
POKE: A Framework for Efficient PKEs, Split
KEMs, and OPRFs from Higher-dimensional

Isogenies

Andrea Basso[0000−0002−3270−1069]

IBM Research Europe, Zürich, Switzerland
University of Bristol, Bristol, United Kingdom

andrea.basso@ibm.com

Abstract. We introduce a new framework, POKE, to build crypto-
graphic protocols from irrational isogenies using higher-dimensional rep-
resentations. The framework enables two parties to manipulate higher-
dimensional representations of isogenies to efficiently compute their push-
forwards, and ultimately to obtain a shared secret.
We provide three constructions based on POKE: the first is a PKE
protocol, which is one of the most compact post-quantum PKEs and
possibly the most efficient isogeny-based PKE to date. We then introduce
a validation technique to ensure the correctness of uniSIDH public keys:
by combining the validation method with a POKE-based construction,
we obtain a split KEM, a primitive that generalizes NIKEs and can be
used to instantiate a post-quantum version of the Signal’s X3DH protocol.
The third construction builds upon the split KEM and its validation
method to obtain a round-optimal verifiable OPRF. It is the first such
construction that does not require more than λ isogeny computations,
and it is significantly more compact and more efficient than all other
isogeny-based OPRFs.

1 Introduction

Since its inception nearly two decades ago, isogeny-based cryptography focused
on isogenies between elliptic curves. While some protocols based on isogenies
between abelian varieties (a generalization of elliptic curves to higher dimensions)
had been proposed [FT19,KTW22,LTZ22], these constructions were often less
studied and less efficient than their one-dimensional counterparts. This trend
drastically changed in 2022: SIDH [JD11,DJP14], possibly the most efficient and
well-known isogeny-based PKE, was broken in a series of three breakthrough
papers by Castryck and Decru [CD23], Maino, Martindale, Panny, Pope and
Wesolowski [MMP+23], and Robert [Rob23].

These attacks, which rely on computing isogenies between abelian varieties,
led to a complete key-recovery attack on SIDH. But, more fundamentally, they
drastically changed the landscape of hardness assumptions in isogeny-based
cryptography: in particular, the attacks showed that, given two curves, the degree
of the connecting isogeny, and its action on a sufficiently large torsion basis, it

is always possible to recover the connecting isogeny. If the degree is sufficiently
smooth, recovering the isogeny means obtaining a kernel generator; this is not
possible if the degree is not smooth, but the tools that power the SIDH attacks
still enable evaluating the connecting isogeny at any point. Since knowing an
isogeny really means being able to evaluate it, the techniques used to attack SIDH
showed that two sets of curves and torsion points (together with the degree) can
provide an alternative representation of an isogeny. This is the first representation
that can efficiently describe non-smooth isogenies between any two curves.

Shortly after the attacks were made public, Oudompheng and Pope [OP22]
showed that key recovery against cryptographically-sized instances of SIDH
required only a few seconds to compute. More recently, Dartois, Maino, Pope,
and Robert [DMPR23] introduced new techniques to compute isogenies between
abelian surfaces (i.e. abelian varieties of dimension two) that achieved a dramatic
speed-up over previous methods: the same attacks on SIDH could be performed
in a matter of milliseconds.

Thus, the combination of new techniques to represent isogenies, especially
those with non-smooth degree, and the improved algorithms to efficiently eval-
uate such isogenies led to a renewed interest in developing cryptographic pro-
tocols based on isogenies between abelian surfaces. Existing protocols, such as
SQIsign [DKL+20] and SCALLOP [DFK+23], obtained considerable improve-
ments by relying on higher-dimensional representations [DLRW23,CL23]. New
constructions, which could only be built from higher-dimensional representations,
also soon appeared: FESTA [BMP23] introduced a trapdoor function, where the
trapdoor inversion runs an “SIDH attack” to recover the input, from which it
derived a PKE scheme; QFESTA [NO23] later improved on FESTA by using
higher dimensional isogenies to compute (and not just represent) isogenies of
non-smooth degree. Verifiable delay functions and verifiable random functions
have also been proposed from higher-dimensional isogenies [DMS23,Ler23].

At the same time, better protocols from isogenies between elliptic curves
were also developed: initially, Fouotsa, Moriya, and Petit [FMP23] proposed
countermeasures against the SIDH attacks that relied on masked degree and
masked torsion points. They obtained MD-SIDH and M-SIDH, which are larger
and slower than SIDH, but avoid the existing attacks. More recently, Basso and
Fouotsa proposed binSIDH and terSIDH [BF23], which also avoid the attacks on
SIDH while being significantly more efficient than M-SIDH and MD-SIDH. The
authors also proposed a mixed approach, where one party computes binSIDH or
terSIDH isogenies, while the other rely on SIDH-like isogenies.

However, the two approaches, developing better protocols in dimension one
on one side, and using higher dimensional isogenies on the other, have not
mixed. While the higher-dimensional protocols mentioned above still compute
one-dimensional isogenies, their constructions are fundamentally different from
those of SIDH-like protocols. To date, no protocol that builds a commutative
diagram à la SIDH works with higher-dimensional isogenies. A possible reason
behind this is that SIDH-like protocols rely on rational isogenies (i.e. with their
kernel defined over Fp2) that can be represented by a single curve (its domain,

2

together with a kernel generator); higher-dimensional isogenies, on the other
hand, often represent irrational isogenies (i.e. their kernel is not defined over
Fp2) and require a two-curve representation, where both the domain and the
codomain are needed.

Contributions. In this work, we introduce the first framework that combines
the two approaches. It allows two parties, one computing irrational non-smooth
isogenies and the other computing rational smooth isogenies (depending on the
context, this may be isogenies as those computed in SIDH, binSIDH, terSIDH,
etc.), to engage in a two-round protocol to establish a commutative diagram
and obtain a shared secret. Since one isogeny in the exchange needs both its
domain and codomain to be recomputed, all four curves in the commutative
diagram need to be public: to obtain a shared secret, both parties reveal the
(scaled) action of their secret isogeny on a fixed point and eventually obtain a
shared point on a public curve. This approach can be, in some sense, interpreted
as a translation of the SiGamal protocol [MOT20] to the setting of SIDH-like
isogenies and higher-dimensional representations. Since the two parties end up
agreeing on a shared point, we call the framework POKE1, for Point-Based Key
Exchange.

With the POKE framework, we introduce three new protocols: a public-key
encryption scheme, a split key encapsulation mechanism, and a round-optimal
verifiable OPRF. The PKE, described in Section 4, uses a secret-degree irrational
isogeny as the long-term secret key. To encrypt, the sender computes two parallel
SIDH isogenies and reveals enough information for the receiver to complete the
commutative diagram. The resulting protocol is extremely compact and efficient:
it works with a prime of size 3λ bits, and our unoptimized proof-of-concept
implementation in SageMath runs in less than 300 milliseconds.

A split KEM, first introduced in [BFG+20], is an intermediate construction
between a non-interactive key-exchange (NIKE) and a PKE. Both parties hold a
long-term secret key, but the protocol allows for some interactivity: one party, the
sender, is allowed to send one message. Split KEMs were introduced to achieve a
post-quantum version of the Signal protocol [MP16] since they can replace NIKEs
in most instances. To obtain our construction (Section 5), we rely on uniSIDH
isogenies (a variant of binSIDH [BF23, Sec. 4.1]), and we analyze the resistance
of FESTA and uniSIDH isogenies against adaptive attacks. For the former, we
show it is always easy and efficient to avoid adaptive attacks: in particular, we
also solve solve the open problem posed by [MO23]. The authors of [MO23] asked
whether it is possible to find an adaptive attack even when the scaling matrix
is of the correct form: we show that this is not possible. For uniSIDH isogenies,
which are easily susceptible to active attacks, we introduce a novel interactive
validation method. This requires multiple repetitions (≈12) of the protocol, but
it is significantly more efficient than previous methods based on zero-knowledge
proofs.

1 Pronounced ["poU.keI] (as two sillables), named after the Hawaiian dish (keeping alive
the tradition of fishy names in isogeny-based cryptography).

3

Lastly, we rely on the split-KEM construction and its efficient validation
method to obtain an efficient round-optimal verifiable OPRF (Section 6). The
resulting protocol is the first isogeny-based verifiable OPRF that does not require
more than λ isogeny computations, and it is significantly more compact and
more efficient than all other isogeny-based OPRFs. Compared to non-isogeny
ones, our protocol is the most compact by at least two orders of magnitude, and
our proof-of-concept implementation suggests it might be competitive from an
efficiency standpoint, although future work is needed to confirm this.

2 Preliminaries

Notation. We write Zn to denote the ring Z/nZ, while λ denotes the security
parameter. We also write [k] for the set {1, 2, . . . , k}. If ϕA : E0 → EA and
ϕB : E0 → EB are isogenies with the same domain, we write (ϕA)∗ϕB for
the pushforward of ϕB under ϕA, i.e. the isogeny ϕ′B : EA → EAB such that
kerϕ′B = ϕA(kerϕB).

Elliptic curves and isogenies. For a complete treatment of elliptic curves and
isogenies, especially as used in cryptography, we refer to [De 17]. We call two
isogenies ϕ and ϕ′ parallel with respect to an isoegny ψ (which may be omitted, if
explicit from the context) if kerϕ′ = ψ(kerϕ). We also refer to rational isogenies
as those whose kernel is defined over Fp2 , and irrational isogenies as those whose
kernel is defined over a large extension of Fp2 .

In this work, we consider three representations of isogenies:

– SIDH isogenies [JD11]: they are prime-power degree isogenies (in our case,
the degree will always be a power of three or five) whose kernel is defined over
Fp2 . If their degree is ℓe, since a kernel generator can be expressed as a linear
combination of any two linearly independent points of order ℓe, to compute
the pushforward of an SIDH isogeny under a secret isogeny, it is necessary to
reveal the action of the secret isogeny on two linearly independent points of
order ℓe, possibly both scaled by the same random scalar in Z∗

ℓe .
– uniSIDH isogenies [BF23, Sec 4.1]2: they are rational isogenies whose degree

divides B, the product of t small primes. Fixed a curve E and a point R of
order B, the isogeny is represented by a divisor B′ of B: the isogeny is defined
as E/⟨[B/B′]R⟩. To compute their pushforward under a secret isogeny, it is
necessary to reveal the action of the secret isogeny only on R, possibly scaled
by a random scalar in Z∗

B .
– FESTA isogenies [BMP23]: they are isogenies whose degree can be written

as q(2a − q), for some value q; their kernel is not rational and it is only
defined over a large extension field. They can be represented by their domain
and codomain, together with their degree and action on the 2a torsion. We
propose a method to compute their pushforward under a secret isogeny in
Section 3.

2 Such isogenies are not named in the original paper. We call them uniSIDH isogenies
since they are a variant of binSIDH and terSIDH, with one fewer degree of freedom.

4

Split KEM. A split KEM [BFG+20] is a key encapsulation mechanism with two
long-term public keys, one for the sender and one for the receiver. A split KEM
protocol comprises of four algorithms: (skB , pkB)← sKeyGenenc(), (skA, pkA)←
sKeyGendec(), (ct, ssB)← sEncaps(pkA, skB), and ssA ← sDecaps(ct, pkB , skA).

Security is defined in terms of a lr-IND-CCA, where lr ∈ {nn, sn,mn, sm,mm}.
The game is a translation of the classic IND-CCA game to the split KEM setting,
where the attacker has access to both an encapsulation and decapsulation oracle.
The five flavors of the game, defined by the choice of lr, determine whether the
attacker has no (n), a single (s), or multiple (m) access(es) to the encapsulation
(l) and decapsulation (r) oracles. We refer to [BFG+20] for a thorough description
of split KEMs and their security properties.

OPRFs. Oblivious pseudorandom functions are a two-party protocol between a
client and a server: the protocol allows the client to obliviously evaluate a PRF
with a key held by the server, while the server does not learn anything about the
client’s input or output. More precisely, an OPRF protocol OPRF is defined by
six algorithms: (OPRF.Setup, OPRF.KeyGen, OPRF.ClientReq, OPRF.BlindEval,
OPRF.Finalize, OPRF.Eval). OPRF.Setup generates the parameters needed for the
protocol, while OPRF.KeyGen is run by the server to generate a pair of public and
secret key. The client generates a blinded request of a message m by computing
ClientReq(m); after receiving the request, the server uses its secret key to compute
BlindEval, and the client runs Finalize to obtain the PRF value. OPRF.Eval is a
deterministic function on the input and the server’s secret key and describes the
PRF itself. For correctness, we require the composition of Finalize, BlindEval, and
ClientReq to behave exactly as OPRF.Eval. We introduce the security notions of
OPRFs that we use in Appendix A.

3 The POKE framework

We introduce our framework that allows two parties to engage in a two-round
protocol to establish a commutative diagram and obtain a shared secret, using
different isogeny representations. Nearly all isogeny-based protocols in the lit-
erature, such as M-SIDH, MD-SIDH [FMP23], binSIDH, and terSIDH [BF23],
rely on a single type of isogenies: both parties need to compute isogenies with
the same representation. A partial exception is the hybrid variant of bin-SIDH
and terSIDH [BF23], which introduces a mixed approach: one party computes
binary or ternary isogenies, while the other party computes SIDH-like isogenies.
However, such constructions are still constrained to rational isognies that can be
represented by a single curve (both binary/ternary and SIDH-like isogenies can
be computed from their domain and a kernel generator on it). The framework
we propose enables mixing different representations of isogenies and working
with irrational isogenies. In particular, it provides a method to compute the
pushforward of isogenies represented by two curves, such as FESTA isogenies.
This, however, comes at the cost of additional interaction between the two parties,
when compared to SIDH-based constructions.

5

The POKE construction. The protocol takes place between two parties, Alice
and Bob. The description is intentionally general, as it can be instantiated with
any isogeny representation. Alice can compute any isogeny, including those that
are representable by two curves (say, FESTA isogenies), while Bob is restricted
to isogenies representable by a single curve (say, SIDH-like isogenies).

Bob, on the other hand, samples a random rational isogeny ϕB : E0 → EB

whose degree is coprime with that of ϕA. Since the isogeny is rational, Bob can
compute its pushforward under ϕA from the images revealed by Alice: Bob can
thus also compute the isogeny ϕ′B : EA → EAB. Note that the computation of
ϕB is independent of Alice’s computations: it thus can be done in parallel and,
in some cases, the same ϕB can be used with different ϕA’s.

After Bob reveals EB and EAB , together with the actions of ϕB and ϕ′B on
some points on E0 and EA, Alice can compute the pushforward of ϕA under
ϕB and thus recover the isogeny ϕ′A : EB → EAB. This allows both parties
to construct a commutative diagram; however, it is not sufficient to create a
key exchange: similar constructions relied on EAB as their shared secret, but
this is no longer possible since it is publicly revealed by Bob to enable Alice’s
computation of ϕ′A.

To sidestep the issue, we introduce an additional point X0 on E0 of order x,
with x coprime to both deg ϕA and deg ϕB . As part of her public key, Alice also
reveals the image XA = [α]ϕA(X0), scaled under a random value α. Similarly, Bob
reveals the image XB = [β]ϕB(X0), scaled under a random value β. Both parties
can thus obtain the point XAB = [α]ϕ′A(XB) = [β]ϕ′B(XA) on EAB, which is
then the shared secret of the exchange. The resulting protocol is described in
Fig. 1.

E0,
X0 ∈ E0[x]

EA,
XA = [α]ϕA(X0)

EB ,
XB = [β]ϕB(X0)

EAB ,
XAB = [α]ϕ′

A(XB) = [β]ϕ′
B(XA)

ϕA

ϕB ϕ′
B

ϕ′
A

Fig. 1: The POKE framework.

Introducing the point X0 does not increase the size of the underlying prime:
since the order of X0 does not need to be smooth, the point X0 can be defined
over Fp4 (i.e. with x | p− 1). Using an x-only representation, it is still efficient
to evaluate isogenies on X0, while the underlying prime can be smaller. From
a security standpoint, POKE requires the parties to reveal the scaled action of
their secret isogeny on a public point. We argue this does not affect the security
of the resulting protocols: all isogeny representations already reveal the scaled
action of a secret isogeny on some points, and thus introducing an additional
point can simply be interpreted as slightly increasing the parameters of the

6

existing assumptions3. Furthermore, the point order x can be chosen to be a
large prime (with log x ≈ λ/2): even revealing the non-scaled action on X0 would
not help an attacker. First, if x is a prime, the reduction by De Feo, Fouotsa,
and Panny [FFP24] from one point to two does not apply; second, even if it did,
all known algorithms that exploit torsion information would require computing
an x-isogeny in dimension four, whose computational cost is O(x4) ≈ O(22λ).
Note, also, that choosing log x ≈ λ/2 prevents brute-force attacks, since there
are about x2 ≈ 2λ possible XAB points.

Remark 1. The POKE protocol presents similarities with the SiGamal PKE [MOT20].
In both cases, the protocols follow a similar flow of information: key generation
consists of one isogeny computation, encryption computes two parallel isogenies,
and decryption completes the commutative diagram. Moreover, as in SiGamal,
the two parties reveal the images of a fixed point under their secret isogenies and
eventually both obtain a shared point on the curve EAB . However, POKE differs
from SiGamal in two significant aspects: first, the point X0 is defined over Fp4 ,
resulting in a smaller prime p and a more compact protocol; second, POKE is
not restricted to isogenies over Fp and instead allows for many different repre-
sentations of isogenies. This greater flexibility is exploited in the next sections
to obtain new and more efficient constructions that would not be possible from
SiGamal.

4 An efficient PKE: P(O)KE

We present the first instantiation of the POKE framework, where one party
computes irrational isogenies of non-smooth degree, similarly to FESTA [BMP23]
and QFESTA [NO23], and the other computes SIDH-like isogenies. The resulting
protocol is a public-key encryption scheme that is one of the most compact
post-quantum PKEs and possibly the most efficient isogeny-based PKE to date.

Let p be a prime of the form p = 2a3bf − 1, where f is a cofactor needed
for primality. Let E0 be the supersingular elliptic curve defined over Fp2 with
j-invariant 1728. Let P0, Q0 denote a basis of E0[2

a], R0, S0 denote a basis of
E0[3

b], and X0 denote a point of order x on E0, with x coprime with 2 and 3.
Castryck and Vercauteren [CV23] showed that when the endomorphism ring of
the starting curve is known, it is possible to maliciously choose the points P0, Q0

to obtain a backdoor in the protocol. To avoid such issues, we select P0, Q0 using
a nothing-up-my-sleeve approach: we rely on standard algorithms to compute a
deterministic basis from a given curve [PDJ21]. Since such a basis is uniformly
random, the probability of being backdoorable is negligible [CV23, §5.2].

Let us denote with Bob the party that wants to encrypt a message m, and
Alice the party that wants to receive it. To generate a public key, Alice wants to

3 If the protocol already revealed the action of a secret isogeny ϕ on two points of
order N , revealing the image of X0 is equivalent to revealing the action of ϕ on a
point of order N + x and a point of order N .

7

generate an isogeny of degree q(2a − q), so that it can be easily representable in
dimension two (the degree needs to factor into integers whose sum is 2a). To do
so, we adapt the algorithm proposed in QFESTA [NO23, Algorithm 2]: we first
generate an endomorphism θ of degree q(2a − q)3b, using Algorithm 1 (based
on [KLPT14]); then, we compute the 3b-isogeny ψ that factors through θ, and
we compute its dual to obtain the codomain of a q(2a − q)-isogeny ϕ. Evaluating
points under ϕ is then equivalent to mapping them under [1/3b]ψ ◦ θ, if their
order is coprime with 3; this allows us to map points of order 2a and obtain a
two-dimensional representation of ϕ. This is represented in Algorithm 2.

Algorithm 1 Endomorphism generation (based on [KLPT14])
Input: A degree N , where N > p.
Output: A endomorphism of E0 of degree N .
1: Set u = ⌈

√
N/p⌉

2: while true do
3: Sample random integers z, t in Zu

4: Set C = N − p(z2 + t2)
5: if C is prime and C = x2 + y2 then ▷ x, y computed with Cornacchia’s alg.
6: return [x] + [y]ι+ [z]π + [t]ιπ

Algorithm 2 Generating a q(2a − q)-isogeny
Input: A degree q, a prime p of the form p = 2aB − 1, where B is smooth.
Output: A representation of an isogeny ϕ : E0 → EA of degree q(2a − q).
1: Generate an endomorphism θ of E0 of degree q(2a − q)B
2: Generate a basis P0, Q0 of E0[2

a]
3: Generate a basis R0, S0 of E0[B]
4: Compute P ′

0, Q
′
0 = θ(P0), θ(Q0)

5: Compute R′
0, S

′
0 = θ(R0), θ(S0)

6: Find x, y ∈ ZB such that [x]R′
0 + [y]S′

0 = O
7: Compute ψ : E0 → EA with kernel ⟨[x]R0 + [y]S0⟩
8: Compute PA, QA = [1/B]ψ(P ′

0), [1/B]ψ(Q′
0)

9: Compute Φ with kernel
〈(
[−q]P0, PA

)
,
(
[−q]Q0, QA

)〉
10: return Φ

After Alice has generated a q(2a−q)-isogeny, the protocol proceeds as described
in the POKE framework. To obtain a PKE, Bob attaches ct′ = KDF(XAB)⊕m to
the ciphertext, where KDF is a key derivation function. Alice, following the POKE
framework, recomputesXAB and extracts the messagem asm = KDF(XAB)⊕ct′.
The resulting protocol is described in Protocol 2.

Protocol 2 (The P(O)KE PKE). Let p be a prime of the form p = 2a3bf−1,
where f is a small cofactor needed for primality. Let E0 be the supersingular

8

elliptic curve defined over Fp2 with j-invariant 1728. Let P0, Q0 be a deterministic
basis of E0[2

a], and R0, S0 be a deterministic basis of E0[3
b]. Similarly, let X0

also be a deterministically-generated point on E0(Fp4) of order x, with x | p− 1
and coprime with 2 and 3. Let KDF denote a key derivation function.

KeyGen. Alice samples a random prime q in [0, 2a] such that q(2a − q) is
coprime with 3, and she computes a random isogeny ϕA : E0 → EA of degree
q(2a − q) using Algorithm 2. She also samples random integers α2, α

′
2, α3, αx in

Z∗
2a×Z∗

2a×Z∗
3b×Z

∗
x. Alice’s public key consists of the curve EA, and the 2a-images

PA = [α2]ϕA(P0), QA = [α′
2]ϕA(Q0), the 3b-images RA = [α3]ϕA(R0), SA =

[α3]ϕA(S0), and the point XA = [αx]ϕA(X0); the secret key includes the scaling
values α2, α

′
2, x and the degree q.

Encrypt. To encrypt a message m, Bob samples a random integer β in Z3b

and computes the parallel isogenies ϕB : E0 → EB with kernel ⟨R0 + [β]S0⟩ and
ϕ′B : EA → EAB with kernel ⟨RA + [β]SA⟩. He also samples random integers
β2, β

′
2, βx ∈ Z∗

2a × Z∗
2a × Z∗

x and computes the points XB = [βx]ϕB(X0) and
XAB = [βx]ϕ

′
B(XA). The ciphertext is then the curve EB, the images PB =

[β2]ϕB(P0), QB = [β′
2]ϕB(Q0) and XB , together with the curve EAB , the images

PAB = [β2]ϕ
′
B(PA), QAB = [β′

2]ϕ
′
B(QA), and ct′ = KDF(XAB)⊕m.

Decrypt. To decrypt the ciphertext (EB , PB , QB , XB , EAB , PAB , QAB , ct
′), Al-

ice scales the points PAB , QAB by 1/α2 and 1/α′
2 respectively to obtain the images

of PB , QB under ϕ′A. With such information, she can obtain a two-dimensional
representation of ϕ′A, from which she can obtain the point XAB = [αx]ϕ

′
A(XB).

The message is then m = KDF(XAB)⊕ ct′.

Remark 3. The protocol, as presented, starts from a curve E0 whose endomor-
phism ring is known, since knowledge of the endomorphism ring is used to
compute an isogeny of non-smooth degree during Key Generation. While E0

having a known endomorphism ring does not affect the security of the protocol,
it requires greater care in the choice of the points P0, Q0. Moreover, several
attacks against other isogeny-based constructions rely on the knowledge of the
endomorphism ring of the starting curve [Pet17,dQKL+21,CII+23,CV23]. As
a defense-in-depth measure, it may be prudent to replace E0 with a curve of
unknown endomorphism ring.

To do so, Alice can start from the curve with j-invariant 1728 and compute
key generation as described. After obtaining (EA, PA, QA, RA, SA, XA), she may
compute parallel 3b-isogenies ψ : E0 → Ē0 and ψ : EA → ĒA, similarly to what
is done during encryption. She then obtains the points ψ(P0), ψ(Q0) on E0 and
their images ψ(PA), ψ(QA), from which she can obtain a two-dimensional repre-
sentation of the q(2b − q)-isogeny ϕ̄A : Ē0 → ĒA. Then, Alice (deterministically)
generates a 2a-basis of Ē0[2

a], a 3b-basis of Ē0[3
b], and a point of order x. Using

the representation of ϕ̄A, she can map these points on ĒA and scales them as in
the original KeyGen. The resulting public key consists of Ē0, ĒA, and the points
on ĒA. Hence, with this modified key generation, Alice can generate a public
key where E0 has unknown (to anyone else) endomorphism ring; this, however,
comes at the cost of a longer key generation procedure and a larger public key.

9

Security. The security of the protocol informally relies on the hardness of
recovering either the secret isogeny ϕA from its public key, or the isogenies ϕB
and ϕ′B from the ciphertext.

More formally, the security of Alice’s secret isogeny relies on the hardness of
the following problem:

Problem 4 (Secret-Degree Isogeny (SDI) Problem). Let p be a prime of the form
p = 2a3bf−1, with x a prime divisor of p−1. Let E be a supersingular elliptic curve
defined over Fp2 , and write P0, Q0 for a basis of E[2a], R0, S0 for a basis of E[3b],
and X0 for a point of order x. Let q be a random prime in [0, 2a]. Let ϕ : E → E′

be a random isogeny of degree q(2a − q), generated as in Algorithm 2. Given
E,E′, the points P0, Q0, R0, S0, X0 and the image points [α2]ϕ(P0), [α′

2]ϕ(Q0),
[α3]ϕ(R0), [α3]ϕ(S0), [αx]ϕ(X0), where α2, α

′
2, α3, αx ←$ Z∗

2a × Z∗
2a × Z∗

3b × Z∗
x,

recover ϕ.

While the security of the isogenies computed during encryption relies on the
hardness of the following problem:

Problem 5 (Double Masked-Torsion Isogeny (DMTI) Problem). Let E0, E
′
0 be

two supersingular elliptic curves defined over Fp2 , connected by an isogeny
ψ : E0 → E′

0. Let P0, Q0 span E0[2
a] and X0 be a point on E0 of order x, and

let P ′
0, Q

′
0 span E′

0[2
a]. Let ϕ : E0 → E1 be a random isogeny of degree 3b, and

let ϕ′ : E′
0 → E′

1 be its pushforward ψ∗ϕ.
Given E0, E

′
0, the points of P0, Q0, X0, P

′
0, Q

′
0, the curves E1, E

′
1, the image

points [β2]ϕ(P0)[β
′
2]ϕ(Q0), [βx]ϕ(X0), [β2]ϕ(P

′
0), [β

′
2]ϕ(Q

′
0), where β2, β′

2, βx ←$

Z∗
2a × Z∗

2a × Z∗
x, recover ϕ.

The hardness of Problem 4 and Problem 5 guarantees security against isogeny-
recovering attacks. While it is likely that any attack against the proposed protocol
would eventually solve either problem, the security of the protocol relies on
a stronger assumption: the hardness of the computational POKEFESTA,SIDH

problem, which is the following.

Problem 6 (C-POKEFESTA,SIDH). Let p be a prime of the form p = 2a3bf − 1,
where f is a small cofactor needed for primality. Let E0 be a supersingular elliptic
curve defined over Fp2 . Let P0, Q0 be a basis of E0[2

a], R0, S0 a basis of E0[3
b],

and X0 a point of order x on E0(Fp4).
Let ϕA : E0 → EA be an isogeny of degree q(2a−q), for some unknown value q.

Write PA, QA = [α2]ϕA(P0), [α
′
2]ϕA(Q0), RA, SA = [α3]ϕA(R0), [α3]ϕA(S0), and

XA = [αx]ϕA(X0), where α2, α
′
2, α3, αx are random integers in Z∗

2a×Z∗
2a×Z∗

3b×Z
∗
x.

Let ϕB : E0 → EB be an isogeny of degree 3b, and write ϕ′B : EA → EAB for the
pushfoward (ϕA)∗(ϕB). Write PB , QB = [β2]ϕB(P0), [β

′
2]ϕB(Q0), PAB , QAB =

[β2]ϕ
′
B(PA), [β

′
2]ϕ

′
B(QA), and XB = [βx]ϕB(X0), where β2, β′

2, βx are random
integers in Z∗

2a × Z∗
2a × Z∗

x. Lastly, write XAB for the point ϕ′B(XA) = ϕ′A(XB).
Given

(
EA, (PA, QA), (RA, SA), XA

)
,
(
EB , (PB , QB), XB

)
, and

(
EAB , (PAB , QAB)

)
,

compute XAB .

The IND-CPA security of the P(O)KE PKE is formalized in the following
theorem.

10

Theorem 7. The POKEFESTA,SIDH protocol is IND-CPA secure in the random
oracle model under the assumption that the C-POKEFESTA,SIDH problem is hard.

Proof. The proof is analagous to the proof of security of the hashed ElGamal
PKE, see for instance [KML03, Theorem 1]. Given an adversary A that breaks
the IND-CPA security of the proposed protocol, it is possible to construct an
adversary B that solves an instance (EB , PB , QB , XB , EAB , PAB , QAB , ct

′) of the
C-POKEFESTA,SIDH problem. Informally, B simulates the random oracle model
and passes (EB , PB , QB , XB , EAB , PAB , QAB , ct

∗) to A, where ct∗ is randomly
sampled: if A does not query the ROM with XAB it cannot win the IND-CPA
game, and if it does, B can output a random query. With non-negligible probability
(since XAB is guaranteed to be among the queries), B outputs the solution to
the C-POKEFESTA,SIDH problem.

Similarly to the hashed ElGamal PKE and all the analogous constructions,
including SiGamal [MOT20], it is also possible to construct and IND-CPA secure
PKE in the standard model from the decisional variant of the C-POKEFESTA,SIDH

problem. Using standard transformations, such as the Fujisaki-Okamoto trans-
form [FO99,HHK17], it is also possible to obtain an IND-CCA secure PKE.

Hardness analysis. The first proposed problem, Problem 4, asks to recover
an isogeny from its action on some torsion bases when the degree is unknown.
This is assumed to be hard because all isogeny-recovering attacks that exploit
the action of the secret isogeny on some torsion points [CD23,MMP+23,Rob23]
fundamentally rely on knowing the degree of the isogeny. Thus, the problem
appears to reduce to the hardness of recovering the degree q(2a − q) given the
provided information. Such a problem is expected to be hard since the degree
cannot efficiently be brute-forced (there are exponentially many possible degrees)
nor recovered through pairing computations. More precisely, the pairings e2a(P,Q)
and e2a(P ′, Q′) yield the value q(2a − q)α2α

′
2, while the pairings e3b(R,S) and

e3b(R
′, S′) yields the value q(2a − q)α2

3. In both cases, the degree is hidden by
the unknown scalars α2, α

′
2, and α3.

Relying on secret-degree isogenies was originally proposed in the context of
MD-SIDH [FMP23], a secure variant of SIDH. However, in that case, the degree
of the isogeny is known to divide a public parameter, whereas in our case no
information is known about the degree of the isogeny. Indeed, Problem 4 appears
to provide significantly less information that [FMP23, Problem 5] since part of
the torsion information is scaled under a diagonal matrix, and no multiple of
the degree is known. While a formal reduction is hard due to the difference in
parameters, Problem 4 is expected to be at least as hard as [FMP23, Problem 5].
We further discuss the hardness of Problem 4 in Appendix B.

Problem 5 is a two-instance variant of the more common problem of recovering
the isogeny from its scaled action on the torsion points. Such a problem is known in
the literature as the Computational Isogeny with Scaled Torsion (CIST) problem,
and it was first introduced to argue the security of FESTA [BMP23, Problem

11

7], but was also used in QFESTA [NO23], IS-CUBE [Mor23], and binSIDH and
terSIDH [BF23]. The CIST problem is believed to be hard because the revealed
images of the torsion points are scaled under different unknown scalars: this
reveals significantly less information than what is needed to apply the attacks
against SIDH-like isogenies [CD23,MMP+23,Rob23].

While Problem 5 reveals additional information compared to the CIST problem
since two related instances are revealed, it appears to be as hard as the original
CIST problem. The additional instance does not appear to help solving the
problem. A similar argument is proposed in the security analysis of FESTA,
which similarly relies on a two-instance version of CIST called CIST2. In FESTA,
the two isogenies in CIST2 are independent and have different degrees, while in
our case the two isogenies are the pushforward of one other under the isogeny
connecting E and E′. This, however, does not heuristically appear to be a
significant difference: even in FESTA, recovering one of the two isogenies is
enough to recover both; moreover, it seems hard to exploit the parallelness of
the isogenies since the isogeny from E to E′ is unknown (in the protocol, this is
Alice’s secret isogeny).

4.1 Efficiency

The proposed protocol is one of the most compact post-quantum PKEs and
possibly the most efficient isogeny-based PKEs to date.

Parameters. To guarantee the security of the protocol, we need to select 2a ≈ 2λ

(so that brute-forcing q is hard), 3b ≈ 22λ (so that meet-in-the-middle attacks
against ϕB are exponentially expensive), and x ≈ 2λ/2 (so that brute-forcing XAB

is hard). However, x does not need to be smooth and can be chosen among the
divisors of p− 1. In this way, the points Xi are defined over Fp4 (or equivalently
over the twist of the curves considered), and can be efficiently represented over Fp2

using x-only arithmetic. Hence, the underlying prime of the form p = 2a3bf − 1
has thus size of about 3λ bits.

The public key consists of one curve and five torsion points. The XA point is
represented by its x-coordinate, whereas the remaining points can be represented
as the two points PA + RA, and QA + SA. This means that the public key
requires about ≈ 20λ bits, or—if the points are compressed4—≈ 17λ bits. Note
that, unless X is chosen to have smooth order, it cannot be compressed because
solving discrete logarithms (needed for compression) is hard. The ciphertext,

4 In order to compress two points P,Q of order N to three coefficients of size logN ,
it is necessary to know the pairing eN (P,Q), so that the fourth coefficient can
be deduced. In our case, if the protocol is implemented exactly as described, the
pairing e2a3b(PA + RA, QA + SA) would be unknown: this, however, can be fixed
by setting the scaling values to be α′

2 = α−1
2 (q(2a − q))−1 and α3 = (q(2a − q))−1/2

(assuming it is a square modulo 3b), from which follows e2a3b(PA +RA, QA + SA) =
e2a3b(P0 + R0, Q0 + S0). Note that an extra bit needs to be sent to denote the
quadratic residuosity of q(2a − q).

12

instead, consists of two curves, five torsion points, and a message component. This
thus requires 38λ bits uncompressed, or 24λ bits compressed. For λ = 128, this
means that a compressed public key requires about 272 bytes, and a compressed
ciphertext about 384 bytes.

We remark that this construction is well-suited for a B-SIDH [Cos20] approach:
by (partially) moving the kernel of ϕB to Fp4 and working over the curve twists,
it may be possible to reduce the prime size without significantly affecting the
efficiency of the protocol.

Implementation. We implemented the uncompressed version of the protocol in
SageMath [The24] using the implementation of isogenies between abelian surfaces
proposed in [DMPR23]. Due to a limitation in the current implementation,
the point X0 has a large prime order, but it is defined over Fp2 . Thus, the
implementation works with a characteristic that is about 16% larger than the
characteristic if X0 were defined over Fp4 . Hence, the current timings provide only
an upper bound: reducing the characteristic to the expected size should result
in a speed-up of about 25%, while an optimized implementation of the same
protocol (in a low-level language, with assembly-level optimizations) should result
in a speed-up of more than an order of magnitude. The timings, benchmarked
on an Apple M1 PRO CPU, are reported in Table 1.

Table 1: Performance of the P(O)KE PKE.
Size (bytes) Time (ms)

λ |pkcmp| |ctcmp| KeyGen Encrypt Decrypt

128 272 384 554.7 165.0 275.3
192 408 576 1149.3 315.8 559.4
256 544 768 2154.6 576.6 1053.2

Comparison with other protocols. We start by considering CSIDH [CLM+18]:
while the original proposal relied on a 511-bit prime (for λ = 128), subsequent
analysis [Pei20,BS20,CSCDJRH22] of quantum attacks showed that such a prime
is not sufficient to guarantee the expected security. Instead, [BS20] proposed to
use a prime of size between 2260 or 5280 bits (depending on the conservativeness
of the analysis), while [CSCDJRH22] proposes to use a 4096-bit prime. The
public key and ciphertexts of CSIDH consists of a single curve defined over Fp, so
they require between 283 (when log p = 2260) and 512 (when log p = 4096) bytes.
In all but the most aggressive parameter sets, the public key and ciphertext of
our proposed protocol are more compact than SIDH; even in the case where
log p = 2260, our protocol is only slightly less compact (about 35% larger). In
terms of performance, however, our protocol is significantly more efficient. A recent
work [CCSCD+23] reports optimized implementations of CSIDH: encrypting a
message (i.e. computing two group action evaluations) takes more than a second
with p = 2048 and more than several seconds with p = 4096, while decryption is

13

only twice as fast.5 This is significantly longer than the results of our proof-of-
concept implementation in SageMath reported in Table 1, where encryption and
decryption take less than 200 and 300 ms.

If we compare our protocol with other isogeny-based construction, the com-
parison is similarly positive. FESTA [BMP23], as proposed, works with a 1292-bit
prime for λ = 128 and requires 1,122 bytes for its ciphertexts, which are 2.9×
larger than our protocol. FESTA, when implemented in SageMath with the same
library for isogeny computations [DMPR23] and running on the same hardware as
Table 1, requires 3.1 seconds for encryption and 2.8 seconds for decryption, hence
more than an order of magnitude slower than our proposed protocol. FESTA was
later improved in QFESTA [NO23]; the protocol similarly uses a prime of 3λ bits,
but the ciphertext is significantly larger, since in both protocols, the ciphertext
mostly consists of two curves and several points, but in QFESTA the order of
the torsion points is much larger. Indeed, the QFESTA ciphertexts are more
than 100 bytes larger, and their running times (also implemented in SageMath,
using the same library for higher-dimensional isogenies) are similarly an order of
magniture larger. Lastly, we compare our protocol with terSIDH-hyb, the most
efficient key exchange from [BF23]. In terSIDH-hyb, the prime characteristic is
≈ 4× larger, public keys are 2.6× larger, and ciphertext (if terSIDH-hyb is used
as PKE through a standard transformation) is 1.2× larger. The computation
times of encryption is also 30× slower, while decryption is 1.9× faster.

5 A split KEM

In the PKE proposed in the previous section, during encryption Bob computes
two isogenies: one from E0 to EB , independent of Alice’s public key, and one from
EA to EAB . It may be thus natural to construct a split KEM [BFG+20] from the
same protocol, where Bob computes the first isogeny and reveals its codomain,
together with its action, as a public key. Whenever Bob wants to encrypt a
message to Alice, he computes the second isogeny from EA to EAB, as in the
previous construction; to decrypt, Alice proceeds as before, but now also requires
Bob’s public key. Such a construction would allow Bob to implicitly authenticate
himself to Alice (while the authentication remains deniable to third parties), and
it would provide most of the benefits provided by a non-interactive key exchange.
In particular, a split KEM could be used to instantiate a post-quantum version
of the Signal’s X3DH protocol [MP16].

In [BFG+20], the authors propose different security notions for split KEMs.
In the weakest notion, nn-IND-CCA, the attacker is a third party that sees only
one encryption. Such a security notion corresponds to the classical IND-CPA
security, and it is satisfied by the protocol in the previous section. However, such
a security notion is not sufficient for nearly any application: if the protocol in the
5 The authors report their implementation results in [CCSCD+23, Table 5] only in

clock cycles, but no CPU frequency is reported. Assuming a frequency of 3.2 GHz,
one group action evaluation takes about 690 ms with p = 2048 and 3.5 seconds with
p = 4096.

14

previous section were used as split KEM, the security of Bob’s secret key is not
guaranteed even against honest-but-curious decapsulators (such a setting would
be captured by a stronger security notion, mm-IND-CCA).

The attack proceeds as follows: during decapsulation, Alice constructs a
representation of the isogeny ϕ′A : EB → EAB, which is the pushforward of her
secret isogeny ϕA : E0 → EA under Bob’s long-term secret isogeny ϕB : E0 → EB .
For any small factor ℓ | deg ϕA, Alice can construct a point of order ℓ on E0 (if ℓ
is sufficiently small, E0[ℓ] is defined over a small extension field) and obtain its
scaled image on EB under ϕB . If Alice were to repeat the process with multiple
honestly-generated public keys, she could obtain the exact images of the ℓ-torsion
points (by [BKM+21, Lemma 1], combining it with the knowledge of deg ϕB);
repeating this process for multiple small factors ℓ would allow Alice to obtain
enough torsion information to apply the SIDH attacks [CD23,MMP+23,Rob23]
and recover ϕB .

To avoid such an attack, we need the degree of Bob’s isogenies to be secret. We
thus replace Bob’s computation from SIDH-like isogenies to uniSIDH isogenies.
This leads us to a new instantiation of the POKE framework with FESTA
isogenies for one party and uniSIDH isogenies for the latter, which we call split-
POKE. The resulting protocol is secure against passive attacks (i.e. the attacker
is not a participant in the protocol) and honest-but-curious participants, but
is still vulnerable to active attacks. We present validation methods for both
participants, obtaining thus a split KEM that is (presumably) mm-IND-CCA
secure, although we leave a formal proof for future work.

5.1 The Split-POKE protocol

We first formalize the Split-POKE protocol, described in its unprotected variant.

Protocol 8 (Split-POKE). Let p be a prime of the form p = 2aBf − 1, where
f is a small cofactor needed for primality. Let E0 be the supersingular elliptic
curve defined over Fp2 with j-invariant 1728. Let P0, Q0 be a deterministic basis
of E0[2

a], and R0 and X0 be deterministically computed points of order B and x.

sKeyGendec(). Alice samples a random prime q in [0, 2a] such that 2a − q is
also prime, and she computes a random isogeny ϕA : E0 → EA of degree
q(2a − q) using Algorithm 2. She also samples scaling values α2, α

′
2, αB , αx ∈

Z∗
2a ×Z∗

2a ×Z∗
B ×Z∗

x. Alice’s public key consists of the curve EA, and the points
PA, QA = [α2]ϕA(P0), [α

′
2]ϕA(Q0), RA = [αB]ϕA(R0), and XA = [αx]ϕA(X0).

The secret key comprises of (q, α2, α
′
2, αx).

sKeyGenenc(). Bob samples a random B′ dividing B, and computes the isogeny
ϕB : E0 → EB with kernel ⟨[B/B′]R0⟩. He then samples scaling values β2, β′

2, βx ∈
Z∗
2a × Z∗

2a × Z∗
x, and he sets PB , QB = [β2]ϕB(P0), [β

′
2]ϕB(Q0) and XB =

[βx]ϕB(X0). He then publishes its public key (E0, EB , PB , QB , XB), while storing
his secret key (B′, β2, β

′
2, βx).

sEncaps(pkA). Bob computes the isogeny ϕ′B : EA → EAB with kernel ⟨[B/B′]RA⟩,
and computes PAB , QAB = [β2]ϕ

′
B(PA), [β

′
2]ϕ

′
B(QA) and XAB = [β′

x]ϕ
′
B(XA).

15

He then sends the ciphertext ct = (EAB , PAB , QAB) to Alice, while outputting
the shared secret ssB = XAB .

sDecaps(pkB , ct). Alice computes the isogeny Φ with kernel
〈(
[−q]PA, [1/α2]PAB

)
,(

[−q]QA, [1/α
′
2]QAB

)〉
that represents the isogeny ϕ′A : EA → EAB . She outputs

the shared secret ssA = ϕ′A(XB).

5.2 Validating FESTA-like isogenies

Consider a POKE instantiation where Alice computes FESTA isogenies, similarly
to P(O)KE PKE. During the execution of the protocol, she receives two curves EB

and EAB, together with points PB , QB ∈ EB[2
a] and PAB , QAB ∈ EAB[2

a]. To
decrypt, she scales PAB ,QAB by 1/α2 and 1/α′

2 respectively, and then attempts to
compute the isogeny Φ with kernel

〈
([−q]PB , [1/α2]PAB), ([−q]QB , [1/α

′
2]QAB)

〉
.

We identify three possible scenarios:
1. The computation of Φ fails, i.e. the points PB , QB and PAB , QAB, when

scaled appropriately, do not generate the kernel of a two-dimensional isogeny
between products of elliptic curves. In this case, Alice aborts.

2. The computation of Φ succeeds, but the points [1/α2]PAB and [1/α′
2]QAB

are not the images of PB and QB under Φ. The attack against an unprotected
variant of FESTA presented in [MO23] falls into this category. However, this
can be easily checked: once Φ is recovered, it is sufficient to map PB and QB

under Φ and compare the results with scaled PAB and QAB . If they do not
match, Alice aborts.

3. The computation of Φ succeeds, and the points [1/α2]PAB and [1/α′
2]QAB

are the images of PB and QB under Φ. In this case, PAB and QAB must
be honestly generated: since α2 and α′

2 are odd, their inverse modulo 2a is
unique.

Hence, for Alice to protect herself from adaptive attacks, it is sufficient to
evaluate the points PB , QB under the recovered isogeny Φ and check them against
PAB , QAB . If the points PAB , QAB are not the images of PB , QB , scaled by α2, α

′
2,

Alice recognizes the inputs are maliciously generated and aborts. In all other
cases, the input must be honestly generated. Note that Alice is already mapping
XB under Φ to recover the message, so the additional cost of this validation is
minimal.

5.3 Validating uniSIDH-like isogenies

To compute a ciphertext, Bob considers a public key containing a curve EA

and a point RA of order B =
∏t

i=1 pi and computes the isogeny ϕ′B with kernel
⟨[B/B′]RA⟩, for some secret B′ dividing B. If we write the point RA as the sum
of t points of order pi, i.e. RA = RA,1 +RA,2 + · · ·+RA,t, where ordRA,i = pi,
the choice of B′ is equivalent to choosing a subset of the Ri’s that contribute to
the kernel computations. In other words, we have

kerϕ′B = ⟨R∗
A,1, R

∗
A,2, · · · , R∗

A,t⟩ where R∗
A,i =

{
RA,i if pi | B′,

O if pi ∤ B′.

16

Such a construction is easily vulnerable to adaptive attacks, as noted in [BF23]:
if the point Ri is changed (i.e. is not honestly generated), whether the curve
EAB changes as well reveals whether Ri ∈ kerϕ′B . Repeating this process for all t
points Ri reveals the exact value of B′, and thus the secret isogenies ϕ′B and ϕB .

To protect against such attacks, we introduce a new validation method. We
first describe it as an interactive protocol, and later we show how to reduce the
number of interactions so that it can be used in the split-KEM setting.

The validation approach relies on the fact that a malicious participant who
produces a maliciously generated public key cannot, in most cases, easily de-
capsulate a ciphertext encrypted with that public key. Our solution to validate
a public key is thus to generate several ciphertexts with different ephemeral
encapsulation keys, and ask the public key owner to produce the decapsulation
output. If the process is repeated for sufficiently many encapsulation keys, the
decapsulator can respond with the correct message only if the public key is
honestly generated. Note that a similar approach was proposed, in the context of
SIDH, in [AJL17] as k-SIDH. In k-SIDH, however, the goal was to build a NIKE:
hence, the multiple exchanges were between static keys and thus required a very
large number of interactions. In our case, the exchanges are between ephemeral
keys (the validation method can be interpreted as a static-ephemeral version of
k-SIDH), and thus the number of interactions is much smaller.

Remark 9. A decapsulation public key also contains two points PA, QA of order
2a, which are mapped by Bob under ϕ′B and scaled by values β2, β′

2. These points
do not interact with Bob’s secret key in any meaningful way and thus cannot be
used to actively attack Bob’s secret key.

The interactive validation technique. Let us assume that a malicious Alice has
generated a public key (EA, RA), where all but one points are honestly generated
(this is the most advantageous scenario for the attacker). In other words, if we
write the points R0 on E0 and RA on EA as the sum

Rk = Rk,1 +Rk,2 + · · ·+Rk,t, where k ∈ {0, A} and ordRk,i = pi,

we have that for all i ∈ [t] \ {j}, we have ϕA(R0,i) = [αi]RA,i, for some αi ∈ Z∗
B .

Bob now generates an ephemeral secret isogeny ϕ̃B : E0 → ẼB and pro-
duces both an encapsulation public key (ẼB , P̃B , Q̃B , X̃B) and a ciphertext
(ẼAB , P̃AB , Q̃AB), obtained using the ephemeral encapsulation public key and
the decapsulation public key to validate.

If the point R0,j is not in the kernel of ϕ̃B, then the maliciously generated
point RA,j is not in the kernel of ϕ̃′B , and thus Alice can easily decapsulate the
ciphertext. On the other hand, if the point R0,j is in the kernel of ϕ̃B , then the
curve ẼBA (computed by Bob) is not the same as the codomain ẼAB of ϕ̃′A (the
pushforward of ϕA under ϕ̃B), which prevents Alice from computing the point
X̃AB . However, since only RA,j is maliciously generated, the isogeny ϕ̃′B deviated
only by one pj-isogeny, and hence the curves ẼAB and ẼBA are p2j -isogenous.

17

This means that Alice can still recover the point X̃AB by computing a p2j -isogeny
from ẼAB and mapping X̃AB under it: with probability (pj(pj + 1))−1 (i.e. the
probability of having guessed ẼBA correctly), the resulting point will be the
correct message.

For reasonably-sized parameters, the probability of Alice successfully decap-
sulating the ciphertext is much higher than 2−λ. To obtain the desired security
level, Bob can repeat the process with multiple ephemeral keys, and ask Alice to
decapsulate the resulting ciphertexts. If the process is repeated k times and all k
ephemeral keys use the malicious point RA,j , Alice can correctly decapsulate all
ciphertexts only if all k guesses are correct (she has no way to check whether a
single ciphertext was correctly decapsulated); she thus responds correctly only
with probability (pi(pi + 1))−k.

However, if the k ephemeral keys are generated completely at random, the
probability of a key using a given point is only 1/2, so the success probability of
Alice may be much higher. To avoid this, Bob generates the ephemeral keys in
such a way that, for all i ∈ [t], exactly k/2 keys use the point R0,i and k/2 keys
do not.6 In this way, the best strategy for a malicious Alice is to guess which
k/2 public-key/ciphertexts pairs use the malicious point RA,j (the probability of
guessing correctly is 1/

(
k

k/2

)
), and guessing the curves ẼAB for those k/2 cases.

Hence, the probability of Alice successfully decapsulating all k ciphertexts is
at most (

k

k/2

)−1

· (p1(p1 + 1))−k/2,

where p1 is the smallest prime diving B. This introduces a trade-off between the
number of repetitions and the smallest prime p1. If, for instance p1 is chosen to
be p1 = 929, only k = 12 repetitions are sufficient to guarantee that Alice can
decapsulate all ciphertexts with probability at most 2−128, while if p1 = 149,
k = 16 repetitions are required. Note that while this validation method still require
to rerun the encapsulation/decapsulation protocol multiple times, the number
of repetitions is more than an order of magnitude smaller than the number of
repetitions required in proofs of public-key correctness [DDGZ22,MJ24]. Moreover,
our validation method allows us to keep the degree q(2a − q) secret, which is
needed for the security of the split KEM. We summarize the validation protocol
in Protocol 10.

Protocol 10. The protocol involves a prover P and a verifier V, and it relies on
a repetition parameter k. The protocol defines public parameters p = 2aBf − 1,
where B =

∏t
i=1 pi is the product of t small primes and f is a cofactor, and

(E0, P0, Q0, R0, X0), where E0 is a supersingular elliptic curve defined over Fp2 ,
and ⟨P0, Q0⟩ = E0[2

a], X0 ∈ E0[x], and R0 ∈ E0[B] are points of full order.

6 This can be achieved by generating t binary strings of length k with precisely k/2
ones and k/2 zeros: if the i-th entry in the j-th string is a one, the j-th ephemeral
key will use point Ri. This guarantees that any single ephemeral key, if considered
individually, is uniformly distributed, while also keeping the desired property.

18

The prover wants to prove that their public key pkP = (EP, PP, QP, RP, XP)
contains honestly generated points RP and XP, i.e. RP = [ρB]ϕP(R0) and XP =
[ρx]ϕP(x0), where ρB , ρx ∈ Z∗

2a × Z∗
x and ϕP is an isogeny from E0 to EP of

degree at most 22aC, where C < 2λ/k.

Challenge. The verifier repeats the following actions for each i ∈ [k]7:

1. Sample a random uniSIDH isogeny ϕV : E0 → EV with kernel ⟨[B/B′]R0⟩,
for a random integer B′ dividing B.

2. Compute the parallel isogeny ϕ′V : EP → EPV with kernel ⟨[B/B′]RP⟩.
3. Samples random values ν2, ν′2, νx ∈ Z∗

2a × Z∗
2a × Z∗

x.
4. Compute PV, QV = [ν2]ϕV(P0), [ν

′
2]ϕV(Q0).

5. Compute PPV, QPV = [ν2]ϕ
′
V(PP), [ν

′
2]ϕ

′
V(QP).

6. Compute XV, XPV = [νx]ϕV(X0), [νx]ϕ
′
V(XP).

7. Sets challi =
(
(EV, PV, QV, XV), (EPV, PPV, QPV)

)
and rspi = XPV.

The verifier sends the sets of challenges {challi}{i∈[k]} to the prover P.

Response. For each challi =
(
(EV, PV, QV, XV), (EPV, PPV, QPV)

)
, the prover

uses PV, QV and PPV, QPV to recover the pushforward ϕ′P : EV → EPV of ϕP under
the isogeny ϕV : E0 → EV, and computes ˜rspi = [ρx]ϕ

′
P(XV). The responder

checks that PPV, QPV are the images of PV, QV under ϕ′P: if not, they abort. The
prover sends the sets of responses { ˜rspi}{i∈[k]} to the verifier V.

Verification. The verifier outputs valid if rspi = ˜rspi for all i ∈ [k], otherwise
they output invalid.

Saving one round of communication. The validation technique presented so far is
inherently interactive: Bob sends several ephemeral public keys and ciphertexts to
Alice, and she responds with their decapsulation. In the context of a split KEM,
this would increase the rounds of interaction from one to three: one for Bob’s
ephemeral encapsulation, one for Alice’s response, and—if she passes verification—
one for sending the ciphertext encapsulated with the long-term key. However,
Bob verification only consists of an equality check, which we can exploit to reduce
the number of rounds.

Let ct be the ciphertext encapsulated under Bob’s long-term key, and let
(c̃t1, · · · , c̃tk) be the verification ciphertexts encapsulated under ephemeral keys.
Let also K̃1, · · · , K̃k be the shared secrets associated with verification cipher-
texts. Bob computes the value K = H(K̃1∥ · · · ∥K̃k) (where H is a hash func-
tion) and encrypts the ciphertext ct with an IND-CPA-secure symmetric en-
cryption (KeyGensym,Encsym,Decsym) scheme using K as key. He then sends
(Encsym

K (ct), (c̃t1, · · · , c̃tk)) to Alice. An honest Alice can compute K and obtain
the ciphertext ct, while a malicious one cannot efficiently compute K, which fully
hides ct.
7 For ease of notation, we drop the i-th marker from each element, but the isogenies
ϕV , ϕ

′
V , the scaling values B′, ν2, ν

′
2, νx, and all the computed points vary across each

iteration.

19

When validating the inputs of FESTA-like isogenies, the validation method is
perfectly correct: any input that is not honestly generated is detected. In this case,
however, the validation offers only computational guarantees. We thus formalize
the security of the validation method with the following game and assumption.

Game 11 (uniSIDH validation). Let p = 2aBf − 1 be a prime, where
B =

∏t
i=1 pi is the product of t small primes, and f is a cofactor. Let E0 be

the supersingular elliptic curve defined over Fp2 , and let ⟨P0, Q0⟩ = E0[2
a],

X0 ∈ E0[x], and R0 ∈ E0[B] be protocol parameters of POKEFESTA,uniSIDH.
Lastly, let (KeyGen,Enc,Dec) be the PKE protocol P(O)KE instantiated with
POKEFESTA,uniSIDH.

The game takes place between a challenger and an adversary A, and it
proceeds as follows:

1. The adversary A outputs a public key pkA = (EA, PA, QA, RA, XA).
2. The challenger:

(a) Samples a random bit b← {0, 1}.
(b) Generates k keys {pki, ski ← sKeyGenenc()}i∈[k],
(c) Computes k encapsulations

{
cti, ss0i ← sEncaps(pkA, ski)

}
i∈[k]

,
(d) Samples k random values

{
ss1i

}
i∈[k]

in the space of shared secrets,
(e) Responds

(
(ct1, · · · , ctk), (ssb1, · · · , ssbk)

)
to A.

3. The adversary A outputs a bit b′.

The adversary A wins if b = b′.

Assumption 12 (uniSIDH validation). For any PPT adversary A that wins
the uniSIDH validation game with non-negligible probability, there exists a PPT
“extractor” Ā that, given the same input as A, outputs ϕA : E0 → EA such that
ϕA(P0), ϕA(Q0), ϕA(X0), and ϕA(R0) are respectively equal to PA, QA, RA,
and XA, up to scalars, and deg ϕA < 22aC, where C < 2λ/k.

The previous assumption relies on an isogeny whose degree is bounded. If
deg ϕA < 22a, this corresponds to the honest case. However, we have to extend
the bound to include a constant C, bounded by 2λ/k. That is because an attacker
may compute an isogeny slightly longer than 22a, say 22ac: then, they may still
win Game 11 by guessing enough the translation of such a longer isogeny. If they
behave honestly elsewhere, this happens with an advantage of 1/ck.

More fundamentally, the assumption is stated in terms of an extractor, sim-
ilarly to the knowledge-of-exponent assumptions [BP04], to capture the fact
the adversary is free to produce any public key and can easily win Game 11
if the public key is honestly generated. To obtain a more limited assumption
that does not rely on an extractor, we could assume the attacker is algebraic,
i.e. it produces an isogeny from E0 to EA; in that case, assuming the adversary
has negligible advantage in winning Game 11 would be a better assumption.
However, no formalization of algebraic adversaries for non-group-action isogenies
is reported in the literature, and thus we leave this as future work.

20

6 A two-round verifiable OPRF: POKE-OPRF

We present a two-round verifiable OPRF protocol based on POKE. The high-level
design follows that of the OPRFs presented in [BKW20,Bas23]. In all construc-
tions, the client hashes the input m to a curve Em, computes a blinding isogeny
ϕb : Em → Emb, and sends Emb, together with the appropriate torsion points
and a proof of their validity, to the server. The server responds by computing
an isogeny ϕS : Emb → EmbS associated with its private key, and responds with
EmbS , together with the torsion information needed for the client to “undo” the
effect of the blinding isogeny and obtain the curve EmS .

Our OPRF, however, crucially differs in two ways from previous protocols:
our construction replaces the underlying key exchange from SIDH and M-SIDH
to a POKE-based construction where the two parties compute FESTA and
uniSIDH isogenies. This reduces the size of the underlying prime when compared
to [Bas23] (by more than 6 times), leading to a much more compact and efficient
protocol. More importantly, using a POKE-based construction allows us to use
the validation method proposed in Section 5.3 to prevent active attacks on the
server’s long-term key. While such a method requires to run k instances of POKE
in parallel (with k ≈ 12, for λ = 128), it replaces the very expensive proof
of isogeny knowledge that was used in [BKW20,Bas23]. These proofs require
repeating the underlying key exchange computations between 219 and 486 times
(also for λ = 128); thus, our construction reduces the computations needed (and
the communication cost) by more than an order of magnitude.

6.1 The OPRF protocol

The protocol proceeds as follows. Fixed a prime p of the form p = 2aSf−1, where
S =

∏t
i=1 pi is the product of t small primes8 and f is a cofactor, denote with E0

the curve with j-invariant 1728. Let P0, Q0 be a deterministically generated basis
of E0[2

a] (for instance, using the algorithms from [PDJ21]), and let R0 and X0 be
a deterministically generated points on E0 of order S and x, respectively. Since
the points are deterministically generated, they can be considered as randomly
chosen, and thus the backdoor attack introduced by [CV23] does not apply.

The server generates a public key by sampling a random uniSIDH isogeny
ϕS : E0 → ES and revealing its action on the 2a-torsion, scaled under a diagonal
matrix.

The client, to evaluate the OPRF on an input m, hashes the input m to a
prime degree q such that 2a− q is also prime.9 They then proceed to compute an
isogeny ϕm : E0 → Em of degree q, dependent exclusively on the input m, and a

8 The value S is the same as B in the split KEM; however, in the OPRF protocol, it is
associated with the degree of the isogenies computed by the server. Thus, for clarity,
is renamed S.

9 The primality of 2a − q does not seem to be a strict requirement for security, but it
adds an additional layer of security (a malicious server cannot guess the last steps of
ϕb), and it simplifies the security argument, especially for the verifiable version.

21

random isogeny ϕb : Em → Emb of degree 2a − q (see Remark 14 for a discussion
on how to compute this step). The client then reveals the curve Emb to the server,
together with the action of ϕb ◦ ϕm on the 2a-torsion, scaled under a diagonal
matrix, and on the points R0 and X0, scaled under independent scalars.

The server computes its response by translating the secret isogeny ϕS under
ϕb ◦ ϕm using the image of R0 to obtain ϕ′S : Emb → EmbS . Its response then
consists of the curve EmbS , together with its action on the 2a-torsion, scaled
under the same diagonal matrix used during key generation. However, the server
needs to first check that the client’s query is honest: to do so, it uses the validation
method proposed in Protocol 10. In particular, it samples k ephemeral uniSIDH
isogenies ϕS,i : E0 → ES,i, computes their parallel isogeny ϕ′S,i : Emb → EmbS,i

under ϕb ◦ ϕm, and sends the client the curves ES,i, EmbS,i, together with the
action of ϕS and ϕ′S on the 2a-torsion, scaled under the same diagonal matrix,
and the scaled action of ϕS on X0. The server then computes the point XmbS,i as
the scaled image of Xmb (the image of X0 on Emb revealed by the client); it then
encrypts its response under a symmetric encryption scheme with a key derived
by all XmbS,i, and sends the ciphertext to the client.

If the client has been honest, they can compute the points XmbS,i given the
information revealed by the server (see Protocol 10): with that information, they
can decrypt the symmetric ciphertext and obtain the response curve EmbS and
the scaled action of ϕ′S on the 2a-torsion. Given the images of the 2a-torsion on
ES and EmbS have been scaled by the same matrix, the client can rely on them to
recover a representation of the isogenies ϕ′m : ES → Eout and ϕ′b : Eout → EmbS

(see the Decryption algorithm of Protocol 2), which allows them to undo the
effect of the blinding isogeny and obtain the curve Eout. The OPRF output is
then the hash of the server’s public key, the input message, and the j-invariant
of Eout. The protocol is formalized in Protocol 13.

Protocol 13 (POKE-OPRF). The protocol takes place between a client and
a server. The protocol relies on three hash functions, dependent on the parameters
generated during the setup phase:

– Hm, fromM, the space of inputs of the OPRF, to the set of isogenies from
E0 of order q, such that q and 2a − q are prime;

– Hchall, from Ck to {0, 1}λ, where C is the space of challenges using in Prot. 10;
– Hout, from S ×M× Fp2 to {0, 1}λ, where S is the space of public keys.

Setup: The setup phase determines a prime p of the form p = 2aSf − 1, where
S =

∏t
i=1 pi is the product of t small primes, and f is a cofactor. The setup

also fixes x to be a large prime diving p − 1, and k to be an integer denoting
the number of iterations used for verification. The curve E0 then denotes the
supersingular elliptic curve with j-invariant 1728. The setup also deterministically
generates the basis P0, Q0 of E0[2

a] and the points R0 and X0 on E0 of order S
and x, respectively.

KeyGen: The server generates a secret key skS = S′, where S′ is a random divisor
of S, and computes the isogeny ϕS : E0 → ES with kernel ⟨[S/S′]R0⟩. It samples

22

scaling values β2, β′
2 ∈ Z∗

2a × Z∗
2a , and it sets PS , QS = [β2]ϕS(P0), [β

′
2]ϕS(Q0).

It then publishes its public key pkS = (E0, ES , PS , QS).

ClientReq: To evaluate the OPRF on an imput m ∈M, the client:

1. Generate (ϕm : E0 → Em)← Hm(m) and set q = deg ϕm;
2. Sample a random isogeny ϕb : Em → Emb of degree 2a − q;
3. Sets ϕmb : E0 → Emb as the composition ϕb ◦ ϕm;
4. Samples random values α2, α

′
2, αS , αx ∈ Z∗

2a × Z∗
2a × Z∗

B × Z∗
x;

5. Sets Pmb, Qmb = [α2]ϕmb(P0), [α
′
2]ϕmb(Q0);

6. Sets Rmb = [αS]ϕmb(R0) and Xmb = [αx]ϕmb(X0);
7. Sends req = (Emb, Pmb, Qmb, Rmb, Xmb) to the server.

BlindEval: After receiving the client’s request (Emb, Pmb, Qmb, Rmb, Xmb), the
server:

8. Computes the isogeny ϕ′S : Emb → EmbS with kernel ⟨[S/S′]Rmb⟩;
9. Computes PmbS , QmbS = [β2]ϕ

′
S(Pmb), [β

′
2]ϕ

′
S(Qmb);

10. Sets rsp = (EmbS , PmbS , QmbS);
11. Computes k pairs (rspi, challi) as in the Challenge algorithm of Protocol 10;
12. Computes K = Hchall(rsp1∥rsp2∥ . . . ∥rspk);
13. Encrypts rsp under K to obtain CT = Encsym

K (rsp);
14. Sends (CT, (chall1, . . . , challk)) to the client.

Finalize: After receiving the server’s response (CT, (chall1, . . . , challk)), the client:

15. Computes k responses rspi as in the Response algorithm of Protocol 10;
16. Computes K = H(rsp1∥rsp2∥ . . . ∥rspk);
17. Decrypts CT with key K to obtain rsp, i.e. rsp = Decsym

K (CT);
18. Parses the responses rsp as (EmbS , PmbS , QmbS);
19. Computes Φ : ES ×EmbS → E0

out ×E1
out with kernel

〈(
[−q]PS , [1/α2]PmbS

)
,(

[−q]QS , [1/α
′
2]QmbS

)〉
;

20. If the computation of Φ fails, the client outputs ⊥;
21. Sets Eout as the curve in {E0

out, E
1
out} that is (2a − q)-isogenous to EmbS ;10

22. Writes ϕ′mb : ES → EmbS as the q(2a − q)-isogeny represented by Φ;
23. Checks that PmbS , QmbS = ϕ′mb(PS), ϕ

′
mb(QS), and outputs ⊥ if not;

24. Outputs Hout(pkS ,m, j(Eout));

The OPRF in Protocol 13 is correct: the output produced by Finalize depends
only on the input m and the server’s secret key S′, and it is independent of
the choice of blinding isogeny ϕb. This is because the output of Finalize depends
on pkS , which deterministically depend only on the server’s secret key S′, the
input m, and Eout. By construction, this curve is isomorphic to the codomain of
10 Concretely, this is achieved by mapping PmbS and QmbS under Φ and checking

their pairing. Write P 0
out, P

1
out = Φ(OES , PmbS) and Q0

out, Q
1
out = Φ(OES , QmbS): if

e2a(P
i
out, Q

i
out) = e2a(PmbS , QmbS)

q, the curve Ei
out is q-isogenous to EmbS .

23

the isogeny ϕmS : E0 → E0/⟨[S/S′]R0, kerϕm⟩, so it depends exclusively on S′

and m. In other words, if we define Eval(m,S′) to be the function that outputs
Hout

(
pkS ,m, j

(
E0/⟨[S/S′]R0, kerϕm⟩

))
, where ϕm is computed as in lines 1-2

of ClientReq, we have that

Finalize(BlindEval(skS ,ClientReq(pkS ,m))) = Eval(skS ,m),

for any parameters produced by Setup, for any server public and secret key
(pkS , skS), and for any input m ∈M.

Remark 14. To compute their request, the client needs to compute a deterministic
(on the input m) isogeny of degree q and a random isogeny of degree 2a − q
(Lines 1 and 2 of Protocol 13). This cannot be computed with an approach
similar to Algorithm 2: directly generating an isogeny of degree q(2a − q) and
splitting it into its components would require both isogenies to depend on m or
be randomly sampled. Generating two distinct isogenies of degree q and 2a − q
from E0 is possible with Algorithm 2, but there is no simple way to compute the
pushforward of one under the other to obtain an isogeny of degree q(2a− q) from
E0. While we leave as an open problem whether a QFESTA-like approach (as
that of Algorithm 2) can be adapted to work in this instance, a possible solution
lies in working explicitly over the quaternion side: the client can generate an
ideal Im of norm q dependent on m and a random ideal Ib of norm 2a − q, and
compute the desired isogeny of degree q(2a − q) as the translation from ideal to
isogeny (see [DKL+20, Sec. 8.1] and [DLLW23, Sec. 4.1]) of Im ∩ Ib [DKL+20,
Lemma 3].

Alternatively, we can modify the OPRF protocol to a message isogeny of
degree q(2a − q). After computing the curve Em, the client can sample a random
rational isogeny ϕb : Em → Emb of smooth degree (say 3b, if the prime p is
changed such that 3b | p+ 1), and send the curve Emb to the server. The server
proceeds as in the protocol, but also reveals the action of its secret isogenies
on the 3b-torsion (which remains secure because the degree of all the server’s
isogenies is secret). The client can then recover the isogenies parallel to ϕb ◦ ϕm
by first computing the 3b component (using the 3b-torsion) and then recovering
the q(2a − q) component by using higher-dimensional representations.

The two constructions are very similar, and the analysis and security argu-
ments can be easily adapted from one to the other. We present and analyze the
version of Protocol 13 with message isogeny of degree q and random isogeny of
degree 2a − q to simplify the description and analysis.

Remark 15 (Partial obliviousness). For simplicity, the protocol as presented above
does not support tags, i.e. the protocol is not partially oblivious. It is however
straightforward to extend the protocol to support tags: given a curve E0, chosen
by the server, the client can first hash the tag t to an isogeny ϕt : E0 → Et, and
compute the protocol as described but starting from Et rather than E0.

24

6.2 Verifiability

The OPRF proposed in Protocol 13, considered as a non-verifiable OPRF,
already significantly improves on previous constructions with a similar de-
sign [BKW20,Bas23]: the expensive proof of isogeny knowledge used used to
guarantee the security of the server is replaced with the more efficient validation
method of Protocol 10. However, previous OPRF constructions also relied on
expensive zero-knowledge proofs to achieve verifiability. These proofs guarantee
that the server’s computation are honest, and they also guarantee that the isogeny
is parallel (i.e. it reuses the same secret key) to a previously-committed one.
However, these proofs are very computationally demanding: they often require
computing several hundreds long isogenies by both parties. For instance, the
verifiability proof used in [Bas23], which improves on the proofs used in [BKW20],
requires the server to compute 1314 isogenies of large degree and the client 438
such isogenies. Our construction, however, achieves verifiability for free: the
OPRF of Protocol 13 is already verifiable. To see why, consider that a malicious
server has three avenues to cheat:

1. It can send a maliciously generated response (EmbS , PmbS , QmbS) to the client,
where the curve EmbS is different than the honestly-generated one. However,
in this case, the client’s computation of Φ fails. For the server to succeed
in fooling the the client, the curve EmbS needs to be q(2a − q)-isogenous
to ES (remember that q is secret), and the points PmbS , QmbS need to be
the images of PS , QS under the q(2a − q)-isogeny, after scaling by the secret
values α2, α

′
2, which are only known to the client. This rules out attacks based

on computing a q(2a − q)-isogeny starting from ES , as the probability of Φ
being computable is the same as guessing the two large ephemeral scalars
(α2, α

′
2).

The server could also attempt to generate an honest response EmBS and
guess part of the isogeny that the client recomputes to backtrack it. However,
q was chosen such that 2a − q is also prime: hence, the isogeny computed
by the client has no small factors, and the server cannot guess any factor
isogeny with non-negligible probability.
Note that this also rules out those attacks where the server act ‘honestly’,
but use a different secret key instead. This approach, however, also fails: if
the isogenies ϕS and ϕ′S are not parallel, the curves ES and EmbS are not
q(2a − q)-isogenous and thus the computation of Φ fails. In some sense, our
OPRF replaces the expensive proofs of parallel isogeny with an implicit proof:
since the client’s isogeny is recomputed from its domain and codomain (and
the its action on the 2a-torsion), it provides a proof that the server’s isogeny
ϕ′S is parallel to the isogeny ϕS computed during key generation.

2. The server could generate an honestly computed curve EmbS , but manipulate
the points PmbS , QmbS . However, as argued in Section 5.3, checking that
PmbS , QmbS are the correct images of PS , QS , as done in Line 24 of Protocol 13
is guaranteed to detect malicious points. We note that, even if the server were
able to use malicious points for an adaptive attack, the server would only
learn some partial information on the ephemeral values α2 and α′

2. Unless

25

such information allowed the server to recompute the entire values after only
iteration, such an attack would not be useful in extracting information on
the message m.

3. Lastly, the server could attempt to extract some information on the message
by providing maliciously generated challenges during the verification phase.
However, the analysis of the previous cases also applies here, and together with
the analysis of Section 5.3, it shows that if the server maliciously generates
some of the challenges, the client would detect it and abort.

Hence, the proposed OPRF achieves verifiability without requiring expensive
zero-knowledge proofs or a high number (>λ) of long isogenies computations. To
the best of our knowledge, this is the first isogeny-based OPRF to do so.

6.3 Security

We first prove pseudorandomness. To do so, we need to introduce the following
game and assumption, based [Bas23, Problem 4].

Game 16 (One-more unpredictability). Let E0 denote the supersingular
curve with j-invariant 1728. The game takes place between a challenger and an
adversary A, and it proceeds as follows:

1. The challenger generates (p, k) = Setup().
2. The challenger generates a secret/public key pair (S′, pkS) = KeyGen().
3. The challenger deterministically generates R0 ∈ E0[S].
4. The challenger computes ϕS : E0 → ES with kernel ⟨[S/S′]R0⟩
5. The adversary is given access to the oracle Query(ϕ), which acts as follow:

(a) The oracle checks that the domain of ϕ is E0. If not, return ⊥.
(b) The oracle checks that deg ϕ < 22a+λ/k. If not, return ⊥.
(c) The oracle returns the pushforward (ϕS)∗ϕ

6. The adversary is also given access to the oracle Chall(), which returns a
random isogeny ϕ from E0 of degree q such that 2a − q is also prime.

7. The adversary outputs a list of pairs (ϕ,Eϕ).

We call a pair (ϕi, Ei) correct if ϕi is the output of a Chall query, and Ei is
the output of Query(ϕi). The adversary wins the game if the number of correct
pairs it produces is greater than the number of oracle queries.

Assumption 17 (One-more unpredictability). Every PPT adversary wins
Game 16 with probability negligible in λ.

This game is a translation of [Bas23, Problem 4] from the M-SIDH setting to
the setting of FESTA isogenies, with one notable exception: the oracle, rather
than return just the curve E0/⟨[S/S′]R0, kerϕ⟩, returns the entire isogeny push-
forward of the isogeny ϕm under the isogeny ϕS . However, this change does not
fundamentally affect the hardness of the game: if the isogeny ϕm had smooth
degree, there is a subexponential reduction between the two cases (the reduction
corresponds to the second attack presented in [BKM+21]). Moreover, the attacks

26

proposed in [BKM+21] do not apply here for two reasons: the isogeny ϕm is
irrational, which prevents the attack because it would require the attacker to work
with points that are defined over an exponentially large field; more fundamentally,
each input m corresponds to a different degree of ϕm. This means that, even if
the attacker were able to generate a torsion basis on ES of a certain order, this
would only help them evaluate one message isogeny. For this reason, we believe
that the hardness of Game 16 is significantly greater than the hardness of [Bas23,
Problem 4]. However, the two games also differ in the choice of starting curve E0:
in Game 16, E0 has known endomorphism ring. This, however, does not seem
to give a significant advantage to the adversary. Note that the recent attack on
pSIDH [CII+23], which require knowledge of the endomorphism ring, does not
apply here since the isogeny ϕS has unknown degree.

Theorem 18. The OPFR protocol (Protocol 13) satisfies the POPFR property
(Definition 22), with Hm,Hchall,Hout modeled as random oracles, if

– The one-more unpredictability assumption (Assumption 17) holds,
– The uniSIDH validation assumption (Assumption 12) holds,
– Π = (KeyGensym,Encsym,Decsym) is IND-CPA secure.

Proof. The high-level structure of the proof follows the proof of [ADDG23,
Theorem 2], and it relies on a simulator S that behaves as an honest server,
except when the random oracle is queried on a message and j-invariant pair
(m, jm): in that case, the simulator programs the random oracle to produce the
same output as the Eval function. More precisely, define the following simulator
S:

S.Init() : sample random parameters pp0 = (E0, P0, Q0, R0), sample a random
secret key stS = S′ dividing S, and set pk0 = ⊥.
S.BlindEval(req, stS): return F .BlindEvalpp0

(req, S′), i.e. an honest evaluation of
the OPRF on req with secret key S′.
S.EvalLimitEval((pkS ,m, jm), stS): if the query (m, jm) appears among the pre-
vious queries stored in stS, return the same output. Otherwise, if jm is the
j-invariant of the curve associated with message m and server’s key S′, i.e
jm = FS′(m), query LimitEval(m) and return its output h; if jm ̸= FS′(m),
return a uniformly random value h. In both cases, store the pair ((m, jm), h) in
stS.

The adversary A has access to the OPRF oracles Eval, BlindEval, and Prim.
When S is defined as above, the three oracles behave identically in the cases b = 0
and b = 1, unless the simulator S obtains ⊥ from LimitEval. This only happens
when the number of LimitEval queries exceeds the number of Eval queries, which
means that the adversary has produced n+ 1 valid pairs of OPRF inputs and
outputs (m,FS′(m)) after querying Eval only n times. We call such an event E.

We now show that such an event happens with negligible probability: the one-
more unpredictability assumption guarantees that an adversary cannot generate
n+ 1 valid pairs of OPRF inputs and outputs after n queries if all the queries
are honest. To handle the case of non-honest queries, we rely on the extractor

27

introduced in Assumption 12: when queries are not honestly generated, the
simulator replace its responses with random values. More formally, we introduce
the following games:

Game 0. This is the original game OPFRA,b
OPRF, S, RO, where the simulator S is

defined as above.
Game 1. The simulator S runs the extractor Ā, as defined in Assumption 12.
If the extraction fails, the simulator replaces the responses rspi used in the
validation method with randomly sampled ones.
Game 2. The simulator S runs the extractor Ā, as defined in Assumption 12.
If the extraction fails, the simulator also replaces the response rsp, dependent
on the long-term key, with a randomly sampled one.

Let us write Ei to denote the event E in Game i. Under Assumption 12, the
probability |Pr(E1)− Pr(E0)| is negligible: if it were not, the attacker could rely
on it to distinguish between Game 0 and Game 1. However, the two games cannot
be distinguished with non-negligible probability: they only differ if the extraction
fails, but the extraction failing means the attacker A cannot win Game 16 with
non-negligible probability (by Assumption 12), which in turn means the attacker
cannot distinguish between Game 0 and Game 1.

Similarly, we have |Pr(E2)− Pr(E1)| is negligible: if it were not, the attacker
could rely on it to distinguish between Game 1 and Game 2. But the two games
differ only for the value rsp to be encrypted under a random key K (since the
values rspi have been replaced with random ones in Game 1), and thus any
attacker that can distinguish between Game 1 and Game 2 with non-negligible
probability can also win the IND-CPA game of Π with non-negligible probability.
Lastly, in Game 2, the simulator responds with non-random values only to honest
queries. The probability Pr(E2) is thus exactly the advantage that the attacker
has in winning Game 16, which is negligible by Assumption 17.

⊓⊔

Client’s privacy. We now formally prove the OPRF has client’s privacy when
the server is honest. To do so, we rely on the following game.

Game 19 (Decisional Multi-Instance Scaled Torsion Game). The game
takes place between a challenger and an adversary A, and it proceeds as follows:

1. The challenger generates (p, k) = Setup().
2. The challenger samples a random bit b← {0, 1}.
3. The adversary commits to a curve E.
4. The challenger chooses a basis P,Q of E[2a].
5. The adversary is given access to the oracle O(), which:

(a) Samples two primes q0, q1 such that 2a − q0 and 2a − q1 are also prime.
(b) Samples two random isogenies ϕi : E → Ei of order qi, for i ∈ {0, 1}.
(c) Samples two random isogenies ψi : Ei → E∗

i of order 2a−qi, for i ∈ {0, 1}.
(d) Computes P ∗

0 , Q
∗
0 = [β0]ψ0ϕ0(P), [β

′
0]ψ0ϕ0(Q), for β0, β′

0 ←$ (Z∗
2a)

2.
(e) Computes P ∗

1 , Q
∗
1 = [β1]ψ1ϕ1(P), [β

′
1]ψ1ϕ1(Q), for β1, β′

1 ←$ (Z∗
2a)

2.

28

(f) Deterministically generates points Ri of order S on Ei.
(g) Computes R∗

0, R
∗
1 = [α0]ψ0(R0), [α1]ψ1(R1), for α0, α1 ←$ (Z∗

S)
2.

(h) Returns
(
(ϕ0, ϕ1), (E

∗
b , P

∗
b , Q

∗
b , R

∗
b), (E

∗
1−b, P

∗
1−b, Q

∗
1−b, R

∗
1−b)

)
.

6. The adversary outputs a bit b̃.

The adversary wins the game if b = b̃.

Assumption 20 (Decisional Scaled Torsion). Every PPT adversary wins
Game 19 with probability negligible in λ.

Theorem 21. The OPFR protocol (Protocol 13) satisfies the OPRIV1A,b
OPRF, RO

property (Definition 23), with H0,H1,Hout modeled as random oracles, if the
Decisional Scaled-Torsion assumption (Assumption 20) holds.

Proof. Assume that there exists an adversary A that wins the OPRIV1A,b
OPRF, RO

game with non-negligible advantage. We show we can use A to build an adversary
B that wins Game 19 with the same advantage. The adversary B runs A as a
subroutine, and it simulates the random oracle for A. B starts by generating
public parameters and an OPRF server’s secret and public key sk, pk and passes
everything to the adversary A. Whenever A queries the Run oracle on m0,m1

in the OPRIV1A,b
OPRF, RO game, B queries the O oracle in Game 19 to obtain(

(ϕ0, ϕ1), (E
∗
0 , P

∗
0 , Q

∗
0, R

∗
0), (E

∗
1 , P

∗
1 , Q

∗
1, R

∗
1)
)
. It then programs the random oracle

such that Hm(mi) = ϕi. These values are exactly two pairs of blinded and
unblinded OPRF requests: since B knows the secret sk, for both requests it can
compute both the response rspi to blinded requests and the response to the
unblinded request, which is the same as the output of OPRF.Finalize(rspi). B then
sends these values to A: if A wins the OPRIV1A,b

OPRF, RO game with non-negligible
advantage, the same output b wins Game 11 with the same advantage

To show the OPRF has client’s privacy when the server is malicious, we
need to show that whenever the server deviates from honest computations, the
client can detect it and abort. While the analysis of Section 6.2 provides some
justification, we leave formalizing the necessary assumptions and proving the
corresponding theorem as future work.

6.4 Results

For λ = 128, we choose a = 136. Since we choose q to be a random prime of a bits
such that 2a−q is also prime, choosing a slightly larger than λ guarantees enough
entropy in the choice of q. We select S to be the product of t = λ consecutive
primes, starting from p1 = 929. This corresponds to a repetition parameter
k = 12 and a prime p of about 1541 bits. We remark that changing p1 (and
consequently k) introduces a trade-off between the computation time of the client
and the computation time of the server: the larger p1 is, the longer the server
takes to compute its secret isogenies, but larger p1’s also mean smaller k’s (hence
fewer repetitions), which speeds up the client’s computation. However, larger p1
also increases the size of the underlying prime, slowing down all computations

29

and increasing the communication cost of the protocol. The optimal trade-off
thus depends on the specific use case and depends on an accurate timing of all
the operations involved in the protocol. The server’s public key and the client’s
request are a single curve and points on the curve, which can be efficiently
represented (without the more expensive compression) in 6 log p bits, or 1156
bytes with the proposed parameters. The server’s response includes 2k curves
and points for the verification and one curve and point for the response. In total,
this amounts to 28.9 kB.

We also developed a proof-of-concept implementation of all the building
blocks11 of the OPRF protocol in SageMath [The24], relying on the implementa-
tion of two-dimensional isogenies proposed in [DMPR23]. The implementation,
for simplicity, uses a rational point X for verification, does not implement the
symmetric-key encryption protocol, but also avoids several optimizations. The
timings should thus be interpreted as an upper bound, and we expect that a more
optimized implementation would be significantly faster. In particular, we expect
that switching from SageMath to a low-level implementation would provide a
speed-up of more than an order of magnitude. With the parameters proposed
above, the implementation, when running on an Apple M1 PRO CPU, takes 5.3
seconds for the server’s key generation, 17.7 seconds for the client’s request, and
130.7 seconds for the server’s response. However, the response can be heavily
parallelized: with 24 cores, the running time decreases to 10.3 seconds. The
client’s final computation takes 10.9 seconds.

Comparison with previous constructions. The more direct comparison is
with the OPRF by Basso [Bas23], since the two constructions share a similar
high-level design: our OPRF is significantly more compact (about 278× smaller
in bandwidth) and vastly more efficient. While the author does not provide a
detailed analysis of the performance of the OPRF, the protocol requires comput-
ing more than 1700 large-degree isogenies where log p ≈ 8868: our construction,
conversely, requires computing only 40 isogenies of smaller degree and with a
prime characteristic that is 5.7× smaller. Moreover, our construction improves on
the construction by Basso by not needing a trusted setup. Other isogeny-based
OPRFs have been proposed based on CSIDH in [HHM+23], which fixed and
improved an older construction [BKW20, §8], and in [dSGP23]. The first construc-
tion [HHM+23], called OPUS, is not round-optimal nor verifiable, and it requires
computing ≈3λ isogenies, and thus is expected to have a higher computational
cost. The communication cost is also higher, as the client communicates 66 kB
and the server sends 131.6 kB of data. The second construction [dSGP23] is
round-optimal and verifiable, but it requires computing ≈8λ isogenies and com-
municating ≈68 kB of data (when instantiated with p = 2048; with p = 4096 the
bandwidth becomes ≈135 kB). Thus, our construction significantly outperforms

11 In the implementation, the client’s request does not randomize the blinding isogeny
as discussed in Remark 14; the results may thus slightly underestiamte the request
time.

30

all isogeny-based OPRFs proposed so far, both in terms of communication and
computational costs.

If we extend our comparison to non-isogeny-based protocols, the only post-
quantum OPRFs reported in the literature that are secure against malicious clients
are due to Albrecht, Davidson, Deo, and Smart [ADDS21], Albrecht, Davidson,
Deo, and Gardham [ADDG23], and Faller, Ottenhues, and Ottenhues [FOO23].
The first construction [ADDS21] is possibly the first proposed post-quantum
OPRF, but it is highly inefficient (it requires >128 GB of communication). The
second construction is based on a homomorphic-encryption evaluation of the
Crypto Dark Matter PRF, and it is significantly more efficient, especially when
batched. The most expensive computation, the server’s blind evaluation, requires
7 seconds, which reduces to 151 ms when run on a 64-core machine. However, this
may (or may not, see [ADDG23, Sec. 1.3 and 6.1]) underestimate the real cost by
an order of magnitude. This uncertainty, together with the lack of an optimized
implementation of our OPRF, makes a direct performance comparison hard.
However, the communication cost (>41 MB, for both verifiable and non-verifiable
variants) is still significantly higher than our construction. Lastly, the third
construction [FOO23] is based on a garbled-circuit evaluation of an AES circuit.
It is not round-optimal nor verifiable, but achieves running times of around 47
ms. However, the communication cost is still much higher than our construction,
at 4.7 MB.

7 Conclusion

We introduced a framework to work with isogenies represented by higher-
dimensional isogenies, and we used this framework to propose three new protocols.
The first is a PKE that outperforms all previous isogeny-based PKEs in terms
of computational cost, while also being one of the most compact post-quantum
PKEs. The second is a split KEM that could be used to instantiate a post-
quantum version of the Signal X3DH protocol; its adaptive security is based
on a novel technique to validate public keys. The third construction is a round-
optimal verifiable OPRF, based on the split KEM and its validation method. The
OPRF is significantly more efficient than all previous isogeny-based OPRFs, and
competitive in terms of running time with other post-quantum OPRFs, while
being significantly more compact. This may provide one of the first practical
post-quantum OPRFs, at least for applications that tolerate longer running times.

However, these are but just three applications of the POKE framework. Being
able to manipulate irrational isogenies is an important tool that opens up new
possibilities, and we expect that the POKE framework will be used to develop
new cryptographic protocols and applications. In future work, we aim to explore
more of this applications, as well as develop optimized implementations of the
proposed constructions to better understand and compare their performance.

31

7.1 Acknowledgments.

The author has been supported in part by EPSRC via grant EP/R012288/1,
under the RISE (http://www.ukrise.org) programme, and by the Swiss National
Science Foundation through grant no. 213766, CryptonIs. The author would also
like to thank Antonio Sanso for discussions on the use of higher-dimensional
isogenies in OPRFs.

References

ADDG23. Martin R. Albrecht, Alex Davidson, Amit Deo, and Daniel Gardham.
Crypto dark matter on the torus: Oblivious PRFs from shallow PRFs
and FHE. Cryptology ePrint Archive, Report 2023/232, 2023. https:
//eprint.iacr.org/2023/232. 27, 31, 37

ADDS21. Martin R. Albrecht, Alex Davidson, Amit Deo, and Nigel P. Smart.
Round-optimal verifiable oblivious pseudorandom functions from ideal
lattices. In Juan Garay, editor, PKC 2021, Part II, volume 12711 of
LNCS, pages 261–289. Springer, Heidelberg, May 2021. doi:10.1007/
978-3-030-75248-4_10. 31

AJL17. Reza Azarderakhsh, David Jao, and Christopher Leonardi. Post-
quantum static-static key agreement using multiple protocol instances.
In Carlisle Adams and Jan Camenisch, editors, SAC 2017, volume
10719 of LNCS, pages 45–63. Springer, Heidelberg, August 2017. doi:
10.1007/978-3-319-72565-9_3. 17

Bas23. Andrea Basso. A post-quantum round-optimal oblivious PRF from
isogenies. Cryptology ePrint Archive, Report 2023/225, 2023. https:
//eprint.iacr.org/2023/225. 21, 25, 26, 27, 30

BCC+23. Andrea Basso, Giulio Codogni, Deirdre Connolly, Luca De Feo,
Tako Boris Fouotsa, Guido Maria Lido, Travis Morrison, Lorenz Panny,
Sikhar Patranabis, and Benjamin Wesolowski. Supersingular curves
you can trust. In Carmit Hazay and Martijn Stam, editors, EURO-
CRYPT 2023, Part II, volume 14005 of LNCS, pages 405–437. Springer,
Heidelberg, April 2023. doi:10.1007/978-3-031-30617-4_14. 39

BF23. Andrea Basso and Tako Boris Fouotsa. New SIDH countermeasures for
a more efficient key exchange. In Jian Guo and Ron Steinfeld, editors,
Advances in Cryptology – ASIACRYPT 2023, pages 208–233, Singapore,
2023. Springer Nature Singapore. 2, 3, 4, 5, 12, 14, 17, 39

BFG+20. Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and
Douglas Stebila. Towards post-quantum security for Signal’s X3DH
handshake. In Orr Dunkelman, Michael J. Jacobson Jr., and Colin
O’Flynn, editors, SAC 2020, volume 12804 of LNCS, pages 404–430.
Springer, Heidelberg, October 2020. doi:10.1007/978-3-030-81652-0_
16. 3, 5, 14

BKM+21. Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit, and
Antonio Sanso. Cryptanalysis of an oblivious PRF from supersingu-
lar isogenies. In Mehdi Tibouchi and Huaxiong Wang, editors, ASI-
ACRYPT 2021, Part I, volume 13090 of LNCS, pages 160–184. Springer,
Heidelberg, December 2021. doi:10.1007/978-3-030-92062-3_6. 15,
26, 27

32

http://www.ukrise.org
https://eprint.iacr.org/2023/232
https://eprint.iacr.org/2023/232
https://doi.org/10.1007/978-3-030-75248-4_10
https://doi.org/10.1007/978-3-030-75248-4_10
https://doi.org/10.1007/978-3-319-72565-9_3
https://doi.org/10.1007/978-3-319-72565-9_3
https://eprint.iacr.org/2023/225
https://eprint.iacr.org/2023/225
https://doi.org/10.1007/978-3-031-30617-4_14
https://doi.org/10.1007/978-3-030-81652-0_16
https://doi.org/10.1007/978-3-030-81652-0_16
https://doi.org/10.1007/978-3-030-92062-3_6

BKW20. Dan Boneh, Dmitry Kogan, and Katharine Woo. Oblivious pseu-
dorandom functions from isogenies. In Shiho Moriai and Huaxiong
Wang, editors, ASIACRYPT 2020, Part II, volume 12492 of LNCS,
pages 520–550. Springer, Heidelberg, December 2020. doi:10.1007/
978-3-030-64834-3_18. 21, 25, 30

BMP23. Andrea Basso, Luciano Maino, and Giacomo Pope. Festa: Fast encryption
from supersingular torsion attacks. In Jian Guo and Ron Steinfeld,
editors, Advances in Cryptology – ASIACRYPT 2023, pages 98–126,
Singapore, 2023. Springer Nature Singapore. 2, 4, 7, 12, 14, 39

BP04. Mihir Bellare and Adriana Palacio. The knowledge-of-exponent as-
sumptions and 3-round zero-knowledge protocols. In Matthew Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 273–289. Springer,
Heidelberg, August 2004. doi:10.1007/978-3-540-28628-8_17. 20

BS20. Xavier Bonnetain and André Schrottenloher. Quantum security anal-
ysis of CSIDH. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part II, volume 12106 of LNCS, pages 493–522. Springer,
Heidelberg, May 2020. doi:10.1007/978-3-030-45724-2_17. 13

CCSCD+23. Fabio Campos, Jorge Chavez-Saab, Jesús-Javier Chi-Domínguez, Michael
Meyer, Krijn Reijnders, Francisco Rodríguez-Henríquez, Peter Schwabe,
and Thom Wiggers. Optimizations and practicality of high-security
csidh. Cryptology ePrint Archive, Paper 2023/793, 2023. https://eprint.
iacr.org/2023/793. URL: https://eprint.iacr.org/2023/793. 13, 14

CD23. Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part V, volume 14008 of LNCS, pages 423–447. Springer, Heidelberg,
April 2023. doi:10.1007/978-3-031-30589-4_15. 1, 11, 12, 15, 40

CII+23. Mingjie Chen, Muhammad Imran, Gábor Ivanyos, Péter Kutas, Antonin
Leroux, and Christophe Petit. Hidden stabilizers, the isogeny to endo-
morphism ring problem and the cryptanalysis of psidh. In Jian Guo and
Ron Steinfeld, editors, Advances in Cryptology – ASIACRYPT 2023,
pages 99–130, Singapore, 2023. Springer Nature Singapore. 9, 27

CL23. Mingjie Chen and Antonin Leroux. Scallop-hd: group action from 2-
dimensional isogenies. Cryptology ePrint Archive, Paper 2023/1488,
2023. https://eprint.iacr.org/2023/1488. URL: https://eprint.iacr.org/
2023/1488. 2

CLM+18. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny,
and Joost Renes. CSIDH: An efficient post-quantum commutative
group action. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part III, volume 11274 of LNCS, pages 395–427. Springer,
Heidelberg, December 2018. doi:10.1007/978-3-030-03332-3_15. 13,
39

Cos20. Craig Costello. B-SIDH: Supersingular isogeny Diffie-Hellman using
twisted torsion. In Shiho Moriai and Huaxiong Wang, editors, ASI-
ACRYPT 2020, Part II, volume 12492 of LNCS, pages 440–463. Springer,
Heidelberg, December 2020. doi:10.1007/978-3-030-64834-3_15. 13

CSCDJRH22. Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Samuel Jaques, and
Francisco Rodríguez-Henríquez. The sqale of csidh: sublinear vélu
quantum-resistant isogeny action with low exponents. Journal of
Cryptographic Engineering, 12(3):349–368, Sep 2022. doi:10.1007/
s13389-021-00271-w. 13

33

https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://eprint.iacr.org/2023/793
https://eprint.iacr.org/2023/793
https://eprint.iacr.org/2023/793
https://doi.org/10.1007/978-3-031-30589-4_15
https://eprint.iacr.org/2023/1488
https://eprint.iacr.org/2023/1488
https://eprint.iacr.org/2023/1488
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/s13389-021-00271-w
https://doi.org/10.1007/s13389-021-00271-w

CV23. Wouter Castryck and Frederik Vercauteren. A polynomial time attack
on instances of M-SIDH and FESTA. In Jian Guo and Ron Steinfeld,
editors, Advances in Cryptology – ASIACRYPT 2023, pages 127–156,
Singapore, 2023. Springer Nature Singapore. 7, 9, 21, 40

DDGZ22. Luca De Feo, Samuel Dobson, Steven D. Galbraith, and Lukas
Zobernig. SIDH proof of knowledge. In Shweta Agrawal and Dong-
dai Lin, editors, ASIACRYPT 2022, Part II, volume 13792 of LNCS,
pages 310–339. Springer, Heidelberg, December 2022. doi:10.1007/
978-3-031-22966-4_11. 18

De 17. Luca De Feo. Mathematics of isogeny based cryptography, 2017. arXiv:
1711.04062. 4

DFK+23. Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-
Philipp Merz, Lorenz Panny, and Benjamin Wesolowski. SCALLOP:
Scaling the CSI-FiSh. In Alexandra Boldyreva and Vladimir Kolesnikov,
editors, PKC 2023, Part I, volume 13940 of LNCS, pages 345–375.
Springer, Heidelberg, May 2023. doi:10.1007/978-3-031-31368-4_13.
2

DJP14. Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-
resistant cryptosystems from supersingular elliptic curve isogenies.
Journal of Mathematical Cryptology, 8(3):209–247, 2014. URL: https:
//doi.org/10.1515/jmc-2012-0015 [cited 2024-02-13], doi:doi:10.1515/
jmc-2012-0015. 1

DKL+20. Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and
Benjamin Wesolowski. SQISign: Compact post-quantum signatures from
quaternions and isogenies. In Shiho Moriai and Huaxiong Wang, editors,
ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages 64–93. Springer,
Heidelberg, December 2020. doi:10.1007/978-3-030-64837-4_3. 2, 24

DLLW23. Luca De Feo, Antonin Leroux, Patrick Longa, and Benjamin Wesolowski.
New algorithms for the deuring correspondence - towards practical and
secure SQISign signatures. In Carmit Hazay and Martijn Stam, editors,
EUROCRYPT 2023, Part V, volume 14008 of LNCS, pages 659–690.
Springer, Heidelberg, April 2023. doi:10.1007/978-3-031-30589-4_23.
24

DLRW23. Pierrick Dartois, Antonin Leroux, Damien Robert, and Benjamin
Wesolowski. Sqisignhd: New dimensions in cryptography. Cryptology
ePrint Archive, Paper 2023/436, 2023. https://eprint.iacr.org/2023/436.
URL: https://eprint.iacr.org/2023/436. 2

DMPR23. Pierrick Dartois, Luciano Maino, Giacomo Pope, and Damien Robert.
An algorithmic approach to (2, 2)-isogenies in the theta model and
applications to isogeny-based cryptography. Cryptology ePrint Archive,
Paper 2023/1747, 2023. https://eprint.iacr.org/2023/1747. URL: https:
//eprint.iacr.org/2023/1747. 2, 13, 14, 30

DMS23. Thomas Decru, Luciano Maino, and Antonio Sanso. Towards a quantum-
resistant weak verifiable delay function. Cryptology ePrint Archive,
Paper 2023/1197, 2023. https://eprint.iacr.org/2023/1197. URL: https:
//eprint.iacr.org/2023/1197. 2

dQKL+21. Victoria de Quehen, Péter Kutas, Chris Leonardi, Chloe Martindale,
Lorenz Panny, Christophe Petit, and Katherine E. Stange. Improved
torsion-point attacks on SIDH variants. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part III, volume 12827 of LNCS, pages 432–

34

https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-22966-4_11
http://arxiv.org/abs/1711.04062
http://arxiv.org/abs/1711.04062
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/doi:10.1515/jmc-2012-0015
https://doi.org/doi:10.1515/jmc-2012-0015
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-031-30589-4_23
https://eprint.iacr.org/2023/436
https://eprint.iacr.org/2023/436
https://eprint.iacr.org/2023/1747
https://eprint.iacr.org/2023/1747
https://eprint.iacr.org/2023/1747
https://eprint.iacr.org/2023/1197
https://eprint.iacr.org/2023/1197
https://eprint.iacr.org/2023/1197

470, Virtual Event, August 2021. Springer, Heidelberg. doi:10.1007/
978-3-030-84252-9_15. 9, 40

dSGP23. Cyprien Delpech de Saint Guilhem and Robi Pedersen. New proof
systems and an oprf from csidh. Cryptology ePrint Archive, Paper
2023/1614, 2023. https://eprint.iacr.org/2023/1614. URL: https://
eprint.iacr.org/2023/1614. 30

FFP24. Luca De Feo, Tako Boris Fouotsa, and Lorenz Panny. Isogeny problems
with level structure. Cryptology ePrint Archive, Paper 2024/459, 2024.
https://eprint.iacr.org/2024/459. URL: https://eprint.iacr.org/2024/
459. 7, 39

FMP23. Tako Boris Fouotsa, Tomoki Moriya, and Christophe Petit. M-SIDH
and MD-SIDH: Countering SIDH attacks by masking information. In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V,
volume 14008 of LNCS, pages 282–309. Springer, Heidelberg, April 2023.
doi:10.1007/978-3-031-30589-4_10. 2, 5, 11, 39

FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmet-
ric and symmetric encryption schemes. In Michael J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 537–554. Springer, Heidelberg,
August 1999. doi:10.1007/3-540-48405-1_34. 11

FOO23. Sebastian Faller, Astrid Ottenhues, and Johannes Ottenhues. Compos-
able oblivious pseudo-random functions via garbled circuits. Cryp-
tology ePrint Archive, Paper 2023/1176, 2023. https://eprint.iacr.
org/2023/1176. URL: https://eprint.iacr.org/2023/1176, doi:https:
//doi.org/10.1007/978-3-031-44469-2_13. 31

FT19. E. Victor Flynn and Yan Bo Ti. Genus two isogeny cryptography. In
Jintai Ding and Rainer Steinwandt, editors, Post-Quantum Cryptography
- 10th International Conference, PQCrypto 2019, pages 286–306. Springer,
Heidelberg, 2019. doi:10.1007/978-3-030-25510-7_16. 1

HHK17. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular
analysis of the Fujisaki-Okamoto transformation. In Yael Kalai and
Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS,
pages 341–371. Springer, Heidelberg, November 2017. doi:10.1007/
978-3-319-70500-2_12. 11

HHM+23. Lena Heimberger, Tobias Hennerbichler, Fredrik Meisingseth, Sebastian
Ramacher, and Christian Rechberger. Oprfs from isogenies: Designs
and analysis. Cryptology ePrint Archive, Paper 2023/639, 2023. https:
//eprint.iacr.org/2023/639. URL: https://eprint.iacr.org/2023/639. 30

JD11. David Jao and Luca De Feo. Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. In Bo-Yin Yang, editor,
Post-Quantum Cryptography - 4th International Workshop, PQCrypto
2011, pages 19–34. Springer, Heidelberg, November / December 2011.
doi:10.1007/978-3-642-25405-5_2. 1, 4

KLPT14. David Kohel, Kristin Lauter, Christophe Petit, and Jean-Pierre Tignol.
On the quaternion ℓ-isogeny path problem. Cryptology ePrint Archive,
Report 2014/505, 2014. https://eprint.iacr.org/2014/505. 8

KML03. Eike Kiltz and John Malone-Lee. A general construction of ind-cca2
secure public key encryption. In Kenneth G. Paterson, editor, Cryp-
tography and Coding, pages 152–166, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg. 11

35

https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-030-84252-9_15
https://eprint.iacr.org/2023/1614
https://eprint.iacr.org/2023/1614
https://eprint.iacr.org/2023/1614
https://eprint.iacr.org/2024/459
https://eprint.iacr.org/2024/459
https://eprint.iacr.org/2024/459
https://doi.org/10.1007/978-3-031-30589-4_10
https://doi.org/10.1007/3-540-48405-1_34
https://eprint.iacr.org/2023/1176
https://eprint.iacr.org/2023/1176
https://eprint.iacr.org/2023/1176
https://doi.org/https://doi.org/10.1007/978-3-031-44469-2_13
https://doi.org/https://doi.org/10.1007/978-3-031-44469-2_13
https://doi.org/10.1007/978-3-030-25510-7_16
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://eprint.iacr.org/2023/639
https://eprint.iacr.org/2023/639
https://eprint.iacr.org/2023/639
https://doi.org/10.1007/978-3-642-25405-5_2
https://eprint.iacr.org/2014/505

KP22. Péter Kutas and Christophe Petit. Torsion point attacks on “SIDH-
like” cryptosystems. Cryptology ePrint Archive, Report 2022/654, 2022.
https://eprint.iacr.org/2022/654. 40

KTW22. Sabrina Kunzweiler, Yan Bo Ti, and Charlotte Weitkämper. Secret
keys in genus-2 SIDH. In Riham AlTawy and Andreas Hülsing, editors,
SAC 2021, volume 13203 of LNCS, pages 483–507. Springer, Heidelberg,
September / October 2022. doi:10.1007/978-3-030-99277-4_23. 1

Ler23. Antonin Leroux. Verifiable random function from the deuring cor-
respondence and higher dimensional isogenies. Cryptology ePrint
Archive, Paper 2023/1251, 2023. https://eprint.iacr.org/2023/1251.
URL: https://eprint.iacr.org/2023/1251. 2

LTZ22. Jason T. LeGrow, Yan Bo Ti, and Lukas Zobernig. Supersingular non-
superspecial abelian surfaces in cryptography. Cryptology ePrint Archive,
Report 2022/650, 2022. https://eprint.iacr.org/2022/650. 1

MJ24. Youcef Mokrani and David Jao. Zero-knowledge proofs for sidh variants
with masked degree or torsion. In Francesco Regazzoni, Bodhisatwa
Mazumdar, and Sri Parameswaran, editors, Security, Privacy, and Ap-
plied Cryptography Engineering, pages 48–65, Cham, 2024. Springer
Nature Switzerland. 18

MMP+23. Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and
Benjamin Wesolowski. A direct key recovery attack on SIDH. In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V,
volume 14008 of LNCS, pages 448–471. Springer, Heidelberg, April 2023.
doi:10.1007/978-3-031-30589-4_16. 1, 11, 12, 15, 40

MO23. Tomoki Moriya and Hiroshi Onuki. The wrong use of festa trapdoor
functions leads to an adaptive attack. Cryptology ePrint Archive, Paper
2023/1092, 2023. https://eprint.iacr.org/2023/1092. URL: https://
eprint.iacr.org/2023/1092. 3, 16

Mor23. Tomoki Moriya. Is-cube: An isogeny-based compact kem using a boxed
sidh diagram. Cryptology ePrint Archive, Paper 2023/1506, 2023. https:
//eprint.iacr.org/2023/1506. URL: https://eprint.iacr.org/2023/1506.
12, 39

MOT20. Tomoki Moriya, Hiroshi Onuki, and Tsuyoshi Takagi. SiGamal: A
supersingular isogeny-based PKE and its application to a PRF. In Shiho
Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume
12492 of LNCS, pages 551–580. Springer, Heidelberg, December 2020.
doi:10.1007/978-3-030-64834-3_19. 3, 7, 11

MP16. Moxie Marlinspike and Trevor Perrin. The X3DH key agreement protocol,
2016. URL: https://www.signal.org/docs/specifications/x3dh/x3dh.pdf.
3, 14

NO23. Kohei Nakagawa and Hiroshi Onuki. QFESTA: Efficient algorithms and
parameters for FESTA using quaternion algebras. Cryptology ePrint
Archive, Paper 2023/1468, 2023. https://eprint.iacr.org/2023/1468.
URL: https://eprint.iacr.org/2023/1468. 2, 7, 8, 12, 14, 39

OP22. Rémy Oudompheng and Giacomo Pope. A note on reimplementing the
castryck-decru attack and lessons learned for SageMath. Cryptology
ePrint Archive, Report 2022/1283, 2022. https://eprint.iacr.org/2022/
1283. 2

PDJ21. Geovandro Pereira, Javad Doliskani, and David Jao. x-only point ad-
dition formula and faster compressed sike. Journal of Cryptographic

36

https://eprint.iacr.org/2022/654
https://doi.org/10.1007/978-3-030-99277-4_23
https://eprint.iacr.org/2023/1251
https://eprint.iacr.org/2023/1251
https://eprint.iacr.org/2022/650
https://doi.org/10.1007/978-3-031-30589-4_16
https://eprint.iacr.org/2023/1092
https://eprint.iacr.org/2023/1092
https://eprint.iacr.org/2023/1092
https://eprint.iacr.org/2023/1506
https://eprint.iacr.org/2023/1506
https://eprint.iacr.org/2023/1506
https://doi.org/10.1007/978-3-030-64834-3_19
https://www.signal.org/docs/specifications/x3dh/x3dh.pdf
https://eprint.iacr.org/2023/1468
https://eprint.iacr.org/2023/1468
https://eprint.iacr.org/2022/1283
https://eprint.iacr.org/2022/1283

Engineering, 11(1):57–69, Apr 2021. doi:10.1007/s13389-020-00245-4.
7, 21

Pei20. Chris Peikert. He gives C-sieves on the CSIDH. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of
LNCS, pages 463–492. Springer, Heidelberg, May 2020. doi:10.1007/
978-3-030-45724-2_16. 13

Pet17. Christophe Petit. Faster algorithms for isogeny problems using torsion
point images. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part II, volume 10625 of LNCS, pages 330–353. Springer,
Heidelberg, December 2017. doi:10.1007/978-3-319-70697-9_12. 9,
40

Rob23. Damien Robert. Breaking SIDH in polynomial time. In Carmit Hazay
and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume 14008 of
LNCS, pages 472–503. Springer, Heidelberg, April 2023. doi:10.1007/
978-3-031-30589-4_17. 1, 11, 12, 15, 40

TCR+22. Nirvan Tyagi, Sofía Celi, Thomas Ristenpart, Nick Sullivan, Stefano
Tessaro, and Christopher A. Wood. A fast and simple partially
oblivious PRF, with applications. In Orr Dunkelman and Stefan
Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276
of LNCS, pages 674–705. Springer, Heidelberg, May / June 2022.
doi:10.1007/978-3-031-07085-3_23. 37

The24. The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 10.1), 2024. https://www.sagemath.org. 13, 30

A Security definitions of OPRFs

In this work, we rely on the game-based security definition of an OPRF pro-
posed in [TCR+22]. The definition is based on two games: OPFRA,b

OPRF, S, RO

and OPRIV1A,b
OPRF, RO. The first game guarantees the pseudorandomness of the

OPRF, which, informally, guarantees that a malicious client can obtain OPRF
evaluations only by interacting with the server: after n interactions with the
server, the client cannot produce n+ 1 valid pairs of OPRF inputs and outputs.
On the other hand, the OPRIV1A,b

OPRF, RO game guarantees the privacy of the
client: a honest-but-curious server cannot link the client’s requests to the corre-
sponding messages. We refer to [TCR+22,ADDG23] for a detailed description of
the security games.

Definition 22 (Pseudorandomness (OPFR) [TCR+22,ADDG23]). An
oblivious pseudorandom function OPRF is pseudorandom if for all PPT adver-
saries A, there exists a simulator S such that the following advantage is negligible∣∣∣Pr(OPFRA,1

OPRF, S, RO(λ) = 1)− Pr(OPFRA,0
OPRF, S, RO(λ) = 1)

∣∣∣ .
Definition 23 (Client’s Privacy (OPRIV) [TCR+22,ADDG23]). An
oblivious pseudorandom function OPRF has client’s privacy if for all PPT adver-
saries A, the following advantage is negligible∣∣∣Pr(OPRIV1A,b

OPRF, RO(λ) = 1)− Pr(OPRIV1A,b
OPRF, RO(λ) = 1)

∣∣∣ .
37

https://doi.org/10.1007/s13389-020-00245-4
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-031-30589-4_17
https://doi.org/10.1007/978-3-031-30589-4_17
https://doi.org/10.1007/978-3-031-07085-3_23

Game OPFRA,b
OPRF, S, RO(λ)

qt,s, qt ← 0, 0
pp1 ←$ OPRF.Setup(λ)
stS, pk0, pp0 ←$ S.Init(pp1)
(pk1, sk)←$ OPRF.KeyGenRO(pp1)
b′ ←$ AEval,BlindEval,Prim(ppb, pkb)
Return b′

Oracle BlindEval(req)

qt ← qt + 1
rsp0, stS ←$ S.BlindEvalLimitEval(req, stS)
rsp1 ←$ OPRF.BlindEvalRO

pp1(sk, req)

Oracle Eval(m)

z0 ← RandomFunction(x)
z1 ← OPRF.EvalRO

pp1(sk, x)
Return zb

Oracle LimitEval(m)

qt,s ← qt,s + 1
If qt,s ≤ qt
Return Eval(m)
Return ⊥

Oracle Prim(x)

h0, stS ←$ S.EvalLimitEval(x, stS)
h1 ← RO(x)
Return hb

Fig. 2: The OPFRA,b
OPRF, S, RO game.

Game OPRIV1A,b
OPRF, RO(λ)

pp←$ OPRF.Setup(λ)
(pk, sk)←$ OPRF.KeyGen(pp)
b′ ←$ ARun,RO(pp, pk, sk)
Return b′

Oracle Run(m0,m1)

st0, req0 ←$ OPRF.reqRO(pk,m0)
st1, req1 ←$ OPRF.reqRO(pk,m1)
rsp0 ←$ OPRF.BlindEvalRO(sk, req0)
rsp1 ←$ OPRF.BlindEvalRO(sk, req1)
y0 ← OPRF.FinalizeRO(rsp0; st0)
y1 ← OPRF.FinalizeRO(rsp1; st1)
τ ← (reqb, rspb, y0)
τ ′ ← (req1−b, rsp1−b, y1)
Return τ, τ ′

Fig. 3: The OPRIV1A,b
OPRF, RO game.

38

B Hardness analysis of Problem 4

In Section 4, we introduced new security assumptions. In particular, the security
of Alice’s secret isogeny against key-recovery attacks relies on Problem 4, which
asks to recover an isogeny ϕ of unknown degree given its action on:

– a 2a-torsion basis, scaled by two independent scalars α2 and α′
2 in Z∗

2a ;
– a 3b-torsion basis, scaled by a scalar α3 in Z∗

3b ;
– a point of order x, scaled by a scalar αx in Z∗

x.

At the cost of being less explicit, it is possible to simplify the formulation of
the assumption. Using the same notation as Problem 4, we can sum the torsion
points to obtain

U0 = P0 +R0 +X0, V0 = Q0 + S0,

and express the problem relative to such points.
Thus, Problem 4 is equivalent to ask to recover the isogeny ϕ given only

[α]ϕ(U0) and [α′]ϕ(V0), where U0, V0 form a basis of E0[2
a3bx], where α, α′ ∈

Z∗
2a3bx such that α ≡ α′ mod 2ax and α′ ≡ 0 mod x. These modular constraints

translate the requirement that the 3b-torsion points are masked by the same
scalar and that only one point of order x is revealed.

Such a formulation shows that Problem 4 belongs to the category of se-
curity problems that asks to find a connecting isogeny between two nodes in
the supersingular isogeny graph with level structure [FFP24]. In the same cat-
egory, we can find the security assumptions used in CSIDH [CLM+18], M-
SIDH, MD-SIDH [FMP23], binSIDH, terSIDH, and their hybrid variants [BF23],
FESTA [BMP23], QFESTA [NO23], and IS-CUBE [Mor23].

The level structure used in Problem 4 is a combination of a diagonal level
structures, such as those used by CSIDH, FESTA, and bin/terSIDH, level struc-
tures with scalar multiples of the identity, such as those used by M-SIDH and
MD-SIDH, and a Borel level structures (where only one image point is revealed),
such as those used by the SIDH proofs of knowledge [BCC+23]. Crucially, how-
ever, the isogeny in Problem 4 relies on an isogeny of unknown degree. This makes
the assumption more similar to the CSIDH assumption; however, in our case,
the unknown degree is fundamental to security. Since the 3b-torsion is scaled
only by a single scalar, it would be easy to recover the exact torsion images
and apply the SIDH attacks if the degree were known. Nonetheless, this does
not seem to pose a security risk: finding the degree of a connecting isogeny is
deeply linked to the decisional isogeny problem, especially in its variant where
it asks whether there exists a connecting isogeny of a given degree. The prob-
lem has been studied, both as a pure problem and in the context of validating
SIDH public keys, and there are no techniques reported in the literature that
do not rely on computing the isogeny explicitly. More generally, there exist
no known techniques to recover the degree of an isogeny between two curves,
even when torsion information is given, besides trivial attacks based on pairing

39

information: this is avoided in our case since the 3b-torsion is masked. An at-
tacker may hope to sidestep the issue altogether and find an attack that does
not require the degree: while that is theoretically possible, it appears to be
unlikely, since all existing attacks that recover an isogeny from its torsion in-
formation [Pet17,dQKL+21,KP22,CD23,MMP+23,Rob23,CV23] fundamentally
rely on knowledge of the degree.

Lastly, our assumption differs from those in the literature by the amount
of torsion information provided: in particular, if we compare the order of the
torsion bases whose images are revealed (≈ 23.5λ) with the degree of the isogeny
(≈ 22λ), we see that this is significantly less than what is revealed in FESTA
and QFESTA, where the order of the torsion bases is more than three times the
degree of the secret isogenies.

40

	POKE: A Framework for Efficient PKEs, Split KEMs, and OPRFs from Higher-dimensional Isogenies
	Introduction
	Preliminaries
	The POKE framework
	An efficient PKE: P(O)KE
	Efficiency

	A split KEM
	The Split-POKE protocol
	Validating FESTA-like isogenies
	Validating uniSIDH-like isogenies

	A two-round verifiable OPRF: POKE-OPRF
	The OPRF protocol
	Verifiability
	Security
	Results

	Conclusion
	Acknowledgments.

	Security definitions of OPRFs
	Hardness analysis of Problem 4

