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ABSTRACT
Equivalence class signatures allow a controlled form of malleability

based on equivalence classes defined over the message space. As

a result, signatures can be publicly randomized and adapted to a

new message representative in the same equivalence class. Notably,

security requires that an adapted signature-message pair looks in-

distinguishable from a random signature-message pair in the space

of valid signatures for the new message representative. Together

with the decisional Diffie-Hellman assumption, this yields an un-

linkability notion (class-hiding), making them a very attractive

building block for privacy-preserving primitives.

Mercurial signatures are an extension of equivalence class signa-

tures that allow malleability for the key space. Unfortunately, the

most efficient construction to date suffers a severe limitation that

limits their application: only a weak form of public key class-hiding

is supported. In other words, given knowledge of the original sign-

ing key and randomization of the corresponding public key, it is

possible to identify whether they are related.

In this work, we put forth the notion of interactive threshold mer-
curial signatures and show how they help to overcome the above-

mentioned limitation. Moreover, we present constructions in the

two-party and multi-party settings, assuming at least one honest

signer. We also discuss related applications, including blind signa-

tures, multi-signatures, and threshold ring signatures. To showcase

the practicality of our approach, we implement the proposed con-

structions, comparing them against related alternatives.

KEYWORDS
Equivalence class signatures, mercurial signatures, multi-signatures,

threshold signatures, unlinkability.

1 INTRODUCTION
Equivalence Class signatures (EQS) [HS14, FHS19] aremalleable sig-

natures [CKLM14] defined over a vector of group elements. More-

over, they are structure-preserving [AFG
+
10, AGHO11] and, thus,

inherit their benefits. They have been extensively used as a building

block for many cryptographic primitives, including anonymous cre-

dentials (e.g., [HS14, DHS15, HS21, FHS19, CLPK22]), blind signa-

tures [FHS15, FHKS16], group signatures [DS18, BHKS18, BHSB19]

and sanitizable signatures [BLL
+
19] to name a few. Related prim-

itives include signatures with flexible public keys [BHKS18] and

mercurial signatures (MS) [CL19, CL21, CLPK22, MBG
+
23]. The

latter can be seen as an extension of EQS. Not only do they allow

one to randomize a signature and adapt it to a new message but

also to a new public key

Informally speaking, all EQS require an adapted signature to look

like a freshly computed one (signature adaption) and some class-

hiding notion when adapting messages and keys (also referred to as

unlinkability). For most applications, the adversary does not know

the discrete logarithms of the message vector, and thus, message

class-hiding is implied by the decisional Diffie-Hellman assumption.

Furthermore, a recentwork on EQS by Bauer and Fuchsbauer [BF20]

proposed a construction achieving a stronger notion of message

class-hiding, covering the case in which the adversary knows the

discrete logarithms of the message vector. Hence, for message class-

hiding, all possible scenarios are well-studied. Unfortunately, the

situation for public key class-hiding is different as the adversary

usually knows the corresponding discrete logarithms (i.e., secret
key). Moreover, none of the constructions that have been proposed

so far achieves an analogous stronger class-hiding notion for the

public key. To couple with this, existing works introduce trust

assumptions that weaken their anonymity guarantees. This is most

evident for anonymous credentials where MS have been used to

provide issuer-hiding features [CLPK22, MBG
+
23, CDLP22] and to

build delegatable schemes [CL19, CL21]. In the issuer-hiding setting,

the issuer has to be trusted since given a valid key pair (sk,pk) and
a randomized public key pk’ of pk, the owner of sk can determine

whether pk’ is related to pk. Put differently, issuers can identify if a

credential has been issued to a user belonging to their organization,

even if they do not know specifically to whom. While this can

be tolerated in some scenarios with partial trust, it can suffice to

fully de-anonymize users in others. For delegatable credentials, the

situation is even worse as all users in a credential chain have to be

trusted. Otherwise, an adversary that corrupts an user somewhere

in the delegation chain can tell apart corrupted and honest chains

by recognizing randomizations of its own key.

In this work, we propose the notion of interactive Threshold
Mercurial Signature (TMS). Unlike Threshold Structure-Preserving

Signatures (TSPS) [CKP
+
23] that are not randomizable nor consider

any equivalence class (see Sec. 1.2 for a detailed discussion), TMS
schemes are fullMS schemes (i.e., EQS signatures that support all
kinds of randomizability) whose signatures are computed in a dis-

tributed manner with a quorum of signers. However, they can still

be verified in the same way as the original mercurial signatures.

Therefore, they possess the adaptable malleability akin to mercurial

signatures, enabling them to transition seamlessly into the thresh-

old setting. To begin with, we introduce the two-party case, the
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most straightforward and comprehensible way to grab our idea.

Subsequently, we present how to generalize our ideas to 𝑛 parties.

We also discuss related applications for each setting.

From a technical point of view, we offer a modular design. In

particular, the security and efficiency of our constructions depend

on how Zero-Knowledge Proofs of Knowledge are instantiated, and

different alternatives are discussed. Considering our interactive

signing approach, our technique combines polynomial secret shar-

ing for long-term secrets and multiplicative sharing for ephemeral

random factors using a sequential blinding and unblinding com-

putation. While we are able to portMS into the threshold setting,

the computational complexity scales linearly with the number of

parties. For this reason, we implement our protocols and report

benchmarks considering different numbers of parties and applica-

tion settings. Our overhead is relatively minor compared to the

implementation of the originalMS, allowing us to produce signa-
tures in less than 0.5s for practical scenarios involving ten parties.

1.1 Our Contributions
We formalize TMS and propose a construction with a two-party

distributed signing protocol that allows parties to obtain a signature

that verifies under a secret-shared public key. This way, no single

party can retrieve the corresponding secret key. A direct application

is the construction of anonymous credentials with stronger issuer-

hiding features, solving an open problem in the EQS domain (see

Sec. 6.1 for details). We also discuss the general threshold case

and propose a second construction. Alternative approaches and

their efficiency are also covered for both cases. Before concluding,

we present an implementation prototype and related benchmarks

to show the feasibility of our strategy. Finally, we discuss future

directions, including challenges and alternative security models.

The first MS scheme in the literature (and the only one that re-

mains secure) was proposed by Crites and Lysyanskaya in [CL19].

It is exactly the same as the EQS proposed by Fuchsbauer, Hanser,

and Slamanig [FHS19]. The key observation from [CL19] was that,

given a valid signature, the same randomization procedure that

was used to randomize a message-signature pair in [FHS19], could

be used to randomize a public key-signature pair. In fact, both can

be done simultaneously. Crites and Lysyanskaya formalized all the

required security properties, proving that the scheme from [FHS19]

was also secure with respect to randomization of the public key.

Our TMS constructions are distributed signing protocols for the

same scheme and, thus, work as a drop-in replacement for the EQS

from [FHS19] and the MS from [CL19]. Notably, by distributing

the signing protocol one can obtain signatures that verify under

additive shares instead of a single multiplicative share in the expo-

nent. This allows us to obtain stronger security notions, covering

a wider range of applications for this type of signatures. Further-

more, the threshold nature of our signing protocol can be used to

replace a root authority in delegatable schemes such as [CL21] by a

quorum of authorities. Consequently, our work broadens the scope

of privacy-preserving applications covered by EQS/MS.

1.2 Related Work
1.2.1 Mercurial Signatures. There are two constructions of MS in

the literature: one by Crites and Lysyanskaya [CL19] and another

by Connolly et al. [CLPK22]. Unfortunately, theMS from [CLPK22]

was recently shown to be flawed in [BF24] and it’s broken. In Sec. 2.3

we recall the construction from [CL19]. As previously mentioned,

it presents a major drawback as any signer can track randomiza-

tions of previously issued signatures. This is because a public key

pk is a vector of elements and any randomization of it is just a

multiplication in the exponent by the same randomization factor 𝜌 .

Hence, given knowledge of a secret key sk and any pk′, it suffices

to multiply pk′ in the exponent by the inverse of sk. Consequently,
if all elements are the same, it must be the case that pk′ is a random-

ization of pk for some 𝜌 . Our work presents a threshold version

for [CL19]. However, we do so in a way that instead of getting a

multiplicative share in the exponent of each element in the public

key, we get an additive share. As a result, we are able to provide a

stronger class hiding notion as further discussed in Sec. 6.

1.2.2 Pointcheval-Sanders signatures. Very recently, Sanders and

Traoré [ST23] proposed a modified version of Pointcheval-Sanders

(PS) signatures [PS16, PS18] to build an efficient issuer-hiding mech-

anism for anonymous credentials with strong security guarantees.

Their approach consists of letting credential verifiers define an

access policy for a set of issuers. More precisely, users take the

verifier’s access policy to adapt their signature so that it verifies if

and only if the policy is satisfied (i.e., the user’s signature/credential
was signed by one of the issuers in the set). For security, verifiers

must compute a zero-knowledge proof attesting to the correct com-

putation of their access policy for the issuers’ set. In other words,

this approach can be seen as letting each verifier define a custom

common reference string (CRS) as their access policy, and the zero-

knowledge proof attests to the correct computation of said CRS.

Our approach to anonymous credentials resembles [ST23], and

we borrow their NIZK proof. However, in our case, verifiers only

specify the issuer’s set as their access policy, and our solution does

not require any proof of knowledge for the hidden attributes dur-

ing the showing. Furthermore, we provide backward compatibility

with previous attribute-based credentials constructions from EQS

that provide revocation and auditability features [DHS15, CDLP22],

potentially covering a wider range of functionalities.

1.2.3 Threshold Signatures. The ongoing NIST standardization ef-

fort related to threshold signatures [NIS23] motivated many recent

works tackling different settings, e.g., [BCK+22, TZ22, CKM+23b,
CKM23a, CKP

+
23]. Considering pairing-based constructions, thresh-

old versions of the BLS signature [BLS01, BLS04] such as [Bol03]

have gained significant attention over the past years, with security

proven in the adaptive setting [BL22, BCK
+
22, DR23]. Threshold

versions of BLS require a distributed key generation protocol (see

e.g., [GJKR07]) but can verified as a regular signature and are key-

randomizable [DS19]. However, they are not structure-preserving

and cannot be used as an alternative for EQS/MS. This is the first
work to address the construction of threshold schemes for EQS.

Closely related work to ours by Crites et al. [CKP+23] presented
(non-interactive) Threshold Structure-Preserving Signatures. Their

motivation was to have a drop-in replacement for standard SPS in

the threshold setting. While the non-interactive setting is attrac-

tive and allows the authors to propose constructions compatible

with the UC framework, this comes at the cost of using an indexed

message space. In particular, a relatively new assumption called
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Indexed Diffie-Hellman Message Space is required to prove the se-

curity of their construction. Very recent work by Mitrokotsa et al.
[MMS

+
24] overcomes the previous limitation of [CKP

+
23] by re-

moving the need of an indexed space. However, we stress that none

of these works are EQS (let aloneMS). Moreover, the constructions

provided are not even randomizable. The indexed message space

used in [CKP
+
23] defines an equivalence class, but this does not

carry over to the TSPS construction (for a given message𝑚, 𝑔𝑚

always stays as is, and thus,𝑚 is fixed). Looking at [MMS
+
24], it is

a tag-based construction whose tag is not randomizable (see 𝜎1 in

[MMS
+
24]).

We take a different approach and consider an interactive sign-

ing process. As we show, our interactive process offers several

advantages for different applications where non-interactive TSPS

fall short. Thus, our contribution broadens the scope of threshold

SPS to include EQS, opening new research directions. Interestingly,

our multi-party TMS can also be seen as a threshold ring signature
[BSS02].

1.2.4 Multi-signatures. Multi-signatures are a special case of thresh-

old signatures where the threshold 𝑡 = 𝑛. Recent work mostly fo-

cuses on pairing-free and non-interactive constructions (e.g., [DEF+19,
NRS21, AB21, BCK

+
22]), compatible with existing deployments in

the blockchain sphere. Our approach is more general and focused

on privacy-preserving applications that could benefit from mal-

leable signatures with added functionalities and stronger security

properties.

1.3 Organization
We give the preliminaries in Section 2. The syntax and security prop-

erties of TMS are presented in Section 3. Our interactive signing

protocol is first discussed for two parties in Section 4. In Section 5,

we present the general threshold case. Applications are discussed in

Section 6.We report our experimental evaluation in Section 7 before

concluding in Section 8. A detailed presentation of zero-knowledge

proofs used in this work can be found in Appendix A.

2 PRELIMINARIES
Notation. The set of integers 1, 2, ..., 𝑛 is denoted [𝑛]. We call Z𝑝
the ring of integers modulus 𝑝 if 𝑝 ∈ N. For a set S and 𝑟 ∈ S,
𝑟 ←$ S denotes that 𝑟 has been sampled uniformly randomly from

S. The security parameter^ is usually passed in unary form.We use

_ for Lagrange coefficients, and we denote the adversary’s state by

st. Let BGGen be a PPT algorithm that on input 1
^
, returns public

parameters pp = (𝑝,G1,G2,G𝑇 , 𝑃1, 𝑃2, 𝑒) describing an asymmetric

bilinear group where G1,G2,G𝑇 are cyclic groups of prime order

𝑝 with ⌈log2 𝑝⌉ = ^, 𝑃1 and 𝑃2 are generators of G1 and G2, and
𝑒 : G1 × G2 → G𝑇 is an efficiently computable (non-degenerate)

bilinear map. pp is considered Type-III if no efficiently computable

isomorphism between G1 and G2 is known.

DDH Assumption. Let BGGen be a bilinear-group generator that

outputs pp=(𝑝 ,G1,G2,G𝑇 ,𝑃1,𝑃2,𝑒). The decisional Diffie-Hellman as-
sumption holds relative to G𝑖 for BGGen, if for all p.p.t adversaries
A the following probability is negligible,

Pr

[
pp←$ BGGen(1^ ); 𝑟, 𝑠, 𝑡 ←$ Z𝑝 ;𝑏 ←$ {0, 1}
𝑏∗ ←$A(pp, 𝑃𝑟

𝑖
, 𝑃𝑠

𝑖
, 𝑃
(1−𝑏 )𝑡+𝑏𝑟𝑠
𝑖

)
: 𝑏∗ = 𝑏

]
− 1
2

2.1 Zero-Knowledge Proofs of Knowledge
We require secure Zero-Knowledge Proofs of Knowledge (ZKPoK)
that are complete, zero-knowledge, and knowledge sound. Many

instantiations are available in different models and with different

assumptions, directly affecting our protocols’ security. In this paper,

for presentation and performance, we consider a non-interactive

form of zero-knowledge proofs that allows online witness extrac-

tion. It is available in the random oracle model for a stand-alone

execution where our implementation resorts. We refer the reader

to [Gol01] for related background.

2.2 Mercurial Signatures
As previouslymentioned,MS are EQS that also support key random-

ization. Let R be an equivalence relation where [𝑥]R = {𝑦 |R(𝑥,𝑦)}
denotes the equivalence class of which 𝑥 is a representative. As

in [CL19], we will loosely consider parametrized relations and say

they are well-defined as long as the corresponding parameters are.

Definition 2.1 (Mercurial signature [CL19]). A MS scheme for

parametrized equivalence relations R𝑚 , Rpk, Rsk is a tuple of the
following polynomial-time algorithms, which are deterministic

algorithms unless otherwise stated:

PGen(1^ ) → pp: On input the security parameter 1
^
, this proba-

bilistic algorithm outputs the public parameters pp. This includes
parameters for the parameterized equivalence relations R𝑚 , Rpk,
and Rsk so they are well-defined. It also includes parameters for the

algorithms sample𝜌 and sample` , which sample key and message

converters, respectively.

KGen(pp, ℓ) → (pk, sk): On input the public parameters pp and a

length parameter ℓ , this probabilistic algorithm outputs a key pair

(pk,sk). The message spaceM is well-defined from pp and ℓ . This

algorithm also defines a correspondence between public and secret

keys: we write (pk, sk) ∈ KGen(pp, ℓ) if there exists a set of random
choices that KGen could make to output (pk, sk).
Sign(pp, sk,𝑚) → 𝜎 : On input the signing key sk and a message

𝑚 ∈ M, this probabilistic algorithm outputs a signature 𝜎 .

Verify(pp,𝑚, 𝜎, pk) → 0/1: On input the public key pk, a message

𝑚 ∈ M, and a purported signature 𝜎 , output 0 or 1.

ConvertSK(sk, 𝜌) → sk′: On input sk and a key converter 𝜌 ∈
sample𝜌 , output a new secret key sk′ ∈ [sk]Rsk .
ConvertPK(pk, 𝜌) → pk′: On input pk and a key converter 𝜌 ∈
sample𝜌 , output a new public key pk′ ∈ [pk]Rpk .
ConvertSig(pk,𝑚, 𝜎, 𝜌) → 𝜎′: On input pk, a message𝑚 ∈ M, a

signature 𝜎 , and key converter 𝜌 ∈ sample𝜌 , this probabilistic
algorithm returns a new signature 𝜎′.
ChgRep(pk,𝑚, 𝜎, `) → (𝑚′, 𝜎′): On input pk, a message𝑚 ∈ M,

a signature 𝜎 , and a message converter ` ∈ sample` , this proba-
bilistic algorithm computes a new message𝑚′ ∈ [𝑚]R𝑚 and a new

signature 𝜎′ and outputs (𝑚′, 𝜎′).

Definition 2.2 (Correctness [CL19]). AMS scheme for parame-

terized equivalence relations R𝑚,Rpk,Rsk is correct if it satisfies
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the following conditions for all ^, for all pp ∈ PGen(1^ ), for all
ℓ > 1, for all (pk, sk) ∈ KGen(pp, ℓ):
Verification. ∀𝑚 ∈ M, ∀ 𝜎 ∈ Sign(𝑠𝑘,𝑚), Verify(pk,𝑚, 𝜎) = 1.

Key conversion. ∀ 𝜌 ∈ sample𝜌 , (ConvertPK(pk, 𝜌), ConvertSK
(sk, 𝜌)) ∈ KGen(pp, ℓ). Moreover, ConvertSK(sk, 𝜌) ∈ [sk]Rsk and
ConvertPK (pk, 𝜌) ∈ [pk]Rpk .
Signature conversion. ∀𝑚 ∈ M,∀ 𝜎 such that Verify(pk,𝑚, 𝜎) =
1,∀ 𝜌 ∈ sample𝜌 ,∀𝜎′ ∈ ConvertSig(pk,𝑚, 𝜎, 𝜌),Verify(ConvertPK
(pk, 𝜌),𝑚, 𝜎′) = 1.

Change of message representative. ∀ 𝑚 ∈ M,∀ 𝜎 such that

Verify(pk,𝑚, 𝜎) = 1, ∀ ` ∈ sample` , Verify(pk,𝑚, 𝜎′) = 1, where

(𝑚′, 𝜎′) = ChgRep(pk,𝑚, 𝜎, `). Moreover,𝑚 ∈ R𝑚 .

Definition 2.3 (Unforgeability [CL19]). A MS scheme for pa-

rameterized equivalence relations R𝑚,Rpk,Rsk is unforgeable if

for all polynomial-length parameters ℓ (^) and all PPT adversary

A having access to a signing oracle, the following probability is

negligible,

Pr


pp←$ PGen(1^ )
(sk, pk) ←$ KGen(pp, ℓ (^ ) )
(pk∗,𝑚∗, 𝜎∗ ) ← ASign(sk,·) (pk)

:

∀𝑚 ∈ 𝑄, [𝑚∗ ]R𝑚 ≠ [𝑚]R𝑚
∧ [pk∗ ]Rpk = [pk]Rpk
∧ Verify(𝑚∗, 𝜎∗, pk) = 1

 ,
where𝑄 is the set of queries thatA has issued to the signing oracle.

Definition 2.4 (Class-Hiding [CL19]). A MS scheme is class-

hiding if it satisfies the following two properties:

Message class-hiding: if the advantage of any PPT adversary A
defined by AdvMSG-CH

MS,A (^) := 2 · Pr
[
ExpMSG-CH

MS,A (^) ⇒ true
]
− 1 =

𝜖 (^), where ExpMSG-CH
MS,A (^) is shown in Fig. 1.

Public key class-hiding: if the advantage of any PPT adversary

A defined by AdvPK-CHMS,A (^) := 2 · Pr
[
ExpPK-CH

MS,A (^) ⇒ true
]
− 1 =

𝜖 (^), where ExpPK-CH
MS,A (^) is shown in Fig. 1.

Experiment ExpMSG-CH
MS,A (^ )

pp←$ PGen(1^ ) ;𝑏 ←$ {0, 1};𝑚1 ←$M;𝑚0

2
←$M;𝑚1

2
←$ [𝑚]R𝑚

𝑏′ ←$ A(pp,𝑚1,𝑚
𝑏
2
) ; return 𝑏 = 𝑏′

Experiment ExpPK-CHMS,A (^ )
pp←$ PGen(1^ ) ;𝑏 ←$ {0, 1}; 𝜌 ←$ sample𝜌 (pp)

(sk
1
, pk

1
) ←$ KGen(pp, ℓ (^ ) ) ; (sk0

2
, pk0

2
) ←$ KGen(pp, ℓ (^ )

pk1
2
← ConvertPK(pk

1
, 𝜌 ) ; sk1

2
← ConvertSK(sk

1
, 𝜌 )

𝑏′ ←$ ASign(sk
1
,·),Sign(sk𝑏

2
,·) (pk

1
, pk𝑏

2
) ; return 𝑏 = 𝑏′

Oracle Sign(sk,𝑚) : return Sign(sk,𝑚)

Figure 1: Class-hiding experiments from [CL19].

Definition 2.5 (Origin-hiding [CL19]). AMS scheme is origin-

hiding if for all ^ , pp ∈ PGen(1^ ), pk∗,𝑚, and 𝜎 , the following two

properties hold:

(1) if Verify(pk,𝑚, 𝜎) = 1 and ` ←$ sample` , then ChgRep(pk∗,𝑚,

𝜎, `) outputs a uniformly random𝑚′ ∈ [𝑚]R𝑚 and uniformly

random 𝜎′ ∈ {�̂� |Verify(pk∗,𝑚′, �̂�) = 1}.
(2) ifVerify(pk,𝑚, 𝜎) = 1 and 𝜌 ←$ sample𝜌 , thenConvertSig(pk∗,

𝑚,𝜎, 𝜌) outputs a uniformly random𝜎′ ∈ {�̂� |Verify(ConvertPK
(pk∗, 𝜌),𝑚, �̂�) = 1} andConvertPK(pk∗, 𝜌) outputs a uniformly

random element of [pk∗]Rpk if 𝜌 ←$ sample𝜌 .

2.3 Construction From [CL19]
TheMS by Crites and Lysyanskaya [CL19] is an extension of the

EQS from [FHS19]. It’s the state-of-the-art signature in terms of

efficiency and has its security proven in the generic group model

for Type-III pairings. The message space is (G∗
1
)ℓ where ℓ is the

length of the message vector. We recall that all elements of a vector

(𝑀)𝑖∈[ℓ ] ∈ (G∗1)
ℓ
share different mutual ratios that depend on

their discrete logarithms. Hence, it is possible to partition (G∗
1
)ℓ

into equivalence classes given by the following relation:

R = {(𝑀,𝑀′) ∈ (G∗
1
)ℓ × (G∗

1
)ℓ |∃𝑠 ∈ Z∗𝑝 : 𝑀′ = 𝑀𝑠 } ⊆ (G∗

1
)ℓ

The construction from [CL19], which we present below, is based

on the observation that an analogous relation can be defined for

the public keys, inducing equivalence classes on the key space as

well.

PGen(1^ ) → pp: return BGGen(1^ ).
KGen(pp, ℓ) → (pk, sk): ∀ 1 ≤ 𝑖 ≤ ℓ : 𝑥𝑖 ←$ Z∗𝑝 .; sk ← (𝑥𝑖 )𝑖∈[ℓ ] ;
pk← (𝑃𝑥𝑖 )𝑖∈[ℓ ] ; return (pk, sk).
Sign(pp, sk, 𝑀) → 𝜎 : 𝑦 ←$ Z∗𝑝 ; 𝑍 ← (Πℓ

𝑖=1
𝑀

𝑥𝑖
𝑖
)𝑦 ; 𝑌 ← 𝑃

1

𝑦
; 𝑌 ←

𝑃
1

𝑦
; return (𝑍,𝑌,𝑌 ).

Verify(pp, 𝑀, 𝜎, pk = (𝑋 )𝑖∈[ℓ ] ) → 0/1: returnΠℓ
𝑖=1

𝑒 (𝑀𝑖 , 𝑋𝑖 ) = 𝑒 (𝑍,𝑌 )
∧ 𝑒 (𝑌, 𝑃) = 𝑒 (𝑃,𝑌 ).
ConvertSK(sk, 𝜌) → sk′: sk′ ← sk𝜌 ; return sk′.
ConvertPK(pk, 𝜌) → pk′: pk′ ← pk𝜌 ; return pk′.

ConvertSig(pk, 𝑀, 𝜎, 𝜌) → 𝜎′:𝜓 ←$ Z∗𝑝 ; return (𝑍𝜓𝜌 , 𝑌
1

𝜓 , 𝑌
1

𝜓 ).
ChgRep(pk, 𝑀, 𝜎, `) → (𝑀′, 𝜎′):𝜓 ←$ Z∗𝑝 ;𝑀

′ ← 𝑀`
; 𝜎′ ← (𝑍𝜓`

,

𝑌
1

𝜓
, 𝑌

1

𝜓 ); return (𝑀′, 𝜎′).
In the following, we recall the security statements ofMS from

[CL19] where the security of our TMS is reduced.

Theorem 2.6 (Unforgeability [CL19]). The MS from [CL19] is
unforgeable in the generic group model for Type-III bilinear groups.

Theorem 2.7 (Class-hiding [CL19]). The MS from [CL19] is
message class-hiding forG and is public key class-hiding in the generic
group model for Type-III bilinear groups if the DDH assumption holds
in G.

Theorem 2.8 (Origin-hiding [CL19]). The MS from [CL19] is
origin-hiding in the generic group model for Type-III bilinear groups.

3 THRESHOLD MERCURIAL SIGNATURES
3.1 Syntax
We present the syntax and security properties of (interactive) TMS
following the notation from [CKP

+
23].

Definition 3.1 (Thresholdmercurial signature). A TMS scheme

is a MS scheme where KGen and Sign, are replaced with:

TKGen(pp, ℓ, 𝑡, 𝑛) → ( ®sk, ®pk, pk): On input the public parameters

pp, a length parameter ℓ , and two integers 𝑡, 𝑛 ∈ poly(1^ ) such that

1 ≤ 𝑡 ≤ 𝑛, this probabilistic algorithm outputs two vectors of size 𝑛

of signing and public keys along with the global (threshold) public

key pk. Both, the signing keys
®sk = (sk

1
, ..., sk𝑛) and the public

keys
®pk = (pk

1
, ..., pk𝑛) are distributed among parties such that
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party P𝑖 gets (sk𝑖 , ®pk, pk). The message spaceM is well-defined

from pp and ℓ .

TSign(pp, {sk𝑗 } 𝑗∈J ,𝑚) → 𝜎 : On input {𝑠𝑘 𝑗 } 𝑗∈J for some J ⊆
[𝑛] of size ≥ 𝑡 and a message𝑚 ∈ M, this probabilistic algorithm

is an interactive protocol run by a set of parties in J . At the end of

the protocol they either abort or output a signature 𝜎 .

We also consider threshold key converter versions for shared keys

(ConvertTPK and ConvertTSK) that are analogous to ConvertPK
and ConvertSK (now acting on the global keys).

3.2 Security Properties
Throughout the paper, the key generation is done by a single trusted

party. Alternatively, decentralized discrete-log key generation pro-

tocols (DKGs), e.g., [Fel87, Ped91, AF04, CL24a], are available with

various security properties. We refer to a recent survey on the long

history and state of the art about secure DKG protocols [Kat23].

Since we consider static corruption, the security property we re-

quire for the key generation is the presence of a static simulator.

Definition 3.2 (Security of key generation). TKGen is secure if it

outputs pkwith the same distribution asKGen does, and there exists
a simulator, SimTKGen that, for any sufficiently large ^, any pp ∈
PGen(1^ ), ℓ ∈ N, (pk, sk) ∈ KGen(pp, ℓ), 𝑡, 𝑛 ∈ N, C ⊊ [𝑛] of size
𝑡 − 1, SimTKGen(pk, 𝑛, C) outputs {sk𝑗 } 𝑗∈C and {pk𝑗 } 𝑗∈[𝑛] . The
joint distribution of (pk, {pk𝑗 } 𝑗∈[𝑛] , {sk𝑗 } 𝑗∈C) is indistinguishable
from that of TKGen(pp, ℓ, 𝑡, 𝑛).

Correctness of TMS follows the usual notion (see Section 2).

Below we present the corresponding definition for completeness.

Definition 3.3 (Correctness). A (𝑛, 𝑡)-TMS is correct if it sat-

isfies the following conditions for all ^, pp ∈ PGen(1^ ), ℓ > 1,

( ®sk, ®pk, pk) ∈ TKGen(pp, ℓ, 𝑡, 𝑛) and J ⊆ [𝑛] of size ≥ 𝑡 :

Verification. ∀𝑚 ∈ M, ∀ 𝜎 ∈ TSign(pp, {( 𝑗, sk𝑗 )} 𝑗∈J , 𝑀),
Verify(pp,𝑚, 𝜎, pk) = 1.

Key conversion.∀ 𝜌 ∈ sample𝜌 , (ConvertTSK(sk, 𝜌),ConvertTPK
(pk, 𝜌),ConvertPK(pk, 𝜌)) ∈ TKGen(pp, ℓ, 𝑡, 𝑛).
Signature conversion.∀𝑚 ∈ M,∀𝜎 such thatVerify(pp, pk,𝑚, 𝜎) =
1,∀ 𝜌 ∈ sample𝜌 ,∀𝜎′ ∈ ConvertSig(pk,𝑚, 𝜎, 𝜌),Verify(ConvertPK
(pk, 𝜌),𝑚, 𝜎′) = 1.

Change of message representative. ∀ 𝑚 ∈ M,∀ 𝜎 such that

Verify(pp,𝑚, 𝜎, pk) = 1, ∀ ` ∈ sample` , Verify(pp,𝑚, 𝜎, pk′) = 1,

where (𝑚′, 𝜎′) = ChgRep(pk,𝑚, 𝜎, `). Moreover,𝑚 ∈ R𝑚 .

For unforgeability and unlinkability (class-hiding) we follow the

definitions from [CL19], adapting them to the threshold setting (the

adversary could corrupt up to 𝑡−1 parties). Unlike [CKP+23] whose
unforgeability definition is in the non-interactive setting and thus

lets the adversary obtain partial signatures of honest signers, we

let the adversary query signatures for a set of signers of her choice

but assume at least one honest signer.

Definition 3.4 (Unforgeability). A TMS scheme is unforgeable

w.r.t. equivalence classes if the advantage of any PPT adversary A
defined by AdvUNFTMS,ℓ,𝑡,𝑛 (1^ ,A) := Pr

[
ExpUNF

TMS,ℓ,𝑡,𝑛 (1^ ,A) ⇒ true
]
≤

𝜖 (^), where ExpUNF
TMS,ℓ,𝑡,𝑛 (1^ ,A) is shown in Fig. 2.

Unlike the original class-hiding definition for mercurial signa-

tures (Fig. 1), we aim to capture a stronger definition in which the

Experiment ExpUNF
TMS,ℓ,𝑡,𝑛 (1^ ,A)

Σ← ∅; pp←$ PGen(1^ ) ; (C, st) ← A(pp)
if C ∉ [𝑛] ∨ | C | > 𝑡 − 1 return ⊥

H ← [𝑛] \ C; ( ®sk, ®pk, pk) ←$ TKGen(pp, ℓ, 𝑡, 𝑛)

(𝑚∗, 𝜎∗, 𝜌∗ ) ←$ AOTSign(sk,·,·) (st, {sk𝑖 }𝑖∈C, ®pk, pk)
return (𝑚∗, 𝜎∗ ) ∉ Σ ∧ ∀𝑚 ∈ Σ : [𝑚]R𝑚 ≠ [𝑚∗ ]R𝑚
∧ Verify(𝑚∗, 𝜎∗,ConvertPK(pk, 𝜌∗ ) )

Oracle OTSign(sk,𝑚, T)
if | T | ≠ 𝑡 ∨ T ∩ H = ∅ return ⊥

𝜎 ←$ TSign({ ®sk𝑗 } 𝑗 ∈T ,𝑚) ; Σ← Σ ∪ { (𝑚,𝜎 ) }; return 𝜎

Figure 2: Unforgeability experiment. C andH are the sets of
corrupt and honest signers, respectively.

Experiment ExpPK-UNL
TMS,ℓ,𝑡,𝑛 (1^ ,A)

st← ∅;𝑏 ←$ {0, 1}; 𝜌 ←$ sample𝜌 ; pp←$ PGen(1^ )
(C, st) ← A(st, pp) ; if C ∉ [𝑛] ∨ | C | > 𝑡 − 1 return ⊥

( ®sk𝑖 , ®pk𝑖 , pk𝑖 ) ←$ TKGen(pp, ℓ, 𝑡, 𝑛) for 𝑖 ∈ {0, 1}

pk′ ← ConvertPK(pk𝑏 , 𝜌 )

𝑏′ ←$ AOTSign𝑏 ( ·,·,·) (st, { ®sk𝑖𝑗 }
𝑖∈{0,1}
𝑗 ∈C , pk′, pk0, pk1 ) ; return 𝑏 = 𝑏′

Oracle OTSign𝑏 (𝑚, pk,T)
if | T | ≠ 𝑡 ∨ pk ∉ {pk′, pk0, pk1} return ⊥
if pk = pk′ then

𝜎𝑖 ← TSign({ ®sk𝑖𝑗 } 𝑗 ∈T , 𝑀 ) for 𝑖 ∈ {0, 1}
if 𝜎0 = ⊥ or 𝜎1 = ⊥ return ⊥

else return ConvertSig(pk𝑏 , 𝑀, 𝜎𝑏 , 𝜌 )

else if pk = pk𝑖 return TSign({ ®sk𝑖𝑗 } 𝑗 ∈T , 𝑀 )

Figure 3: Public key unlinkability experiment.

adversary is given access to the challenge public keys and shares of

the corresponding secret keys associated to corrupted parties. Our

approach is to relax the definition from [CGH
+
23] and consider

a scenario under key leakage where the adversary gets to know

a subset of the secret key shares, similar to the class-hiding defi-

nition from [BHKS18]. Our notion is in-between the class-hiding

notion from [CL19] that only considers honestly generated keys

with no key leakage and the one from [BHKS18] (which is strictly

weaker than (·, 1, 3)-UNL from [CGH
+
23]). We refer to it as public

key unlinkability to make a distinction.

Definition 3.5 (Public Key Unlinkability). A TMS scheme is

public key unlinkable if the advantage of any PPT adversary A
defined byAdvPK-UNLTMS,ℓ,𝑡,𝑛 (1^ ,A) := 2·Pr

[
ExpPK-UNL

TMS,ℓ,𝑡,𝑛 (1^ ,A) ⇒ true
]
−

1 ≤ 𝜖 (^), where Exp𝑡−PK-UNLTMS,ℓ,𝑡,𝑛 (1^ , A) is shown in Fig. 3.

Note that, at 𝑛 = 𝑡 = 1, the above seamlessly gives the notion

of public key unlinkability forMS. It is implied by the public key

class-hiding and fulfilled by the instantiation ofMS in [CL19]. We

will use these facts to prove public key unlinkability.
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4 TWO-PARTY CASE
We present the two-party case as a (2-2)-TMS scheme. This decision

will become clearer when we discuss the applications of this setting

at the end of the present section.

Our approach to building a (2-2)-TMS is to modify the scheme

from [CL19] so that the signing protocol runs interactively between

two parties. Intuitively, a signature that verifies under a jointly

computed public key is obtained at the end. Most importantly, the

resulting signature has the same structure as the one from [CL19]

and it can work as a drop-in replacement. We assume at least one

honest party to achieve stronger security guarantees.

4.1 Construction
We assume that PGen(1^ ) and TKGen(pp, ℓ, 2, 2) are run honestly.

Every signer 𝑗 is given pp := (G1,G2, 𝑃, 𝑃, 𝑒, 𝑝), ®pk := {𝑃𝑥
𝑖
𝑗 }𝑖∈[ℓ ]

𝑗∈[0,1] ,

pk, and ®𝑠𝑘 𝑗 := {𝑥𝑖𝑗 }𝑖∈[ℓ ] . The (global) signing key 𝑥𝑖 for 𝑖 ∈ [ℓ] is
implicitly set to 𝑥𝑖 := 𝑥𝑖

0
+ 𝑥𝑖

1
∈ Z𝑝 .

In Fig. 4, we present our main protocol for instantiating TSign.
The protocol’s goal is to compute (𝑍,𝑌,𝑌 ) for a given message𝑀 .

It consists of two parts; one to compute 𝑌 and 𝑌 , and another to

compute 𝑍 . Below we give an intuition and subsequently discuss

the technical details required to prove security.

Computing 𝑌 = 𝑃
1

𝑦
and 𝑌 = 𝑃

1

𝑦
for 𝑦 = 𝑦0𝑦1 is done straight-

forwardly in sequence. Since at least one of the parties is honest, 𝑦

will be a random value as in the original scheme. Furthermore, we

observe that because EQS can be publicly randomized, our signing

protocol does not need to execute a DKG protocol to remove po-

tential bias. Instead, at the end of the computation, each user can

independently randomize the signature to refresh the randomness.

Computing 𝑍 = (∏𝑀
𝑥𝑖
0
+𝑥𝑖

1

𝑖
)𝑦 for 𝑖 ∈ [ℓ] could be done first by

computing 𝑍1 =
∏

𝑀
𝑥𝑖
1

𝑖
at signer P1, then 𝑍0 = 𝑍1

∏
𝑀

𝑥𝑖
0

𝑖
at signer

P0, and lift 𝑍0 with 𝑦0 and 𝑦1 in sequence. This seemingly works,

but we do not know how to prove its security. The difficulty is that

𝑍1 is computed deterministically, requiring full knowledge about

P1’s signing key, while we have to simulate P1 without knowing
the signing keys for the case where P0 is corrupted.

Our approach to getting around the above problem is to blind 𝑍1

by using 𝑌0 = 𝑃
1

𝑦
0 , obtained in the first part of the protocol as the

basis of a blinding factor. Computing 𝑍1 = 𝑌 𝑟
0

∏
𝑀

𝑥𝑖
1

𝑖
with random

𝑟 perfectly blinds it. Once 𝑃0 computes 𝑍0 = (𝑍1
∏

𝑀
𝑥𝑖
0

𝑖
)𝑦0 , factor

𝑌0 in 𝑍1 is cancelled out since (𝑌 𝑟
0
)𝑦0 = (𝑃

𝑟
𝑦
0 )𝑦0 = 𝑃𝑟 . Thus, P1,

who holds 𝑟 , can easily unblind 𝑍0 by multiplying 𝑃−𝑟 .
This blinding of 𝑍1 causes another problem in the opposite case

where P1 is corrupted; It makes it hard for the simulator to control

the resulting signature. We address it by extracting the randomiza-

tion factor 𝑟 from the zero-knowledge proof of well-formedness of

blinded 𝑍1. Since the unblinding is deterministic with respect to 𝑟 ,

the simulator knowing 𝑟 can embed an intended signature to 𝑍0.

As previously mentioned, we require zero-knowledge proofs

to prove the right computation of the values sent by each party.

In particular, we require knowledge soundness of 𝜋
(1)
1

and zero-

knowledge of 𝜋
(1)
0

and 𝜋
(2)
0

to simulate P0. Analogously, to simulate

P1. Below we discuss how each ZKPoK can be implemented.

• 𝜋
(1)
0

:= ZKPoK[ 𝑦0 : 𝑃 = 𝑌
𝑦0
0
∧𝑃 = 𝑌0

𝑦0 ]: this ZKPoK can easily

be implemented using the Chaum-Pedersen protocol [CP93] and

in a non-interactive way via de Fiat-Shamir transform [FS87].

• 𝜋
(1)
1

:= ZKPoK[ (𝑟, {𝑥𝑖
1
}𝑖∈ℓ ) : 𝑍1 = 𝑌 𝑟

0

∏ℓ
𝑖=1𝑀

𝑥𝑖
1

𝑖
∧ 𝑋 𝑖

1
= 𝑃𝑥

𝑖
1 ]:

same as above.

• 𝜋
(2)
0

:= ZKPoK[ (𝑦0, {𝑥𝑖
0
}𝑖∈[ℓ ] ) : 𝑍0 = (𝑍1 ·

∏ℓ
𝑖=𝑖 𝑀

𝑥𝑖
0

𝑖
)𝑦0 ∧ 𝑃 =

𝑌
𝑦0
0
∧𝑖∈[ℓ ] 𝑋 𝑖

0
= 𝑃𝑥

𝑖
0 ]: This statement has a witness product in

the exponent so we cannot apply the previous approach. How-

ever, the following statement is equivalent and can easily be

implemented with known techniques.

ZKPoK[ ({𝑥0,𝑖 }𝑖∈[ℓ ] , 𝑦0, 𝑡) : 𝑈 = 𝑌 𝑡
0
𝑍1

∏𝑙
𝑖=1𝑀

𝑥𝑖
0

𝑖
∧ 𝑍0 =

𝑃−𝑡𝑈 𝑦0 ∧ 𝑃 = 𝑌
𝑦0
0
∧𝑖∈[ℓ ] 𝑋 𝑖

0
= 𝑃𝑥

𝑖
0 ]

• 𝜋
(2)
1

:= ZKPoK[ (𝑟,𝑦1) : 𝑍 = (𝑍0𝑃−𝑟 )𝑦1∧𝑌 = 𝑌

1

𝑦
1

0
]: in this case

we also have a product of 𝑟 and 𝑦1. Fortunately, we can directly

translate it into ZKPoK[ (𝑦′
1
, 𝑟 ) : 𝑍𝑦′

1𝑃𝑟 = 𝑍0 ∧ 𝑌 = 𝑌
𝑦′
1

0
] for

𝑦′
1
= 1

𝑦1
without introducing an intermediate variable.

Each proof is verified by its recipient. The same for 𝜎 . If any

verification fails, the party aborts and TSign outputs ⊥.

4.2 Efficiency
Except for ZKPoK’s, computation and communication complexity

at each party are the same as those for the original MS. Party P1
has extra three exponentiations in G1 for blinding and unblinding.

Table 1 presents the computational and communication costs of

each ZKPoK in terms of scalar values and group elements when

instantiating them using sigma protocols. We defer the full presen-

tation of each protocol to Appendix A. We note that ℓ is usually

instantiated for short vectors. Considering the applications cov-

ered in Section 6, ℓ = 2 for blind signatures, ℓ = 3 for the basic

attribute-based credential scheme from [FHS19], ℓ = 5 considering

revocation [DHS15], and ℓ = 7 for adding auditability [CDLP22].

4.3 Security
We consider stand-alone, allowing us to instantiate efficientNIZKPoK’s
in the ROM.Alternatively, the ZKPoK’s can be instantiated via inter-
active five-round PoK’s in the standard model [GK96]. We restrict

ourselves to static corruptions. Security under concurrent execu-
tions or adaptive corruptions would require straight-line extraction.
We leave the evaluation of potential alternatives, such as using

Fichlin’s transform [Fis05, CL24b] for future research.

Theorem 4.1 (Correctness). For any pp := (G1,G2, 𝑃, 𝑃, 𝑒, 𝑝) ∈
PGen(1^ ), ℓ > 1, ®sk := {𝑥𝑖

𝑗
}𝑖∈[ℓ ]
𝑗∈[0,1] ,

®pk := {𝑃𝑥
𝑖
𝑗 }𝑖∈[ℓ ]

𝑗∈[0,1] , and pk :=

{𝑃 (𝑥𝑖0+𝑥𝑖1 ) })𝑖∈[ℓ ] generated by TKGen(pp, ℓ, 2, 2), and𝑀 ∈ Gℓ1, TSign(pp,
{𝑥𝑖

𝑗
}𝑖∈[ℓ ]
𝑗∈{0,1} , 𝑀) in Fig. 4 outputs signature 𝜎 that distributes the same

as Sign(pp, sk, 𝑀) for sk := (𝑥𝑖 )𝑖∈[ℓ ] = (𝑥𝑖0 +𝑥
𝑖
1
)𝑖∈[ℓ ] if both 𝑃0 and

𝑃1 are honest.
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P0: {𝑋 𝑖
0
= 𝑃𝑥

𝑖
0 , 𝑥𝑖

0
}𝑖∈[ℓ ] P1: {𝑋 𝑖

1
= 𝑃𝑥

𝑖
1 , 𝑥𝑖

1
}𝑖∈[ℓ ]

𝑦0 ←$ Z∗𝑝 ; 𝑌0 ← 𝑃
1

𝑦
0 ; 𝑌0 ← 𝑃

1

𝑦
0 𝑟 ←$ Z𝑝 ; 𝑦1 ←$ Z∗𝑝

𝜋
(1)
0
← ZKPoK[ 𝑦0 : 𝑌0 = 𝑃

1

𝑦
0 ∧ 𝑌0 = 𝑃

1

𝑦
0 ] 𝑌0, 𝑌0, 𝜋

(1)
0−−−−−−−−−−→ 𝑍1 ← 𝑌 𝑟

0

∏ℓ
𝑖=1𝑀

𝑥𝑖
1

𝑖
; 𝑌 ← 𝑌

1

𝑦
1

0
; 𝑌 ← 𝑌

1

𝑦
1

0

𝑍0 ← (𝑍1 ·
∏ℓ

𝑖=1𝑀
𝑥𝑖
0

𝑖
)𝑦0 𝑍1, 𝜋

(1)
1←−−−−−−− 𝜋

(1)
1
← ZKPoK[ (𝑟, {𝑥𝑖

1
}𝑖∈ℓ ) : 𝑍1 = 𝑌 𝑟

0

∏ℓ
𝑖=1𝑀

𝑥𝑖
1

𝑖
∧ 𝑋 𝑖

1
= 𝑃𝑥

𝑖
1 ]

𝜋
(2)
0
← ZKPoK[ (𝑦0, {𝑥𝑖

0
}𝑖∈[ℓ ] ) :

𝑍0, 𝜋
(2)
0−−−−−−−→ 𝑍 ← (𝑍0𝑃−𝑟 )𝑦1

𝑍0 = (𝑍1 ·
∏ℓ

𝑖=𝑖 𝑀
𝑥𝑖
0

𝑖
)𝑦0 ∧ 𝑌0 = 𝑃

1

𝑦
0 ] 𝜋

(2)
1
← ZKPoK[ (𝑟,𝑦1) : 𝑍 = (𝑍0𝑃−𝑟 )𝑦1 ∧ 𝑌 = 𝑌

1

𝑦
1

0
]

return 𝜎
𝜎, 𝜋
(2)
1←−−−−−− 𝜎 ← (𝑍,𝑌,𝑌 ); return 𝜎

Figure 4: TSign(pp, {𝑥𝑖
𝑗
} 𝑗∈{0,1},𝑖∈[ℓ ] , 𝑀)

Exp. Comm.

𝜋
(1)
0

3|G1 | + 3|G2 | 1|G1 | + 1|G2 | + 2|Z𝑝 |
𝜋
(1)
1

(2ℓ + 3) |G1 | + 3ℓ |G2 | 1|G1 | + ℓ |G2 | + (ℓ + 1) |Z𝑝 |
𝜋
(2)
0

(2ℓ + 11) |G1 | + 3ℓ |G2 | 3|G1 | + ℓ |G2 | + (ℓ + 2) |Z𝑝 |
𝜋
(2)
1

8|G1 | 2|G1 | + 3|Z𝑝 |
Table 1: Cost of each ZKPoK protocol.

Proof. Observe that 𝑌 = 𝑃
1

𝑦
0
𝑦
1 , 𝑌 = 𝑃

1

𝑦
0
𝑦
1 , and

𝑍 = (𝑍0𝑃−𝑟 )𝑦1 = {(𝑍1 ·
∏ℓ

𝑖=𝑖𝑀
𝑥0,𝑖
𝑖
)𝑦0𝑃−𝑟 }𝑦1

= {(𝑌 𝑟
0

∏ℓ
𝑖=1𝑀

𝑥1,𝑖
𝑖
·∏ℓ

𝑖=𝑖𝑀
𝑥0,𝑖
𝑖
)𝑦0𝑃−𝑟 }𝑦1

=

{(
𝑃

1

𝑦
0

𝑟∏ℓ
𝑖=1𝑀

(𝑥0,𝑖+𝑥1,𝑖 )
𝑖

)𝑦0
𝑃−𝑟

}𝑦1
=

{(
𝑃

1

𝑦
0

𝑟
)𝑦0

𝑃−𝑟
(∏ℓ

𝑖=1𝑀
(𝑥0,𝑖+𝑥1,𝑖 )
𝑖

)𝑦0}𝑦1
=

(∏ℓ
𝑖=1𝑀

(𝑥0,𝑖+𝑥1,𝑖 )
𝑖

)𝑦0𝑦1
hold. Thus, for 𝑥𝑖 = 𝑥0,𝑖 + 𝑥1,𝑖 and 𝑦 = 𝑦0𝑦1, the resulting sig-

nature is (𝑍,𝑌,𝑌 ) = (
(∏ℓ

𝑖=1𝑀
𝑥𝑖
𝑖

)𝑦
, 𝑃1/𝑦, 𝑃1/𝑦). Since 𝑦0 and 𝑦1

are uniformly taken from Z∗𝑝 , 𝑦 = 𝑦0𝑦1 distributes uniformly over

Z∗𝑝 . Accordingly, the signature distributes the same as the original

Mercurial signature generated with the stated global keys. □

In mercurial signatures [CL19], unforgeability (Definition 2.3) is

proved by contradiction. If there was a PPT algorithm that can break

unforgeability through accessing signing oracle, there is a reduction

to one that can break unforgeability of the base SPS-EQ [FHS19].

For TMS, the security assurance of unforgeability slightly alters the
one from [CL19]. Since we have an interactive signing protocol, we

must prove that the adversary’s advantage when interacting with

TSign is no greater than its advantage in the original unforgeability

game. Moreover, we give strong power to the adversary allowing it

to run the (interactive) signing oracle on behalf of any corrupted

party of its choice instead of just leaking the key share of its choice.

Hence, care should be taken when instantiating the signing oracle

from Definition 3.4 as it can be run between the adversary and the

environment. We have three cases for any adversary A:

(1) A calls the oracle for two honest parties (honest signing).

In this case, the environment runs the honest protocol, and

it is easy to see that the A’s advantage is the same as in

the original game due to the zero-knowledge property of

the ZKPoK’s and the fact that the signatures computed by

the interactive protocol are identically distributed as the

signatures from [CL19].

(2) A controls P0. We simulate P1 so that it ignores inputs from
P0 and outputs signatures following the same distribution

as in the original game.

(3) A controls P1. We simulate P0 based on P1’s knowledge
extracted through ZKPoK’s.

In either case, we show that the joint view of the adversary and the

corrupted party is essentially the same as that of the adversary in

the original unforgeability game ofMS due to the security of the

zero-knowledge proofs involved.

Theorem 4.2 (Unforgeability). Our (2, 2)-TMS scheme is un-
forgeable against static corruption of at most one party if TKGen is
secure, all ZKPoK’s are secure, and the original MS is unforgeable.

Proof. Given access to adversary A playing the unforgeability

game against TMS as in Figure 2, we construct a simulator that plays

the role of the adversary in the unforgeability game against MS as

in Definition 2.3. Let (sk, pk) := ({𝑥𝑖 }𝑖∈[ℓ ] , {𝑋 𝑖 }𝑖∈[ℓ ] ) be a key pair
of MS generated by KGen(pp, ℓ). Given pp as input, the simulator

first invokes A and outputs C obtained from A. Here, C is either

0 or 1 meaning P0 or P1 is corrupted, respectively. Then, given

pk as input, the simulator executes SimTKGen(pk, 2, C) to obtain
sk𝑗 := {𝑥𝑖𝑗 }𝑖∈[ℓ ] for 𝑗 ∈ C and pk𝑗 := {𝑋 𝑖

𝑗
}𝑖∈[ℓ ] for 𝑗 ∈ [𝑛]. Shared

signing keys {𝑥𝑖
𝑗
}𝑖∈[ℓ ] for 𝑗 ∉ C are not given to the simulator but

implicitly set so that 𝑥𝑖
0
+𝑥𝑖

1
= 𝑥𝑖 holds. The simulator then invokes

A with {sk𝑗 } 𝑗∈C , {pk𝑗 } 𝑗∈[𝑛] , and pk as input.

Recall thatA is allowed to make signing queries to OTSign that

internally executes TSign in the presence of a corrupted party. Thus,
the simulator has to simulate the honest party in TSign. Whenever

A queries message𝑀 toOTSign, the simulator forwards𝑀 to sign-

ing oracle Sign ofMS and obtains signature (𝑍 ′, 𝑌 ′, 𝑌 ′). From here,

the simulator works along with the possible corruption scenarios.

The first case considers corruption of P0, as shown in Fig. 5. The

case in which P1 is corrupted is shown in Fig. 6.

We show that, for both cases of corruption, the honest party

can be simulated indistinguishably from the real execution of the

corresponding algorithm in TSign. For the first case (Fig. 5), the
real computation of 𝑍1 and the simulated one in the first round
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P0: sk0, pk0, pk1, 𝑀 (corrupted) P1: pk0, pk1, 𝑀 (simulated with Sign(sk, ·))
(𝑍 ′, 𝑌 ′, 𝑌 ′) ← Sign(sk, 𝑀)

(𝑌0, 𝑌0, 𝜋 (1)
0
) ← A(st) 𝑌0, 𝑌0, 𝜋

(1)
0−−−−−−−−−−→ 𝑍1 ←$ G1;𝑌 ← 𝑌 ′;𝑌 ← 𝑌 ′

𝑍1, 𝜋
(1)
1←−−−−−−− 𝜋

(1)
1
← ZKPoK.Sim(𝑍1, 𝑌0, 𝑀)

(𝑍0, 𝜋 (2)
0
) ← A(st, 𝑍1, 𝜋 (1)

1
) 𝑍0, 𝜋

(2)
0−−−−−−−→ 𝑍 ← 𝑍 ′

𝜋
(2)
1
← ZKPoK.Sim(𝑍, 𝑍0, 𝑌 , 𝑌0)

return (𝜎, 𝜋 (2)
1
) 𝜎, 𝜋

(2)
1←−−−−−− 𝜎 ← (𝑍,𝑌,𝑌 ); return (𝜎, 𝜋 (2)

1
)

Figure 5: Simulator’s algorithm considering corruption of P0.

P0: pk0, pk1, 𝑀 (simulated with Sign(sk, ·)) P1: sk1, pk0, pk1, 𝑀 (corrupted)

(𝑍 ′, 𝑌 ′, 𝑌 ′) ← Sign(sk, 𝑀)
𝑌0 ← 𝑌 ′;𝑌0 ← 𝑌 ′

𝜋
(1)
0
← ZKPoK.Sim(𝑌0, 𝑌0)

𝑌0, 𝑌0, 𝜋
(1)
0−−−−−−−−−−→ (𝑍1, 𝜋 (1)

1
) ← A(st, 𝑌0, 𝑌0, 𝜋 (1)

0
)

𝑍1, 𝜋
(1)
1←−−−−−−−

𝑟 ← ZKPoK.Ext(𝜋 (1)
1
);𝑍0 ← 𝑍 ′𝑃𝑟

𝜋
(2)
0
← ZKPoK.Sim(𝑍0, 𝑍1, 𝑀,𝑌0)

𝑍0, 𝜋
(2)
0−−−−−−−→ (𝜎, 𝜋 (2)

1
) ← A(st, 𝑍0, 𝜋 (2)

0
)

return (𝜎, 𝜋 (2)
1
) 𝜎, 𝜋

(2)
1←−−−−−− return (𝜎, 𝜋 (2)

1
)

Figure 6: Simulator’s algorithm considering corruption of P1.

are perfectly indistinguishable because the real one includes a uni-

formly random factor and the simulated one is chosen uniformly.

It implicitly determines random factor 𝑟 := log𝑌0
𝑍1 (

∏ℓ
𝑖=1𝑀

𝑥𝑖
1

𝑖
)−1

for 𝑥𝑖
1
also implicitly determined by 𝑋 𝑖

1
. Furthermore, the quality

of simulated 𝜋
(1)
1

is due to its zero-knowledge property. Moving

into the second round, we claim that P0 cannot distinguish the

difference between the original computation of 𝜎 and the simulated

one provided that both 𝜋
(1)
0

and 𝜋
(2)
0

are sound. Observe that the

proper computation of (𝑍,𝑌,𝑌 ) is deterministic from 𝑍0, 𝑟 and

𝑦1 implicitly determined by 𝑦1 = log𝑌 𝑌0 = log
𝑌
𝑌0. Therefore, if

𝜋
(1)
0

and 𝜋
(2)
0

are sound and Sign is correct, the simulated (𝑍,𝑌,𝑌 )
distributes perfectly in the same way as the original one does. The

quality of simulated 𝜋
(2)
1

is due to its zero-knowledge property,

hiding how 𝑍 was computed.

We next analyze the second case where P1 is corrupted (Fig. 6).

During the first round, 𝑌0 and 𝑌0 distributes identically as their

original computation and 𝜋
(1)
0

is zero-knowledge. Looking at the

second round, we claim that 𝑍0 is perfectly simulated if 𝜋
(1)
1

is

knowledge sound. That is, the knowledge soundness of 𝜋
(1)
1

assures

that 𝑍1 has been correctly computed as 𝑍1 = 𝑌 𝑟
0

∏ℓ
𝑖=1𝑀

𝑥𝑖
1

𝑖
with

the extracted random factor 𝑟 . Thus, for 𝑍 ′ = (∏ℓ
𝑖=1𝑀

𝑥𝑖
𝑖
)𝑦 where

𝑥𝑖 = (𝑥𝑖
0
+ 𝑥𝑖

1
) for 𝑖 ∈ [ℓ] and 𝑦 = 𝑦0 = log𝑃 𝑌

′
, we have: 𝑍0 =

𝑍 ′𝑃𝑟 = (∏ℓ
𝑖=1𝑀

𝑥𝑖
0
+𝑥𝑖

1

𝑖
)𝑦0𝑃𝑟 = (𝑌 𝑟

0

∏ℓ
𝑖=1𝑀

𝑥𝑖
1

𝑖
)𝑦0 (∏ℓ

𝑖=1𝑀
𝑥𝑖
0

𝑖
)𝑦0 =

(𝑍1
∏ℓ

𝑖=1𝑀
𝑥𝑖
0

𝑖
)𝑦0 .

Accordingly, the simulation of P0 is perfect modulus the knowl-

edge soundness of 𝜋
(1)
1

and zero-knowledge of 𝜋
(1)
0

and 𝜋
(2)
0

.

Finally, the simulator outputs whateverA outputs at the end. As

TKGen is assumed secure and the honest party within OTSign is

correctly simulated, the view of AOTSign
is indistinguishable from

that of the real unforgeability game in the presence of corrupt party

C. Thus, whenever A is successful in forging TMS, so does the

simulator in forging MS. This concludes the proof. □

As for unforgeability, we prove unlinkability assuming at least

one honest signer and considering a signing oracle in the presence

of the corrupted party (A can corrupt any party of its choice).

Theorem 4.3 (Public KeyUnlinkability). Our (2, 2)-TMS scheme
is public key unlinkable against static corruption of at most one party
if TKGen is secure, all ZKPoK’s are secure, andMS is origin-hiding
and public key class-hiding.

Proof. The proof strategy is almost the same as that in the

proof of Theorem 4.2. Given access to adversary A playing the

unlinkability game against TMS, we construct a simulator that

plays the role of the adversary in the unlinkability game againstMS.
Given pp as input, the simulator invokesA and outputs C obtained

from A. Then, given (pk′, pk0, pk1) as input, the simulator runs

SimTKGen twice for pk0 and pk1 with C) to obtain, for 𝑖 = {0, 1},
sk𝑖

𝑗
for 𝑗 ∈ C and pk𝑖

𝑗
for 𝑗 ∈ [𝑛]. The simulator then invokes A

with {sk𝑖
𝑗
}𝑖∈{0,1}
𝑗∈C , {pk𝑖

𝑗
}𝑖∈{0,1}
𝑗∈[𝑛] , and pk′ as input. The validity of

the simulation up to this point is due to the security of TKGen.
On receiving a query from A to OTSign on pk′ and𝑀 , the sim-

ulator first makes two queries to its oracle on pk0 and pk1 with the

same𝑀 . It uses the obtainedMS signatures to simulate two invo-

cations of TSign on pk0 and pk1 with𝑀 as explained in the proof

of Theorem 4.2. The validity of this part of the simulation is due

to the security of ZKPoK’s as before. If either of TSign simulation

results in ⊥ (due to misbehavior of a corrupted party), it returns

⊥. Otherwise, it queries its oracle on pk′ with 𝑀 and returns the

obtained signature to A. This part of the simulation is perfect due

to the origin-hiding property ofMS.
Finally, the simulator outputs 𝑏′ that A outputs. Since the view

ofA is correctly simulated, the output is correct wheneverA wins

the game against TMS. This concludes the proof. □

5 THRESHOLD CASE
This section describes our protocol for the threshold case where

the keys are distributed in a (𝑡, 𝑛)-threshold manner among 𝑛 users

P𝑢1
, . . . , P𝑢𝑛 . As before, we assume that the key generation is done

by a single honest party and only describes the syntax and the

relation satisfied by the keys. Our focus is the threshold signing

protocol where a subset of users P𝑢1
, . . . , P𝑢𝑡 engage to produce

a signature. The overall structure of the protocol follows that of

the two-party case; parties work in sequence, from P𝑢1
to P𝑢𝑡 . The

first P𝑢1
and the last P𝑢𝑡 do the same as P0 and P1 did in the two-

party case, respectively. However, each intermediate participant,

P𝑢2
, . . . , P𝑢𝑡−1 , must independently take on the roles of P0 and P1,

bringing forth new considerations to both the protocol and its

security analysis. Importantly, our signing protocol assumes the

existence of a broadcast channel and all communication between

parties is done using said channel.

5.1 Construction
For given 𝑡 and 𝑛 that 1 ≤ 𝑡 ≤ 𝑛, TKGen generates local key

pairs sk𝑗 := (𝑥1
𝑗
, . . . , 𝑥 ℓ

𝑗
), pk𝑗 := (𝑃𝑥

1

𝑗 , . . . , 𝑃
𝑥 ℓ
𝑗 ) for 𝑗 ∈ [𝑛], and

global verification key. The global signing key is implicitly set to

sk := (𝑥1, . . . , 𝑥ℓ ) where each 𝑥𝑖 is shared into (𝑥𝑖
1
, . . . , 𝑥𝑖𝑛) by (𝑡, 𝑛)-

threshold scheme over Z𝑝 . For any set of indices, 𝐽 ⊆ [𝑛], of size 𝑡 , it
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P𝑢1
P𝑢 𝑗

: 2 ≤ 𝑗 ≤ 𝑡 − 1 P𝑢𝑡

𝑦𝑢1
←$ Z∗𝑝 ; 𝑌𝑢1

← 𝑃
1

𝑦𝑢
1 𝑟𝑢 𝑗

←$ Z∗𝑝 ; 𝑦𝑢 𝑗
←$ Z∗𝑝 𝑟𝑢𝑡

$←− Z∗𝑝 ;𝑦𝑢𝑡
$←− Z∗𝑝

𝑌𝑢1
← 𝑃

1

𝑦𝑢
1 ;𝜋

(1)
𝑢1
← ZKPoK(1)𝑢1

𝑌𝑢1
, 𝑌𝑢1

, 𝜋
(1)
𝑢1−−−−−−−−−−−−→ 𝑌𝑢 𝑗

= 𝑌

1

𝑦𝑢𝑗

𝑢 𝑗−1 , 𝑌𝑢 𝑗
= 𝑌

1

𝑦𝑢𝑗

𝑢 𝑗−1

𝐻𝑢 𝑗
= 𝑌

𝑟𝑢𝑗

𝑢 𝑗−1
∏ℓ

𝑖=1𝑀
_ 𝑗 ·𝑥𝑖𝑢𝑗

𝑖

𝜋
(1)
𝑢 𝑗
← ZKPoK(1)𝑢 𝑗

𝑌𝑢 𝑗
, 𝑌𝑢 𝑗

, 𝜋
(1)
𝑢 𝑗

−−−−−−−−−−−−→ 𝑌 = 𝑌

1

𝑦𝑢𝑡
𝑢𝑡−1 , 𝑌 = 𝑌

1

𝑦𝑢𝑡
𝑢𝑡−1

𝐼𝑢𝑡 = 𝑌
𝑟𝑢𝑡
𝑢𝑡−1

∏ℓ
𝑖=1𝑀

_𝑡 ·𝑥𝑖𝑢𝑡
𝑖

𝐼𝑢 𝑗
= 𝐼𝑢 𝑗+1 · 𝐻𝑢 𝑗

𝐼𝑢𝑡 , 𝜋
(2)
𝑢𝑡←−−−−−−−− 𝜋

(2)
𝑢𝑡 ← ZKPoK(2)𝑢𝑡

𝑍𝑢1
← (𝐼𝑢2

·∏ℓ
𝑖=1𝑀

_1 ·𝑥𝑖𝑢
1

𝑖
)𝑦𝑢1 𝐼𝑢 𝑗

, 𝜋
(2)
𝑢 𝑗

←−−−−−−−− 𝜋
(2)
𝑢 𝑗
← ZKPoK(2)𝑢 𝑗

𝜋
(3)
𝑢1
← ZKPoK(3)𝑢1

𝑍𝑢1
, 𝜋
(3)
𝑢1−−−−−−−−→ 𝑍𝑢 𝑗

← (𝑍𝑢 𝑗−1 · 𝑃
−𝑟𝑢𝑗 )𝑦𝑢𝑗

𝜋
(3)
𝑢 𝑗
← ZKPoK(3)𝑢 𝑗

𝑍𝑢 𝑗
, 𝜋
(3)
𝑢 𝑗

−−−−−−−−→ 𝑍 ← (𝑍𝑢𝑡−1 · 𝑃−𝑟𝑢𝑡 )𝑦𝑢𝑡
𝜋
(3)
𝑢𝑡 ← ZKPoK(3)𝑢𝑡

return 𝜎 := (𝑍,𝑌,𝑌 )
𝜎, 𝜋
(3)
𝑢𝑡←−−−−−−

Figure 7: 𝑡-party protocol for TSign(pp, {sk𝑗 } 𝑗∈ 𝐽 , 𝑀).

holds that 𝑥𝑖 =
∑

𝑗∈ 𝐽 _ 𝑗𝑥
𝑖
𝑗
mod 𝑝 where _ 𝑗 is a Lagrange coefficient

defined as _ 𝑗 :=
∏

𝑡 ∈ 𝐽 \{ 𝑗 }
𝑡

𝑡− 𝑗 mod 𝑝 .

Let 𝐽 = (𝑢1, . . . , 𝑢𝑡 ) ⊆ [𝑛] be a size-𝑡 subset of signers engaging
in TSign(pp, {sk𝑗 } 𝑗∈ 𝐽 ,𝑚), presented in Fig. 7. We follow the tem-

plate of the two-party case, which operates sequentially. The initial

party𝑢1 communicates with the first intermediate party (𝑢2), and all

intermediate parties behave the same until the last one (𝑢𝑡−1) com-

municates with the final party 𝑢𝑡 . The protocol proceeds backward

until the 𝑢1 is reached. Subsequently, 𝑢1 triggers the last round,

which concludes when 𝑢𝑡 broadcasts the signature. All proofs and

the resulting signature are received and verified by everyone. If any

party rejects, the output of the protocol is defined as ⊥.
Zero-knowledge proofs in Fig. 7 are defined as follows:

• ZKPoK(1)𝑢1
[𝑦𝑢1

: 𝑌𝑢1
= 𝑃

1

𝑦𝑢
1 ∧ ˆ𝑌𝑢1

= 𝑃
1

𝑦𝑢
1 ]

• ZKPoK(1)𝑢 𝑗
[𝑦𝑢 𝑗

: 𝑌𝑢 𝑗
= 𝑌

1

𝑦𝑢𝑗

𝑢 𝑗−1 ∧ 𝑌𝑢 𝑗
= 𝑌

1

𝑦𝑢𝑗

𝑢 𝑗−1 ]

• ZKPoK(2)𝑢𝑡 [(𝑟𝑢𝑡 , {𝑥
𝑖
𝑢𝑡
}𝑖∈[ℓ ] ) : 𝐼𝑢𝑡 = 𝑌

𝑟𝑢𝑡
𝑢𝑡−1

∏ℓ
𝑖=1𝑀

_𝑡 ·𝑥𝑖𝑢𝑡
𝑖

∧𝑖∈[ℓ ] 𝑋 𝑖
𝑢𝑡

= 𝑃
𝑥𝑖𝑢𝑡 ]

• ZKPoK(2)𝑢 𝑗
[(𝑟𝑢 𝑗

, {𝑥𝑖𝑢 𝑗
}𝑖∈[ℓ ] ) : 𝐼𝑢 𝑗

= 𝐼𝑢 𝑗+1 ·𝑌
𝑟𝑢𝑗

𝑢 𝑗−1
∏ℓ

𝑖=1𝑀
_ 𝑗 ·𝑠𝑖𝑢𝑗

𝑖

∧𝑖∈[ℓ ] 𝑋 𝑖
𝑢 𝑗

= 𝑃
𝑥𝑖𝑢𝑗 ]

• ZKPoK(3)𝑢1
[ ({𝑥𝑖𝑢1

}𝑖∈[ℓ ] , 𝑦𝑢1
) : 𝑍𝑢1

= (𝐼𝑢2
·∏ℓ

𝑖=𝑖 𝑀
_1 ·𝑥𝑖𝑢

1

𝑖
)𝑦𝑢1

∧ 𝑌 𝑦𝑢
1

𝑢1
= 𝑃 ∧𝑖∈[ℓ ] 𝑋 𝑖

𝑢1

= 𝑃
𝑠𝑖𝑢

1 ]
• ZKPoK(3)𝑢 𝑗

[𝑦𝑢 𝑗
: 𝑍𝑢 𝑗

= (𝑍𝑢 𝑗−1 · 𝑃
−𝑟𝑢𝑗 )𝑦𝑢𝑗 ∧ 𝑌

𝑦𝑢𝑗

𝑢 𝑗
= 𝑌𝑢 𝑗−1 ]

• ZKPoK(3)𝑢𝑡 [ 𝑦𝑢𝑡 : 𝑍 = (𝑍𝑢𝑡−1 · 𝑃−𝑟𝑢𝑡 )𝑦𝑢𝑡 ∧ 𝑌 𝑦𝑢𝑡 = 𝑌𝑢𝑡−1 ]

An obvious difference from the two-party case is the presence

of the intermediate parties, P𝑢2
, . . . , P𝑢𝑡−1 . Computing 𝑌 = 𝑃

1

𝑦
and

𝑌 = 𝑃
1

𝑦
is done sequentially from P𝑢1

to P𝑢𝑡 , and 𝑦 is defined by

𝑦 =
∏𝑡

𝑗=1 𝑦𝑢 𝑗
. If all parties are honest, the following holds for 𝑍𝑢1

:

𝑍𝑢1
= (𝐼𝑢2

·∏ℓ
𝑖=1𝑀

_1 ·𝑥𝑖𝑢
1

𝑖
)𝑦𝑢1

=

(∏𝑡
𝑗=2 𝐻𝑢 𝑗

·∏ℓ
𝑖=1𝑀

_1 ·𝑥𝑖𝑢
1

𝑖

)𝑦𝑢
1

=

(
𝑃

𝑟𝑢
2

𝑦𝑢
1

+ 𝑟𝑢
3

𝑦𝑢
2
𝑦𝑢

1

+···+ 𝑟𝑢𝑡
𝑦𝑢𝑡−1 · · ·𝑦𝑢1 ·∏ℓ

𝑖=1𝑀

∑𝑡
𝑗=1 _ 𝑗 ·𝑥𝑖𝑢𝑗

𝑖

)𝑦𝑢
1

(1)

The reason why 𝑍𝑢1
is computed in the second stage is the same

as the two-party case: the blinding is useful for constructing the

simulator in the presence of corrupted parties. It allows computing

𝑍 by sequentially unblinding 𝑍𝑢1
in the reverse order from P𝑢2

to P𝑢𝑡 . To see that the blinding factors are canceled as expected,

observe that

𝑍 = (𝑍𝑢𝑡−1 · 𝑃−𝑟𝑢𝑡 )𝑦𝑢𝑡

= (· · · (𝑍𝑢1
· 𝑃−𝑟𝑢2 )𝑦𝑢2 · · · )𝑦𝑢𝑡−1 · 𝑃−𝑟𝑢𝑡 )𝑦𝑢𝑡

=

(
· · ·

(
𝑃

𝑟𝑢
2

𝑦𝑢
1

+ 𝑟𝑢
3

𝑦𝑢
2
𝑦𝑢

1

+···+ 𝑟𝑢𝑡
𝑦𝑢𝑡−1 · · ·𝑦𝑢1 ·∏ℓ

𝑖=1𝑀

∑𝑡
𝑗=1 _ 𝑗 ·𝑥𝑖𝑢𝑗

𝑖

)𝑦𝑢
1

𝑃−𝑟𝑢2 )𝑦𝑢2 · · · )𝑦𝑢𝑡−1 · 𝑃−𝑟𝑢𝑡 )𝑦𝑢𝑡
(2)
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holds. Concerning the exponent of 𝑃 , we have:(
· · ·

(
𝑟𝑢2

𝑦𝑢1

+
𝑟𝑢3

𝑦𝑢2
𝑦𝑢1

+ · · · +
𝑟𝑢𝑡

𝑦𝑢𝑡−1 · · ·𝑦𝑢
1

)
𝑦𝑢1

− 𝑟𝑢2

)
· · ·

)
𝑦𝑢𝑡−1 − 𝑟𝑢𝑡

)
𝑦𝑢𝑡

=

(
· · ·

(
𝑟𝑢𝑡

𝑦𝑢𝑡−1
+ 𝑟𝑢𝑡−1

)
1

𝑦𝑢𝑡−2
· · ·

)
1

𝑦𝑢3

+ 𝑟𝑢3

)
1

𝑦𝑢2

+𝑟𝑢2

)
1

𝑦𝑢1

· 𝑦𝑢1
− 𝑟𝑢2

)
· · ·

)
𝑦𝑢𝑡−1 − 𝑟𝑢𝑡

)
𝑦𝑢𝑡

=
(
0 + · · · + 0

)
𝑦𝑢𝑡 = 0.

(3)

Therefore:

𝑍 =

(∏ℓ
𝑖=1𝑀

∑𝑡
𝑗=1 _ 𝑗 ·𝑥𝑖𝑢𝑗

𝑖

)∏𝑡
𝑗=1 𝑦𝑢𝑗

=

(∏ℓ
𝑖=1𝑀

𝑥𝑖
𝑖

)𝑦
. (4)

5.2 Efficiency
The ZKPoK’s are analogous to the two-party case and can be instan-
tiated with the protocols discussed in Appendix A. We have 𝜋

(1)
0

=

ZKPoK(1)𝑢1
= ZKPoK(1)𝑢 𝑗

, 𝜋
(2)
0

= ZKPoK(3)𝑢1
, 𝜋
(1)
1

= ZKPoK(2)𝑢𝑡 =

ZKPoK(2)𝑢 𝑗
, and 𝜋

(2)
1

= ZKPoK(3)𝑢 𝑗
= ZKPoK(3)𝑢𝑡 . Therefore, com-

munication and computation complexity increases linearly with

𝑡 . However, in many cases, the number of signers does not grow

beyond one order of magnitude so 𝑡 can stay relatively small. Fur-

thermore, considering the applications discussed in Section 6.4

which are multi-signatures and threshold ring signatures, ℓ will be

small, meaning the ZKPoK’s will all be efficient and short.

5.3 Security
Since the key observation for correctness is already given, we fo-

cus on unforgeability and unlinkability. For both proofs, overall

strategies are unchanged from their two-party counterparts. The

simulator has to deal with a situation in which at most 𝑡 − 1 signers
are corrupted. The simulation strategy changes depending onwhich

party remains honest. An essential difference from the two-party

case is the presence of intermediate parties to simulate. Namely,

when parties (P𝑢1
, . . . , P𝑢𝑡 ) ⊆ [𝑛] engage in the signing protocol,

we have three cases: The adversary corrupts everyone but

(1) the initial party P𝑢1
who starts the protocol, or

(2) the end party P𝑢𝑡 who first obtains the signature, or

(3) an intermediate party P𝑢 𝑗
for 1 < 𝑗 < 𝑡 .

Below, we present simulation algorithms for each case individually.

Theorem 5.1 (Unforgeability). Our (𝑡, 𝑛)-TMS construction is
unforgeable against static corruption of at most 𝑡 −1 parties if TKGen
is secure, all zero-knowledge proofs are secure, and the original MS is
unforgeable.

Proof sketch. In Fig. 8, simulators of the interactive signing

oracle for all possible types of corruptions are presented. We argue

why the simulator’s algorithm works in each possible scenario.

• The first case simulates the initial party, P𝑢1
, in the same

way as simulating P0 in the two-party case. It however

needs to extract all random factors from other parties. Pro-

vided that ZKPoK(2)𝑢 𝑗
allows knowledge extraction, the sim-

ulation of the computation is perfect as we argued before.

• The second case simulates the end party, P𝑢𝑡 , in the exactly

same way as simulating P1 in the two-party case. Thus, the

simulation is perfect assuming the soundness of all relevant

proofs from other parties.

• The last case simulates an intermediate party, P𝑢 𝑗
. It is a

mixture of the above simulation strategies. Given random

factors extracted from all descending parties, P𝑢 𝑗+1 , . . . , P𝑢𝑡 ,
the simulation is perfect for the same reasons as above.

□

The following theorem can be proved in the same way as done in

the two-party case except for the obvious changes in the simulation

strategies addressed in the above proof of unforgeability.

Theorem 5.2 (Public KeyUnlinkability). Our (𝑡, 𝑛)-TMS scheme
is public key unlinkable against static corruption of at most 𝑡−1 partis
if TKGen is secure, all ZKPoK’s are secure, andMS is origin-hiding
and public key class-hiding.

6 APPLICATIONS
We begin this section recalling that our TMS constructions work
as a drop-in replacement of the original MS ([CL19]) as they share

the same structure and verification. For example, in all delegatable

anonymous credential schemes from MS [CL19, CL21], the root

authority issuesMS signatures and TMS can be used to distribute it.

The same applies for EQS constructions based on [FHS19], which is

the signature scheme underlying theMS construction from [CL19].

6.1 Anonymous Credentials
Attribute-based anonymous credentials (ABC) allow users to au-

thenticate themselves with respect to a set of attributes while hiding

their identity. A prominent framework in this setting based on EQS

originated with the work by Fuchsbauer, Hanser and Slamanig

[FHS19] (hereinafter FHS19). Subsequent works by Conolly et al.
[CLPK22, CDLP22] extended it to consider issuer-hiding features

[BEK
+
21, CLPK22], allowing users to even to hide the identity of

their credential issuer. In particular, [CDLP22] uses the MS from

[CL19] to instantiate the FHS19 framework with issuer-hiding fea-

tures. Since theMS used only provides a weak issuer-hiding feature
(i.e., the issuers can recognize randomizations of their own public

key), the ABC from [CDLP22] is limited to settings where partial

trust can be tolerated.

In the following, we discuss how our (2, 2)-TMS construction

can overcome the above limitation in a setting with multiple issuers

𝐴1, ..., 𝐴𝑛 . Under a pseudonymous public key 𝑋𝐵 , the idea is to

let user B get a credential from issuer 𝐴𝑖 with public key 𝑋𝐴𝑖
by

running TSign for a message m (a commitment to the user attributes

as in FHS19). Let such credential be (𝜎,𝑚,𝑋𝐴𝑖𝐵) (it verifies under
𝑋𝐴𝑖𝐵 = 𝑋𝐴𝑖

· 𝑋𝐵 = 𝑃 (𝑥𝐴𝑖
+𝑥𝐵 )

). To validate 𝜎 , B needs to prove the

correctness of 𝑋𝐴𝑖𝐵 with respect to 𝑋𝐴𝑖
for some 𝑖 ∈ [𝑛] without

disclosing which one. Most importantly, even if 𝐴𝑖 colludes with
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Case 1: P𝑢1
(simulated) P𝑢 𝑗

: 2 ≤ 𝑗 ≤ 𝑡 − 1 (corrupted) P𝑢𝑡 (corrupted)
(𝑍 ′, 𝑌 ′, 𝑌 ′) ← Sign(sk, 𝑀)
𝑌𝑢1
← 𝑌 ′;𝑌𝑢1

← 𝑌 ′

𝜋
(1)
𝑢1
← ZKPoK.Sim(𝑌𝑢1

, 𝑌𝑢1
) 𝑌𝑢1

, 𝑌𝑢1
, 𝜋
(1)
𝑢1−−−−−−−−−−−−→ (𝑌𝑢 𝑗

, 𝑌𝑢 𝑗
, 𝜋
(1)
𝑢 𝑗
) ← A 𝑌𝑢 𝑗

, 𝑌𝑢 𝑗
, 𝜋
(1)
𝑢 𝑗

−−−−−−−−−−−−→ (𝐼𝑢𝑡 , 𝜋
(2)
𝑢𝑡 ) ← A

for 2 ≤ 𝑗 ≤ 𝑘 do
𝐼𝑢 𝑗

, 𝜋
(2)
𝑢 𝑗

←−−−−−−−− (𝐼𝑢 𝑗
, 𝜋
(2)
𝑢 𝑗
) ← A 𝐼𝑢𝑡 , 𝜋

(2)
𝑢𝑡←−−−−−−−−

𝑟 ′𝑢 𝑗
←− ZKPoK.Ext(𝜋 (2)𝑢 𝑗

)
𝑟 ′ ← ∑𝑘

𝑗=2 𝑟
′
𝑢 𝑗
;𝑍𝑢1

← 𝑍 ′𝑃𝑟
′

𝜋
(3)
𝑢1
← ZKPoK.Sim(𝑍𝑢1

, 𝐼𝑢2
, 𝑀,𝑌𝑢1

)
𝑍𝑢1

, 𝜋
(3)
𝑢1−−−−−−−−→ (𝑍𝑢 𝑗

, 𝜋
(3)
𝑢 𝑗
) ← A 𝑍𝑢 𝑗

, 𝜋
(3)
𝑢 𝑗

−−−−−−−−→ (𝜎, 𝜋 (3)𝑢𝑡 ) ← A; return (𝜎)
𝜎, 𝜋
(3)
𝑢𝑡←−−−−−−

Case 2: P𝑢1
(corrupted) P𝑢 𝑗

: 2 ≤ 𝑗 ≤ 𝑡 − 1 (corrupted) P𝑢𝑡 (simulated)

(𝑌𝑢1
, 𝑌𝑢1

, 𝜋
(1)
𝑢1
) ← A (𝑍 ′, 𝑌 ′, 𝑌 ′) ← Sign(sk, 𝑀)

𝑌𝑢1
, 𝑌𝑢1

, 𝜋
(1)
𝑢1−−−−−−−−−−−−→ (𝑌𝑢 𝑗

, 𝑌𝑢 𝑗
, 𝜋
(1)
𝑢 𝑗
) ← A 𝑌𝑢 𝑗

, 𝑌𝑢 𝑗
, 𝜋
(1)
𝑢 𝑗

−−−−−−−−−−−−→ 𝑍 ← 𝑍 ′;𝑌 ← 𝑌 ′;𝑌 ← 𝑌 ′; 𝐼𝑢𝑡 ←$ G1

(𝑍𝑢1
, 𝜋
(3)
𝑢1
) ← A 𝐼𝑢 𝑗

, 𝜋
(2)
𝑢 𝑗

←−−−−−−−− (𝐼𝑢 𝑗
, 𝜋
(2)
𝑢 𝑗
) ← A 𝐼𝑢𝑡 , 𝜋

(2)
𝑢𝑡←−−−−−−−− 𝜋

(2)
𝑢𝑡 ← ZKPoK.Sim(𝐼𝑢𝑡 , 𝑌𝑢𝑡−1 , 𝑀))

𝑍𝑢1
, 𝜋
(3)
𝑢1−−−−−−−−→ (𝑍𝑢 𝑗

, 𝜋
(3)
𝑢 𝑗
) ← A 𝑍𝑢 𝑗

, 𝜋
(3)
𝑢 𝑗

−−−−−−−−→ 𝜋
(3)
𝑢𝑡 ← ZKPoK.Sim(𝑍, 𝑍𝑢𝑡−1 , 𝑌 , 𝑌𝑢𝑡−1 )
return (𝜎 := (𝑍,𝑌,𝑌 ))

𝜎, 𝜋
(3)
𝑢𝑡←−−−−−−

Case 3: P𝑢1
(corrupted) ∃ P𝑢 𝑗

: 2 ≤ 𝑗 ≤ 𝑡 − 1 (simulated) P𝑢𝑡 (corrupted)

(𝑌𝑢1
, 𝑌𝑢1

, 𝜋
(1)
𝑢1
) ← A (𝑍 ′, 𝑌 ′, 𝑌 ′) ← Sign(sk, 𝑀)

𝑌𝑢1
, 𝑌𝑢1

, 𝜋
(1)
𝑢1−−−−−−−−−−−−→ if P𝑢 𝑗

is simulated then
𝑌𝑢 𝑗
← 𝑌 ′;𝑌𝑢 𝑗

← 𝑌 ′

𝜋
(1)
𝑢 𝑗
← ZKPoK.Sim(𝑌𝑢 𝑗

, 𝑌𝑢 𝑗
)

else (𝑌𝑢 𝑗
, 𝑌𝑢 𝑗

, 𝜋
(1)
𝑢 𝑗
) ← A

𝑌𝑢 𝑗
, 𝑌𝑢 𝑗

, 𝜋
(1)
𝑢 𝑗

−−−−−−−−−−−−→ (𝐼𝑢𝑡 , 𝜋
(2)
𝑢𝑡 ) ← A

if P𝑢 𝑗
is simulated then 𝐼𝑢𝑡 , 𝜋

(2)
𝑢𝑡←−−−−−−−−

𝐼𝑢 𝑗
←$ G1

𝜋
(2)
𝑢 𝑗
← ZKPoK.Sim(𝐼𝑢 𝑗

, 𝑀)
else (𝐼𝑢 𝑗

, 𝜋
(2)
𝑢 𝑗
) ← A

(𝑍𝑢1
, 𝜋
(3)
𝑢1
) ← A 𝐼𝑢 𝑗

, 𝜋
(2)
𝑢 𝑗

←−−−−−−−−
𝑍𝑢1

, 𝜋
(3)
𝑢1−−−−−−−−→ if P𝑢 𝑗

is simulated then
for 𝑗 + 1 ≤ 𝑘 ≤ 𝑡 do
𝑟 ′𝑢𝑘 ←− ZKPoK.Ext(𝜋 (2)𝑢𝑘

)
𝑟 ′ ← ∑𝑡

𝑘=𝑗+1 𝑟
′
𝑢𝑘
;𝑍𝑢 𝑗

← 𝑍 ′𝑃𝑟
′

𝜋
(3)
𝑢 𝑗
← ZKPoK.Sim(𝑍𝑢 𝑗

, 𝑍𝑢 𝑗−1 , 𝑀,𝑌𝑢 𝑗
)

else (𝑍𝑢 𝑗
, 𝜋
(3)
𝑢 𝑗
) ← A

𝑍𝑢 𝑗
, 𝜋
(3)
𝑢 𝑗

−−−−−−−−→ (𝜎, 𝜋 (3)𝑢𝑡 ) ← A; return (𝜎)
𝜎, 𝜋
(3)
𝑢𝑡←−−−−−−

Figure 8: Simulator’s algorithm for each corruption case. Adversary A manages its internal state.
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a verifier and gets to see (𝜎,𝑚,𝑋𝐴𝑖𝐵), it should be infeasible to

recognize such credential as one issued by 𝐴𝑖 .

Our approach is to give a show proof consisting in randomizing

the signature-message pair with ` (using ChgRep as in FHS19),

𝜌 (using ConvertSig to hide 𝑋𝐴𝑖𝐵 ), and giving a NIZK proof for

statement {(𝜌, 𝑥𝐵) : 𝑋𝑇 = (𝑋𝐴𝑖
·𝑃𝑥𝐵 )𝜌 }. Such type of NIZK, whose

idea we borrow from a very recent work on issuer-hiding anony-

mous credentials based on Pointcheval-Sanders signatures [ST23],

can be efficiently implemented in the ROM from Schnorr proofs.

Intuitively, it attest that 𝑋𝐵 generated her credential with the au-

thority and thus the signature is valid. Note that 𝑋𝐵 could produce

the NIZK proof without having the TMS but that alone is useless.
While this approach attest correctness, it is not yet issuer-hiding

because it links the tuple with the issuer’s public key 𝑋𝐴𝑖
. The

user can generate an OR-Proof for the same previous statement

for every key in the issuers’ set to make it (fully) issuer-hiding.

Now, given the OR-Proof, issuers cannot link their public key with

a randomized one (this was possible in all previous works from

EQS[CDLP22]).

6.2 Blind Signatures
Our (2, 2)-TMS construction can be used to obtain blind and par-

tially blind signatures in a black-box way using the ideas from

[FHS15] and [FHKS16] since it can be seen as an EQS. Moreover,

our interactive signing protocol is also compatible with (blind)

signatures on random messages (parties can choose independent

messages 𝑃𝑚0
and 𝑃𝑚1

to produce a signature on 𝑃𝑚0+𝑚1
). We leave

it as an interesting future work exploring the advantages of instan-

tiating blind signatures with our threshold key structure as well its

relation with non-interactive blind signatures for random messages

[Han23]. For (threshold) blind signatures the complexity of our in-

teractive signing protocol scales linearly with the number of parties

making it less attractive than non-interactive constructions such

as the one from [CKP
+
23]. However, efficiency of [CKP

+
23] comes

at the cost of introducing new security assumptions and requires

the ROM. Hence, our approach could be of interest in cases where

solutions in the standard model are preferred.

6.3 Verifiably Encrypted Signatures
Hanser et al. [HRS15] gave a black-box construction of verifiably

encrypted signatures [BGLS03] and public-key encryption from

EQS. Our work is compatible with theirs and could add a layer of

privacy. Considering the application of contract signing protocols

[BGLS03], users could prove that they obtained a legitimate signa-

ture from some valid contractor, without revealing whom. Looking

at public-key encryption, besides the single party case outlined in

[HRS15], parties could generate ciphertexts cooperatively.

6.4 Threshold Ring Signatures
A relatively long line of work studied the case of ring signatures

in the threshold setting (e.g., [BSS02, CHY05, LWW04, MHOY21,

HS20, HKSS22]) and it continues to be an active area of research

([AHAN
+
22, ABF23]). In this regard, our public key unlinkability

notion ensures that given a converted signature that verifies under

a randomized public key, no set of 𝑡 − 1 parties can link it with

the original global verification key while keeping the anonymity

of the threshold ring setting. Moreover, the special case of multi-

signatures (𝑡 = 𝑛) could also enable interesting use cases if instead

of running a DKG protocol, each user picks her public key inde-

pendently. In such setting, the global verification key is just the

aggregation of each public key and one can obtain anonymous

multi-signatures under our 𝑛-unlinkability notion. This latter case

also generalizes the idea for anonymous credentials discussed in

Section 6.1, allowing users to prove that the got a signature involv-

ing certain set of users.

7 EXPERIMENTAL EVALUATION
We prototyped our constructions in Rust based on the mercurial sig-

nature implementation from [CDLP22]. However, we replaced the

BLS12-381 crate by Filecoin’s BLS12-381 crate (blasters [Lab21], a

Rust wrapper around the blst library [Lab20]). Our implementation

and related documentation is available in [NPTA24]. As previously

mentioned, we only considered cases where ℓ ∈ {2, 5, 10}, which
cover all known applications. We also implemented our schemes

switching the message and public key groups. However, since the

ZKPoK’s require parties to prove knowledge of their secret key

when computing the multi-exponentiations to the message part,

no significant change in performance is gained. Nonetheless, if one

relaxes the security requirement for semi-honest parties, switching

groups would improve performance at the cost of a slightly bigger

signature size (elements in G1 and G2 are of size 48 and 96 bytes,

respectively).

Table 2 summarizes the execution times for the signing algorithm

of our TMS and the original MS. Verification times are the same

for all variants (1.8ms for ℓ = 2, 3ms for ℓ = 5 and 5ms for ℓ = 10).

We used the nightly compiler, the Criterion library, and all the

benchmarks were run on a MacBook Pro M3 with 32 GB of RAM

with no extra optimizations. In all cases, the standard deviation was

below 1ms. For TMS we considered the two-party and threshold

cases with five and ten parties. As expected, the computational

complexity of our interactive signing process scales linearly with

the number of parties. This is also the case for communication.

More concretely, the initial and final parties broadcast two ZKPoK’s
and receive 3𝑛 − 4. Similarly, intermediate parties broadcast three

messages and receive 3𝑛 − 5. Nevertheless, considering that all the

applications discussed require a small number of parties, and the

additional features offered by TMS, we find the overhead compared

to standard MS well justified.

A natural question that arises is to compare the performance of

TMS with other primitives. In this regard, the work most closely

related to ours would be the threshold SPS from [CKP
+
23], but, to

the best of our knowledge, it has not been implemented. One could

also consider the multi-signatureMuSig2 from [NRS21], but their

work is incomparable to ours as it works in a pairing-free group

and focuses on other functionalities.

8 CONCLUSION
In this work, we develop the notion of interactive threshold mer-

curial signatures (TMS). To showcase the power of this primitive,

we presented constructions for both the two-party and multi-party

cases, discussing their instantiation under different scenarios. More-

over, our experimental evaluation suggests that our constructions
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Scheme Parties Sign(ℓ = 2) Sign(ℓ = 5) Sign(ℓ = 10)
MS 1 0.3 0.4 0.5

TMS 2 4.2 6.5 10.7

TMS 5 10.9 16.6 26.0

TMS 10 22.6 35.7 55.6

Table 2: Signing times in milliseconds for each scheme

.

are practical when instantiated in the ROM. Most importantly, our

interactive approach allows us to generate signatures with an affine

linear transformation in the public key structure, translating into

stronger privacy properties for many applications. Something that

previous works in the setting were unable to achieve.

Compared to the existing threshold structure-preserving signa-

tures for the generalized case, our construction is very competitive

in terms of efficiency without requiring new assumptions, such as

the indexed Diffie-Hellman message.

All in all, interactive TMS offer greater flexibility than standard

mercurial signatures with relatively little overhead. Therefore, re-

vising existing applications of mercurial signatures (and more in

general EQS) through the optics of TMS can be a very promising

direction for future work. Another is the study of alternatives that

could offer straight-line knowledge extraction to obtain concur-

rently secure schemes.
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Prover: 𝑍,𝑌, 𝑍0, 𝑌0, 𝑟 , 𝑦
′

Verifier: 𝑍,𝑌, 𝑍0, 𝑌0

𝑎0, 𝑎1 ←$ Z𝑝 ;𝐴0 = 𝑍𝑎0𝑃𝑎1 ;𝐴1 = 𝑌
𝑎0
0

𝐴0, 𝐴1−−−−−−→
𝑐←−−−−− 𝑐 ←$ Z𝑝

𝑞0 = 𝑎0 − 𝑐𝑦′;𝑞1 = 𝑎1 − 𝑐𝑟
𝑞0, 𝑞1−−−−−→ return 𝐴0 = 𝑍𝑞0𝑃𝑞1𝑍𝑐

0
∧𝐴1 = 𝑌

𝑞0
0
𝑌𝑐

Figure 12: ZKPoK protocol for 𝜋 (2)
1

.

Prover: 𝑌0, 𝑌0, 𝑦0 Verifier: 𝑌0, 𝑌0

𝑎 ←$ Z𝑝 ;𝐴 = 𝑌𝑎
0
;𝐴 = 𝑌0

𝑎 𝐴,𝐴
−−−−→
𝑐←−−−−− 𝑐 ←$ Z𝑝

𝑞 ← 𝑎 − 𝑐𝑦0
𝑞

−−−−−−→ return 𝐴 = 𝑌
𝑞

0
𝑃𝑐 ∧𝐴 = 𝑌0

𝑞
𝑃𝑐

Figure 9: ZKPoK protocol for 𝜋 (1)
0

.

Prover: 𝑍1, 𝑌0, (𝑀𝑖 , 𝑋
𝑖
1
, 𝑥𝑖

1
)𝑖∈[ℓ ] , 𝑟 Verifier: 𝑍1, 𝑌0, (𝑀𝑖 , 𝑋

𝑖
1
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.

.

.

𝐴ℓ = 𝑃𝑎ℓ
𝐴0, 𝐴1, . . . , 𝐴ℓ−−−−−−−−−−−−−→

𝑐←−−−−−−−−−− 𝑐 ←$ Z𝑝 ;

𝑞0 = 𝑎0 − 𝑐𝑟
𝑞1 = 𝑎1 − 𝑐𝑥1

1

.

.

.

𝑞ℓ = 𝑎ℓ − 𝑐𝑥 ℓ
1

𝑞0, 𝑞1, . . . , 𝑞ℓ−−−−−−−−−−−−→ return
𝐴0 = (𝑌𝑞0

0

∏ℓ
𝑖=𝑖 𝑀

𝑞𝑖
𝑖
)𝑍𝑐

1

∧ 𝐴1 = 𝑃𝑞1𝑋 1
𝑐

1

.

.

.

∧ 𝐴ℓ = 𝑃𝑞ℓ𝑋 ℓ𝑐

1

Figure 10: ZKPoK protocol for 𝜋 (1)
1

.

Prover: 𝑍1, 𝑍0, 𝑌0, 𝑦0, (𝑀𝑖 , 𝑋
𝑖
0
, 𝑥𝑖

0
)𝑖∈[ℓ ] ,𝑈 , 𝑡 Verifier: 𝑍1, 𝑍0, 𝑌0, (𝑀𝑖 , 𝑋

𝑖
0
)𝑖∈[ℓ ] ,𝑈

𝑎0, 𝑎1, . . . , 𝑎ℓ , 𝑎ℓ+1 ←$ Zℓ+2𝑝

𝐴0 = 𝑌
𝑎0
0
𝑍1

∏ℓ
𝑖=𝑖 𝑀

𝑎𝑖
𝑖

𝐴1 = 𝑃𝑎1

.

.

.

𝐴ℓ = 𝑃𝑎ℓ

𝐴ℓ+1 = 𝑃−𝑎0𝑈 𝑎ℓ+1

𝐴ℓ+2 = 𝑌
𝑎ℓ+1
0

𝐴0, 𝐴1, ..., 𝐴ℓ , 𝐴ℓ+1, 𝐴ℓ+2−−−−−−−−−−−−−−−−−−−−−−−→
𝑐←−−−−−−−−−− 𝑐 ←$ Z𝑝

𝑞0 = 𝑎0 − 𝑐𝑡
𝑞1 = 𝑎1 − 𝑐𝑥1

0

.

.

.

𝑞ℓ = 𝑎ℓ − 𝑐𝑥 ℓ
0

𝑞ℓ+1 = 𝑎ℓ+1 − 𝑐𝑦0
𝑞0, 𝑞1, ..., 𝑞ℓ+1−−−−−−−−−−−−−→ return

𝐴0 = (𝑌𝑞0
0
𝑍1

∏ℓ
𝑖=𝑖 𝑀

𝑞𝑖
𝑖
)𝑈 𝑐𝑍−𝑐

∧ 𝐴1 = 𝑃𝑞1𝑋 1
𝑐

0

.

.

.

∧ 𝐴ℓ = 𝑃𝑞ℓ𝑋 ℓ𝑐

0

∧ 𝐴ℓ+1 = 𝑃−𝑞0𝑈𝑞ℓ+1𝑍𝑐
0

∧ 𝐴ℓ+2 = 𝑌
𝑞ℓ+1
0

𝑃𝑐

Figure 11: ZKPoK protocol for 𝜋 (2)
0

.

({𝑥0,𝑖 }𝑖∈[ℓ ] , 𝑦0, 𝑡) : 𝑈 = 𝑌 𝑡
0
𝑍1

∏𝑙
𝑖=1𝑀

𝑥𝑖
0

𝑖
∧ 𝑍0 = 𝑃−𝑡𝑈 𝑦0 ∧ 𝑃 =

𝑌
𝑦0
0
∧𝑖∈[ℓ ] 𝑋 𝑖

0
= 𝑃𝑥

𝑖
0 ]), in Fig. 11, and 𝜋

(2)
1
(ZKPoK[ (𝑟,𝑦1) : 𝑍 =

(𝑍0𝑃−𝑟 )𝑦1 ∧ 𝑌 = 𝑌

1

𝑦
1

0
]) in Fig. 12.
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