∑
χ∈ĜM\〈b1,...,bd〉⊥

ord(χ)6e10d

|Fχ,H(b)| � e31dH−1
(2H + 1)d∣∣〈bM1 , . . . , bMd 〉∣∣ ,

which completes the proof. �

2.4. Bounding the contribution of large-order characters. In this section, we bound the
error term coming from large-order characters, on average over primes b1, . . . , bd in a short interval.

We will need the following ingredients from classical analytic number theory.

Proposition 2.9 (Character sums over primes). Let 1/2 6 α 6 1. Let q, x > 2. Let χ be a
non-principal character modulo q whose Dirichlet L-function L(s, χ) has no zero in the rectangle{

s ∈ C : α < Re s 6 1, |Im s| 6 x1−α
}
.
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Then
1

π(x)

∑
p6x

χ(p)� x−(1−α) log3(qx).

Proposition 2.9 is a standard consequence of the explicit formula for L(s, χ) and is proved in Ap-
pendix A. The logarithmic factors can be somewhat improved, but such refinements are irrelevant
here.

The Generalised Riemann Hypothesis is the claim that, for every Dirichlet character χ, L(s, χ)
has no zero ρ with 1

2 < Re ρ < 1. Assuming GRH, Proposition 2.9 thus implies almost square-
root cancellation for character sums over primes. Proposition 2.10 will serve as an unconditional
substitute for GRH.

Proposition 2.10 (Zero-density estimate for a fixed modulus). Uniformly for 4
5 6 α 6 1 and

q, T > 1, we have ∑
χ (mod q)

N (α, T, χ)�ε (qT )(2+ε)(1−α).

where N (α, T, χ) denotes the number of zeros (with multiplicity) of L(s, χ) in the rectangle

{s ∈ C : α < Re s 6 1, |Im s| 6 T}.

Proof. This is [11, Theorem 1 (1.7)]. �

Our goal is to control the total contribution of all large-order characters in (4). We will do so in
Proposition 2.14 (restricting to a suitable sugbroup of Ĝ). We first prove the following L2 bound
for a single large-order character.

Lemma 2.11. Let N > 2 be an integer and let G = (Z/NZ)×. Let d = d
√

logNe and X = d10
3d.

Let b1, . . . ,bd be i.i.d. random variables, each uniformly distributed in the set of primes less than X
not dividing N . Let χ ∈ Ĝ be a character of order > e10d. Then, for every H > e10d,

E
[
|Fχ,H(b1, . . . ,bd)|2

]
� d−10dH2d.

Proof. By Proposition 2.10, the number of Dirichlet characters moduloN whose associated L-function
has a zero in the region

(7)
{
s ∈ C : 1− 1

10d
< Re s 6 1, |Im s| 6 X

}
.

is

(8) � (NX)(2+1)/(10d) � ed.

If a non-principal character ψ modulo N has no zero in the region (7), then by Proposition 2.9 we
have

(9) E[ψ(b1)]� X−1/(10d)(log(NX))3 � d−100d6 � d−15.
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We now expand E
[
|Fχ,H(b1, . . . ,bd)|2

]
as

E

∣∣∣∣ d∏
i=1

∑
|h|6H

χh(bi)

∣∣∣∣2
 =

d∏
i=1

E

∣∣∣∣ ∑
|h|6H

χh(bi)

∣∣∣∣2


=

( ∑
|h1|6H

∑
|h2|6H

E
[
χh1−h2(b1)

])d

6 (2H + 1)d

( ∑
|h|62H

∣∣∣E[χh(b1)
]∣∣∣)d.

We can use (9) to bound the term E
[
χh(b1)

]
, unless χh is principal or L(s, χh) has a zero in the

region (7). By (8), the number of values of h with |h| 6 2H for which one of these two situations
occurs is

�
(

1 +
H

ord(χ)

)
ed � e−10dedH � e−dH.

By (9), we deduce that, for all but O(e−dH) values of |h| 6 2H, the bound E
[
χh(b1)

]
� d−15

holds. Hence

E
[
|Fχ,H(b1, . . . ,bd)|2

]
6 (2H + 1)d

(
O(e−dH) +O(d−15H)

)d
� d−10dH2d

as desired. �

Lemma 2.11 applies to all characters χ of order > e10d, but gives a relatively weak upper bound.
In Lemma 2.13, we will prove that a stronger bound can be obtained if a small set of exceptions is
allowed. We begin by describing the exceptional characters in the following lemma.

Lemma 2.12. There is some absolute constant t0 > 1 such that the following holds.

Let N,G, d,X and bi be as in Lemma 2.11. Let H > e10d.

Let χ ∈ Ĝ be a character of order > e10d such that

E
[
|Fχ,H(b1, . . . ,bd)|2

]
> e−2tdH2d

for some t with t0 6 t 6 2d.

Then there are integers −2H 6 h1, h2 6 2H with 0 < h2 − h1 6 e3t such that both L(s, χh1) and
L(s, χh2) have a zero in the region

(10)
{
s ∈ C : 1− t

100d
< Re s 6 1, |Im s| 6 X

}
.

Proof. As in the proof of Lemma 2.11, we have

(11) E
[
|Fχ,H(b1, . . . ,bd)|2

]
= E

∣∣∣∣ d∏
i=1

∑
|h|6H

χh(bi)

∣∣∣∣2
 6 (2H + 1)d

( ∑
|h|62H

∣∣∣E[χh(b1)
]∣∣∣)d.

Let I1 be the set of all −2H 6 h 6 2H such that χh is principal. Since χ has order > e10d, we have

|I1| � 1 + e−10dH � e−10dH.

Let I2 be the set of all −2H 6 h 6 2H such that L(s, χh) has a zero in the region (10). By
contradiction, suppose that the conclusion of Lemma 2.12 does not hold. Then any sub-interval of
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[−2H, 2H] of length e3t contains at most one element of I2. This implies that

|I2| � 1 + e−3tH � e−3tH.

Moreover, for any integer h ∈ [−2H, 2H] \ (I1 ∪ I2), the character χh is non-principal and has no
zero in the region (10), which by Proposition 2.9 implies that

E
[
χh(b1)

]
� X−t/(100d)(log(NX))3 � d−10td6 � e−3t.

Therefore, we can bound∑
|h|62H

∣∣∣E[χh(b1)
]∣∣∣� |I1|+ |I2|+ e−3tH � e−10dH + e−3tH � e−3tH.

Hence, by (11) we get
E
[
|Fχ,H(b1, . . . ,bd)|2

]
6 eO(d)e−3tdH2d,

which contradicts the assumption in the statement if t0 is chosen to be sufficiently large. �

We wish to use a zero-density estimate again to show that there are few characters satisfying the
conclusion of Lemma 2.12. For this step to work, we need to restrict to the subgroup ĜM∗ of the
full character group Ĝ, where M∗ is the integer defined in Lemma 2.4.

Lemma 2.13. Let t0 > 1 be the constant from Lemma 2.12. Let N,G, d,X and bi be as in
Lemma 2.11. Let H > e10d and let M∗ > 1 be the integer defined in Lemma 2.4.

For every t > t0,

(12)
∣∣∣{χ ∈ ĜM∗ : ord(χ) > e10d, E

[
|Fχ,H(b1, . . . ,bd)|2

]
> e−2tdH2d

}∣∣∣� etd/2.

Proof. If t > 2d, the bound (12) is trivially satisfied as the right-hand side is � N . We may thus
assume that t0 6 t 6 2d, in which case Lemma 2.12 applies.

Let Et be the set of all characters ψ modulo N such that L(s, ψ) has a zero in the rectangle defined
in (10). By Proposition 2.10, this set Et has size

(13) |Et| � (NX)(2+1/2)t/(100d) � etd/20.

For every χ ∈ Ĝ of order > e10d, if E
[
|Fχ,H(b1, . . . ,bd)|2

]
> e−2tdH2d then by Lemma 2.12 we can

write
χh = ψ1ψ2

for some integer 0 < h < e3t and some characters ψ1, ψ2 ∈ Et. Hence, the left-hand side of (12) is

(14) 6
∑

ψ1,ψ2∈Et

∑
0<h<e3t

∣∣∣{χ ∈ ĜM : χh = ψ1ψ2

}∣∣∣.
Since ĜM∗ and ĜM∗ are isomorphic, Lemma 2.5 implies that

(15)
∣∣∣{χ ∈ ĜM∗ : χh = ψ1ψ2

}∣∣∣ 6 hd/10 6 e3td/10.
Inserting (13) and (15) into (14), we conclude that the left-hand side of (12) is

6 |Et|2e3te3td/10 6 e3te4td/10 � etd/2

as claimed. �

Combining the previous lemmas, we obtain a suitable bound for the sum of second moments of
Fχ,H(b1, . . . ,bd) over all large-order characters in ĜM∗ .
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Proposition 2.14 (Large-order characters). Let N,G, d,X and bi be as in Lemma 2.11. Let
M∗ > 1 be the integer defined in Lemma 2.4. For H > e10d, we have∑

χ∈ĜM∗
ord(χ)>e10d

E
[
|Fχ,H(b1, . . . ,bd)|2

]1/2 � d−2dHd.

Proof. By Lemma 2.11, we know that E
[
|Fχ,H(b)|2

]1/2
6 Cd−5dHd for all characters χ ∈ Ĝ of

order > e10d, where C > 0 is an absolute constant (as before, b stands for b1, . . . ,bd). Therefore,∑
χ∈ĜM∗

ord(χ)>e10d

E
[
|Fχ,H(b)|2

]1/2
6

+∞∑
m=m0

∑
χ∈ĜM∗

ord(χ)>e10d

e−m+1Hd1
e−m<E[|Fχ,H(b)|2]

1/2
H−d6e−m+1

(χ)

where m0 := b5d log d − logC + 1c. We may assume that m0 > max(t0d, 4d log d), since otherwise
d� 1 and Proposition 2.14 is trivially satisfied (given that |ĜM∗ | 6 N � 1 when d� 1).

Applying Lemma 2.13 with t := m/d, we obtain that for every m > t0d,∣∣∣{χ ∈ ĜM∗ : ord(χ) > e10d, E
[
|Fχ,H(b)|2

]1/2
> e−mHd

}∣∣∣� em/2.

Therefore, ∑
χ∈ĜM∗

ord(χ)>e10d

E
[
|Fχ,H(b)|2

]1/2 � +∞∑
m=m0

em/2e−m+1Hd � e−m0/2Hd

which is � d−2dHd as m0 > 4d log d. �

2.5. Geometry of numbers. In this section, we show how to pass from good estimates on the
number of lattice points in certain regions to the existence of a short basis for the lattice.

Lemma 2.15. Let L > 1 be an integer. Cover the cube [−L,L]d by (2L)d cubes of side length 1 in
the obvious way. Label these unit cubes C1, . . . , C(2L)d (in any order). Let V ⊂ Rd be a hyperplane
through the origin. Then the number of unit cubes Ci intersecting V is

6 (d+ 1)(2L)d−1.

Proof. Let e1, . . . , ed be the standard basis for Rd. Let v ∈ Rd be a unit vector orthogonal to V .
Without loss of generality, since ‖v‖2 = 1, we may assume that 〈v, e1〉 > 1/

√
d.

Suppose that V intersects two unit cubes Ci and Cj where Ci = Cj + ke1 for some integer k > 0.
Then, there is some p ∈ Ci and some w ∈ Rd with ‖w‖∞ 6 1 such that p ∈ V and p+ ke1 +w ∈ V .
Therefore, ke1 + w ∈ V and thus 〈ke1 + w, v〉 = 0. Noting that

〈ke1 + w, v〉 > k〈e1, v〉 − ‖w‖2‖v‖2 >
k√
d
−
√
d,

we deduce that k 6 d.

We have thus proved that, for any cube Ci, there are at most d+ 1 cubes of the form Ci + ke1 for
some k ∈ Z which intersect V . The lemma follows. �

The next lemma allows us to convert information about the number of lattice points in cubes into
the existence of short linearly independent lattice vectors.
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Lemma 2.16. Let d > 1. Let Λ ⊂ Rd be a full-rank lattice. Let 2 6 H0 < H1 be real numbers such
that H1/H0 is an integer. Suppose that, for i ∈ {0, 1},

(16)
∣∣∣Λ ∩ [−Hi, Hi]

d
∣∣∣ = θi

(2Hi + 1)d

vol(Rd/Λ)

where θ0, θ1 > 0 satisfy H1
H0

> θ0
θ1
d
(
5
2

)d. Then Λ∩ [−H1, H1]
d contains d linearly independent vectors.

Proof. By contradiction, suppose that there exists a linear hyperplane V containing all the points
v ∈ Λ ∩ [−H1, H1]

d.

Let L = H1/H0. The large cube [−H1, H1]
d can be covered by (2L)d axis-parallel cubes of side

length H0 in the natural way. By Lemma 2.15, we can bound∣∣∣Λ ∩ [−H1, H1]
d
∣∣∣ 6 (d+ 1)(2L)d−1 sup

C
|Λ ∩ C|,

where the supremum runs over all (not necessarily centred) axis-parallel cubes C ⊂ Rd of side length
H0. If C is such a cube and v ∈ Λ ∩ C, then C ⊂ v + [−H0, H0]

d, which implies that

|Λ ∩ C| 6
∣∣∣Λ ∩ (v + [−H0, H0]

d
)∣∣∣ =

∣∣∣Λ ∩ [−H0, H0]
d
∣∣∣.

Thus, ∣∣∣Λ ∩ [−H1, H1]
d
∣∣∣ 6 (d+ 1)(2L)d−1

∣∣∣Λ ∩ [−H0, H0]
d
∣∣∣.

Plugging in our lattice point estimate (16), we get

θ1(2H1 + 1)d 6 (d+ 1)(2L)d−1θ0(2H0 + 1)d.

Using 2H1 + 1 > 2LH0 and d + 1 6 2d, this implies that L 6 θ0
θ1
d
(
2 + 1

H0

)d, contradicting the
inequality in the statement of the lemma. �

The linearly independent vectors given by Lemma 2.16 can be upgraded to a genuine basis for Λ
by standard geometry of numbers, namely Mahler’s theorem. We state this fact in a slightly more
general situation.

Lemma 2.17. Let d > 1. Let Λ1,Λ2 ⊂ Rd be full-rank lattices such that MΛ1 ⊂ Λ2 for some
integer M > 1. Suppose that Λ1 contains d linearly independent vectors in [−H,H]d for some
H > 0. Then, Λ2 admits a basis where each basis vector has Euclidean norm 6 d3/2MH.

Proof. By assumption, there are linearly independent vectors v1, . . . , vd ∈ Λ1 ∩ [−H,H]d. Then
Mv1, . . . ,Mvd are linearly independent vectors of Λ2 such that maxi∈[d]‖Mvi‖2 6

√
dMH.

Let B ⊂ Rd be the unit ball for the Euclidean norm. Let 0 < λ1 6 · · · 6 λd be the successive
minima8 of B with respect to Λ2. Since Mv1, . . . ,Mvd ∈ Λ2 are linearly independent, we deduce
from the above that λd 6

√
dMH.

By Mahler’s theorem (see [22, Theorem 3.34]), we conclude that Λ2 admits a basis of vectors of
Euclidean norm

6 dλd 6 d
3/2MH,

which is what we needed to show. �

8See [22, Definition 3.29] for the definition of successive minima.
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2.6. Short basis vectors. We can now prove our main technical result, which may be of indepen-
dent interest.

Theorem 2.18. Let N > 2 be an integer. Let d := d
√

logNe and X := d10
3d.

Let b1, . . . ,bd be i.i.d. random variables, each uniformly distributed in the set of primes 6 X not
dividing N . Let r > 0 and let x1, . . . ,xr be arbitrary9 random variables taking values in (Z/NZ)×.

Then, with probability 1−O
(
d−d
)
, the lattice

L :=
{

(e1, . . . , ed, f1, . . . , fr) ∈ Zd+r :

d∏
i=1

beii

r∏
i=1

xfii ≡ 1 (mod N)
}

has a basis consisting of vectors of Euclidean norm � e42(d+r).

Remark 2.19. The constant 42 in the exponent is by no means the limit our techniques. For exam-
ple, using smooth cutoffs in Definition 2.6 would significantly reduce the error term in Lemma 2.8
and hence lower this constant. We have not performed such optimisations to keep the paper as
simple as possible.

Proof of Theorem 2.18. Let M := M∗(N) be the integer defined in Lemma 2.4. We introduce the
auxiliary lattice

LM :=
{

(e1, . . . , ed, f1, . . . , fr) ∈ Zd+r :
d∏
i=1

bMei
i

r∏
i=1

xMfi
i ≡ 1 (mod N)

}
.

By Lemmas 2.7 and 2.8, we have the lattice point estimate

(17)
∣∣∣LM ∩ [−H,H]d+r

∣∣∣ =

(
1 +O

(
e31(d+r)H−1

))
(2H + 1)d+r∣∣〈bM1 , . . . ,bMd ,xM1 , . . . ,xMr 〉∣∣ +

1∣∣ĜM ∣∣ ∑
χ∈ĜM

ord(χ)>e10d

|Fχ,H(b,x)|

for every integer H > e31(d+r), where

Fχ,H(b,x) := Fχ,H(b1, . . . ,bd,x1, . . . ,xr) =

(
d∏
i=1

∑
|h|6H

χh(bi)

)(
r∏
i=1

∑
|h|6H

χh(xi)

)
.

Since the xi have unknown distributions, we will use the trivial bound

|Fχ,H(b,x)| 6 (2H + 1)r|Fχ,H(b1, . . . ,bd)|.

Applying Proposition 2.14, we deduce that, for all H > e10d,∑
χ∈ĜM∗

ord(χ)>e10d

E
[
|Fχ,H(b,x)|2

]1/2 � d−2d(2H + 1)d+r.

By the L2 triangle inequality and Chebyshev’s inequality, this implies that, for fixed H > e10d,

(18) P
( ∑

χ∈ĜM
ord(χ)>e10d

|Fχ,H(b,x)| > d−d(2H + 1)d+r
)
� d−2d.

9In particular, the xi are not assumed to be independent or identically distributed.



UNCONDITIONAL CORRECTNESS OF RECENT QUANTUM ALGORITHMS 17

Let H0 := dde31(d+r)e and H1 := dd(d + r)(5/2)d+reH0. We apply (17) and (18) twice, once with
H = H0 and once with H = H1 to obtain the following: with probability 1−O

(
d−d
)
, the two

estimates ∣∣∣LM ∩ [−H0, H0]
d+r
∣∣∣ = (1 +O(1/d))

(2H0 + 1)d+r∣∣〈bM1 , . . . ,bMd ,xM1 , . . . ,xMr 〉∣∣
and ∣∣∣LM ∩ [−H1, H1]

d+r
∣∣∣ = (1 +O(1/d))

(2H1 + 1)d+r∣∣〈bM1 , . . . ,bMd ,xM1 , . . . ,xMr 〉∣∣
simultaneously hold.

We now apply Lemma 2.16. By our choice of H0 and H1, the inequality in the statement is satisfied
provided that d is sufficiently large. We can assume that d is large enough as, for d � 1, we have
N � 1 and Theorem 2.18 is trivially true. Thus, Lemma 2.16 implies that LM ∩ [−H1, H1]

d+r

contains d + r linearly independent vectors, with probability 1−O
(
d−d
)
. By Lemma 2.17, since

ML ⊂ LM , we conclude that, with probability 1−O
(
d−d
)
, L admits a basis of vectors of Euclidean

norm
� d3/2MH1 � d3/2e10dd2(d+ r)(5/2)d+re31(d+r) � e42(d+r)

using the bound M 6 e10d given by Lemma 2.4. This completes the proof. �

3. Applications to quantum computing

In this section, we prove the correctness of efficient quantum algorithms for factoring and for the
discrete logarithm problem by applying our version of Regev’s number-theoretic conjecture, Theo-
rem 2.18.

3.1. Preparatory lemmas.

Lemma 3.1. Let N, d,m > 2 be integers. There is a classical algorithm that, given integers
0 6 a1, . . . , ad 6 2m and exponents t1, . . . , td ∈ {0, 1}, computes the product

d∏
i=1

atii (modN)

in time O
(
md(log d) log(md)

)
.

Proof. This is similar to [18, p5] or [17, Lemma 5.6] but for a general value of m. Without loss
of generality, assume that d is a power of 2, say d = 2l. We proceed to compute this product
in a binary tree fashion. Let T (k) be the complexity of multiplying any k of these numbers atii
modulo N . Note that T (2k) 6 2T (k) +O(M(mk)) where M(x) is the time needed to multiply two
integers having at most x bits. By the work of Harvey and van der Hoeven [10], it is known that
M(x) = O(x log x), which leads to the bound

T (d)�
l∑

j=0

2jM(md/2j+1)�
l∑

j=0

md log(md/2j+1)� md(log d) log(md).

as claimed. �

We can turn this into a quantum circuit with the following well-known fact.

Lemma 3.2. Any classical circuit can be “compiled” into a reversible quantum circuit that carries
out the same computations, with the number of gates and qubits used being proportional to the size
of the classical circuit.
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Proof. This well-known fact is explained in [17, Section A.1]. �

Lemma 3.3. Let N be a sufficiently large integer. Let d := d
√

logNe and X = d10
3d. Let k = d4.

Let n1, . . . ,nk be i.i.d. random random variables uniformly distributed in {1, . . . , X}. Then, the
probability that at least d of these ni are prime numbers not dividing N is > 1−O(1/N).

Proof. Since N has � logN prime factors, and since the number of primes 6 X is � X/ logX, we
have

P(n1 is prime and n1 - N) >
c

logX

for some absolute constant c > 0. Thus, if Ei is the event that ni is not prime or divides N , then
by the union bound and independence,

P
( ⋃

I⊂[k]
|I|>k−d

⋂
i∈I

Ei

)
6
∑
l<d

(
k

l

)(
1− c

logX

)k−l
6 dkde−c(k−d)/ logX � e−d

2

as needed. �

3.2. The discrete logarithm problem. We now prove Theorem 1.2. For convenience, we restate
it here.

Theorem 1.2. There is a quantum circuit having O(n3/2 log3 n) quantum gates and O(n log3 n)
qubits with the following property. There is a classical randomised polynomial-time algorithm that
solves the discrete logarithm problem

Input : an integer N 6 2n and elements g, y ∈ (Z/NZ)× such that y ∈ 〈g〉
Output : an integer x such that gx ≡ y (mod N)

using O(
√
n) calls to this quantum circuit, and succeeds with probability Θ(1).

Proof of Theorem 1.2. Suppose we are given an integer N > 2 and elements g, y ∈ (Z/NZ)× such
that y lies in the subgroup generated by g in (Z/NZ)×. Let d := d

√
logNe and X := d10

3d. Let
b1, . . . ,bd be i.i.d. random variables, each uniformly distributed in the set of primes 6 X not
dividing N .

Consider the random lattice

Lb,g,y :=
{

(e1, . . . , ed, f1, f2) ∈ Zd+2 :

(
d∏
i=1

beii

)
gf1yf2 ≡ 1 (mod N)

}
.

By Theorem 2.18, with probability 1 − O(d−d), this lattice has a basis consisting of vectors of
Euclidean norm � e42d.

Computing the discrete logarithm of y with respect to the base g reduces (with a polynomial-time
classical algorithm) to computing a short basis for Lb,g,y. To see why this is the case, suppose that
we managed to compute a basis v1, . . . , vd+2 for Lb,g,y with maxi‖vi‖2 � e42d. It is then easy to find
a vector in Lb,g,y of the form (0, . . . , 0, x, 1) for some integer x (note that such a vector exists since
we assume that y ∈ 〈g〉). Indeed, this amounts to solving a linear system with integer coefficients.
The complexity of solving an integer linear system is polynomial in the dimensions of the matrix
and the number of bits of the coefficients, which are both O(d) since maxi‖vi‖2 � e42d (see [3]).
This yields an integer x such that gx ≡ y (mod N).

The algorithm for solving the discrete logarithm problem thus proceeds as follows.
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(1) Generate d primes b1, . . . , bd independently and uniformly at random in the set of primes
6 X not dividing N . To do this, it suffices to generate d4 independent random integers
6 X. By Lemma 3.3, the required conditions will be satisfied for at least d of those with
probability 1−O(1/N). This first step takes polynomial time on a classical computer using
the AKS primality test [1].

(2) Use the procedure described by Ekerå and Gärtner [7] to obtain a basis for the lattice Lb,g,y.
This involves making O(d) calls to a quantum circuit, followed by polynomial-time classical
post-processing. This step is now guaranteed to succeed with probability Θ(1), using the
fact that Lb,g,y has a basis of vectors of Euclidean norm � e42d with probability 1−O(d−d)
(Theorem 2.18).

(3) Compute the discrete logarithm of y in classical polynomial time using this basis, as ex-
plained above.

It remains to analyse the gate and space costs of the quantum part of this algorithm.

The only modification needed to the analysis of the quantum circuit in [7] comes from the fact that
b1, . . . , bd are not quite as small as in [7]. In [7] (and more generally in [17, 18]), the primes bi are
assumed to have O(log d) bits. In the present situation, we instead have the bound bi 6 X = d10

3d,
i.e. each bi has O(d log d) bits.

The only place in [7] where the assumption on the size of the bi’s are used is in [7, Lemma 3]. In
turn, the only point in the proof of [7, Lemma 3] where this assumption is needed in when [17,
Lemma 4.1] is invoked (as a black box). The proof of [17, Lemma 4.1] is given in [17, Section 5],
and the size assumption on the bi’s only comes up in [17, Lemma 5.6].

The result [17, Lemma 5.6] essentially10 states that there is a quantum circuit using O(d log3 d)

gates and O(d log3 d) qubits to perform the computation of
∏d
i=1 a

ti
i where ti ∈ {0, 1} and ai are

integers on O(log d) bits. This is a special case of Lemma 3.1 (used together with Lemma 3.2)
applied with m = O(log d). In our case, we just apply Lemma 3.1 with m = O(d log d), together
with Lemma 3.2 to convert the classical circuit into a quantum one. This yields a quantum circuit
having O(d2 log3 d) gates and O(d2 log3 d) qubits to compute

∏d
i=1 b

ti
i .

The number of gates of the quantum circuit [17, Lemma 4.1] is

O
(
d(n log n+ d log3 d)

)
= O(n3/2 log n)

(because [17, Lemma 5.6] is used O(d) times, see [17, Algorithm 5.2] and the surrounding explana-
tions). Note that this is the same as for Regev’s algorithm (see [18, p5]). In our case, the number
of gates is

O
(
d(n log n+ d2 log3 d)

)
= O(n3/2 log3 n).

The space optimisations of Ragavan and Vaikuntanathan keep the total number of qubits for their
circuit [17, Lemma 4.1] under

O
(
n log n+ d log3 d

)
= O(n log n),

due to the way the qubits are used and restored in the main loop of [17, Algorithm 5.2]. In our
situation, the number of qubits is

O
(
n log n+ d2 log3 d

)
= O(n log3 n).

10There are extra details pertaining to the precise use of qubits (e.g. restoring the ancilla qubits to |0〉), but these
will be the same in our setup.
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In summary, our final quantum circuit has O(n3/2 log3 n) gates and O(n log3 n) qubits. As noted
in [7], the fact that the two elements g and y are not small (g and y can be as large as N , as opposed
to the bi’s) does not affect these complexity bounds. �

Remark 3.4. In the proof of Theorem 1.2, we used the naive Lemma 3.2 to convert a classical
circuit into a quantum one. As mentioned in Remark 1.3, it is possible to save a factor of log n in
the space cost for Theorems 1.1 and 1.2 by reusing certain qubits when performing the quantum
computation corresponding to Lemma 3.1.

3.3. Factoring integers. In this section, we prove Theorem 1.1.

Lemma 3.5. Let N > 1 be an odd integer with at least two distinct prime factors. Let x be a
random variable, uniformly distributed in (Z/NZ)×. Then 〈x〉 contains a non-trivial square root of
1 modulo N with probability > 1/2.

Proof. This elementary number-theoretic fact is well-known – it was already needed for Shor’s
algorithm [20]. See [16, Appendix A4.3] for a detailed proof. �

Theorem 1.1. There is a quantum circuit having O(n3/2 log3 n) quantum gates and O(n log3 n)
qubits with the following property. There is a classical randomised polynomial-time algorithm that
solves the factoring problem

Input : a composite integer N 6 2n

Output : a non-trivial divisor of N

using O(
√
n) calls to this quantum circuit, and succeeds with probability Θ(1).

Proof of Theorem 1.1. We can assume that N is odd and not a perfect prime power, as otherwise
it is easy to factor N in polynomial time with a classical computer (see [16, Exercise 5.17]).

Let d := d
√

logNe and X := d10
3d. The probabilistic algorithm to find a non-trivial divisor of N

goes as follows.

(1) Generate d primes b1, . . . , bd independently and uniformly at random in the set of primes
6 X not dividing N . Sample another integer x uniformly chosen in (Z/NZ)×. As in
the proof of Theorem 1.2, this can be done classically in polynomial time with probability
1−O(1/N).

(2) Use the algorithm of Ekerå and Gärtner [7] to obtain a basis for the lattice

Lb,x :=
{

(e1, . . . , ed, f) ∈ Zd+1 :

(
d∏
i=1

beii

)
xf ≡ 1 (mod N)

}
.

This involves making O(d) calls to a quantum circuit, followed by polynomial-time classical
post-processing. By Theorem 2.18, Lb,x has a basis of vectors of Euclidean norm� e42d with
probability 1− O(d−d), which means that this step is guaranteed to work with probability
Θ(1).

(3) Using the short basis for Lb,x computed in the previous step, find the vector of the form
(0, . . . , 0, r) in Lb,x with r > 1 as small as possible. This involves solving a linear system
with integer coefficients, which can be done efficiently as in the proof of Theorem 1.2. This
integer r is the order of x in (Z/NZ)×. By Lemma 3.5, with probability > 1/2, this order r
will be even and the element xr/2 will be a non-trivial square root of 1 modulo N . Hence,
N divides the product (xr/2− 1)(xr/2 + 1) but neither term individually, which implies that
gcd(N, xr/2 − 1 mod N) is a non-trivial divisor of N .

The analysis of this algorithm is identical to the corresponding part of the proof of Theorem 1.2. �
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Appendix A. Bounds for character sums over primes

In this appendix, we prove Proposition 2.9. We start by stating the truncated explicit formula for
L(s, χ).

Lemma A.1. Let q > 2. Let χ be a non-principal Dirichlet character modulo q. For x > T > 2,
we have ∑

n6x

χ(n)Λ(n) = −
∑

ρ=β+iγ
|γ|6T

xρ − 1

ρ
+O

(
x log2(xq)

T

)

where the sum runs over all non-trivial zeros ρ of L(s, χ) with multiplicity.

Proof. This is [14, Theorem 11.3]. �

We will also need the following standard bound for the number of zeros of L(s, χ) in the critical
strip at some height t.

Lemma A.2. Let q > 1 and let χ be a Dirichlet character modulo q. Let t ∈ R. The number of
zeros ρ = β + iγ of L(s, χ) in the rectangle 0 6 β 6 1, t 6 γ 6 t + 1 is � log(q(|t| + 2)), where
zeros are counted with multiplicity.

Proof. This is [15, Theorem 10.17]. �

Proof of Proposition 2.9. By Lemmas A.1 and A.2, choosing T = x1−α − 1, we have∑
n6x

χ(n)Λ(n)� log(qx)
∑
t∈Z

|t|6x1−α−1

max
ρ=β+iγ
|γ−t|61/2

∣∣∣∣xρ − 1

ρ

∣∣∣∣+ xα log2(qx),

where the maximum is over all zeros of L(s, χ) in the specified region. Since |xρ| 6 xα for all zeros
ρ = β + iγ with imaginary part |γ| 6 x1−α by our zero-free rectangle assumption, we can bound∣∣∣∣xρ − 1

ρ

∣∣∣∣� xα

1 + |γ|

(using for example that xρ−1
ρ =

∫ x
1 t

ρ−1dt for |γ| < 1). Thus, we obtain∑
n6x

χ(n)Λ(n)� log(qx)xα
∑
|t|6x

1

1 + |t|
+ xα log2(qx)� xα log2(qx).

Discarding perfect prime powers, which contribute O(x1/2 log x), and using partial summation, we
get ∑

p6x

χ(p)� xα log2(qx)

(1− α) log x
.

We may assume that 1 − α > 1
log x , as otherwise Proposition 2.9 is trivial. If this is the case, we

conclude that
1

π(x)

∑
p6x

χ(p)� xα log2(qx)

π(x)
� x−(1−α) log3(qx)

as claimed. �
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