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Abstract. We study the hardness of the Syndrome Decoding problem,
the base of most code-based cryptographic schemes, such as Classic
McEliece, in the presence of side-channel information. We use Chip-
Whisperer equipment to perform a template attack on Classic McEliece
running on an ARM Cortex-M4, and accurately classify the Hamming
weights of consecutive 32-bit blocks of the secret error vector e ∈ Fn

2 .
With these weights at hand, we optimize Information Set Decoding al-
gorithms. Technically, we show how to speed up information set decod-
ing via a dimension reduction, additional parity-check equations, and an
improved information set search, all derived from the Hamming weight
information.
Consequently, using our template attack, we can practically recover an
error vector e ∈ Fn

2 in dimension n = 2197 in a matter of seconds.
Without side-channel information, such an instance has a complexity
of around 88 bit. We also estimate how our template attack affects the
security of the proposed McEliece parameter sets. Roughly speaking,
even an error-prone leak of our Hamming weight information leads for
n = 3488 to a security drop of 89 bits.

1 Introduction

Hardness of Syndrome Decoding. Central to all code-based schemes that ad-
vanced to the 4th Round of the NIST Post-Quantum Standardization Pro-
cess [ARBC+20,ABB+23,MAB+23] lies the Syndrome Decoding (SD) problem:

given a parity-check matrix H ∈ F(n−k)×n
2 , where F2 denotes the binary finite

field, a syndrome s ∈ Fn−k
2 , and an integer w < n, find the error vector e such

that He = s and |e| < w, where | · | denotes the Hamming weight.
An algorithm for solving this problem for a uniformly random H leads

to a message or key recovery attack for the aforementioned schemes. There-
fore, the syndrome decoding problem has received a significant amount of at-
tention, resulting in various methods to solve it: Information Set Decoding
(ISD) [Pra62,Ste89,MMT11], Statistical Decoding [Al 01,CDMHT22], and, re-
cently, Sieving-style algorithms [GJN23,DEEK23]. Despite this extensive the-
oretical effort, the problem remains tractable for relatively small dimensions.
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Concretely, in the setting of Classic McEliece (e.g., w ≈ n
5 log2 n and k ≈ 0.8n),

the largest solved instance reported today [ALL19] is for n = 1470, and it already
requires an optimized GPU implementation of an advanced information set de-
coding algorithm [NFK23], together with significant computational resources.4

Side-Channel Attacks. For the practical security of code-based schemes, it is
important that the syndrome decoding problem also offers sufficient robustness
against realistic side-channel attacks using leaks of the secret error vector e ∈
Fn
2 . Compared to the comprehensive study of the syndrome decoding problem’s

classical security, its side-channel resistance has received much less attention.

Some initial theoretical work of Horlemann et al. [HPR+22] classifies different
leakages and shows how to incorporate them into ISD algorithms to solve the
syndrome decoding problem faster. One of the leakages considered in [HPR+22,
Section 4] is known Hamming weights of error blocks.

In this leakage setting, one knows {|ei|}i≤t, where e = (e1, . . . , et) and all
ei’s (except, may be the last et) are of the same length, i.e., the word size of
the Central Processing Unit (CPU). For example, for an ARM Cortex-M4, each
word ei consists of 32 bits. Typical target instructions are loads, which move
32-bit words from SRAM to CPU registers, and stores, which move 32-bit words
from CPU registers to SRAM. When executing such instructions, the power
consumption is slightly different for each possible weight |ei|, and these unique
characteristics can be condensed into a so-called template [CRR03]. We call
the respective modified syndrome decoding problem, which additionally receives
{|ei|}i≤t, the template syndrome decoding (template SD) problem.

While Horlemann et al. [HPR+22] describe a potential template syndrome
decoding attack, their attack remains purely theoretical. Neither do the authors
realize concrete power trace leaks, nor do they provide an improved informa-
tion set decoding implementation. Thus, the practical implications of code-based
template attacks remain unclear.

Contribution. In this work, we perform for the first time an explicit template
attack on a Classic McEliece implementation. To this end, we realize a concrete
power trace leak, from which we derive with high accuracy (but still error-prone)
the desired Hamming weight information {|ei|}i≤t.

We then improve information set decoding by using and enhancing the tech-
niques of Horlemann et al. [HPR+22]. Building on information set decoding
software from Esser, May, and Zweydinger [EMZ22], we provide a concrete im-
plementation of these improvements.

With our (erroneous but easily correctable) leakage, we run our template
information set decoding and retrieve the secret e ∈ Fn

2 . Concretely, we are
able to solve the template syndrome decoding problem for Classic McEliece in
dimension n = 2197 in a matter of seconds. Without template, such an instance
has complexity around 88 bits. In more detail, our results are as follows.

4 See also https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/

WzgqEmAfnk8 for the discussion on hardness predictions for this instance.

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/WzgqEmAfnk8
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/WzgqEmAfnk8
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1. We use ChipWhisperer equipment to measure the power consumption of
an open-source implementation [CC21] of Classic McEliece running on an
ARM Cortex-M4, or at least a decapsulation subroutine that checks whether
|e| = w. Using 48k traces for template building, and 12k for matching, the
weights {|ei|} we recover are correct with a probability of around 97%. We
show how to deal with this measurement noise in the full version.

2. We modify the ISD algorithms of Prange [Pra62] and Dumer [Dum91] by
incorporating the template. Specifically, we show how to encode the knowl-
edge of weights of error blocks into the parity-check matrix H. Then, using
such modified H, we show how to decrease the expected running time of the
above ISD algorithms, again exploiting the leakage.

3. We provide efficient and parallelized implementations of the modified ISD
algorithms. With our software we are able to solve the n = 2197 instance
from [ALL19] in a matter of 10 seconds on AMD EPYC 7742 using 200
threads. Based on our implementation, we estimate the hardness of larger
McEliece instances under this template attack.

Related work. Closely related to the template syndrome decoding is regular
syndrome decoding introduced in [AFS05]. In regular SD, for each block ei of
e = (e1, . . . , et) it holds that |ei| = 1. Note that regular SD is a special case of
Template SD. Recent work of Esser and Santini [ES23] studies the hardness of
regular SD, and some of their ideas apply to our setting, e.g., the construction
of new parity-check equations, see also [EMZ22].

Another template attack on Classic McEliece was presented by Grosso et
al. in [GCCD23]. The authors of [GCCD23] aim at the same leakage, namely,
{|ei|}i≤t but they retrieve it from the matrix-vector multiplication H · e that
computes the syndrome. In our template attack, similar to [GCCD23], we discard
the columns of H that correspond to the zero-weight blocks in the template.
Contrary to [GCCD23], in our work we show how to make use of the non-zero
weight blocks to speed-up ISD algorithms, and we implement our ISD algorithms
in order to actually retrieve the secret.

Another side-channel attack exploiting failures of the decoding procedure in
McEliece decryption is studied in [LNPS20]. The authors show how to learn
the positions of 1’s in the secret vector by querying the decoder with modified
syndromes. Similar to our work, the authors combine the obtained information
with ISD algorithms and estimate their attack performance. In contrast, we
implement our (modified) ISD routines, report on concrete runtimes for feasible
instance and then give estimates for large dimensions.

In summary, in contrast to [GCCD23] and [LNPS20] we do not only estimate
the effects on ISD, but we retrieve Hamming weight side-channel information,
correct errors, provide improved ISDs via dimension reduction and additional
parity check equations, and practically solve an n = 2197-dimensional template
SD instance in a matter of seconds.

Artifacts. Our software for Template ISD algorithms as well as scripts to gen-
erate the figures are available in [Tem24].
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2 Template ISD

Notations. Let |x| denote the Hamming weight of x and by [i, j) the interval
of consecutive integers {i, i + 1, . . . , j − 1}. By Sn we denote the group of all
permutations on sets of size n. By In we denote the identity matrix of rank n.

Problem definitions. In the Classic McEliece KEM [ARBC+20], the decryption
process receives as input a syndrome s ∈ Fn−k

2 and recovers the secret message
e by calling an efficient syndrome decoder using the McEliece secret key. Once e
is retrieved, the decryption checks if |e| = w, where w is the decoding capacity
of the syndrome decoder. The parameter w is a fixed public parameter. Classic
McEliece decryption only returns e, if e passes the check |e| = w.

Without knowledge of the secret key, message recovery attacks on Classic
McEliece require solving the Syndrome Decoding (SD) problem.

Definition 1 (Syndrome Decoding (SD)). Let H ∈ F(n−k)×n
2 be a random-

looking parity-check matrix, e an error vector of Hamming weight w, and s =
He ∈ Fn−k

2 the corresponding syndrome. SD asks to find the unique weight-w
e ∈ Fn

2 satisfying He = s.

The side-channel attack we consider in this work creates a template for the
function that computes |e|. In the ideal scenario, such a template allows the
attacker to learn the blockwise weight of e. We call the SD problem that in
addition receives the blockwise weight template Syndrome Decoding.

Definition 2 (Template SD). Let H ∈ F(n−k)×n
2 be a parity-check matrix of a

random code and s = He ∈ Fn−k
2 , for some e of Hamming weight w. Let further

e = (e1, . . . , et) with ei ∈ Fb
2 for i = [1, t), et ∈ Fn−b·(t−1)

2 , and wi = |ei|.
Template ISD asks to find e given H, s, and {wi}i≤t.

Definition 3 (Guess). We call any vector {ŵi}i≤t ∈ Nt
0 a guess. The accuracy

of a guess is the percentage of correctly identified weights, i.e. |{i∈[1,t]|ŵi=wi}|
t . A

guess is error-free if it has accuracy 1, otherwise it is error-prone. Notice that in
general error-prone guesses do not satisfy

∑t
i=1 ŵi = w.

The block size b, and, therefore, also the template’s length depends on the
target architecture’s specifications. Our template attack targets ARM Cortex-
M4 processor that operates on words of 32 bits. Hence, our guesses will be of
length t = ⌈n/32⌉.
Running Example n = 2197. Our running example uses the parameters n =
2197, k = 1758, and w = 37. Therefore, a guess is a string of length t = 69, its
i-th entry indicating the weight of the i-th 32-bit block of e.
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3 Algorithms for Template ISD

3.1 Permutation-based Template ISD – Improving Prange

Let us start with the fundamental information set decoding algorithm due to
Prange [Pra62]. Prange’s algorithm permutes the columns of H, which is equiv-
alent to permuting the positions of 1’s in e.

Let π ∈ Sn be a permutation and let π(H) = (Q | ·) be the result of applying
the permutation π to H such that Q ∈ F(n−k)×(n−k)

2 is invertible (this event
occurs with constant probability). Multiplying by Q−1 from the left both π(H)
and s leads to an equivalent SD instance written in systematic form:

H ′π(e) = s′, where H ′ = Q−1H = (In−k | ·), and s′ = Q−1s.

If π(e) has weight 0 on the last k coordinates, then |s′| = w. This means that
the first (n− k) coordinates of π(e) are given by s′ and e can be reconstructed.

Dimension reduction. As already noticed in the work of Grosso et al. [GCCD23],
any weight-0 block with wi = 0 does not contribute to the solution e. Let m0 de-
note the number of error-free blocks. Then b ·m0 columns of H do not contribute
and can be eliminated, leading to a modified parity-check matrix H̄ ∈ F

(n−k)×n̄
2

with n̄ = n− b ·m0 columns. This in turn reduces the dimension of the solution
e from n to n̄ = n− b ·m0 leaving its weight w unchanged.

Improved permutation. The idea of the permutation π in Prange’s algorithm
is to move all w 1-entries of e upfront to the first n − k coordinates. Having
weight wi for the i-th block, we permute a number proportional to wi upfront.
Concretely, in Algorithm 2, we use the following template-optimized permutation.

Let P be a permutation matrix and vi ∈ Z with 0 ≤ vi ≤ b and
∑t

i=1 vi =
n− k. Further, denote the permuted error vector as

Pe = (e′, e′′) = (e′1, . . . , e
′
t, e

′′
1 , . . . , e

′′
t )

with e′i ∈ Fvi
2 and e′′i ∈ Fb−vi

2 . Then, P is a template permutation if e′i and e′′i
originate from ei for all i. The success probability P (

∑
i |e′′i | = 0) is determined

by the vi. In [HPR+22], a greedy algorithm for optimizing vi is given. We ob-
serve that this optimal choice corresponds to the setting vi ≈ wi

w · (n − k), i.e.,
the number of columns is chosen proportional to the weight of the block. This
proportional assignment of columns generalizes the puncturing of [GCCD23]:
columns of H with wi = 0 are implicitly ignored by taking 0 columns from the
blocks with wi = 0. In Algorithm 2, the procedure that samples a template
permutation as described above is called TemplatePerm.

In practice, vi =
wi

w · (n− k) cannot be used directly due to rounding issues
and the restriction vi ≤ b. In our implementation, we minimize |vi− wi

w · (n−k)|.
Additional Parity Check Equations. Note that |ei| = wi implies that the sum of
the entries of ei is wi mod 2, see also [EMZ22]. Hence, for wi > 0, one can extend
the parity-check matrix by appending a row of the shape (0, . . . , 0, 1, . . . , 1, 0, . . . 0),
where the all-1 block is at the positions [i · b, (i+ 1) · b). The syndrome s is ex-
tended by appending wi mod 2. Each appended check increases the co-dimension
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of the code by one to eventually n−k+ t−m0. This makes it simpler for ISD to
find a permutation that puts all weight to the first co-dimension many positions.

Algorithm 1: Prange

Input : H, s, w
Output: e

1 repeat
2 Sample P ∈ Sn

3 Let
H ′ = Q−1HP
be the
systematic form
of HP

4 s′ = Q−1s

5 until |s′| = w

6 return P−1 · (s′, 0k).

Algorithm 2: Template Prange

Input : H ∈ F(n−k)×n
2 , s, {wi}i≤t;

∑
i wi = w

Output: e

1 Let m0 := |{i ≤ t | wi = 0}|, n̄ = n−m0b,
k̄ = k +m0 − t.

2 Obtain H̄ ∈ F(n−k)×n̄
2 by removing zero blocks.

3 Obtain H̄ ∈ F(n−k̄)×n̄
2 , s̄ ∈ Fn−k̄

2 by adding checks.
4 repeat
5 P ← TemplatePerm(w)
6 Let H ′ = Q−1H̄P be the systematic form of

H̄P
7 e′ = Q−1s̄.

8 until |e′| = w

9 return P−1 · (e′, 0k).

We summarize all modifications to the parity-check matrix and the optimized
permutations in Figure 1.

w1 = 0 w2 = 1 . . . wt = 2

H
1 1 . . . 1

. . .

1 1 . . . 10

0

s

1
...

0

=

Fig. 1: Illustration of our improved
Template ISD method. Columns in
blocks with error weight wi = 0
are punctured. For wi ̸= 0, an ad-
ditional check is appended to the
parity-check matrix and the syn-
drome. For each block, the number
of columns chosen for permutation
upfront (colored red) is set propor-
tionally to the error weight.

Theorem 1. Let {wi}i≤t be a an error-free guess with m0 many zeros. The
expected number of permutations of Algorithm 2 for solving Template SD is

t∏
i=1

(
b

wi

)(
⌊wi

w (n− k + t−m0)⌉
wi

)−1

.

Proof. Our Algorithm 2 finds a good permutation if for all t blocks of length b,
all wi-many 1’s from the i-th block will be moved upfront to the first n − k̄ =
n − k + t −m0 coordinates. As from each block we take ⌊wi

w (n − k + t −m0)⌉
many positions, the expected number of required permutation follows. ⊓⊔
Running example n = 2197. According to [EVZB23], the concrete complexity
of Algorithm 1 for n = 2197, k = 1758, w = 37 is estimated as 116 bits.
Dimension reduction by weight-0 blocks reduces the complexity of this instance
to 71 bits. With improved permutation and additional parity check equations
from Algorithm 2, the complexity further decreases to 62 bits. Figures for larger
McEliece instances are available in [Tem24].
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3.2 Enumeration-based Template ISD – Improving Dumer

Recall from Section 3.1 that for a parity-check matrix H ∈ F(n−k)×n
2 Prange’s

algorithm finds a permutation that shifts all w 1-entries of e upfront to the first
n− k entries. That is why Prange is called a permutation-based ISD.

Instead, enumeration based ISD algorithms like [Dum91,FS09,MMT11] choose
small parameters p, ℓ and permute e such that weight w − 2p lands on the first
n − k − ℓ coordinates, and the remaining weight 2p lands on the last k + ℓ
coordinates. On the one hand, such a permutation is way more likely to find
the secret. On the other hand, we now have to enumerate a search space of size(
k+ℓ
2p

)
, in Dumer’s algorithm in a meet-in-the-middle fashion. For usual McEliece

such a tradeoff pays off, i.e., the benefit of faster finding a suitable permutation
outweighs the drawback of enumeration.

In this work, we chose to adapt Dumer’s algorithm to the Template ISD
setting. In the parameter range that we practically solve, Dumer’s algorithm
is known to perform best, whereas more advanced algorithm like [MMT11] are
taking over for large n of cryptographic size [EMZ22].

Although we now choose with Dumer an enumeration-based ISD algorithm,
the benefits from the Template ISD still contribute to a large extent to the search
for a suitable permutation. Namely, analogous to Section 3.1, we obtain the
template version of Dumer using the following modifications and improvements:

Dimension reduction: 0-weight blocks from the guess {wi}i≤t are removed,
let m0 be their number. Such a dimension reduction helps to significantly
speed up permutation search, and it also decreases the search space for enu-
meration by m0b.

Additional parity checks: Encoding all wi ≥ 1 into additional check equa-
tions increases the co-dimension from n− k to n− k + t−m0. This speeds
up permutation search further, and slightly reduces the enumeration cost.

Improved permutation: Similar to Section 3.1, we permute upfront propor-
tionally to the weights wi to improve the permutation. For this, we set
vi ≈ wi·c

w−2p (n − k̄ − ℓ), where c = w−2p
w is a re-scaling factor. We do not

exploit non-zero weights for enumeration.

The resulting algorithm Template Dumer is given in Algorithm 3.

Theorem 2 (Template Dumer). Let k′ := n̄− (n− k̄)+ ℓ with n̄ and k̄ as in
Algorithm 3. Then, the number of iterations that Template Dumer ISD performs
on average is the inverse of the success probability(

k′/2

p

)2(
k′

2p

)−1 ∑
p1+...+pt=2p

t∏
i=1

(
⌊wi

w (n− k̄ − ℓ)⌉
wi − pi

)(
b

wi

)−1

, (1)

where each iteration has a meet-in-the-middle cost of 2
(
k′/2
p

)
+
(
k′/2
p

)2
· 2−ℓ.

Proof. Since ⌊wi

w (n− k̄−ℓ)⌉ positions of the i-th block are moved upfront, it con-

tributes pi errors to the last k′ positions with probability
(⌊wi

w (n−k̄−ℓ)⌉
wi−pi

)(
b
wi

)−1
.
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Algorithm 3: Template Dumer

Input : H ∈ F(n−k)×n
2 , s, {wi}i≤t;

∑
i wi = w, b, p, ℓ

Output: e

1 Let m0 := |{i ≤ t | wi = 0}|, n̄ = n−m0b, k̄ = k+m0− t, k′ = n̄− (n− k̄)+ ℓ.

2 Obtain H̄ ∈ F(n−k)×n̄
2 by removing zero blocks.

3 Obtain H̄ ∈ F(n−k̄)×n̄
2 , s̄ ∈ Fn−k̄

2 by adding checks.
4 repeat
5 P ← TemplatePerm(w − 2p)
6 Let H ′ = Q−1H̄P be the quasi-systematic form of H̄P ,

(s′, s′′) = Q−1s̄ ∈ Fn−k̄−ℓ
2 × Fℓ

2.

7 for all collisions e1, e2 ∈ Fk′/2
2 with weight p do

8 Compute e′ := H1e1 +H2e2 + s′. ▷ via Meet-in-the-Middle

9 until |e′| = w − 2p
10 return P−1 · (e′, e1, e2).

Similar to [HPR+22], the probability of 2p errors in the last k′ positions is ob-
tained by summing over all possibilities p1 + . . . + pt = 2p. Further, the error
needs to split evenly in the last k′ positions. Randomizing the order of these co-

ordinates, this probability is
(
k′/2
p

)2(k′

2p

)−1
. The meet-in-the-middle step requires

enumerating 2
(
k′/2
p

)
vectors e1, e2, leading to

(
k′/2
p

)2
2−ℓ collisions on average.

Running example n = 2197. For n = 2197, k = 1758, w = 37, we pick ℓ = 16
and p = 2. The performance differs between guesses. On average, 219.9 iterations
are sufficient, each with a Meet-in-the-Middle cost of processing 214.7 vectors.

3.3 Dealing with Noisy Guesses

The full version provides an algorithm that deals with noisy guesses. In partic-
ular, we show that Template Prange and Template Dumer are robust to single
(or very few) misclassifications.

4 Side-Channel Experiments

4.1 Measurement Setup

We target an open-source C implementation of McEliece, which is made by Chen
and Chou [CC21], optimized for the ARM Cortex-M4, and unprotected against
side-channel attacks. The targeted function is a Hamming-weight computation
in the decryption, as specified in Listing 1.1 [CC22]. To accelerate our measure-
ments, we do not run the entire decapsulation, and instead communicate via
UART with a custom wrapper around function weight 3488. Likewise, although
solving n = 3488 is computationally feasible, we reduce n to 2197 for faster
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results. The code is compiled by arm-none-eabi-gcc using O3 optimization. Al-
though the right-shift of the 32-bit word v in Listing 1.1 might leak bit-level
information, we only aim to recover word-level information, i.e., weights |v|.

1 s t a t i c i n t weight 3488 ( u in t 32 t ∗v )
2 {
3 i n t i , w = 0 ;
4 f o r ( i = 0 ; i < 3488 ; i++)
5 w += (v [ i>>5] >> ( i &31) ) & 1 ;
6 re turn w;
7 }

Listing 1.1: Targeted C function [CC22].

The power consumption is measured using ChipWhisperer equipment: a
CW308 UFO board, an STM32F405RGT6 target that contains an ARM Cortex-
M4, and a Husky oscilloscope. The clock frequency is set to 16MHz and the
sampling frequency is set to 128MHz, i.e., there are 8 samples per clock period.
To synchronize traces, the wrapper raises a trigger signal right before function
weight 3488 is executed. To capture the entire operation, 201559 samples suffice.
As the Husky has a buffer of 131070 samples, we stitch together 2 traces by
varying the offset from the trigger. Traces for template building and template
matching are taken from the same STM chip, which is fair: to build templates,
the attacker can perform unlimited encapsulations to obtain known pairs (c, e).

4.2 Template Building

Given that error e spans 69 words, each having weight W ∈ {0, 1, 2, 3} with
overwhelming probability, 276 = 69 × 4 templates are built. For this purpose,
we randomly generate 48k error vectors e and measure one trace for each e. To
ensure that the templates have similar qualities, we impose P (W = 0) = P (W =
1) = P (W = 2) = P (W = 3) = 1/4. This deviation from the McEliece distribu-
tion is optional and is only realistic for a 2-device attack. All choose-W -out-of-32
selections are equally likely. For example, words 0x80020040 and 0x01400002 are
equally likely in the case of W = 3. For each out of 69 words, we only retain
the 100 samples that matter most. All other samples primarily generate classi-
fication noise, so it’s beneficial to discard them. To make a selection, we use an
extension of Welch’s t-test specified below, where MW is the sample mean, VW

is the sample variance, and NW is the number of traces for each weight W .

T =
1

3

(
M0 −M1√

V0

N0
+ V1

N1

+
M1 −M2√

V1

N1
+ V2

N2

+
M2 −M3√

V2

N2
+ V3

N3

)

4.3 Template Matching

For each error e we aim to recover, we collect 12k traces, and average them into
a single trace X. Now, the weights W are non-uniform and follow the McEliece
distribution. For each out of 69 words, the distinguisher DW =

∑99
i=0 |Ti|·|MW −

Xi| ∈ R+ is computed. The weight W for which DW is the smallest is the best
guess. The probability that this guess is correct is around 97%.
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5 Practical Template SD Solving with Our Algorithms

We implemented Algorithm 2 and Algorithm 3. The source-code of our imple-
mentation can be found in [Tem24]. We ran our experiments on the parity-check
matrices of Classic McEliece instances with parameters provided by [ALL19],
where we generated the solution vectors e ourselves. We fully recovered the se-
cret error vector for all instances n ≤ 2197.

In the experiments, we always worked with an error-free guess. Indeed, for
our running example n = 2197, the actual side-channel attacks gave guesses with
97% accuracy resulting in a single mispredicted block: we observed a guess ŵ
with

∑
i ŵi = w − 1, which can be corrected with low overhead.

To accurately estimate the running time of Algorithms 1 (Original Prange), 2
(Template Prange), and 3 (Template Dumer) for all dimensions n, we generated
random error vectors and measured the runtime per permutation. To obtain the
overall runtime, we multiply by the expected number of permutations, which is
computed as in Theorems 1 and 2 by averaging over different error vectors. The
resulting estimates are presented in Figure 2.

Running Example n = 2197. Our implementation of Algorithm 3 (with p = 2,
ℓ = 16) on 2x AMD EPYC 7742 CPUs recovers the secret e for n = 2197 in
1019 seconds with 1134185 iterations required (the predicted number of itera-
tions for this instance is 1.6 · 106). The implementation is parallelized over the
choice of permutation, and with 200 threads outputs the secret in 10 seconds
using only 334MB of RAM.
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Fig. 2: Single-threaded performance of our implementation on AMD EPYC 7742
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