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Abstract

Hadamard product is a point-wise product for two vectors. This paper presents a new scheme to
prove Hadamard-product relation as a sub-protocol for SNARKs based on univariate polynomials. Prover
uses linear cryptographic operations to generate the proof containing logarithmic field elements. The
verification takes logarithmic cryptographic operations with constant numbers of pairings in bilinear group.
The construction of the scheme is based on the Lagrange-based KZG commitments (Kate, Zaverucha,
and Goldberg at Asiacrypt 2010) and the folding technique. We construct an inner-product protocol
from folding technique on univariate polynomials in Lagrange form, and by carefully choosing the
random polynomials suitable for folding technique, we construct a Hadamard-product protocol from
the inner-product protocol, giving an alternative to prove linear algebra relations in linear time, and the
protocol has a better concrete proof size than previous works.

Keywords: interactive oracle proofs; SNARKs; Hadamard product

1 Introduction

Succinct non-interactive arguments of knowledge (SNARKs) allow efficient verification for the NP statement.
In recent years, there has been a significant increase in interest and research focused on SNARKs. Many
researchers have developed sophisticated protocols tailored for industrial applications, each operating under
different assumptions. These protocols offer distinct features and efficiencies, making them applicable in
various contexts. For example, Plonk[GWC19] has a constant proof size and a quasilinear prover running
time, while an improved version, HyperPlonk[CBBZ23], sacrifices the constant proof size for a linear prover
running time. Since the NP statement to be proven in real-world usage is much more complex in blockchain
applications like smart contracts, the proving time is extremely crucial, as generating proofs in a reasonable
time is of utmost importance. Thus, in recent years, there has been a significant surge in research focused on
linear-proving-time protocols[BCGGHJ17; XZZPS19; Set20; BCG20; Lee20; Zha+21; BCL22; BMMTV21;
RR22; BCHO22; CBBZ23].

There are numerous SNARKs with quasilinear proving time [CHMMVW20; LSZ22; ZSZSWG22;
GWC19; RZ21], among which proofs for the Hadamard product relation or the inner product relation are
necessary, and FFT(Fast Fourier Transform) is required in the proofs. A prevalent strategy to circumvent
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FFT usage is the adoption of multilinear sumchecks[Set20; CBBZ23; BCHO22], which yield a linear-time
prover alongside logarithmic-size proofs and verification. However, due to the inherent discrepancy between
low-degree extensions for univariate polynomials and multilinear extensions for multivariate polynomials,
certain calculations cannot be seamlessly translated into multilinear polynomial computations. For example,
Spartan[Set20], which evolves from Marlin[CHMMVW20], incorporates an additional memory-checking
subprotocol to authenticate the evaluation of the multilinear extension for a matrix. Consequently, our
objective is to construct a Hadamard-product protocol and an inner-product protocol that align with the
efficiency of multilinear-setting protocols, thereby streamlining the construction of linear-prover protocols
from their univariate polynomial counterparts.

1.1 Our Results

In this paper, we present a novel Polynomial Interactive Oracle Proof (PIOP) designed for the Hadamard
product, leveraging the univariate Lagrange-based polynomial commitment. This innovative approach is
contrasted with Spartan[Set20], which utilizes multivariate Lagrange-based polynomial commitment. The
protocol facilitates the direct application of the well-established batch KZG commitment scheme [KZG10] for
univariate polynomials, resulting in a constant number of pairings in the bilinear group during the verification
process. Unlike numerous protocols relying on univariate polynomials [MBKM19; CHMMVW20; LSZ22],
this method eliminates dependencies on FFT, except for the setup and update processes of the KZG commitment
scheme, leading to a linear proving time.

As previous researches[BCRSVW19; CHMMVW20], to check Hadamard product a ◦ b = c, we use a
random vector r and show ⟨a ◦ b, r⟩ = ⟨c, r⟩, where ⟨·, ·⟩ means inner product. The main challenge in the
protocol is to deal with the product in sumcheck. Multivariate protocols [XZZPS19; BCHO22] have a direct
generalization from sumcheck for a single polynomial to sumcheck for products of multiple polynomials.
However, it is not the case in univariate setting. In multivariate, in particular multilinear setting, all variables
are naturally separated so that prover can limit the summing space by limit the number of variables and it
is easy for prover to compute and prove a linear (or higher degree when it comes to the case of product)
function, while in univariate setting we have only one variable. Gemini[BCHO22] solves the problem
by "simulating" multivariate sumcheck through folding technique. In particular, Gemini folds the target
polynomial of sumcheck by splitting its even and odd coefficients to two lower degree polynomials and take
their random linear combination as the new target polynomial.
Key Observation. In Hadamard product, we need to compute the inner product of two polynomials. Under
the restriction of Lagrange-based, we cannot directly compute the product polynomial a(x) · b(x) as it has a
double degree while the number of evaluation points remains unchanged. We try to apply the idea of Gemini
to our protocol. Since the splitting is the linear combination of polynomials and the inner product is quadratic,
we need to do some modifications. Our observation is that the sum of product has the property

⟨a, b⟩ =
∑
x∈H

a(x)b(x−1) =
∑
x∈H

a1(x2)b1(x−2) + a2(x2)b2(x−2)

for specific groups H and split polynomial a1, b1, a2, b2 if we have polynomials a(x)b(x−1) that agree with
a, b on H. In particular, H is a multiplicative subgroup of a finite field. By the observation, the inner product
of two polynomials can be turned into the sum of inner product of split polynomials, which allows us to do
the similar folding to polynomial a, b as Gemini.
However, it is still not enough for Hadamard product. The left-hand side of the Hadamard product contains
a ◦ b, which is the Hadamard product itself. To avoid the circular argument, we choose a structured vector ρ,
which we call it tensor polynomial instead of a random r. The feature of ρ is that checking ⟨a, ρ⟩ is equivalent
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Prover Proof Verifier

[LSZ22][ZSZSWG22]... O(N log N) O(1) O(1)
[BCG20] O(N) O(N ϵ) O(N ϵ)
[BBBPWM18] O(N) 2 log NG + 5F O(N)
[DRZ20] O(N) 8 log NG1 + 2 log NF O(log N)
[BMMTV21][KMP20] O(N) 2 log NGT + 1G1 + 2G2 O(log N)
This work O(N) (2 log N + 18)G1 + (4 log N + 14)F O(log N)

Table 1: Comparison to other Hadamard-product protocols on univariate polynomials. The columns represent
asymptotic proving time, proof size and verification time when proving the Hadamard product of two vectors
with length N = 2n. For the protocol with logarithm proof size, we list the concrete proof size. By [Lee20],
1GT = 4G1 = 6F in BLS12-381, thus [DRZ20],[BMMTV21] and [KMP20] have a close proof size.

to checking folding scheme. When checking u = ⟨a ◦ ρ, b⟩ = ⟨a ◦ b, ρ⟩, we first compute k = a ◦ ρ
and check inner product u = ⟨k, b⟩ by folding scheme, which is equivalent to checking u1 = ⟨k, ρ′⟩ and
u2 = ⟨b, ρ′⟩ for some u1, u2 computed by u. u2 = ⟨b, ρ′⟩ can be checked by folding scheme. But when we
check u1 = ⟨k, ρ′⟩ = ⟨a ◦ ρ, ρ′⟩ by similar method, it turns out to be slightly different. The problem is that a
rational function must be checked in the process. Luckily, only the constant term in the polynomial is involved
in a rational function, and we can deal with the constant term separately to avoid checking a rational function.
By the adjustment, u1 = ⟨k, ρ′⟩ = ⟨a ◦ ρ, ρ′⟩ can be checked, thus finishing the proof of Hadamard product.
Commitment scheme. To instantiate polynomial oracles in the protocol, we use KZG commitment [KZG10].
The original KZG commitment is designed for coefficient-based polynomial. To modify it to Lagrange-based,
we make some changes to the CRS, in particular, computing Lagrange polynomial instead of xi terms to
construct the CRS. We show that it has exactly the same property as the standard KZG commitment.
Complexity. By applying the modification of the KZG commitment, our Hadamard-product protocol achieves
O(N) proving time, O(log N) proof size, and verification time where N is the length of the vectors in terms
of asymptotic complexity. The proof contains 2 log N + 13 group elements and 4 log N + 20 field elements,
and batching k instances of proof only adds O(k) elements to the proof size. The underlying inner-product
protocol has proof size of log N + 8 group elements and 4 log N + 12 field elements.
Comparison. Due to the fact that most of the univariate Hadamard-product and inner-product proto-
cols[ILV11; LSZ22; SZ22; ZSZSWG22; GGPR13; BCRSVW19; CHMMVW20; GWC19] are designed in
the situation where FFT is available, we mainly make comparison to Bulletproof and its improved version.
Bulletproof[BBBPWM18] gives an inner-product protocol with O(N) proving time, O(log N) proof size,
and O(N) verification time by a similar folding of our protocol. The improvement of the protocol[DRZ20;
BMMTV21; KMP20] gives a O(log N) verification time, which is the closest to our protocol. The detailed
comparison of proof size is listed in Table 1, and our protocol achieves the best proof size for around 30%
improvement.

1.2 Related Work

In recent years there have been several inner-product protocols and Hadamard-product protocols applied to
distinct SNARK protocols. The inner-product protocols and Hadamard-product protocols can be roughly
divided into two groups according to proving time.

The quasilinear-proving-time group contains the directly-computed Hadamard product and inner product
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with zero polynomial[GGPR13; BCRSVW19; CHMMVW20; GWC19; RZ21]1 and Hadamard product and
inner product with Laurent polynomials[MBKM19; ILV11; LSZ22; SZ22; ZSZSWG22]. In this group,
the protocols always put the entries of vectors in the coefficients of polynomials. The directly-computed
inner product and Hadamard product contain all such protocols that are not specifically designed for proof
size, as it is easy and direct to compute the polynomial multiplications the quotient polynomial q(x) in
a(x)b(x) − b(x) = q(x)z(x) with the help of FFT. The protocols powered by Laurent polynomials use
polynomials including x−k in polynomial multiplications to put the results of inner products on a specific
coefficient (typically constant) of the product polynomial. The realization of these protocols are slightly
different. [ILV11; LSZ22] do not directly use the x−k terms. They use the degree of polynomial from x0 to
xN and place the inner product on the coefficient of xN+1. To maintain soundness, a special SRS for the
KZG commitment needs to be provided that does not contain the term [xN+1]1. [SZ22; ZSZSWG22] uses an
auxiliary polynomial that has zero coefficient in term xN+1 to ensure that the coefficient of term xN+1 is the
alleged value, thus it can use a standard SRS for the KZG commitment. [MBKM19] uses bivariate Laurent
polynomials f(x, y) where y is the variate for the random linear combination and places the alleged value on
the coefficient of x0. The SRS of such a protocol also lacks the term to commit the coefficient of x0.

The linear-proving-time group contains the Hadamard product and inner product from multivariate
sumcheck and from folding techniques. The protocol based on multivariate sumcheck includes [XZZPS19;
Set20; BCHO22; CBBZ23]. Libra[XZZPS19] first gives a dynamic programming method to compute the
intermediate results of the sumcheck for products of multilinear polynomials in linear time and [Set20;
BCHO22; CBBZ23] apply the technique to inner product and Hadamard product. The protocol from folding
technique includes [BCCGP16; BBBPWM18; DRZ20; BMMTV21; KMP20]. The idea is also applying
Laurent polynomials, but each time they only compute polynomials with terms x and x−1, halving the
length of vector by separating them into two terms. By this technique, they get a linear prover. [BCCGP16;
BBBPWM18] has a linear verifier, since the computations of folding are also required for verifier. [DRZ20;
BMMTV21; KMP20] improves the scheme by applying polynomial commitments to [BBBPWM18], using
a commit-and-prove technique to delegate verifier’s computations to prover. The improvement leads to a
logarithm verifier.

2 Preliminaries

2.1 Notation

We use λ to denote the security parameter. Let log : N→ Z be the base-2 logarithm function with rounding.
Let F be a (finite) field and F∗ be F\{0}. We use |G| to denote the number of entries in group G. We
will use H to represent a multiplicative subgroup of field F. H is a cyclic group. For a vector a over F of
length N and a multiplicative subgroup H = {1, ω, ..., ωN−1} of size N , let polynomial a(x) be the unique
polynomial of degree at most N − 1 that defined by a(ωi) = ai where ai is i-th entry of a. We also call the
polynomial Lagrange-based. Sometimes we will also use a as a polynomial. We use deg(a(x)) to be the
degree of polynomial a(x). Let a ◦ b be the Hadamard product of the two vectors and a · b = ⟨a, b⟩ be the
inner product of the two vectors. Sometimes we will write inner product in sum, which is

∑
x∈H a(x)b(x)

for a, b ∈ FN and |H| = N . We use PPT as an abbreviation of probabilistic-polynomial-time.
We use H2 to represent the set of square of all elements in a multiplicative subgroup H ⊂ F, and use Gk for a
vector containing k elements of G otherwise, when G is not claimed as a multiplicative subgroup of field F.

1Most of quasilinear-prover SNARKs contains such type of sub-protocol, thus we only list protocols not containing specifically-
designed proofs.
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This abuse of notation can be a bit disturbing. For a multiplicative subgroup H with |H| = 2n, H2n

= {1}.

Definition 2.1 (even and odd parts of polynomials). Let f(x) ∈ F[x]. Let fe(x) and fo(x) be the even and
odd parts of f(x) i.e. the unique polynomials such that f(x) = fe(x2) + xfo(x2).

Remark 2.2 (compute even and odd parts). Since all polynomials in the protocol are in the Lagrange base on
a multiplicative subgroup H, even and odd parts of polynomials cannot be separated directly. Instead, we use
following equations to compute the two parts: fe(x2) = f(x)+f(−x)

2 and fo(x2) = f(x)−f(−x)
2x . The equations

are consistent in the field F. By the equations, we can directly define fe(x) and fo(x) on H2, which is also a
multiplicative subgroup.

2.2 Polynomial Interactive Oracle Proof

A polynomial IOP [CHMMVW20; BFS20; BCHO22] over a field family F for an indexed relationR is a set
of tuples IOP = (k, n, d, I,P,V) where k, n, d : {0, 1}∗ → N are polynomial-time computable functions
and I,P,V are three algorithms called indexer, prover, verifier respectively. The function k,n,d specifics the
number of interaction rounds, the number of polynomial oracles in each round and the degree bounds on
these polynomials.2
In round 0 (offline phase), the indexer I receives index i and a field F ∈ F as input, and outputs n(0)
polynomial oracles of degree at most d. In online phase, given an instance x and a witness w such that
(i,x,w) ∈ R, prover P receives (F, i,x,w) and verifier V receives (F,x) and oracle access to outputs of
I(F, i). Prover and verifier interactive for k = k(|i|) rounds.
In each round j = 1, ..., k, verifier sends a message ρj ∈ F∗ to prover, and then prover responds with n(j)
polynomial oracles with degree bound d. Verifier may query any oracle it has received at any time. A query
should be an oracle P(j)

i verifier has already received and an element z ∈ F and its answer is P(j)
i (z) ∈ F.

After all interactions, verifier accepts or rejects by outputting a bit {0, 1}. We say that a prover (probably
malicious) P̃ to be admissible that for every oracle prover sends, the degree of the polynomial is bounded by
d. A honest prover must be admissible. We also allow prover to send non-oracle message to verifier together
with polynomial oracles as in a typical interactive proof.
We say that a polynomial IOP has perfect completeness and soundness error ϵ if the following holds.

• Completeness. For every field F ∈ F and tuple (i,x,w) ∈ R, the probability that prover P(F, i,x,w)
convinces verifier VI(F,i)(F,x) to accept the proof is 1.

• Soundness. For every field F ∈ F and tuple (i,x) /∈ L(R), the probability for any admissible prover
P̃(i,x) to convince verifier VI(F,i)(F,x) to accept is at most ϵ.

The proof size we used in this paper is the sum of numbers of queries, oracles sent by prover and indexer,
and non-oracle messages.

The PIOP we construct has a strong property of knowledge soundness(against admissible provers). We
define the property below.
Knowledge Soundness. We say a PIOP has knowledge error ϵ if there exists a PPT extractor E for which the
following holds. For every field F ∈ F , index-instance tuple (i,x) and admissible prover P̃ , the probability
that E P̃(F, i,x, 1l(i)) outputs a valid witness w for (i,x) that (i,x,w) ∈ R is at least the probability that P̃
convinces VI(F,i)(F,x) to accept minus ϵ. The notation E P̃ means that the extractor E has a black-box access

2The Hadamard-product protocol itself is not necessarily to have indexer. We put it here as it can be a sub-protocol of a SNARK
with indexer.
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to a next-message function defined by the algorithm P̃ ; in particular, the extractor E can "rewind" prover P̃ to
any round to get new messages.

The PIOP that we construct has two additional properties.
Public-coin. IOP is public-coin if each verifier’s message to prover is a uniformly random string of some
prescribed length. For public-coin PIOP, all queries can be postponed, w.l.o.g., to a query phase that is after
the interactive phase.
Non-adaptive Queries. IOP is non-adaptive if all of verifier’s query locations are only determined by
verifier’s inputs and randomness.

2.3 Tensor Polynomials

Definition 2.3. Tensor polynomial ρH,(r1,...rn)(x) is the unique polynomial defined in a multiplicative
subgroup H with |H| = 2n and n random elements in the field F whose degree is less than 2n and

ρH,(r1,...rn)(x) =
∏n

i=1
x

2i−1
+ri

2x
2i−1 = x

2n

∏n
i=1 (x2i−1

+ ri) for every x ∈ H. When H or random elements are

clear, we can omit them from ρ(x).

Since x
∏n

i=1 (x2i−1
+ ri) is a monic polynomial with degree 2n, ρ(x) can be written as

ρ(x) = 1
2n (x

∏n
i=1 (x2i−1

+ ri)− x2n

+ 1).

2.4 Lagrange Polynomials

We define Lagrange polynomials in terms of a multiplicative subgroup of a finite field here.

Definition 2.4 (Lagrange polynomial for multiplicative subgroup). For a multiplicative subgroup H =
{1, ω, ..., ωN−1} of a finite field F of size N = 2n, Lagrange polynomial is the unique polynomial having a
degree at most N − 1 that Lk(ωk) = 1 and Lk(x) = 0 for every x ∈ H\{ωk}.

Proposition 2.5. In multiplicative subgroup H = {1, ω, ..., ωN−1} with N = 2n, Lk(x) = x
N −1
N

ω
k

x−ω
k .

Proof. The core is to compute
∏

0≤i ̸=j<N (ωi−ωj) for i = 0, ..., N − 1. Since ω
N
2 = −1,

∏
0≤i ̸=j<N (ωi−

ωj) = (ωi − ωi+ N
2 )

∏
0≤i ̸=j< N

2
(ωi − ωj)(ωi + ωj) = 2ωi ∏

0≤i ̸=j< N
2

(ω2i − ω2j). Since ω2 is the

generator for H2, we can repeat this, and get
∏

0≤i ̸=j<N (ωi − ωj) =
∏n−1

k=0 2(ωi)2k

= N

ω
i . Along with∏N−1

j=0 (x− ωj) = xN − 1, we can get Lk(x) = x
N −1

x−ω
k

ω
k

N .

3 Tensor-Check Protocol

In this section we introduce a sub-protocol involving tensor polynomial which is used in our construction. In
Section 4.4 we show how prover evaluates the tensor polynomial on a multiplicative subgroup H.

Definition 3.1. The tensor-check relationRT C is a set of tuples

(i,x,w) = (⊥, (F,H, N, r1, ..., rn, u), f)

where H is a multiplicative subgroup of field F with size N = 2n, r1, ..., rn ∈ F and∑
x∈H f(x)ρH,(r1,...,rn)(x) = u in which ρ(x) is tensor polynomial defined as in Definition 2.3.
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Theorem 3.2. For every positive integer N = 2n and a finite field F that N | |F∗|, there is a PIOP forRT C

with proving time O(N), proof size O(log N), verification time O(log N) in terms of field operations and
field elements. The PIOP has a perfect completeness and soundness error N−1

|F∗| .

We prove Theorem 3.2 by following construction.

Construction 1. We construct a PIOP with n rounds for indexed RT C . Prover P takes (i,x,w) of the
relation as input; verifier V takes (i,x) as input.

• Let f (0)(x) = f(x).
• For i = 1, ..., n, prover computes f (i)(x2) = f (i−1)

e (x2) + rif
(i−1)
o (x2)

= f (i−1)(x)+f (i−1)(−x)
2 + ri

f (i−1)(x)−f (i−1)(−x)
2x for x ∈ H2i−1

. The degree of f (i)(x) is less than 2n−i.

• Prover sends oracle f (i)(x) for i = 0, ..., n to verifier.
• Verifier sends challenge β ← F∗.
• Prover sends f (i−1)(β), f (i−1)(−β) and f (i)(β2) for i = 1, ..., n.

• Verifier checks f (i)(β2) = f (i−1)(β)+f (i−1)(−β)
2 + ri

f (i−1)(β)−f (i−1)(−β)
2β for i = 1, ..., n

and f (n)(β2) = u.

We call the relation "tensor-check" due to the similarity between Construction 1 and Construction 1
in [BCHO22]. Since our construction has the same computations and verifications as in [BCHO22], the
soundness and complexity directly follow the proof in [BCHO22] and we only need to prove the completeness.

Remark 3.3. f (n) in the protocol should be the constant u in the relation, thus it is unnecessary for verifier to
query f (n)(x), i.e. verifier can use u to replace f (n)(β2) to save one oracle and prover sends n oracles in
Construction 1 to verifier.

Lemma 3.4. Construction 1 has perfect completeness.

Proof. Suppose
∑

x∈H f(x)ρH,(r1,...,rn)(x) = u. The verification consists of two parts. The first part is

f (i)(β2) = f (i−1)(β)+f (i−1)(−β)
2 + f (i−1)(β)−f (i−1)(−β)

2β , which is correct if prover is honest, since f (i−1)
e (x)

and f (i−1)
o (x) are unique and consistent over field F in terms of f (i−1)(x).

The second part is f (n)(β2) = u. Since f (n)(x) is defined on H2n

= {1}, it is a constant polynomial, thus it
is equivalent to check f (n)(1) = u. We first rewrite f (i)(x2) = f (i−1)(x)+f (i−1)(−x)

2 + ri
f (i−1)(x)−f (i−1)(−x)

2x

as f (i)(x2) = x+ri
2x f (i−1)(x) + −x+ri

2(−x) f (i−1)(−x). We observe that f (i)(x) for every x ∈ H2i

is determined

by 2 unique evaluations of f (i−1)(x) on H2i−1
for all i = 1, ..., n. Therefore, we can construct a full binary

tree to describe the evaluations of all f (i). We put f (n) at root (level 0), and f (i) at level (n− i), and f (i−1)(x)
and f (i−1)(−x) are siblings whose parent is f (i)(x2). We additionally put value x+ri

2x on the edge linking
f (i−1)(x) and f (i)(x2). This will automatically place −x+ri

2(−x) on the edge connecting f (i−1)(−x) and f (i)(x2).
Then for every internal node of the tree, the value of the node can be computed by the product of each of its
child and the edge between the node and its child respectively and then summing them up. By induction, we
can obtain the value of every subtree’s root, which equals the sum of the product of each of its leaves and
the edge on the path between the root and its leaves, respectively. Observing the path from leave f (0)(x) to
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root f (n), the values on the edges are x+r1
2x , x

2+r2
2x

2 , ..., x
2i−1

+ri

2x
2i−1 , ..., x

2n−1
+rn

2x
2n−1 . Thus, the root of the tree, f (n),

equals
∑

x∈H(f (0)(x)
∏n

i=1
x

2i−1
+ri

2x
2i−1 ) =

∑
x∈H f(x)ρH,(r1,...,rn)(x) = u.

Remark 3.5 (Batching proofs). To batch m proofs for witnesses ofRT C f0, ..., fm−1 with the same ρ, verifier
can simply send a challenge ξ ← F∗ to prover and run Construction 1 on polynomial f(x) =

∑m−1
i=0 ξifi(x).

This will add m−1
|F∗| to the soundness error according to the Schwartz-Zippel lemma. Note that only one

challenge3 is needed in the process.

4 Inner-Product Protocol

In this section, we describe several protocols related to the inner products of polynomials on Lagrange base.

4.1 Inverse Inner Product

Definition 4.1. The relation inverse inner productRIIP is a set of tuple

(i,x,w) = (⊥, (F,H, N, u), (f1, f2))

whereH is a multiplicative subgroup of fieldFwith size N = 2n, f1, f2 ∈ FN , u ∈ F and
∑

x∈H f1(x)f2(x−1) =
u.

We call it ’inverse inner product’ as it uses the inversion of the variable in polynomial f2.

Theorem 4.2. For every positive integer N = 2n and a finite field F that N | |F∗|, there is a PIOP forRIIP

with proving time O(N), proof size O(log N), verification time O(log N) in terms of field operations and
field elements. The PIOP has a perfect completeness and soundness error 2N

|F∗| .

We prove Theorem 4.2 by following construction.

Construction 2. We construct a PIOP with n + 2 rounds for indexedRIIP . Prover P takes (i,x,w) of the
relation as input; verifier V takes (i,x) as input.

• Let f (0)
i (x) = fi(x), u(0) = u, i = 1, 2.

• For each round j = 1, ..., n, let f (j−1)
i,e and f (j−1)

i,o be even and odd parts of polynomial f (j−1)
i , respectively.

Let P(j)(r) =
∑

x∈H2j (f (j−1)
1,e (x) + rf (j−1)

1,o (x))·

(f (j−1)
2,e (x−1) + rf (j−1)

2,o (x−1)). Note that P(j) is quadratic. Prover computes f (j−1)
i,e (x) and f (j−1)

i,o (x) for

x ∈ H2j

by f (j−1)
i (x). Prover computes P(j)(0),

P(j)(1), P(j)(−1) and send them to verifier.
• For each round j = 1, ..., n, after receiving P(j)(0), P(j)(1), P(j)(−1), verifier checks P(j)(1) +

P(j)(−1) = u(j−1), samples rj ← F∗ and sends rj to prover. Prover and verifier compute u(j) = P(j)(rj).
• For each round j = 1, ..., n, after receiving rj , prover computes f (j)

i (x) = f (j−1)
i,e (x) + rjf (j−1)

i,o (x) for

x ∈ H2j

and i = 1, 2. Prover sends oracle f (j)
i (x) and enters the next round.

3β will be reused, thus it will only be counted in Hadamard product protocol
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• In round n + 1, verifier checks relation among 3 constants f (n)
1 · f (n)

2 = u(n) (similar to what is in
tensor-check protocol). Verifier samples a challenge β ← F∗ and sends it to prover.

• In round n + 2, after receiving β, prover opens oracles f (j)
i (x) where j = 0, ..., n− 1 at x = β,−β and

opens f (j)
i (x) where j = 1, ..., n at x = β2. Prover sends all openings to verifier.

• In round n + 2, after receiving all openings, verifier checks

f (j)
i (β2) = f (j−1)

i (β)+f (j−1)
i (−β)

2 + rj
f (j−1)
i (β)−f (j−1)

i (−β)
2β where i = 1, 2 and j = 1, ..., n.

Remark 4.3. Noticing that the only position we use the oracle fi(x) is in round n + 2 and the challenge
is sent in round n + 1, we can postpone all oracle sending to round n, i.e. computing and sending them
together. Furthermore, by the observation that the checking equations of fi(x) have the same form as those of
Construction 1, we can use the batch proof of Construction 1 to shrink the proof size with 1

|F∗| extra soundness

error. Prover sends n + 1 oracles, 3n field elements for P(x) and 2 field elements for f (n)
i to verifier and

verifier sends n challenges for r, 1 challenge for β and 1 challenge for batch proof.

Before proving properties of Construction 2, we first prove a lemma about P(x) and f(x).

Lemma 4.4. For every finite field F and a multiplicative subgroup H of size N = 2n for a positive
integer n, and two polynomials f1(x), f2(x) whose degrees are less than N on F,

∑
x∈H f1(x)f2(x−1) =

2
∑

x∈H2 f1,e(x)f2,e(x−1) + f1,o(x)f2,o(x−1).

Proof. Let H = {1, ω, ..., ωN−1}. Since H is a multiplicative subgroup, we have ω
N
2 = −1. Then∑

x∈H f1(x)f2(x−1) =
∑

x∈H f1(ω
N
2 x)f2((ω

N
2 x)−1) =

∑
x∈H f1(−x)f2(−x−1). Considering∑

x∈H
f1(x)f2(x−1) +

∑
x∈H

f1(−x)f2(−x−1)

=
∑
x∈H

(f1,e(x2) + xf1,o(x2))(f2,e(x−2) + x−1f2,o(x−2))

+ (f1,e(x2)− xf1,o(x2))(f2,e(x−2)− x−1f2,o(x−2))
=2

∑
x∈H

f1,e(x2)f2,e(x−2) + f1,o(x2)f2,o(x−2)

=4
∑

x∈H2

f1,e(x)f2,e(x−1) + f1,o(x)f2,o(x−1)

, we have
∑

x∈H f1(x)f2(x−1) = 2
∑

x∈H2 f1,e(x)f2,e(x−1) + f1,o(x)f2,o(x−1).

Lemma 4.5. Construction 2 has perfect completeness.

Proof. Suppose
∑

x∈H f1
(0)(x)f2

(0)(x−1) = u(0). We first show that for every j = 1, ..., n, P(j)(1) +
P(j)(−1) = u(j−1) =

∑
x∈H2j−1 f (j−1)

1 (x)f (j−1)
2 (x−1). It is trivial when j = 1. When j ≥ 2, by the

definition of u(j), we have

u(j−1) = P(j−1)(rj−1)

=
∑

x∈H2j−1

(f (j−2)
1,e (x) + rj−1f (j−2)

1,o (x))(f (j−2)
2,e (x−1) + rj−1f (j−2)

2,o (x−1))
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=
∑

x∈H2j−1

f (j−1)
1 (x)f (j−1)

2 (x−1)

(1)= 2
∑

x∈H2j

f (j−1)
1,e (x)f (j−1)

2,e (x−1) + f (j−1)
1,o (x)f (j−1)

2,o (x−1)

(2)= P(j)(1) + P(j)(−1)

where (1) is by Lemma 4.4 and (2) is by definition of P(j)(r). Thus, P(j)(1) + P(j)(−1) = u(j−1).
Then we prove f (n)

1 · f (n)
2 = u(n). By definition of u(j), P(j) and f (j)

i for i = 1, 2, we have u(j) = P(j)(rj) =∑
x∈H2j (f (j−1)

1,e (x) + rjf (j−1)
1,o (x))(f (j−1)

2,e (x−1) + rjf (j−1)
2,o (x−1)) =

∑
x∈H2j f (j)

1 (x)f (j)
2 (x) for j = 1, ..., n.

Bringing n into j, we get the proof.
The proof of f (j)

i (β2) = f (j−1)
i (β)+f (j−1)

i (−β)
2 + rj

f (j−1)
i (β)−f (j−1)

i (−β)
2β follows the proof of Lemma 3.4.

Lemma 4.6. Construction 2 has soundness error 2N
|F∗| .

Proof. Suppose
∑

x∈H f1
(0)(x)f2

(0)(x−1) ̸= u(0). Since f (n)
1 · f (n)

2 = u(n), there must be some j that∑
x∈H2j−1 f (j−1)

1 (x)f (j−1)
2 (x) ̸= u(j−1) and

∑
x∈H2j f (j)

1 (x)f (j)
2 (x) = u(j). Let the largest one be j∗, and

the quadratic polynomial in round j∗ prover sends is P′(r) (instead of P(j∗)(r)). We have P′(1) + P′(−1) =
u(j∗−1) ̸=

∑
x∈H2j

∗−1 f (j∗−1)
1 (x)f (j∗−1)

2 (x). Now we consider two cases.

• f (j∗)
i (x) = f (j∗−1)

i,e (x) + rj
∗f (j∗−1)

i,o (x) for i = 1, 2. Let

P(j∗)(r) =
∑

x∈H2j
∗ (f (j∗−1)

1,e (x)+rf (j∗−1)
1,o (x))(f (j∗−1)

2,e (x−1)+rf (j∗−1)
2,o (x−1)). Since P′(1)+P′(−1) ̸=∑

x∈H2j
∗−1 f (j∗−1)

1 (x)f (j∗−1)
2 (x) = P(j∗)(1) + P(j∗)(−1) according to the proof in Lemma 4.5, P′(r)

and P(j∗)(r) are different quadratic polynomials. By
∑

x∈H2j
∗ f (j∗)

1 (x)f (j∗)
2 (x) = u(j∗) and f (j∗)

i (x) =

f (j∗−1)
i,e (x) + rj

∗f (j∗−1)
i,o (x) for i = 1, 2, we have u(j∗) = P(j∗)(rj

∗). But we also have u(j∗) = P′(rj
∗)

according to verifier’s computation. Since rj
∗ is chosen after sending P′(r), the chance that they have the

same value on r is 2
|F∗| as they are both quadratic.

• f (j∗)
i (x) ̸= f (j∗−1)

i,e (x) + rj
∗f (j∗−1)

i,o (x) for at least one of i = 1, 2. Following Theorem 3.2, the chance that
each one occurs is N−1

|F∗| .

Summing the two cases by union bound, we have the overall soundness error 2N
|F∗| .

Lemma 4.7. Prover of Construction 2 can be implemented in O(N) field operations in F with space
complexity O(N) of field elements.

Proof. In round j, prover needs to compute f (j)
i , P(j) from f (j−1)

i for i = 1, 2, which both require O(2n−j)
field operations. Prover needs to store f (j)

i for i = 1, 2 in order to compute f (j+1)
i in the next round, which needs

to store O(2n−j) field elements. Thus the overall time and space complexity are both O(2n) = O(N).
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Remark 4.8 (Batching proofs). For k instances of RIIP with witness fi,j(x), i = 0, ..., k − 1, j = 1, 2,
verifier first sends a challenge ξ to prover and they prove

∑k−1
i=0 ξifi,1(x)fi,2(x−1) =

∑k−1
i=0 ξiui. In round

1 to n, instead of sending Pi(x) for each instance separately, prover sends
∑k−1

i=0 ξiPi(x). To check the
equations for fi,j(β), prover and verifier still apply batch scheme for Construction 1. The soundness of such
batching scheme can be proved through the same sketch of proof of Lemma 4.6, and the soundness error will
be 2k(N−1)+2+3(k−1)

|F∗| . Using the batching scheme, prover sends n + 2k − 1 oracles, 3n + 2k field elements

for P(x) and f (n)
i , and 2 challenges are needed.

4.2 Reversing the Vector

The relation RIIP uses a polynomial f2(x−1), which is not convenient for our full construction. We will
introduce a new protocol to solve this problem. We first give a lemma for the new construction.

Lemma 4.9. Suppose f(x) is a polynomial whose degree is less than N defined on a finite field F with a
multiplicative subgroup H that |H| = N . Let f ′(x−1) = f(x) for every x ∈ H and f ′(x) be a polynomial
whose degree is also less than N , then f(x) = f ′(x−1) · xN − f ′(0) · xN + f ′(0) for every x ∈ F.

Proof. Let f ′(x) = b0 + b1x + ... + bN−1xN−1. Considering f ′(x−1) on H, since xN = 1 in H, we have

f(x) = xN f ′(x−1) = xN (b0 +b1x−1 + ...+bN−1x1−N ) = xN (b0 +b1x−1 + ...+bN−1x1−N )−b0xN +b0

Since f(x) and xN (b0+b1x−1+...+bN−1x1−N )−b0xN +b0 are both polynomials whose degrees are less than
N and agree on H that |H| = N , they are the same polynomial. Therefore f(x) = xN f ′(x−1)− b0xN + b0 =
xN f ′(x−1)− xN f ′(0) + f ′(0).

We now give the definition of inner-product relation.

Definition 4.10. The relation inner productRIP is a set of tuple

(i,x,w) = (⊥, (F,H, N, u), (f1, f2))

whereH is a multiplicative subgroup of field Fwith size N = 2n, f1, f2 ∈ FN , u ∈ F and
∑

x∈H f1(x)f2(x) =
u.

Theorem 4.11. For every positive integer N = 2n and a finite field F that N | |F∗|, there is a PIOP for the
RIP with proving time O(N), proof size O(log N), verification time O(log N) in terms of field operations
and field elements. The PIOP has a perfect completeness and soundness error 3N

|F∗| .

We prove Theorem 4.11 by following construction based on Construction 2.

Construction 3. Let f ′
2(x−1) = f2(x) on H. Prover first sends oracle f ′

2(x) and prover and verifier follow
Construction 2 on relation RIIP : (i,x,w) = (⊥, (F,H, N, u), (f1, f ′

2)). After the sub-protocol, verifier
sends a challenge ξ ← F∗ to prover and prover opens f ′

2(x) at point ξ and f2(x) at point ξ−1 along with point
0. Verifier checks f ′

2(ξ) = ξN f2(ξ−1)− ξN f2(0) + f2(0).

By Lemma 4.9 and Theorem 4.2, the completeness and proving complexity of Construction 3 are inferred
directly. The additional soundness error is due to checking f ′

2(ξ) = ξN f2(ξ−1)− ξN f2(0) + f2(0), which is
N

|F∗| by Schwartz–Zippel lemma. 1 more oracle is needed in the proof than in Construction 2.
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Remark 4.12 (Batching proofs). For k instances of RIP with witness fi,j(x), i = 0, ..., k − 1, j = 1, 2,
prover only needs to call batching proof of RIIP , and checks f ′

i,2(ξ) = ξN fi,2(ξ−1) − ξN fi,2(0) + fi,2(0)
using random linear combination as for Construction 1. This will add k

|F∗| to soundness error. n + 3k − 1
oracles, 3n + 2k field elements, and 3 challenges are needed to batch k proofs.

Remark 4.13. If we are proving Hadamard product in vector form, we can directly construct an inverse
polynomial to use Construction 2 instead of Construction 3 to avoid to check f ′

2(ξ) = ξN f2(ξ−1)− ξN f2(0) +
f2(0).

4.3 Inner Product with Tensor Polynomial

To construct a Hadamard product, we need to do an "inner product" of 3 polynomials. We use the inner-product
protocol along with the tensor polynomial to construct the "inner product".

Definition 4.14. The relation triple inner productRT IP is a set of tuple:

(i,x,w) = (⊥, (F,H, N, r1, ..., rn, u), (f1, f2))

,where H is a multiplicative subgroup of size N = 2n, f1, f2 ∈ FN , u ∈ F, and∑
x∈H f1(x)f2(x)ρH,(r1,...,rn)(x) = u.

Theorem 4.15. For every positive integer N = 2n and a finite field F that N | |F∗|, there is a PIOP for the
RT IP with proving time O(N), proof size O(log N), verification time O(log N) in terms of field operations
and field elements. The PIOP has perfect completeness and soundness error 5N+n−2

|F∗| .

We prove Theorem 4.15 by following construction.

Construction 4. We construct a PIOP with 2n + 3 rounds for indexedRT IP . Prover P takes (i,x,w) of
the relation as input; verifier V takes (i,x) as input.

• Prover computes k = f1 ◦ ρH,(r1,...,rn) and sends oracle k(x) to verifier.
• Prover and verifier invoke protocol in Construction 3 to verify relationRIP : (i,w,x) = (⊥, (F,H, N, u), (k, f2)).

Let randomness in round 1, 2, ..., n be r′
1, ..., r′

n.

• Let f (0)
1 (x) = f1(x) . Prover computes oracle f (j)

1 (x2) = x+rj

2x

x+r
′
j

2x f (j−1)
1 (x) + −x+rj

2x

−x+r
′
j

2x f (j−1)
1 (−x)

for j = 1, ..., n− 1 and x ∈ H2j−1
. Prover sends oracle f (1)

1 , ..., f (n−1)
1 to verifier.

• Verifier samples γ ← F∗ and sends it to prover.
• Prover opens f (j)

1 at γ,−γ, γ2 and 0 for j = 0, ..., n− 1 and sends it to verifier.

• For j = 1, ..., n, verifier checks f (j)
1 (γ2) = rj+r

′
j

4γ (f (j−1)
1 (γ) − f (j−1)

1 (−γ)) + f (j−1)
1 (γ)+f (j−1)

1 (−γ)
4 +

rjr
′
j

4γ
2 (f (j−1)

1 (γ) + f (j−1)
1 (−γ)− 2f (j−1)

1 (0)) + rjr
′
j

2 f (j−1)
1 (0)γ

N

2j−1 −2
and f (n)

1 = k(n).

We first prove the following lemma related to oracle checking.

Lemma 4.16. For every field F, a multiplicative subgroup H with size N = 2n and a polynomial
f(x) whose degree is less than N , defining a polynomial f ′(x) with degree less than N

2 that f ′(x2) =
x+r
2x

x+r
′

2x f(x) + −x+r
2(−x)

−x+r
′

2(−x) f(−x) for every x ∈ H, then for every point x ∈ F, f ′(x2) = r+r
′

4x (f(x) −

f(−x)) + f(x)+f(−x)
4 + rr

′

4x
2 (f(x) + f(−x)− 2f(0)) + rr

′

2 f(0)xN−2.
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Proof. We first observe f(x) for x ∈ H; for x ∈ H, f ′(x2) = r+r
′

4x (f(x) − f(−x)) + f(x)+f(−x)
4 +

rr
′

4x
2 (f(x) + f(−x)). The problem is the right hand side of the equation is not a polynomial; in particular

rr
′

4x
2 (f(x) + f(−x)) is not a polynomial. It is a rational function. What we do next is to find a polynomial

that agrees with rr
′

4x
2 (f(x) + f(−x)) on H and has a degree less than N . Observing that rr

′

4x
2 (f(x) + f(−x))

is a polynomial if f has no constant term (linear term is cancelled), we can split the rational function as
rr

′

4x
2 (f(x)+f(−x)) = rr

′

4x
2 (f(x)+f(−x)−2f(0))+ rr

′

2x
2 f(0). Since rr

′

2x
2 f(0) = xN · rr

′

2x
2 f(0) = rr

′

2 f(0)xN−2

for x ∈ H as H is a multiplicative subgroup of size N , we have completed the proof.

Lemma 4.17. Construction 4 has perfect completeness.

Proof. Suppose
∑

x∈H f1(x)f2(x)ρH,(r1,...,rn)(x) = u. Then k = f1 ◦ ρH,(r1,...,rn),
∑

x∈H k(x)f2(x) = u.
Thus (k, f2) is witness for relationRIP , and the sub-protocol can be correctly implemented. By the proof of
Lemma 3.4, k(n) =

∑
x∈H k(x)ρH,(r′

1,...,r
′
n)(x) =

∑
x∈H f1(x)ρH,(r1,...,rn)(x)ρH,(r′

1,...,r
′
n)(x).

Recall the tree we construct in the proof of Lemma 3.4. When we replace the value on the edge x+ri
2x with

x+ri
2x

x+r
′
i

2x , we can get f (n)
1 (x) =

∑
x∈H(f (0)(x)

∏n
i=1

x
2i−1

+ri

2x
2i−1

∏n
i=1

x
2i−1

+r
′
i

2x
2i−1 ) =

∑
x∈H f(x)ρH,(r1,...,rn)(x)ρH,(r′

1,...,r
′
n)(x)

= k(n). The oracle checking follows Lemma 4.16.

To prove soundness error, we need a lemma to show ρH,(r′
1,...,r

′
n) is "random enough" to mask a polynomial.

Lemma 4.18. For every field F, a multiplicative subgroup H with size N = 2n and two polynomials
f1(x) and f2(x) whose degrees are less than N , if (r1, ..., rn) are all randomly chosen from F and∑

x∈H f1(x)ρH,(r1,...,rn)(x) =
∑

x∈H f2(x)ρH,(r1,...,rn)(x), then f1(x) = f2(x) except for probability n
|F∗| .

Proof. Suppose f1(x) = a0 + a1x + ... + aN−1xN−1 and f2(x) = b0 + b1x + ... + bN−1xN−1. We can
apply Construction 1 to both two polynomials. Following Lemma 5.3 of [BCHO22], observing that when
we compute f (n)

1 , a(l1l2...ln)2
are ’folded’ in sequence (ln, ..., l1) when (l1l2...ln)2 is binary representation

of i for i = 0, ..., N − 1, we can prove by induction that f (n)
1 =

∑
(l1,l2,...,ln)∈{0,1}n(a(ln...l1)2

)rl1
1 ...rln

n =
f (n)
2 =

∑
(l1,l2,...,ln)∈{0,1}n(b(ln...l1)2

)rl1
1 ...rln

n . Viewing S(r1, ..., rn) =
∑

(l1,l2,...,ln)∈{0,1}n(a(ln...l1)2
−

b(ln...l1)2
)rl1

1 ...rln
n as a multivariate polynomial on variable (r1, ..., rn), then by Schwartz–Zippel lemma, if

f1(x) ̸= f2(x), i.e. S(r1, ..., rn) ̸≡ 0, the probability that S(r1, ..., rn) = 0 is at most n
|F| ≤

n
|F∗| for random

(r1, ..., rn) from F.

Lemma 4.19. Construction 4 has soundness error 5N+n−2
|F∗| .

Proof. Suppose
∑

x∈H f1(x)f2(x)ρH,(r1,...,rn)(x) ̸= u. Since the verification of sub-protocol is passed,∑
x∈H k(x)f2(x) = u except for 3N

|F∗| probability. Along with
∑

x∈H f1(x)f2(x)ρH,(r1,...,rn)(x) ̸= u, we have
f1(x)ρH,(r1,...,rn) ̸= k(x) at some point x ∈ H except for 3N

|F∗| probability. Also, by proof of soundness of

Construction 1 in [BCHO22],
∑

x∈H k(x)ρH,(r′
1,...,r

′
n) = k(n), except for the probability N−1

|F∗| .

Now we consider the oracle that checks f (j)
1 on j = 1, ..., n. By Lemma 4.16, following the proof of

soundness of Construction 1,
∑

x∈H f1(x)ρH,(r1,...,rn)ρH,(r′
1,...,r

′
n) = f (n)

1 except for probability N−1
|F∗| . Then∑

x∈H f1(x)ρH,(r1,...,rn)ρH,(r′
1,...,r

′
n)
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= f (n)
1 = k(n) =

∑
x∈H k(x)ρH,(r′

1,...,r
′
n) except for probability 2N−2

|F∗| .

We then suppose that f1(x)ρH,(r1,...,rn) ̸= k(x) and
∑

x∈H f1(x)ρH,(r1,...,rn)ρH,(r′
1,...,r

′
n) = k(n)

=
∑

x∈H k(x)ρH,(r′
1,...,r

′
n). Since k(x) is sent before (r′

1, ..., r′
n) are chosen, by Lemma 4.18, f1(x)ρH,(r1,...,rn)

= k(x) except for probability n
|F∗| . Thus, the overall soundness error is 3N

|F∗| + 2N−2
|F∗| + n

|F∗| = 5N+n−2
|F∗| .

Lemma 4.20. Prover of Construction 4 can be implemented in O(N) field operations in F with space
complexity O(N) of field elements.

Proof. The sub-protocol ofRIP and computing and storing k(x) cost O(N) field operations O(N) space in
terms of field elements. Computing and storing f (j)

1 (x) cost O(2n−j) field operations and O(2n−j) space in
terms of field elements. Thus the overall time and space complexity for Construction 4 are both O(N).

Remark 4.21 (Batching proofs). It is easy to batch the proofs on sub-protocol level. The sub-protocol forRIP

can be batched by the scheme in Remark 4.12. The rest part
∑

x∈H f1(x)ρH,r1,...,rn
(x)ρH,r

′
1,...,r

′
n
(x) = k(n)

can be batched by a random linear combination as in Remark 3.5. Furthermore, Construction 4 can be
’partially batched’, which means the sub-protocol forRIP in the protocol can be batched with an independent
instance of Construction 3.

4.4 Computing Tensor Polynomial

In Construction 4, prover needs to compute k = f1(x) ◦ ρH,(r1,...,rn). To maintain the proving time of O(N),

prover needs to compute ρH,(r1,...,rn) = 1
2n (x

∏n
i=1 (x2i−1

+ ri)) on H in O(N) time. Directly computing

requires O(N log N) time. Observing that all elements x ∈ H only has 2j different evaluations on x2n−j

, we
can compute ρr1,...,rn

(x) in a reverse direction.
We set a full binary tree to save the intermediate results. The tree has n + 1 levels from 0 to n, and
each node saves 2 values. Level 0 (root) has value (1,0). Level i has 2i nodes indexed from 0 to 2i − 1.
We use ui,j to represent node j at level i. Let H = (1, ω, ..., ωN−1). Let ui,j = (ui−1,⌊j/2⌋,0 · (ω

ui,j,1 +
rn−i+1), ui−1,⌊j/2⌋,1/2 + lsb(j) · 2n−1) where lsb(j) is the least significant bit of j. Since the tree has O(N)
nodes and the time to compute each node (i, j) from its parent (i− 1, ⌊j/2⌋) is O(1), we can compute the
tree in O(N) time.

Lemma 4.22. ui,j,0 =
∏n

k=n−i+1(ωui,j,1·2k−(n−i+1)
+ rk) for every node (i, j) in the tree, and (ui,j,1) for all

nodes in level i is a permutation of (0 · N

2i , ..., (2i − 1) · N

2i ).

Proof. We prove the lemma by induction.

1. When i = 0, ui,j,0 = 1 and ui,j,1 = 0 is a permutation of (0).

2. Suppose that for level i − 1 and i ≤ n, ui−1,j,0 =
∏n

k=n−i+2(ωui−1,j,1·2k−(n−i+2)
+ rk), and (ui−1,j,1)

for level i − 1 is a permutation of (0 · N

2i−1 , ..., (2i−1 − 1) · N

2i−1 ). We consider ui,2j,1 and ui,2j+1,1 for
j = 0, ..., 2i−1 together. We have ui,2j,1 = ui−1,j,1/2 and ui,2j+1,1 = ui−1,j,1/2 + 2n−1. Since (ui−1,j,1)
for level i − 1 is a permutation of (0 · N

2i−1 , ..., (2i−1 − 1) · N

2i−1 ), we have (ui,2j,1) is a permutation of
(0 · N

2i , ..., (2i−1− 1) · N

2i ) and (ui,2j+1,1) is a permutation of (2i−1 · N

2i , ..., (2i− 1) · N

2i ), thus finishing the
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proof about ui,j,1.
Now we consider ui,j,0. Observing that (ωui,j,1)2 = ωui−1,⌊j/2⌋,1 , we have

ui−1,⌊j/2⌋,0 =
n∏

k=n−i+2
(ωui−1,⌊j/2⌋,1·2k−(n−i+2)

+ rk) =
n∏

k=n−i+2
(ωui,j,1·2k−(n−i+1)

+ rk)

Thus ui,j,1 = ui−1,⌊j/2⌋,0 · (ω
ui,j,1 + rn−i+1) =

∏n
k=n−i+1(ωui,j,1·2k−(n−i+1)

+ rk).

Considering level n and definition of ρH,(r1,...,rn), we have the following corollary.

Corollary 4.23. ρH,(r1,...,rn)(ω
un,j,1) = ω

un,j,1

2n un,j,0.

5 Hadamard Product

In this section, we will introduce a PIOP for Hadamard product based on PIOP forRT IP ,RIP andRT C .

Definition 5.1. The Hadamard-product relationRHP is a set of tuples

(i,x,w) = (⊥, (F,H, N), (a, b, c))

where H is a multiplicative subgroup with size N = 2n, a, b, c ∈ FN , u ∈ F, and for every x ∈ H, we have
a(x)b(x) = c(x).

Remark 5.2. The indexed relation defined above does not contain index. It is reasonable when it is used as
a sub-protocol of R1CS proving as [BCHO22]. But when it is considered as a standalone protocol, there
should be oracles a, b, c as indices or being sent by prover depending on whether they are viewed as indices
or witnesses.

Theorem 5.3. For every positive integer N = 2n and a finite field F that N | |F∗|, there is a PIOP for the
RHP with proving time O(N), proof size O(log N), verification time O(log N) in terms of field operations
and field elements. The PIOP has perfect completeness and soundness error 9N+2n−4

|F∗| .

We prove Theorem 5.3 by following construction.

Construction 5. We construct a PIOP with 3n + 4 rounds for indexedRHP . Prover P takes (i,x,w) of the
relation as input; verifier V takes (i,x) as input.

• Verifier sends (r1, ..., rn)← (F∗)n to prover.
• Prover computes u =

∑
x∈H c(x)ρH,(r1,...,rn)(x) by applying prover side of Construction 1.

• Prover sends u and oracle ρH,(r1,...,rn)(x) to verifier.
• Prover and verifier invoke protocol in Construction 3 to verify relation
RIP : (i,x,w) = (⊥, (F,H, N, u), (c, ρH,(r1,...,rn)(x))) and Construction 4 to verify relation
RT IP : (i,x,w) = (⊥, (F,H, N, r1, ..., rn, u), (a, b)). Verifier checks the consistency of oracle
ρH,(r1,...,rn)(x) by querying at point β and locally computing ρH,(r1,...,rn)(β). Note that the two sub-
protocol can be batched by Remark 4.21.
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Remark 5.4 (Public-coin). Since the protocol is public-coin, we can postpone all queries to oracles in each
sub-protocol to the end of the protocol and choose the same challenge β ← F∗ for all equations, which will
be better for batch queries.

Lemma 5.5. Construction 5 has perfect completeness.

Proof. Suppose a(x)b(x) = c(x) for every x ∈ H. Then
∑

x∈H a(x)b(x)ρH,(r1,...,rn)(x)
=

∑
x∈H c(x)ρH,(r1,...,rn)(x) = u. By perfect completeness of Construction 1,Construction 3 and Construc-

tion 4, Construction 5 has perfect completeness.

Lemma 5.6. Construction 5 has soundness error 9N+2n−4
|F∗| .

Proof. Suppose a(x)b(x) ̸= c(x) for some x ∈ H. Then by Lemma 4.18,∑
x∈H a(x)b(x)ρH,(r1,...,rn)(x) ̸=

∑
x∈H c(x)ρH,(r1,...,rn)(x) except for n

|F∗| probability. Suppose prover
sends u′ in step 2, then∑

x∈H a(x)b(x)ρH,(r1,...,rn)(x) ̸= u′ or
∑

x∈H c(x)ρH,(r1,...,rn)(x) ̸= u′ except for n
|F∗| probability. By

soundness of Construction 3 and Construction 4, and the soundness error by checking oracle ρH,(r1,...,rn)(x) ,
we get the overall soundness error 3N

|F∗| + 5N+n−2
|F∗| + N−1

|F∗| + n
|F∗| = 9N+2n−4

|F∗| .

Remark 5.7 (Knowledge soundness). The knowledge soundness for standalone Hadamard-product protocol
is trivial, since verifier can rewind and query a, b, c for N time at distinct points if verifier accepts over the
probability greater than soundness error above.

Remark 5.8. In order to reduce the randomness sampled from verifier, we may use (r20
, r21

, ..., r2n−1
) to

replace (r1, ..., rn). The change will cause the soundness error of Lemma 4.18 increase from n
|F ∗| to N−1

|F ∗| ,
and the soundness error of Construction 5 will increase from 9N+2n−4

|F∗| to 11N−6
|F∗| .

Lemma 5.9. Prover of Construction 5 can be implemented in O(N) field operations in F with space
complexity O(N) of field elements.

Proof. Prover needs to run prover side of Construction 1, Construction 3 and Construction 4, which will all
cost O(N) field operations and O(N) space for field elements. Thus, prover’s time and space complexity in
terms of field operations and field elements, respectively, are all O(N).

Remark 5.10 (Batching equation checkings). There are 3n + 2 equations to check in Construction 5.
After choosing the challenge β, verifier can also choose a challenge α ← F∗. Since β is chosen, all the
equations can be written in form ci,1fi,1(β2) = ci,2fi,2(β) + ci,3fi,3(−β) + ci,4fi,4(0) for i = 0, ..., 3n− 1
where fi,j is one of the oracles sent by prover and ci,j is a fixed field element that can be computed in
O(n) by both prover and verifier, except the oracle checking in Construction 3 and oracle checking in
Construction 5. By choosing α, prover and verifier can only check the equation

∑3n−1
i=0 αici,1fi,1(β2) =∑3n−1

i=0 αici,2fi,2(β) +
∑3n−1

i=0 αici,3fi,3(−β) +
∑3n−1

i=0 αici,4fi,4(0). The linear combination will lead to 3n
|F∗|

extra soundness error, but it will be useful if the instantiation of oracle is additive.

Remark 5.11 (Batching proofs). It is easy to batch the whole proof by simply batching the sub-protocols
with the same randomness r. It also has the property of ’partial batching’ as mentioned in Remark 4.21.

16



6 Polynomial Commitment Scheme

To instantiate the oracle in PIOP above, we will use the polynomial commitment scheme. In this section, we
will describe a polynomial commitment scheme, which is a slight modification of the KZG commitment, to
commit polynomials in Lagrange base. We first define polynomial commitment scheme following [KZG10;
BCHO22].

6.1 Definition

The polynomial commitment scheme over a field family F contains a tuple of algorithm PC = (Setup, Com,
Open, Verify) defined by following syntax.

• Setup PC.Setup(1λ, D)→ (ck, vk). On input a security parameter λ in unary and a degree D, PC.Setup
outputs a commitment key ck and a verification key vk containing a description of F ∈ F .

• Commit PC.Com(ck, P)→ C. On input the commitment key ck and a polynomial P of degree at most
D, PC.Com outputs a commitment C for P.

• Open PC.Open(ck, P, z)→ π. On input the commitment key ck, a polynomial P of degree at most D
and an evaluation point z, PC.Open outputs a proof π for the evaluation.

• Verify PC.Verify(rk, C, π, z, v)→ {0, 1}. On input the verification key rk, the commitment C, the proof
π, an evaluation point z and an alleged value v, PC.Verify outputs 1 if π is a valid proof that P is a
polynomial having degree at most D, committed in C and P(z) = v, and 0 otherwise.

To prove knowledge soundness, a polynomial commitment scheme must satisfy completeness and extractability
(as a stronger notion of evaluation binding in [CHMMVW20; BCHO22]).

Definition 6.1 (Completeness). For every degree bound D ∈ N and every PPT adversary A,

Pr


deg(P) ≤ D

↓
PC.Verify(rk,C, π, z, v) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(ck, rk)← PC.Setup(1λ, D)
(P, z)← A(ck, rk)

C ← PC.Com(ck, P)
v = P(z)

π ← PC.Open(ck, P, z)


≥ 1− negl(λ)

Definition 6.2 (Extractability). For any degree bound D ∈ N and any PPT adversary A, there exists an
extractor E such that for every round bound r ∈ N, PPT query sampler Q and PPT adversary B,

Pr


PC.Verify(rk,C, π, z, v) = 1

↓
deg(P) ≤ D ∧ v = P(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(ck, rk)← PC.Setup(1λ, D)
C ← A(ck, rk)
P← E(ck, rk)
z ← Q(ck, rk)

(π, v, st)← B(ck, rk, z)


≥ 1− negl(λ)

6.2 Modified Polynomial Commitment Scheme

To introduce our commitment scheme, we first need to describe original KZG commitment[KZG10;
CHMMVW20; BCHO22]. In summary, for a polynomial in coefficient base P(x), the KZG commitment
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scheme commits it to C = P(τ)G where G is a group generator in bilinear pairing and τ is a field element
chosen by a trusted third party. To prove v = P(z), prover computes w(x) = P(x)−P(z)

x−z and outputs a proof
w(τ)G. We want our commitment scheme to have the same outputs on the same polynomial. Since we need
a polynomial commitment scheme for Lagrange-based polynomial, we need to construct a commitment key
Σ with a vector of Lagrange polynomial(Definition 2.4). One of the drawbacks is that only polynomials
which have a proper degree, such as 2k − 1 for some integer 2k − 1, can be committed. We can solve this by
padding origin polynomials to such degree and force D to be 2n − 1 for some integer n. Another drawback is
that Lagrange polynomials to commit polynomials of some degree cannot be used in polynomials of other
degrees. Thus, to commit polynomials of different degrees, we need Lagrange polynomials for all degrees.
Since we need to commit to degree 2k − 1 in our protocol, the size of vector Σ will be doubled.

Below we will introduce our modification of the KZG commitment constructed by Lagrange polynomials.
The idea is the same as [TABDFK20].

• Setup PC.Setup(1λ, n)→ (ck, vk). First, PC.Setup samples a bilinear group (G1,G2,GT , q, G, H, e)←
GroupGen(1λ). PC.Setup then samples τ ← Fq and a multiplicative subgroup H ⊂ F that |H| = 2n,
computes τH and vector

Σ = (L0,0(τ)G, L1,0(τ)G, L1,1(τ)G, ...,

Ln,0(τ)G, ..., Ln,2n−1(τ)G) = (G0,0, ..., Gn,2n−1) ∈ G2n+1−1
1

where Li,j is the j-th Lagrange polynomial defined onH2n−i

. PC.Setup outputs ck = ((G1,G2,GT , q, G, H, e), Σ, ω)
and vk = (G, H, τH). Only polynomials whose degrees are 2k − 1 for k = 1, ..., n can be committed by
ck.

• Commit PC.Com(ck, P)→ C. On input P(x) in Lagrange base of degree d = 2k− 1 ≤ 2n− 1, PC.Com
outputs C =

∑d
j=0 P(ω2n−k·j)Gk,j ∈ G1.

• Open PC.Open(ck, P, z)→ π. On input P(x) in Lagrange base of degree d = 2k−1 ≤ 2n−1, PC.Open

first computes P(z) = z
d+1−1
d+1

∑d
j=0

P(ω2n−k·j)·ω2n−k·j

z−ω
2n−k·j

4, then outputs π =
∑d

j=0
P(ω2n−k·j)−P(z)

ω
2n−k·j−z

Gk,j if

z /∈ H2n−k

, and aborts if z ∈ H2n−k

.
• Verify PC.Verify(rk, C, π, z, v)→ {0, 1}. PC.Verify outputs 1 if and only if e(C − vG, H) = e(π, τH −

zH).

Remark 6.3. Note that PC.Open aborts when the query is in H2n−k

. We argue that it will not affect soundness
very much. Actually, it forces challenges to be chosen from F∗\H, which will cause the denominator of
soundness to be |F∗| − |H|, which is still negligible.

Since the outputs of PC.Com and PC.Open are P(τ)G and w(τ)G both in standard KZG commitment
scheme and our modification, the completeness directly follows the standard KZG.
To prove the time complexity of our commitment scheme, we first introduce an algorithm for batched
inversions of field elements.

Construction 6 ([BZ10],Section 2.5.1). For field elements a1, ..., aN , we first compute bj =
∏j

i=1 ai and
let b0 = 1. Then we compute (bN )−1 using an extended Euclidean algorithm. Since (ai)

−1 = bi−1 · (bi)
−1

and (bi−1)−1 = (bi)
−1 · ai, it is trivial to run a loop from N to 1 to obtain all inversions of a1, ..., aN . The

algorithm costs O(N) field multiplications and 1 field inversion for N elements.
4Barycentric evaluation
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Lemma 6.4. Let N = 2n. PC.Setup runs in O(N log N) time. PC.Com and PC.Open run in O(N) time.

Proof. We first prove the running time of PC.Setup. We only consider Gn,· and compute others in the
same way. Let N = 2n. To calculate Gn,· on H = {1, ω, ..., ωN−1}, PC.Setup first computes τ iG for
i = 0, ..., 2n − 1 as in the standard KZG commitment. Then PC.Setup constructs a polynomial f : F→ G1
f(x) = 1

N

∑N−1
k=0 τkxkG. Observing that

f(ωi) = 1
N

N−1∑
k=0

(τωi)kG = 1
N

(ωiτ)N − 1
ωiτ − 1

G = 1
N

τN − 1
ωiτ − 1

G = 1
N

τN − 1
τ − ωN−i

ωN−iG = Gn,N−i

for every ωi ∈ H. Thus, we can apply FFT to the polynomial f on H to obtain the vector Σ. So PC.Setup
costs O(

∑n
i=0 i · 2i) = O(N log N) time.

It is trivial that PC.Com runs in O(N) time. To prove that PC.Open runs in O(N) time, the only thing we
need is to compute 1

z−ω
2n−k·j

in O(1) time. Since there is an amortized O(1) algorithm for batch inversions,

PC.Open runs in O(N) time.

Remark 6.5 (Batching proofs). In Remark 5.10, we combine all equations except for the two in Construction 3
and Construction 5. Thanks to the additive property of KZG commitment, prover and verifier can sum up the
commitments in the protocol to get an equation for only 4 polynomials with their commitments. Along with
the equation in Construction 3 and Construction 5, which needs 4 polynomial openings, prover only needs to
open 8 polynomials at 8 points, respectively.

6.3 Achieving Knowledge Soundness

By the proof of Lemma 6.4, we can observe that the vector Σ in our modification can be computed by Σ in the
standard KZG commitment and vice versa. Thus the extractability of the modification can be inferred from
standard KZG commitment [CHMMVW20; BCHO22], since the extractor can first compute the transcript
of standard KZG commitment from our modification, and adversaries in our modification cannot break the
extractability, otherwise adversaries of standard KZG commitment can break the extractability by calling
former adversaries as oracles. The update of Σ can also be derived from the standard KZG commitment with
an additional O(log N) overhead by FFT.
By Section 7 of [CHMMVW20], since Construction 5 has knowledge soundness and our commitment has
extractability, a pre-processing SNARK for the Hadamard product can be constructed.
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