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Abstract—Existing oblivious systems offer robust security by
concealing memory access patterns, but they encounter signifi-
cant scalability and performance challenges. Recent efforts to
enhance the practicality of these systems involve embedding
oblivious computation, e.g., oblivious sorting and shuffling,
within Trusted Execution Environments (TEEs). For instance,
oblivious sort has been heavily utilized: in Oblix (S&P’18), when
oblivious indexes are created and accessed; in Snoopy’s high-
throughput oblivious key-value (SOSP’21) during initialization
and when the input requests are deduplicated and prepared for
delivery; in Opaque (NSDI’17) for all the proposed oblivious
SQL operators; in the state-of-the-art non-foreign key oblivious
join approach (PVLDB’20). Additionally, oblivious sort/shuffle
find applications in Signal’s commercial solution for contact
discovery, anonymous Google’s Key Transparency, Searchable
Encryption, software monitoring, and differentially private
federated learning with user privacy.

In this work, we address the scalability bottleneck of
oblivious sort and shuffle by re-designing these approaches
to achieve high efficiency in distributed multi-enclave environ-
ments. First, we propose a multi-threaded bitonic sort optimized
for the distributed setting, making it the most performant
oblivious sort for small number of enclaves (up to 4). For larger
numbers of enclaves, we propose a novel oblivious bucket sort,
which improves data locality and network consumption and
outperforms our optimized distributed bitonic-sort by up to 5-
6×. To the best of our knowledge, these are the first distributed
oblivious TEE-based sorting solutions. For reference, we are
able to sort 2 GiB of data in 1 second and 128 GiB in 53.4
seconds in a multi-enclave test. A fundamental building block of
our oblivious bucket-sort is an oblivious shuffle that improves
the prior state-of-the-art result (CCS’22) by up to 9.5× in the
distributed multi-enclave setting—interestingly it is better by
10% even in the single-enclave/multi-thread setting.

Index Terms—oblivious sorting, shuffling, distributed, scalable

1. Introduction

Organizations outsource sensitive data to the cloud for
convenience, cost-efficiency, and availability. Encryption
alone may not fully protect data, as the user’s access pattern
can leak sensitive information [1]–[6]. For instance, a doctor’s
frequent access to a medication database could inadvertently

reveal a patient’s diagnosis. Recent leakage-abuse attacks
[7]–[19] highlight the necessity of protecting memory access
patterns. Hence, balancing cloud benefits and high levels of
privacy becomes crucial for secure data management.

Trusted execution environments (TEEs) present a unique
opportunity for privacy-preserving computation with high
utility. However, relying solely on trusted hardware is not
only insufficient to protect memory access patterns [20], [21],
but also enclave side-channel attacks (e.g., Meltdown [22]
and Spectre [23]) can lead to the extraction of enclave
secrets. Obliviousness is a strong property that can mitigate
access pattern and side channel leakages—obliviousness
ensures that algorithms within trusted hardware are data-input
independent and indistinguishable by powerful adversaries
for any two input instances of the same size. By combining
cloud outsourcing with correctly designed and implemented
oblivious TEEs, organizations can securely conduct privacy-
preserving computation, mitigate sensitive data leakage risks,
and uphold data confidentiality and integrity.

Single vs Double/Full Obliviousness. “Standard” oblivious
approaches [24]–[29], operate in a model that assumes
the client-side routines are executed in a fully trusted
environment, typically in a machine fully controlled by the
client. Therefore, they only focus on providing obliviousness
on the server side (hence single-oblivious), and they do not
need to worry about protecting the data privacy against an
adversary who can observe the access pattern of the memory
on the client side. For TEE-based solutions, where we do not
want the client to be actively involved in the computation,
all the oblivious routines (including the client ones) are
executed on the server side requiring all server and client
routines to be oblivious. Double-obliviousness (as introduced
by [30], or full-obliviousness (as introduced in [31]) protects
data privacy even against an adversary that can observe
the memory access pattern imposed by the client routines,
requiring both the client and server routines to be oblivious.

Fully/Doubly-Oblivious TEE-based approaches. Mishra et
al. [30] introduced Oblix, a suite of Doubly-Oblivious ORAM
(doubly-oblivious memory) and Data Structures (ODS)
schemes tailored for TEEs. [32], [33] focused on eliminating
memory access leakage when executing arbitrary programs
in TEEs by loading both code and data onto doubly-oblivious
memory. Zheng et al. [34] presented Opaque, an oblivious dis-
tributed data analytics platform offering a wide range of SQL



functionality. Krastnikov et al. [35] proposed the first efficient
doubly-oblivious non-foreign-key join schemes. The recent
work of Dauterman et al. [36] introduced Snoopy, the first
high-throughput and scalable oblivious key-value store. The
closest to ours work, Sasy et al. [31] introduced new efficient
multi-thread approaches for shuffle and compaction.Below,
we use the term “obliviousness” for TEEs to refer to
doubly/fully obliviousness, unless stated otherwise.

Oblivious primitives, like oblivious sort and shuffle,
form the foundation of oblivious computation, whether
combined with Trusted Execution Environments (TEEs) or
not. In the case of Oblivious-TEEs, Oblix [30] relies on
logarithmic number of heavy oblivious sorts for creating
and initializing doubly-oblivious memory and data structures.
Oblivious sort is also used during the oblivious accesses.
Similarly, Snoopy [36] requires a heavy obliviously-sort
operation for initialization to sort all input data and distribute
them in sub-ORAMs. During oblivious accesses, the load-
balancer needs to obliviously sort input requests twice.
In Opaque [34], all oblivious query operators (oblivious-
filter, oblivious aggregation, oblivious foreign-key join) are
sort-based, necessitating multiple sorts. Furthermore, the
optimized (but sequential) non-foreign key join by Krastnikov
et al. [35] requires multiple sort operations, which take 96%
of the total processing time of 12.8s, when joining two tables
with 1M records each and 8 bytes per tuple.
Applications. Below, we provide broader applications where
secure TEE-based approaches heavily rely on oblivious
primitives, either directly or as part of existing oblivious
TEE-based solutions [30], [31], [34]–[36].
• Private contact discovery for Signal: Signal [37] is an
encrypted messaging system. It recently added a service
for private contact discovery, i.e., users never provide Signal
with plaintext access to their contacts. Signal’s approach is
based on a combination of Oblix [30] and Snoopy [36].
• Anonymizing Google’s Key Transparency: Google’s Key
Transparency [38], [39] allows users to discover public keys
of other users while ensuring the integrity of the retrieved
key. However, the service doesn’t provide anonymity, and the
server learns the users’ queries. To address this, Snoopy [36]
can be used to provide user privacy.
• Searchable encryption: Searchable encryption (SE) [40]–
[50] enables efficient searching over encrypted out-
sourced data without decryption. Recent works utilize
TEEs to enhance efficiency [51] relying on ODS like
Oblix/Omix++ [30], [52] and oblivious sort. State-of-the-
art Dynamic SE (DSE) that achieve forward and backward
privacy rely on ODS and oblivious sorting [44], [53], [54]
• Oblivious distributed data analytics/Oblivious Databases:
As discussed above, Opaque [34] is the state-the-art solution
for oblivious analytics and it solely relies on oblivious sort.
It shows superiority over other approaches on three types of
workloads: SQL, machine learning, and graph analytics.
• Private Sampling-based Query Frameworks (PSQF):
PSQF [55] guarantees confidentiality, integrity, and
anonymity for user data in the federated learning context.
This is accomplished by combining differentially private
queries, sampling, (oblivious) random shuffling, and TEEs.

• Large-scale monitoring of software activities: Prochlo, de-
signed by Bittau et al. [56], facilitates large-scale monitoring
of software activities, including telemetry, error reporting,
and demographic profiling. Integrating TEEs with oblivious
shuffling provides robust privacy guarantees for user data.

Despite these numerous real-world applications, the
vast majority of research works for TEE-based oblivious
primitives focus only on the centralized, single-machine
server scenario. This is in direct contradiction to common
practices from the industry where truly large-scale problems
are tackled by distributing and parallelizing the workload
across multiple workers (e.g., Spark [57]/MapReduce [58]
environments). When considering TEE-based solutions, dis-
tributed solutions become even more useful, as TEE enclaves
usually have a limited amount of protected memory available
after which costly paging kicks in, harming performance (e.g.,
Intel-SGX’s EPC is limited to 128 MB; recent developments
with SGXv2 scale this to GiBs of memory, however, similar
paging techniques hamper performance at higher usage per-
centages [59]). Hence, developing distributed, cross-enclave,
oblivious solutions becomes a necessity to scale to big-data
instances. When also factoring in budget considerations, it
is more favorable to consider systems that can be distributed
across multiple “cheaper” machines than ones that only focus
on multiple enclaves on the same “large” platform.

Specifically focusing on the most fundamental of the
primitives discussed so far, oblivious sorting and shuffling,
to the best of our knowledge no previous work considers
fully distributed and oblivious solutions1. Focusing on single-
server solutions, bitonic sort [60] is the practical and preferred
choice, despite its suboptimal complexity. As far as we know,
for TEEs the multi-thread implementation of bitonic sort in
Snoopy [36] is the most performant available option known;
as for oblivious shuffling, the recent work of Sasy et al. [31]
offers the state-of-the-art and multi-thread implementation.
Again, neither of these works provides a multi-enclave
solution, hence they do not and cannot scale to large
instances; e.g., [31] provides experimental results for up to
only 4 GiB of data (for comparison, our evaluation includes
results for up to 128 GiB).

Based on the above, the main question we ask is:

Can we design scalable/high-performant distributed
oblivious primitives for sorting and shuffling?

Our contribution. In this work, we address the scalability
bottleneck of oblivious sort and shuffle by re-designing
approaches that achieve high efficiency in distributed multi-
enclave environments. Additionally, we also consider perfor-
mance on multi-core single-machine environments. Hence,
our solutions comprise state-of-the-art TEE-based oblivious
primitives. In particular:

1. Opaque’s distributed sort combines column sort and bitonic sort
within the same threat model as ours. While column sort facilitates the
desired distribution of the sort computation (in combination with Spark), it
requires several extra passes and increased communication between enclaves
compared to our more flexible MPI-based distributed bitonic and bucket
sort approaches.



1. We extend bitonic sort [60] to the distributed setting,
and we use chunking of swap operations—sending multiple
elements at a time—to mitigate the high overhead of network
communication and latency. As a baseline, this results in 30×
improvement over the naïve approach of swapping elements
one at a time across the network.
2. Unfortunately, bitonic sort (even after the chunking opti-
mization) still demonstrates high overhead network latencies
and poor data locality. Targeting better solutions for the
distributed setting, we focus on Asharov et al.’s bucket
oblivious sort [61], which is based on the idea of first
applying an oblivious random permutation (ORP, also called
oblivious shuffling) of the input and then performing a non-
oblivious sort. Our distributed bucket sort, called DBUCKET,
utilizes a new structure for the bucket routing network which
improves the data locality and communication overhead
of [61]’s ORP to O(N). Our bucket ORP, including the
oblivious compaction optimization of Sasy et al. [31], gives
up to 9.52× speedup in a 64-enclave setting compared to
the state-of-the-art [31] random shuffling.
3. We similarly extended our distributed bucket ORP to
distributed bucket oblivious sort. By leveraging a comparison-
based sort that has a similar O(N logN) runtime and O(N)
communications cost, the result is an asymptotically optimal
oblivious sort in the distributed setting which is up to 6.63×
faster than the bitonic sort with 64 enclaves.
4. Orthogonal to our algorithmic and implementation-level
improvements to the above algorithms, we additionally
describe efficient oblivious primitives that leverage low-level
assembly instructions and greatly outperform the standard
bit-manipulation-based oblivious comparison and CMOV-
based oblivious swap, resulting in an up to 1.71× speedup
due to these assembly optimizations alone.
5. We design and implement an encrypted MPI layer that
provides confidentiality and integrity even against network
adversaries that can replay messages, by utilizing the attested
TLS feature provided by TEEs to derive shared secrets
between enclaves used to encrypt and authenticate messages.
We additionally implement a sliding window design inspired
by DTLS [62] and ensure unique pairwise keys to efficiently
achieve replay resistance against network adversaries.
6. We discussed above that our new scalable oblivious
sorting and shuffling techniques significantly can impact prior
oblivious TEE-based approaches by replacing their oblivious
primitives with ours. Surprisingly, we found that some prior
choices for these TEE-based approaches were made due
to the lack of scalable oblivious primitives. For instance,
Snoopy’s [36] multiple load balancers and the number of sub-
ORAMs were chosen to avoid heavy oblivious sort operations.
However, with our scalable oblivious primitives, many of
their prior choices are suboptimal. In our experimental
evaluation, we propose Snoopy++, a simplified version of
Snoopy, which outperforms Snoopy while requiring fewer
resources. Snoopy++ utilizes one oblivious sort, one sequen-
tial scan, and one oblivious compaction on the input data
and the collected requests. This highlights the efficiency and
superiority of our scalable oblivious techniques in practical

implementations. While Snoopy, with a database size of
16M 128-B elements, is only able to reach a throughput of
∼4,000 lookup requests per second with an average latency
of 1,000 ms with 32 enclaves, Snoopy++ is able to process
over 700,000 lookup requests per second using the same
hardware within 0.86 seconds.
Limitations. We acknowledge that relying on a trusted
enclave may be a mitigating factor for all works in this
area, however, the high level of achieved security may be
necessary for certain applications. It is also worth noting that
our solution is not dependent explicitly on a particular TEE
vendor (e.g., Intel-SGX), but can be based on any trusted
enclave that meets the required properties (e.g., AMD En-
clave and ARM TrustZone). Our implementation specifically
targets SGX but is built on OpenEnclave SDK2, which is
a hardware-agnostic library that currently offers “preview”
support for other alternatives (e.g., ARM Trustzone). We have
not evaluated the development effort to switch to another TEE
but we believe the locality-aware design of our algorithms
can be beneficial for distributed settings regardless of the
used TEE. Finally, our proposed approach is also aligned
with recent efforts of making trusted hardware robust against
side-channel attacks (e.g., Keystone project [63]). Finally,
we want to highlight that our distributed oblivious sorting
and shuffling algorithms can be of independent interest for
any distributed solution even without TEEs.

2. Preliminaries

Secure Enclaves. Our proposed oblivious algorithms can
be implemented using any TEE that provides isolation,
sealing, and remote attestation, such as Intel-SGX [64], AMD
enclave [65], or ARM [66] TrustZone. As a proof of concept,
we implemented our solution using Intel-SGX [64]. In Intel-
SGX, isolation is achieved by reserving a portion of the
system’s memory, known as the Enclave Page Cache (EPC),
to store the user’s code and data and maintain it in encrypted
form. The total size of the EPC memory of SGXv2 is in the
order of tens/hundreds of GiBs. Sealing allows the enclave
to persistently store its data outside the secure environment,
while remote attestation ensures the integrity of the code.
Obliviousness. A memory/algorithm/data-structure is obliv-
ious if and only if for any two same-sized sequences of
polynomially many operations, their resulting access patterns
(i.e., the sequence of memory accesses while performing the
operations) is computationally indistinguishable for anyone
but the client, assuming an honest but curious adversary
that sees all memory accesses and network communications.
In the case of TEE-based solutions, the adversary can
observe both the clients’ and servers’ memory access patterns
(full/double obliviousness [30], [55]).
Oblivious Compaction. Compaction takes as input an array
where each element is either “marked” or “unmarked” and
outputs a permutation of the array such that all marked
elements are ordered at the beginning of the array, followed

2. https://github.com/openenclave/openenclave



by all unmarked elements. While an oblivious sort may
be used to trivially implement oblivious compaction by
sorting on the marked bit, it is much more efficient to utilize
explicit oblivious compaction due to the relaxed constraints
of the latter. All known oblivious compaction operators are
constructed as compaction networks, using a deterministic
set of oblivious conditional swaps to achieve oblivious com-
paction. For reference, we provide the high-level compaction
algorithm (ORCompact) of the state-of-the-art work, Sasy et
al. [31]. ORCOMPACT utilizes a recursive helper function,
OROFFSETSET(A, z), which compacts marked elements in
A, of length N , to an offset z.

1) OROFFCOMPACT(A, z): Let m be the
count of in the left half of A, Aleft. Then,
recursively call OROFFCOMPACT (Aleft, z) and
ORCOMPACT (Aright, z +m). Finally, obliviously
swap Aleft[i] and Aright[i] for i ∈

{
1, ..., N

2

}
,

conditioned on
(
z mod N

2 +m
)
⊕ (z ≥

N)⊕
(
i ≥ (z +m) mod N

2

)
.

2) ORCOMPACT(A): Call OROFFCOMPACT(A, 0).

This is a compaction network with O(N) oblivious
swaps for O(logN) recursive layers, so the running time
of ORCompact is O(N logN). We refer the reader to the
original paper for more details.
Oblivious Random Permutation. Oblivious random per-
mutation (ORP, also known as oblivious shuffling) is an
oblivious algorithm that results in a random permutation of
elements in an array. While it is relatively trivial to assign
a random key to each element in the array and apply an
oblivious sort based on the random keys in order to achieve
ORP, this approach comes with overhead that can be avoided
by using a “native” ORP algorithm, as observed in [31].

The current state-of-the-art ORP algorithm in a non-
distributed setting is Sasy et al.’s ORShuffle (Oblivious Recur-
sive Shuffle) algorithm [31], which utilizes the ORCompact
algorithm by the same authors as a building block:

1) Mark exactly half of the elements in A.
2) Call ORCOMPACT(A) to compact a random half

of the elements into the left half of the array and
the other half of the elements to the right half.

3) Recursively call ORSHUFFLE (Aleft) and
ORSHUFFLE (Aright).

ORShuffle performs O(logN) invocations of ORCom-
pact, so its running time is O

(
N log2 N

)
.

Bucket ORP, introduced by Asharov et al. [61], takes a
slightly different approach. By expanding the input array into
an array of size 2N , padding with N dummy elements, and
assigning each element a random key, it can achieve a sort
based on the randomly assigned keys using a bucket routing
network with only O(logN) layers, leveraging the uniformly
randomly distribution of the generated keys. At a high level,
bucket ORP starts with an oblivious random bin assignment
step, using randomly generated keys to assign each element
to a bucket and routing elements towards that bucket using a
butterfly routing network, followed by a bucket permutation

step to randomly permute the elements within each bucket
and removing the dummy elements.

Let A(i)
j refer to the j’th bucket of elements of size Z in

layer i of the routing network. Z is a configurable security
parameter. Bucket ORP uses a helper function (A′

0, A
′
1)←

MERGESPLIT (A0, A1, i), which takes as input two buckets
A0 and A1 and outputs buckets A′

0 and A′
1, such that all

elements with a 0 in the i’th bit of the random key are in A′
0

and all elements with a 1 in the i’th bit of the random key
are in A′

1. This MERGESPLIT can be implemented using a
bitonic sort in time O(Z log2 Z).

1) Generate a random key and assign it to each element.
2) For each layer i ∈ {0, ..., logE − 1}, perform a

series of N
2Z MERGESPLIT operations. Specifically,

for j ∈
{
0, ..., N

2Z − 1
}

, call
(
A

(i+1)
2j , A

(i+1)
2j+1

)
←

MERGESPLIT
(
A

(i)
j+j′ , A

(i)
j+j′+2i , i

)
, where j′ =

⌊ j
2i ⌋ · 2

i. The result on layer i is an array that
is semi-sorted by the first i bits of the random key.
This routing network is depicted later on in Figure 2.

3) At layer logE, bucket A(logE)
j contains all elements

with keys starting with the bitstring j. Obliviously
sort each bucket according to the remaining bits in
the random key to complete the ORP.

Because there are O(logN) layers, with O
(
N
Z

)
MERGESPLIT operations per layer, each of complexity
O(Z logZ), the total complexity of this sort is
O(N logN logZ). For a fixed security parameter Z
(Z = 512 in our implementation, as suggested in [61]), the
running time of bucket ORP is O(N logN).
Oblivious Sort. There are two main approaches for oblivious
sort. The first constructs an oblivious sort by following
a predefined sequence of oblivious swaps, known as a
sorting network. Batcher’s bitonic sort [60] is the most
commonly used such algorithm. It sorts two halves of the
array recursively, one in reverse order, resulting in a bitonic
sequence comprising an increasing half and a decreasing
half of the array. This is followed by a bitonic merge, i.e., a
deterministic sequence of swaps that sorts the entire sequence
with a O(N logN) complexity, for N elements. The running
time of bitonic sort is O(N log2 N), which matches the
complexity of most practical sorting networks, including
Batcher’s odd-even merge sort. Although there are theoretical
constructions that achieve O(N logN) complexity, such
as the AKS [67] sorting network, large constant factors
make them impractical for reasonable workloads. The second
approach, known as the bucket oblivious sort [61], builds
on bucket ORP, pairing it with an efficient non-oblivious
comparison-based sort, to achieve O(N logN) time. Since
the behavior of any comparison-based sort depends only
on the initial order of elements, the ORP step makes the
non-oblivious sort oblivious to the original input data.
Threat Model. We adopt a similar threat model as the one
proposed by prior works that combine oblivious primitives
with trusted hardware, such as [30], [31], [34]. We assume
an attacker who can observe all memory accesses and has



control over the server’s software stack and operating system.
However, the attacker cannot steal any information from
the secure processor, including the processor’s secret keys.
Moreover, the attacker cannot access the plaintext values of
data and code loaded in the secure processor’s protected
enclave portion of memory, although they can observe
the accessed memory locations3. The protected memory is
encrypted using the processor’s secret key. We also consider
any enclave side-channel leakage, rollback attacks [68], and
denial-of-service attacks to be outside the scope of our work,
following the practices of previous works. Examples of such
side-channel leakage include cache-timing, power analysis,
or other timing attacks [69]–[74]. However, there are several
complementary techniques, such as [32], [33], [75]–[79], that
can potentially mitigate these attacks.

While we take care to ensure the obliviousness of source
code, we make no guarantees that the compiler has preserved
full obliviousness across the entire program in the final
enclave image. Assembly-level obliviousness verifiers are a
more recently introduced work [31] which may be used to
achieve higher confidence of the final obliviousness.

3. Distributed Bitonic Sort

Here we explain the instantiation of our distributed
bitonic sort. To the best of our knowledge, ours is the
first instantiation of bitonic in the distributed setting across
multiple TEE enclaves, hence we need to address certain
challenges to improve its practical performance. As a starting
baseline for the oblivious sort, we implement Batcher’s
bitonic sort [60] using the standard recursive algorithm in
a distributed setting. Each enclave is responsible for a slice
of the total data set, and swaps for elements in different
enclaves are implemented by the two elements’ enclaves
exchanging elements and using an oblivious assignment on
both enclaves to choose the correct element.

Choice of Sorting Network. Of note, we did not choose
Batcher’s odd-even mergesort [60], despite its constant-factor
improvement in the number of swaps and an equivalent level
of algorithmic parallelizability. This was because it presents
performance issues in a distributed setting when swaps across
two enclaves incur network overhead, which can be orders of
magnitude slower than simple enclave memory accesses. The
merge phase of the odd-even mergesort recursively subdivides
the elements into odd and even slices, which, by nature,
remain spread across every single enclave in every recursive
level. In a setting with N elements and E enclaves, this
means each one of the logN levels of the recursive sort
and merge steps incurs swaps across different enclaves, as
illustrated in Figure 1a.

3. We assume the adversary may even observe accesses within a single
page or within a single cache line. Other works have noted that such
sub-cache-line-memory bus attacks have not been observed in the real
world [31], and an adversary tapping into the memory bus in the real world
may not be able to observe accesses below the level of a cache line, but we
adopt a liberal view of the adversary’s view of access patterns to enclave
memory anyway to obey the strictest notions of obliviousness.

Enclave 0

Enclave 1

Enclave 2

Enclave 3

(a) Odd-even merge

Enclave 0

Enclave 1

Enclave 2

Enclave 3

(b) Bitonic merge

Figure 1: Recursive merge of an odd-even merge sorter and
a bitonic merge sorter. For odd-even merge, all O(logN)
levels have at least one swap across two enclaves. For bitonic
merge, after O(logE) levels, all swaps happen within a
single enclave.

By contrast, sort and merge phases of the bitonic sort
both recursively subdivide elements into left and right halves
meaning that after only O(logE) levels, all swaps happen
within a single enclave, improving the overall communica-
tions from O(logN) to O(logE), as shown in Figure 1b.
Mitigating Network Latency through Swap Chunking. A
naïve implementation of the bitonic sort in a distributed set-
ting swaps elements across enclaves one at a time, incurring a
full round trip of communication for each element, resulting
in a total of O(N log2 E) round trips across the network.
Because the sequence of swaps is deterministic, however,
the sequence of swaps is fully predictable, and it is easy to
predict what sets of elements will need to be sent to a given
enclave. The bitonic sort typically swaps consecutive runs of
adjacent elements, we optimize our bitonic sort baseline by
sending chunks of up to a configurable parameter C elements
at a time to the remote enclave for a swap of elements across
enclaves, which reduces the number of round trips around
the network the enclaves must wait by a factor of C. Note
that for C = 1, this approach is equivalent to simply sending
elements one at a time. This decreases the effect of network
latency and increases throughput, since enclaves can send a
chunk of elements all at once before waiting to receive the
remote enclave’s chunk of elements.
Bitonic Sort Shortcomings. Ultimately, while it is not diffi-
cult to achieve a near-optimal implementation of the bitonic
sort in a distributed setting, several inherent factors of sorting
networks render their use non-ideal in this setting. First, it is
difficult to avoid a communications overhead of O(N log2 E)
with sorting networks, due to their deterministic nature
necessitating several swaps before an element’s position
may be narrowed down to within a single enclave. In non-
distributed settings, the cost of swapping is generally low, and
this is a worthwhile tradeoff to make for bitonic sort’s high
parallelizability. In the distributed setting, however, cross-
enclave swaps quickly become the performance bottleneck.

4. Distributed Bucket Oblivious Sort

We now describe in detail our distributed sorting al-
gorithm, motivated by the shortcomings of the distributed
bitonic sort that we identified above. Our algorithm, which



A0 A1 A2 A3 A4 A5 A6 A7

A(0)

A(1) 0* 1* 0* 1* 0* 1* 0* 1*

A(2) 00* 01* 10* 11* 00* 01* 10* 11*

A(3) 000* 001* 010* 011* 100* 101* 110* 111*

Figure 2: Original MERGESPLIT butterfly network from [61]
implementing oblivious random bin assignment. Each
MERGESPLIT writes to buckets in layer A(i+1) that are
different from those in layer A(i). At layer i, the elements
are sorted by the i most significant bits of the random key.

we call DBUCKET sort, is an extension and variation of
the bucket oblivious sort described by Asharov et al. [61],
in order to optimize its behavior in a distributed setting.
Bucket sort is fundamentally an algorithm with two parts:
an ORP step followed by a non-oblivious, comparison-
based sorting step. Both these steps provide us with an
opportunity to optimize their behavior for the distributed
setting. Hence, DBUCKET has a similar two-step structure:
a distributed bucket ORP (DBUCKET ORP) followed by
an efficient, non-oblivious, comparison-based sort. First, we
briefly mention an optimization originally described by Sasy
et al. [31], that uses ORCompact instead of bitonic sort for
the implementation of MERGESPLIT. Then we explain in
detail our proposed optimizations for the distributed setting,
focusing on expediting low-level memory behavior and
asymptotically reducing inter-enclave communication.
MERGESPLIT Using Oblivious Compaction. The
MERGESPLIT operation requires an algorithm that obliv-
iously places all “marked” elements in the first output bucket
and all “unmarked” elements in the second output bucket.
Asharov et al.’s original bucket oblivious sort uses bitonic
sort for this purpose. Sasy et al. [31] describes the use of
oblivious recursive compaction as a drop-in replacement to
sort all marked elements into the first output bucket and
unmarked elements into the second one. This represents
an improvement of O(Z log2 Z) to O(Z logZ) for the
MERGESPLIToperation; we adopt this optimization here.
Memory-Friendly Oblivious Random Bin Assignment.
Figure 2 shows the original the MERGESPLIT butterfly
network from [61]. Notice that indices of the buckets taken
as inputs into the MERGESPLIT operation are different from
indices of the output buckets. Namely, the j’th group of
buckets in the i’th level of the network calls(
A

(i+1)
2j , A

(i+1)
2j+1

)
← MERGESPLIT

(
A

(i)
j′+j , A

(i)
j′+j+2i , i

)
,

where j′ =
⌊

j
2i

⌋
· 2i. Thus, we must use an additional buffer

of size N in which output buckets are written because output

A0 A1 A2 A3 A4 A5 A6 A7

A(0)

A(1) *0 *1 *0 *1 *0 *1 *0 *1

A(2) *00 *01 *10 *11 *00 *01 *10 *11

A(3) *000 *001 *010 *011 *100 *101 *110 *111

Figure 3: Our modified MERGESPLIT butterfly network
implementing oblivious bin assignment. Each MERGESPLIT
operation writes to the same buckets in layer A(i+1) as in
layer A(i). At layer i, the elements are sorted by the i least
significant bits of the random key.

indices do not directly match input ones.
We eliminate this overhead with the following sim-

ple modification: The outputs are instead written to(
A

(i+1)
j′+j , A

(i+1)
j′+j+2i

)
. Because the input and output bucket in-

dices are the same, we are able to perform the MERGESPLIT
operation fully in-place. Since the input buckets in A(i) are
no longer needed once their corresponding buckets in A(i+1)

are produced, we can reuse the same buffer of memory
for both the input and the output. Figure 3 shows the
resulting butterfly network after our modification. Clearly,
since the mapping is still deterministic, this does not affect
the oblivious property of the algorithm, as we elaborate next.

The original construction results in elements in A(i) semi-
sorted by the i most significant bits of the ORP key. To
maintain a similar property, our modified network performs
MERGESPLIT according to the i’th least significant bit.
Notice that the effect of this modification is that elements
at layer i of the butterfly network are sorted by the i least
significant bits of the of their ORP keys, rather than the i
most significant bits. Because the ORP keys are random,
it is clear that this modified butterfly network maintains
the correctness of the random bin assignment and ORP,
which in turn maintains the obliviousness of the subsequent
comparison-based sorting algorithm.
Linear-Communication Distributed Oblivious Random
Bin Assignment. When focusing on the distributed setting, a
potentially major performance bottleneck is communication
across enclaves. In an enclave-protected setting, all commu-
nications between different enclaves must additionally be
encrypted and authenticated before being transmitted over
the network, to defend against the adversary’s ability to read
and modify network traffic. While some communication is
obviously necessitated for distributed ORP, it is crucial to
minimize it, to the extent that this is possible.

Along these lines, one clear observation from Figure 3 is
that any level of MERGESPLIT operation that occurs across
enclaves incurs communication of size O(N). For a cluster



comprised of E enclaves, the butterfly network must swap
elements across enclaves for the first O(logE) layers, for
a total of O(N logE) communications cost taken by the
oblivious random bin assignment operation, which can be a
significant overhead in practice.

Next, we describe an optimized bucket ORP that reduces
this communication cost down to O(N)! At a high level, we
leverage the fact that we can predict the final position of any
given bucket from the first logE bits of the ORP key, which
is produced after the first logE layers of the bucket routing
network. By rearranging the positions of buckets after the
first logE layers, we can ensure that the remaining log(N/E)
layers all occur locally within an enclave. This rearrangement
step requires only O(N) communication, representing an
asymptotic improvement over the O(N logE) cost of the
original butterfly network design.

In more detail, the DBUCKET ORP’s oblivious random
bin assignment now consists of the following three steps:

1) Run logE layers of the MERGESPLIT butterfly net-
work. This results in the buckets in layer A(logE−1)

being semi-sorted by the least logE bits of the
ORP key—in other words, the elements in bucket
A

(logE−1)
j satisfy orpkey mod E = j mod E.

2) Route buckets to their final destination enclave by
rearranging the buckets of layer A(logE). Precisely,
bucket A(logE−1)

j is stored in any bucket in enclave
j mod E. We will refer to the arrangement of
buckets in this layer after this step as A′(0).

3) Perform the remaining log(N/E) layers of the
MERGESPLIT butterfly network with input layers
A′(0) to A′(log(N/E)) and ignoring the first E bits
of the ORP key. In other words, the butterfly
network is “restarted” with A′(0) as the initial state.
Because only log(N/E) layers are performed, all
MERGESPLIT operations will be performed locally,
without incurring any communications cost.

For steps (1) and (3), all MERGESPLIT operations are
performed locally, without incurring any communication
cost4 and step (2) needs just O(N) communications cost. A
visualization of this new, three-step butterfly network, with
the additional rearranging step, is given in Figure 4.
Distributed Non-Oblivious Sort. After the ORP step, the
remaining step is to sort the array according to the sort key
of each element using a standard, non-oblivious sorting algo-
rithm. The choice of algorithm is left to the implementer’s
discretion—the only fundamental constraint is that it must
be comparison-based since its behavior will depend on the
order of the randomly permuted elements. The “classic” idea
in distributed sorting of partitioning data according to the
distribution of the sort keys will not work here, since those
partitioning schemes algorithms are not comparison-based
and may leak information about the distribution of sort keys.
Instead, we rely on the guaranteed random distribution of

4. Step (1) requires that N ≥ E2 for all MERGESPLIT operations to be
run locally. If N < E2, some MERGESPLIT operations must occur across
enclaves in order to perform logE layers, but this seems unavoidable.

inputs to the non-oblivious sorting algorithm to implement
an efficient samplesort:

1) Locally sort the elements in enclave 0 with a
comparison-based sorting algorithm.

2) For i ∈ [1, ..., E − 1] use the key in iN
E2 ’th element

in enclave 0 as the key for partitioning elements
across enclaves. Broadcast the chosen keys to all
other enclaves.

3) Use Quickselect [80] in all other enclaves to quickly
partition elements based on the received partitions.

4) All enclaves send and receive the partitioned ele-
ments to each other. This guarantees that elements
in enclave i are strictly greater than all elements
in enclave j, for j < i and strictly less than all
elements in enclave j, for j > i.

5) Locally sort elements within enclaves (in parallel).

As a samplesort implementation, assuming an efficient
local sort algorithm (we use Quicksort in our implementa-
tion), the total time complexity of this non-oblivious sort is
O(N logN). Additionally, Step (2) incurs a negligible O(1)
communication cost, and Step (3) incurs O(N) communi-
cation, so the total communication cost of this algorithm
is O(N), similar to that of our distributed ORP. We also
note that the above works assuming no duplicate elements in
order to avoid leakage during comparison, after the preceding
ORP (this is not explicitly discussed in [61]). We avoid this
by appending a new random value randKey to each element
and then sorting according to the tuple of (key, randKey).

5. Secure Inter-Enclave Communication

In the world of distributed algorithms, the Message
Passing Interface (MPI) [81] is a standardized interface
to implement distributed protocols using message-passing.
Numerous MPI implementations of standard algorithms, like
bitonic sort, exist and the interface is generally one that
application developers are familiar with. MPI generally do
not provide encryption/authentication routines, since they are
optimized for extremely low latencies and high performance
and assume all nodes in a cluster and the network fabric
are trusted. This is not the case for our threat model,
rendering standard MPI unsuitable for our use. While enclave
technologies like Intel-SGX provide a mechanism to establish
mutually attested TLS channels to secure communication
between two enclaves [82], it is difficult to implement
distributed algorithms efficiently with this stream-oriented
primitive. While it is technically possible to implement an
MPI interface within the attested TLS connection, the stream-
oriented protocol presents several issues:

• Because OS-level thread scheduling is not available
from within enclaves, messages must be decrypted
only when a thread enters communication subroutines.
This gives decreased performance as idle CPU time
cannot be used to maintain TLS connections as in
“standard” user-space TLS implementations, which
use multithreading to schedule TLS session manage-
ment concurrently with the main process thread.



Step 1

Step 2

Step 3

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

A(0)

A(1) *0 *1 *0 *1 *0 *1 *0 *1 *0 *1 *0 *1 *0 *1 *0 *1

A(2) *00 *01 *10 *11 *00 *01 *10 *11 *00 *01 *10 *11 *00 *01 *10 *11

Enclave 0 Enclave 1 Enclave 2 Enclave 3

A′(0) *00 *00 *00 *00 *01 *01 *01 *01 *10 *10 *10 *10 *11 *11 *11 *11

A′(1) *000 *001 *000 *001 *010 *011 *010 *011 *100 *101 *100 *101 *110 *111 *110 *111

A′(2) *0000 *0001 *0010 *0011 *0100 *0101 *0110 *0111 *1000 *1001 *1010 *1011 *1100 *1101 *1110 *1111

Figure 4: DBUCKET ORP’s 3-stage, rearranged MERGESPLIT butterfly network implementing oblivious bin assignment.
Steps 1 and 3 are performed entirely within a single enclave, and the rearrangement step in Step 2 requires only O(N)
communication overhead.

• Since TLS is a stream-oriented protocol, any data
that is decrypted and not ready for immediate use by
the process (e.g., when messages may be sent and
received in different orders) must be buffered within
enclave memory. This consumes precious enclave
memory, even though it is equally secure to buffer
the encrypted form of these messages in host memory.

• TLS’s stream-oriented nature also limits the paralleliz-
ability of encryption/decryption operations. A per-
formant distributed application may utilize multiple
threads for multiprocessing within a single enclave,
but TLS connections are not designed for multiple
consumers from the data stream at the same time,
and TLS’s encryption/decryption operations become
a multithreading bottleneck within the enclave.

On the other hand, standard attested TLS is also un-
suitable for our use case. It seems that a more “powerful”
inter-enclave communications primitive is necessary, and it
is clear that data must be encrypted and authenticated before
sent out onto the network. Ideally, this encrypted MPI layer
provides three properties:

1) Security. Remain secure against active network
attackers (and, in the TEE setting, an untrusted host
OS) able to read, tamper with, and replay messages.

2) Ease of use. Expose an API to the programmer
that is semantically identical to the underlying
MPI routines, which are commonly understood by
application developers.

3) Performance. Incur minimal overhead and maintain
parallelizabilty equivalent to that of standard MPI.

While there is a preexisting line of work focused on
encrypting MPI messages [83]–[87] which maintains ease
of use and performance, these solutions have generally in-
complete security, ranging from catastrophic use of insecure
cryptographic schemes ([83]–[85]) to vulnerability to replay
attacks ([86], [87]). [86] and [87] both discuss in greater
detail the security vulnerabilities in many of these past works,
and both works mention replay attacks as an attack that
is out of scope for their respective designs. By contrast,
attested TLS’s stream primitive provides sufficient security
but loses the ease of use and performance properties of
MPI, namely in terms of parallelizability as discussed earlier.
We note that the more recent Intel SGXv2 architecture
provides multi-socket functionality utilizing NUMA for cross-
enclave communication between CPUs [88]. However, this is
based on an entirely different paradigm—shared-memory vs.
shared-nothing—and is currently limited to only inter-socket
communication within a single machine, meaning it is also
unsuitable for our distributed computing model.

Because of these solutions’ shortcomings, we designed
our own novel encrypted MPI layer using modern cryp-
tographic techniques in order to fulfill all three desired
properties, which we describe further in this section. At
a high level, to achieve replay security we use unique,
unidirectional, pairwise keys (against cross-channel replay
attacks), we include the tag in the authenticated data (against
cross-tag replay attacks) and implement an efficient sliding
window algorithm to check counter uniqueness (against direct
replay attacks within a channel).
Attested Pairwise TLS Key Derivation. The protocol
begins with a pairwise, mutually attested TLS handshake



between each pair of enclaves in the network [82], [89]. Any
tampering during this step is detectable by the enclaves, and
the output is a shared secret between each enclave pair. In
standard TLS, the bytestream comprising the data would
be encrypted using keys derived from this; in our protocol,
the TLS portion is completed without any subsequent input
data. Instead, we just use the shared secrets from the TLS
handshakes to produce a set of unidirectional encryption
keys for each pair of enclaves. We denote the key used
to communicate from enclave i to enclave j as Kij (note
that Kij ̸= Kji, i.e., different keys are used for different
directions within the same TLS handshake).
Authenticated Encryption with Replay Resistance. Once
pairwise keys Kij have been derived from the attested TLS
handshake, any message sent may be encrypted with them.
The steps to encrypt a message M are as follows:

1) Generate a random IV value.
2) Fetch and increment a monotonically increasing

counter value c which is unique for each message
sent for a given enclave, to mitigate replay attacks.

3) Encrypt the value c∥M using AES-GCM [90] under
the key Kij to produce C1, using the randomly
generated IV. The AES-GCM routine should be
called with the MPI tag of the message as the
additional authenticated data.

4) Produce the ciphertext C = IV ∥C1.

AES-GCM is an authenticated mode of encryption, i.e.,
it also protects the integrity of the ciphertext. Additionally,
the MPI tag of the message is included as additional
authenticated data in the AES-GCM routine in order to
prevent an attacker from changing the MPI tag of the message
in-flight to tamper with the behavior of the algorithm.

Upon receipt of ciphertext C, the recipient enclave
performs the steps in reverse order to decrypt it:

1) Extract IV and ciphertext C1 from message C.
2) Decrypt C1 under the key Kij using AES-GCM,

with the extracted IV, and key Kij , and the MPI
tag value as the additional authenticated data. If
decryption fails, return an error.

3) Extract the counter value c and the message M
from the resulting decryption.

4) Verify the counter value c has not been previously
seen by the decryption routine. A technique to
efficiently implement this is given next.

Efficient Counter Uniqueness Verification via Sliding Win-
dow. Borrowing on ideas from the DTLS specification [62]5,
we implement a sliding window algorithm to efficiently check
the uniqueness of message counters for a given channel.

As is common, our sliding window assumes counter
values will typically be received in an order “close to” mono-
tonically increasing. As such, as sequences of consecutive

5. In fact, we originally implemented the communications channel using
DTLS directly, but it didn’t give us enough flexibility to include the MPI
tag as additional authenticated data or to parallelize the encryption routines
for multiple messages sent in parallel.

counter values are received, we can increment a head counter
to mark all values below the head as implicitly “received.”
Similarly, since all counter values above a certain threshold
won’t be received for a while, we denote a tail counter to
mark all values above the tail as implicitly “not received.” All
values between head and tail will be explicitly tracked using
an efficient bitfield data structure, with one bit allocated
for each counter value between the head and the tail. The
process of verifying the uniqueness of a value becomes:

• If c < head, c has already been seen.
• If c > tail, c has not yet been seen.
• If head ≤ c ≤ tail, c has been seen if and only if

the bit window[c− head] has been set.

6. Assembly-Level Oblivious Primitives

A fundamental building block of most oblivious al-
gorithms and data structures is oblivious swapping and
assignment. In this section, we describe ways to optimize
the performance of these two basic operations in modern
hardware. Swap and assignment operators have traditionally
been implemented using the x86-specific CMOV instruc-
tion [91]. This instruction performs a branchless conditional
move from the source to the target operand depending on
register flags set by an earlier comparison operation, such as
a CMP or TEST, and this can be composed into an oblivious
assignment operator or an oblivious swap operator.

CMOV-based swapping, however, is no longer the most
performant option for swapping on modern hardware. Works
such as Snoopy [36] utilize x86-64 AVX2 instructions like
VPBLENDVB to implement a “CMOV-like” operation with
AVX2’s 256-bit registers, which achieves faster performance
than CMOV on AVX2 but architecturally constrained to
the x86-64 AVX2 platform and difficult to translate to
other platforms or architectures, resulting in less portable
code. Instead, we propose using an XOR-based swap as our
oblivious swap operator. XOR-based swapping is not new
in any sense but, to the best of our knowledge, ours is the
first XOR-based open-source implementation for oblivious
swapping, hence we need to elaborate on the details. By
transforming the boolean condition variable into a mask of
1’s or 0’s using arithmetic operations and using it to mask the
second XOR operations within the traditional XOR swap, we
are able to produce a branchless version of the conditional
swap with native, portable C code. Likewise, this can be
used to construct an oblivious assignment operator, again
masking the XOR operation to either set the destination
operand to the source operand or leave it unchanged.

When using this in a loop to produce an oblivious swap of
any length, modern compilers are able to automatically loop
unroll and vectorize the XOR-based swap on any target plat-
form. In practice, the XOR-based swap compiles down to 256-
bit VPXOR instructions on AVX2 platforms. The resulting
binary, as we will show in our evaluation, is approximately
equivalent in performance; however, we argue that the source
code portability benefits and automatic compatibility with
future vector architectures favor the use of XOR-based swap.



For oblivious swapping applications, the same XOR-based
oblivious swap source code may automatically be compiled
to support targets with even newer vector architectures, such
as AVX-512 or RISC-V’s vector extension’s assembly-level
variable-length vector registers [92], with no additional effort
by the application developer. We omitted AVX-512 testing
of our XOR-based swap due to limitations of the Open
Enclave SDK we used, which does not support AVX-512
at this time. We note, however, that there is no 512-bit
equivalent of the VPBLENDVB instruction, while AVX-512
has the 512-bit VPXORQ instruction as part of the base
instruction set. This would likely cause the XOR-based swap
to outperform the VPBLENDVB-based swap outright on
platforms supporting AVX-512. A simplified version of the
C code used to implement the oblivious swap and assignment
operators is available in the Appendix.

7. Experimental Evaluation

In this section, we compare the performance of our
proposed oblivious primitives with the prior state-of-the-art
results. We present a set of microbenchmarks to demonstrate
the impact of each major optimization we introduced. Addi-
tionally, we propose a new, simpler version of Snoopy and
conduct a comparison with the original approach.

Experimental Setup. We evaluate our DBUCKET oblivious
sort using the DCsv3-series of Azure confidential computing
virtual machines which use Intel-SGXv2 [93]. The Azure
virtual machines utilize Intel Xeon Platinum 8370C CPUs
with hyperthreading/SMT disabled, running Ubuntu 20.04.
We use the Standard_DC8s_v3 machines with 64 GiB of
memory and 32 GiB of EPC memory per machine. They
are all connected to the same local network with an average
RTT between any two machines of 1.25 ms (utilizing the
proximity placement group feature of Azure). We ran all
experiments, including competitors/baselines, on the same
machines. While [31] experimented with both SGX-v1 and
SGX-v2, we repeated their tests on both versions and chose
to only focus on v2 due to its superior performance. Fur-
thermore, the ORShuffle of [31] did not support distributed
execution so we redesigned and re-implemented it from
scratch (plus we verified our version has nearly identical
performance to that of [31] for a single machine).

All algorithms in this paper are realized with ∼10,000
lines of C code. We use version 0.18.5 of the Open Enclave
SDK [94], version 2.16.4 of the mbedTLS library [95], and
version 3.3.2 of the MPICH library [96].

We use 128-byte elements in all aspects of this evaluation
unless otherwise stated. To generate the results, our enclave
program includes a data set generation routine that generates
elements with a configurable size, each with a fixed, 64-bit
sort key. This generation time is not included in any ORP
or sorting time measurements—though the time taken to
generate the random keys for DBUCKET ORP is included
since it is part of the algorithm itself. In all figure legends, we
will use the DBUCKET descriptor to refer both to DBUCKET
ORP and DBUCKET sort, depending on the context.
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Figure 5: Number of bytes sent across the network for fixed
size N and increasing number of enclaves E. Total summed
across all enclaves and per-enclave values are shown.

Baselines/Competitors. Our baseline for distributed sort-
ing will be our distributed bitonic sort with the chunking
optimization described in §3, where the chunking factor is
C = 4096 (unless otherwise specified). In our evaluation,
our bitonic sort marginally outperforms Snoopy’s bitonic
sort implementation by up to 8% for multiple threads.

Measuring Network Communication. We demonstrate the
improved network communication overhead of DBUCKET
sort by measuring the total number of bytes sent over the
network across all enclaves. Figure 5a measures the total
number of bytes sent over the network for a fixed data
set size and increasing number of enclaves for DBUCKET,
distributed bitonic, and distributed ORShuffle-based sort. We
observe that the total network communication increases ap-
proximately proportional to O(N log2 E) for bitonic sort and
the ORShuffle-based sort, DBUCKET sort’s communication
remains approximately constant as the number of enclaves
increases, due to its O(N) communication overhead.

Figure 5b shows the per-enclave communications cost
of executing each sort. The per-enclave communication is
approximately N logE

E for bitonic and ORShuffle-based sort
and N

E for DBUCKET sort. This means that, for bitonic
and ORShuffle-based sort, the per-enclave communication
reaches a maximum at 4–8 enclaves before decreasing with
greater numbers of enclaves, thus incurring a performance
penalty for these algorithms with fewer than 16 enclaves.

Distributed Oblivious Random Permutation. In Figure 6,
we compare our DBUCKET ORP against ORShuffle [31]
in a distributed environment. Figure 6a is conducted with a
data set size of 2 GiB and shows that DBUCKET ORP
provides a marginal 1.04× speedup over ORShuffle in
the single-enclave setting. This gap, however, widens in
a multi-enclave environment, providing a 3.04× speedup
over ORShuffle with 8 enclaves and 9.52× speedup with 64
enclaves. DBUCKET ORP scales well to large numbers of
enclaves, with a 21.1× speedup when the amount of hardware
is increased from 1 enclave to 64 enclaves, compared to only
a 2.32× speedup for ORShuffle with the same increase
in hardware. Figure 6b demonstrates that the result holds
with a much larger, 128-GiB data set size—too large to
fit in a single enclave. With 64 enclaves, DBUCKET ORP
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Figure 6: ORP time as the number of enclaves increases,
with 1 thread per enclave and 128-B elements.

outperforms ORShuffle by 7.96×, bringing an operation that
would take 20 minutes with ORShuffle down to just 2 and a
half minutes. The performance of ORShuffle decreases for 2,
4, and 8 enclaves due to the high per-enclave communications
cost introduced for these less-distributed settings.

It is worth noting that our results for DBUCKET ORP
in the single-enclave setting differ greatly from the results
presented in [31], whose results indicate that ORShuffle
outperforms bucket ORP (which the paper refers to as
“BORPCompact”). We investigated this discrepancy and
found that this is due to two primary reasons: (1) the paper’s
experimental evaluation used a buggy implementation of
bucket ORP, which took O(N log2 N) in its implementation
compared to an ideal O(N logN) implementation of bucket
ORP, and (2) our assembly-level implementation improve-
ments provide a substantial speedup for DBUCKET ORP
implementation. These two factors combined mean that even
in a non-distributed setting with 1 enclave, bucket ORP (to
which DBUCKET ORP reduces to in a single-enclave setting)
outperforms Sasy et al.’s ORShuffle when implementing ORP.

Figures 7a and 7b show that the performance speedup
gained by increasing the number of threads allocated to each
enclave is preserved even in the distributed environment.
Even in a 32-enclave environment, increasing the number of
threads per enclave from 1 thread to 8 thread provides a 6.8×
performance speedup despite the need to communicate data
across enclaves. Due to the expensive encryption/decryption
operations needed to communicate data securely between
enclaves across the untrusted network fabric, near-ideal
scaling is achievable using DBUCKET ORP when increasing
the number of threads per enclave. Because of maximum
vCPU core quotas set in our Azure testing environment, we
were unable to repeat this experiment with 64 enclaves, each
with 8 threads, as it would exceed our allocation.
Distributed Oblivious Sorting. Figures 8 and 9 compare
similar metrics for an oblivious sort implemented using ORP,
resulting in DBUCKET sort and ORShuffle sort, as well as the
bitonic sort. While in Figure 8a, the bitonic sort outperforms
both DBUCKET and ORShuffle sort, the performance of
DBUCKET sort quickly outperforms bitonic sort with just 4
enclaves, all the way up to a 6.63× speedup over bitonic sort
with 64 enclaves. This speedup factor is similarly maintained
in the larger data set in Figure 8b, with a 5.38× speedup
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Figure 7: ORP time as the number of threads increases, for
single- and multi-enclave environments, with 128-B elements.
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Figure 8: Sort time as the number of enclaves increases, with
1 thread per enclave and 128-B elements.

factor over bitonic sort when sorting a 128-GiB dataset with
64 enclaves.

Similarly, Figure 9 shows that, again, DBUCKET sort
maintains a near-ideal speedup factor when increasing the
number of threads per enclave even in highly distributed
setting. With 32 enclaves, increasing from 1 thread per
enclave to 8 threads per enclave increases performance by
6.32×. Overall, DBUCKET sort provides an improvement in
sorting our 128-GiB data set from 221 seconds to just 58
seconds over the bitonic sort.

We observe similar scaling characteristics for the bitonic
sort as we do for the ORShuffle operation in the previous
section: The bitonic sort is less suited to distributed appli-
cations due the high cost of introducing swaps across the
network. In this case, the cost is even more extreme, and a
speedup over a single-enclave bitonic sort is not observed
until 64 enclaves are added, compared to just 16 for the
ORShuffle-basd sort and 4 for DBUCKET sort.

Finally, in Figure 10, we show that the performance
characteristics are preserved across a variety of block sizes
in our testing. Figure 10a shows a single-enclave setting,
where the maximum element size we were able to test for
N = 220 elements was an element size of 1 KiB, resulting
in a 16 GiB dataset. While the bitonic sort is still by far the
most performant in the single-enclave setting, bucket sort is
able to provide similar performance to ORShuffle sort across
all tested environments. In fact, for larger element sizes,
bucket sort outperforms ORShuffle sort due to the improved
efficiency of the XOR-based oblivious swap operator over
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Figure 9: Sort time as the number of threads increases, for
single- and multi-enclave environments, with 128-B elements.
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Figure 10: Sort time as the element size increases, for a
fixed number of elements N = 224, in both single-enclave
and multi-enclave environments.

the CMOV-based swap. In the distributed experiment shown
in Figure 10b, the performance advantage of DBUCKET sort
is maintained across all block sizes.
Communication Chunk Sizes. We additionally investigated
the performance impact of varying the size of chunking that
was performed for inter-enclave communication for both the
bitonic sort and DBUCKET sort. As discussed in §3, we
expect an increase in the chunk size to decrease the effect
of network latency and improve overall performance, which
is supported by the data in Figure 11. While the sorting
time strictly decreases as the chunk size is increased, we
observe diminishing returns as the chunk size is increased
past approximately 29 elements, resulting in our choice of
chunk size of 212 for this evaluation.

We similarly explored the impact of chunking the com-
munication of elements and buckets across the network in
DBUCKET sort. In the case of DBUCKET sort, the minimal
chunk size must be at least the size of one bucket, so we
evaluated the effect of increasing the number of buckets in
a chunk. We observe that the impact on overall performance
is minimal mainly because of the improved communication
overhead of DBUCKET sort.
Microbenchmarks. We performed a series of ORP bench-
marks to isolate the performance impact of each of our major
optimizations: using XOR-based oblivious swap, implement-
ing the MERGESPLIT operation with ORCompact instead
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Figure 11: Sorting time of bitonic and DBUCKET sort, as
the size of the chunk of elements sent over the network at
once is increased. Bucket sort may not go below a chunk
size of Z = 512.

bitonic sort, and rearranging bucket sort’s butterfly network
to achieve O(N) communication overhead. Figure 12 shows
4 sets of experiments to sort the same 2-GiB dataset with
different numbers of enclaves, with each combination of the
3 aforementioned optimizations enabled.

The ORCompact optimization has the greatest relative
impact on performance in less-distributed environments, and
its relative speedup decreases as the number of enclaves
increases, from a 3.28× speedup with 1 enclave to a more
modest 1.25× speedup with 32 enclaves. This makes sense,
since the the MERGESPLIT operations are performed entirely
locally, and the overall ORP time is dominated by local
operations for less-distributed environments.

On the other hand, rearranging the bucket routing network
to achieve O(N) communication overhead—logically—has
by far the greatest performance impact on highly distributed
settings, with a lesser impact on less-distributed settings.
In the 32-enclave setting, this optimization provided a
2.87× speedup over the naïve implementation on bucket sort
achieved using that optimization alone, while in the 2-enclave
setting, it provided a smaller 1.24× speedup. Obviously, there
is no effect on the 1-enclave setting for this optimization.

The XOR-based swapping has a less significant impact
on the ORP performance overall, exhibiting behavior similar
to ORCompact since its operation largely improves the
performance of local operations. It provides a 1.71× speedup
in the 1-enclave setting while providing a mere 1.19×
speedup in the 32-enclave setting.
Snoopy++. Below, we provide a simplified version of
Snoopy [36] which is based on our scalable oblivious sort
operator. In particular, in our Snoopy++:

1) We construct an array from all keys associated with
their values and all requests containing desired keys.

2) We sort the array according to (key, b), where b is
a bit that is 0 for data items and 1 for requests. This
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Figure 12: Microbenchmarks of DBucket sort isolating different performance speedups achieved using different optimizations
discussed in §4 and §6.

results in an array where all requests are positioned
immediately after the data item containing their
desired values.

3) Linearly scan across the entire array, obliviously
copying data values into the request immediately
following the data item if the keys match.

4) Compact the array such that all requests are posi-
tioned at the end of the array once again.

5) We return the values stored in the requests at the
end of the array.

In keeping with the idea of targeting request latency as
a constraint rather than as a metric, we first establish the
minimum latency for any request to be served by Snoopy++,
which is the time it takes to perform the sort, linear scan,
and compaction steps of the oblivious join.

Focusing on a 32-enclave setting, Snoopy++ requires just
0.86 seconds. Assume that N is the number of elements and
R is the number of requests being processed during the join
operation. Note that, assuming N ≪ R, the 0.86-second join
time is independent of R, meaning that Snoopy++ is able
to achieve extremely high throughputs while maintaining a
latency of no more than 0.86 seconds. Precisely, assuming a
sort size of 224 (as DBUCKET must be padded to a power
of 2 anyway), Snoopy++ can handle 224 −N requests per
0.86-second epoch. If N = 16 million, this means Snoopy++
could handle over 700,000 requests per epoch! Comparing
this against Snoopy’s maximum throughput with the same
hardware (32 sub-ORAMs and 1 load balancer), Snoopy
is able to reach only 4,093 requests per second for the
same database size. We provide Snoopy’s numbers for this
experiment in the appendix.

8. Related Work

Here we provide additional relevant existing works,
focusing on oblivious compaction, oblivious shuffling, and
other approaches for oblivious execution of algorithms.
Oblivious Compaction. Goodrich [97] proposes an order-
preserving tight compaction algorithm that can output all

n elements, including the marked items, using as few as
(log2 n− 2)n swaps. This algorithm can also be parallelized.
Asharov et al. [29] propose a linear-time tight compaction
algorithm, but Dittmer and Ostrovsky [98] show that this
algorithm has a considerably big constant. Mitchell and
Zimmerman [99] propose an algorithm for compaction,
but Falk and Ostrovsky [100]’s analysis indicates that this
algorithm requires more swaps than the solution of Sasy et
al. [31] unless n is considerably large.
Oblivious Shuffling. Melbourne Shuffle [101] and Stash
Shuffle [56] are two shuffling algorithms designed for
different settings. Melbourne Shuffle is designed for cloud
storage with minimal client storage overheads. Stash Shuffle,
on the other hand, is designed to be efficient for the TEE
setting and uses a stash of size O(

√
n) to hold items that

cannot be distributed in a given round to their intended output
buckets. There are also probabilistic sorting networks [102]
which can achieve a smaller size. While random sorting
networks appear to be asymptotically efficient [103], their
practical performance has not been demonstrated [104].
MPC and obliviousness. In multi-party computation (MPC),
one or more parties secret-share their data across multiple
servers, assumed to be non-colluding, and the latter commu-
nicate to evaluate subsequent queries [105]–[113]. The vast
majority of these works focus on challenges arising from the
communication and interactive nature of MPC [114]–[119],
proposing trade-offs (e.g., optimizing the circuit size). How-
ever, the oblivious nature of these approaches could inspire
the designing of oblivious algorithms for TEEs.
Concurrent Works. [120], [121] are independent and con-
current works on oblivious sort and shuffle within TEEs,
which appeared online after our submission. However, they
do not focus on the distributed/parallel settings that we target,
hence they do not achieve comparable scalability to ours.

9. Conclusion

Oblivious primitives play an important role in the perfor-
mance of systems with strong privacy. Oblivious sorting and



shuffling are two fundamental and widely used primitives in
this setting. As distributed computing becomes increasingly
important for scaling computations, such oblivious primi-
tives must also be lifted in the distributed setting, without
compromising security. In this work, we proposed the first
distributed and scalable solutions for oblivious sorting and
shuffling, dubbed DBUCKET sort and DBUCKET ORP. As
we show, they exhibit near-ideal scaling characteristics in
both multi-threading and multi-enclave cases, e.g., with 64
enclaves they achieve a 9.5× speedup over the previous state
of the art for shuffling and outperform bitonic sort by 6.3×.
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Appendix A.
Assembly-Level Oblivious Primitive Code List-
ings

Here we provide code for implementing different oblivi-
ous algorithms in different settings. Figure 13, Figure 15, and

https://arxiv.org/abs/2010.06471


Figure 16 show how to implement an oblivious comparison,
oblivious swap, and oblivious assignment without relying on
any oblivious instruction. On the other hand, Figure 14 pro-
vides an example of the traditional, CMOV-based oblivious
swap that is still often used today in oblivious applications.

i n t o _ s l t ( long long *a , long long *b ) {
re turn (* a − *b )

>> ( s i z e o f (* a ) * 8 − 1) ;
}

Figure 13: C code to realize an oblivious, constant-time
comparison on architecture without an oblivious, constant-
time comparison instruction.

cmpl %rax , $0 ;
mov (% r s i ) , %r12 ;
mov (% r s i ) , %r14 ;
mov (% r d i ) , %r13 ;
cmovl %r13 , %r12 ;
cmovl %r14 , %r13 ;
mov %r12 , (% r s i ) ;
mov %r13 , (% r d i ) ;

Figure 14: CMOV-based x86 assembly implementing an
oblivious swap. RAX holds the swap flag, RSI and RDI hold
the swap buffers, and R12–R14 are temporary registers.

void o_swapc ( unsigned char *a ,
unsigned char *b , boo l cond ) {

unsigned char mask =
~ ( ( unsigned char ) cond − 1) ;

* a ^= *b ;
*b ^= * a & mask ;
* a ^= *b ;

}

Figure 15: C code to realize an XOR-based oblivious
swap. If cond == 1, mask == 0xff; else, mask ==
0x00. Thus, if cond == 1 the operands *a and *b are
swapped. Else, *a is XORed with *b twice, and operands
are unchanged.

Appendix B.
Snoopy and Snoopy++ Evaluation Figures

Figures 17 and 18 present a visualization of the data
we collected in our evaluation of Snoopy and Snoopy++.
Figure 17 shows the performance of the oblivious join tracks
closely with that of DBUCKET sort itself. Figure 18 shows
that Snoopy’s request throughput increases as the number of
enclaves is increased, though it does not approach the request
throughput achievable in the right conditions for Snoopy++.

void o _ s e t c ( unsigned char * d e s t ,
unsigned char s r c , boo l cond ) {

unsigned char mask =
~ ( ( unsigned char ) cond − 1) ;

* d e s t ^= ( s r c ^ * d e s t ) & mask ;
}

Figure 16: C code to realize an XOR-based oblivious
assignment. If cond == 1, mask == 0xff; else, mask
== 0x00. Thus, if cond == 1 the operands *dest is
set to the value of src. Else, *dest is XORed with src
twice, and the operands are unchanged.
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Figure 17: Snoopy++ times for an increasing number of
enclaves on a database with 16M elements of size 128 B,
with each enclave utilizing 8 threads.
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Figure 18: Snoopy request throughput as the number of
enclaves acting as subORAMs increases, for a database with
16M elements of size 128 B.

Appendix C.
Distributed Bucket ORP Construction

Finally, we provide the pseudocode of DBUCKET ORP.
As we mentioned in Section 4, our DBUCKET sort has a
two-step structure: a distributed bucket ORP (DBUCKET
ORP) followed by an efficient, non-oblivious, comparison-
based sort. In Figure 19, we present the detailed steps of
DBUCKET ORP.



1: ei represents the enclave of rank i, where i ∈ [1, E] and E is a power of 2.
2: self is the rank of the current enclave.
3: Z is the number of elements in a bucket.
4: A represents the globally indexed array of elements across all enclaves.
5: A[i] represents the i’th element of A, where i ∈ [1, N ] and N is a power of 2.
6: A

(i)
j represents the i’th bucket in layer j of the bucket routing network.

7: do in parallel
8: for all i ∈ local portion of A in eself do
9: Assign a large random value to A[i].orp_id

10: end for
11: end parallel
12: for all i ∈ {0, ..., logE − 1} do ▷ Step 1: Butterfly network for logE levels.
13: do in parallel
14: for all j ∈ {0, ..., N

2Z
− 1} do

15: MERGESPLIT(A(i)
j′+j

, A
(i)

j′+j+2i
, i,mutA

(i+1)
j′+j

,mutA
(i+1)

j′+j+2i
), where j′ = ⌊ j

2i
⌋ · 2i

16: end for
17: end parallel
18: end for
19: do in parallel ▷ Step 2: Rearrange buckets.
20: Send bucket A(logE−1)

j to enclave j mod E.
21: end parallel
22: Let A′(0) refer to the state of buckets in A(logE−1) after rearrangement.
23: for all i ∈ {0, ..., log(N/E)− 1} do ▷ Step 3: Butterfly network for log(N/E) levels.
24: do in parallel
25: for all j ∈ {0, ..., N

2
− 1} do

26: MERGESPLIT(A′(i)
j′+j

, A
′(i)
j′+j+2i

, i+ logE,mutA
′(i+1)
j′+j

,mutA
′(i+1)

j′+j+2i
), where j′ = ⌊ j

2i
⌋ · 2i

27: end for
28: end parallel
29: end for
30: Non-obliviously sort A.
31: function MERGESPLIT(A0, A1, i,mutA′

0,mutA
′
1)

32: Let A01 be a view of length 2Z of the the elements in A0 followed by the elements of A1

33: c← the number of real elements in A01 with 0 in bit i of its orp_id
34: If c > Z, abort.
35: Obliviously assign Z − c dummy elements in A01 to A′

0 and the remaining dummy elements to A′
1.

36: Obliviously compact elements in A01 such that elements assigned to A′
0 come before those assigned to A′

1.
37: A′

0 receives all elements in the first half of A01.
38: A′

1 receives all elements in the second half of A01.
39: end function

Figure 19: Pseudocode describing the implementation of DBucket ORP
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