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Abstract. Hash-and-Sign with Retry is a popular technique to design efficient signature schemes
from code-based or multivariate assumptions. Contrary to Hash-and-Sign signatures based on
preimage-sampleable functions as defined by Gentry, Peikert and Vaikuntanathan (STOC 2008),
trapdoor functions in code-based and multivariate schemes are not surjective. Therefore, the
standard approach uses random trials. Kosuge and Xagawa (PKC 2024) coined it the Hash-and-
Sign with Retry paradigm.
As many attacks have appeared on code-based and multivariate schemes, we think it is important
for the ongoing NIST competition to look at the security proofs of these schemes. The original
proof of Sakumoto, Shirai, and Hiwatari (PQCrypto 2011) was flawed, then corrected by Chat-
terjee, Das and Pandit (INDOCRYPT 2022). The fix is still not sufficient, as it only works for
very large finite fields. A new proof in the Quantum ROM model was proposed by Kosuge and
Xagawa (PKC 2024), but it is rather loose, even when restricted to the classical setting.
In this paper, we introduce several tools that yield tighter security bounds for Hash-and-Sign with
Retry signatures in the classical setting. These include the Hellinger distance, stochastic domi-
nance arguments, and a new combinatorial tool to transform a proof in the non-adaptative setting
to the adaptative setting. Ultimately, we obtain a sharp bound for the security of Hash-and-Sign
with Retry signatures, applicable to various code-based and multivariate schemes. Focusing on
NIST candidates, we apply these results to the MAYO, PROV, and modified UOV signature
schemes. In most cases, our bounds are tight enough to apply with the real parameters of those
schemes; in some cases, smaller parameters would suffice.

1 Introduction

The provable security of post-quantum schemes is a real issue. While in the nineties, the security of
RSA and ECC-based schemes have been shown to rely on well-known hard problems, the situation
is different for lattice-based schemes. Although reductions to lattice problems exist in order to rule
out all attacks, reductions are not used to derive parameters, as is done in the concrete security proof
of RSA-OAEP and RSA-PSS [BR95,BR96] for instance. The reason is that these reductions would
require very large parameters, and the schemes would not be as efficient. The preferred approach is
to analyze the efficiency of practical attacks, and use it to set parameters based on the best known
lattice algorithms. As a consequence, parameters need to be carefully tested, and small changes in
the design can sometimes disproportionately impact its security, as illustrated by some Falcon vari-
ants [ETWY22,DEP23].

The situation is even worse when we look at the case of multivariate cryptography. Many real attacks
on these schemes have been proposed, which undermine the confidence in this alternative. HFE variants
and very attractive designs such as Rainbow have recently been attacked [Beu21,TPD21,BBC+22,Beu22a].
This does not mean that the underlying problem is easy, but in order to propose efficient schemes com-
pared to lattice cryptosystems for instance, cryptographers sometimes make aggressive choices in the
design. This has led to NIST launching a new call for additional digital signature proposals: contrary to



key-encapsulation mechanisms, no remaining signature candidates are considered for the fourth round.
Moreover, for certain applications, such as certificate transparency, short signatures with fast verifi-
cation are required. Multivariate cryptography is a good candidate to propose very short signatures,
around 100B compared to more than 600B for Falcon [FHK+18]. Ten out of the 40 candidates of the
new NIST call rely on multivariate problems, making it one of the most popular paradigms.

The main drawback of code-based and multivariate cryptography is the size of the public key,
which is sometimes prohibitive (except for MAYO [BCC+23]). Most of these signature candidates (in-
cluding [BCC+23,BCD+23,PCF+23,FIKT21]) rely on the Unbalanced Oil-and-Vinegar construction,
UOV for short [KPG99]. The plain UOV problem seems to be more resistant than HFE variants or
Rainbow. However, once we trust the security of the underlying hard problems, we have to look at the
security of the schemes. In this article, our goal is to carefully analyze the security of these schemes
and provide a rigorous and sharper analysis of their security proofs.

Related Work. The first security proof for a UOV variant has been given by Sakumoto, Shirai and
Hiwatari [SSH11]. More recently, a subtle flaw has been discovered by Chatterjee, Das, and Pandit
in [CDP22], who proposed another security proof to avoid the problem. The main drawback of the
new proof is that the security bound depends on the size of the finite field, which needs to be super-
polynomial. This is unfortunately not the case for modern UOV parameters [BCH+23], or any NIST
candidate. Consequently, a new security proof is needed. In [Beu22b], Beullens proposed a proof for
MAYO, but this proof falls short of giving the required security for the concrete parameters given
in the MAYO NIST submission [BCC+23]. The problem is that the security proof required that the
number of signatures qsig times some bound B is less than 1, and this is not the case for some MAYO
parameters. Finally, we can note that Kosuge and Xagawa provide a quantum proof in [KX22] as well
as a new framework to analyze what they define as Hash-and-Sign with Retry, in order to capture
many code-based or multivariate-based signature schemes. This new framework is a modification of
the GPV framework [GPV08] when the functions are not surjective. Moreover, they present quantum
security proof for these schemes.

Our Contributions. We build on the framework of [KX22] to propose a new security proof for Hash-
and-Sign with Retry signatures in the classical setting. This proof provides sharper bounds than (a
dequantumized variant) of the analysis of [KX22]: the dominant factor is roughly reduced from q2/N
to
√
q/N , where q is the total number of queries to the signing and hashing oracles, and N is the size

of the salt space.

In the process, we bring several new techniques into the area of multivariate cryptography. The
first is the Hellinger distance, essentially a special case of Rényi divergence. While Rényi diver-
gences are commonly used in the analaysis of lattice-based schemes [BLL+15,Pre17,PGMP19], the
Hellinger distance specifically has recently emerged as a promising technique in other cryptographic
contexts [Yas21,Lee24]. We also introduce stochastic dominance arguments, which enable a game hop-
like step that allows to replace a distribution in a distinguishing game with another distribution
(Lemma 13)—even though it falls outside the framework of standard game-based proofs. Finally, we
introduce a technique to transform a proof in the non-adaptive setting to the adaptive setting, using a
new combinatorial tool. This tool ultimately yields a bound in the adaptive setting, with no loss in the
reduction compared to the original non-adaptive proof (see the technical overview for more information,
and Appendix E for the full details). We believe this last part to be of independent interest.

In Section 5, we show applications of our results to several post-quantum NIST candidates. In
particular, our bounds are tight enough to derive practical security proofs for mutivariate schemes
such as MAYO and PROV, applicable either with their real choices of parameters, or close variants.
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2 Technical Overview

2.1 Overview of Hash-and-Sign with Retry

Before we explain our techniques, it is useful to recall the Hash-and-Sign with Retry paradigm. In
signature schemes that follow this paradigm, the public key defines a trapdoor function. When proving
the security of the scheme, the underlying hardness assumption is that, without knowing the trapdoor,
it is difficult to invert the function. Typically, for the code-based and multivariate schemes we are
interested in, this assumption can be decomposed into two separate assumptions: first, the function
defined by the public key is hard to distinguish from a certain class of random functions; second,
inverting a function sampled from that class is difficult.

Concretely, for code-based schemes, the relevant class of random functions is typically noisy encod-
ing for a random code (or a random code with special features, such as a random cyclic code). For a
UOV-based scheme, the relevant class is typically the map defined by a system of random multivariate
quadratic equations. In both cases, the first assumption is that the public key is hard to distinguish
from such a system. The second assumption is, respectively for code-based and for multivariate cryp-
tosystems, that it is hard to decode a random code, and that it is hard to solve a random system of
quadratic equations. In both cases, the second assumption amounts to the average-case hardness of a
well-studied NP-hard problem.

If the adversary only has access to the public key, then those two assumptions are enough to
establish the security of the scheme. However, in the usual EUF-CMA security model, security must
be proved when the adversary has access not only to the public key, but also to a signature oracle. The
crux of the proof is to show that the signature oracle does not help the adversary. Typically, this is
done by showing that the signature oracle can be simulated without knowledge of the secret trapdoor.

Recall that for code-based and multivariate signatures, the trapdoor function defined by the public
key is in general not surjective. Moreover, in the Hash-and-Sign with Retry paradigm, the inverse
trapdoor function may be probabilistic. For a given choice of random coins for the inverse trapdoor
function, and a given message hash, a preimage of the hash may not exist. At a high level, the signature
algorithm proceeds by resampling the coins used in the inverse of the trapdoor function until a preimage
exists. (Alternatively, the signature algorithm may also resample the message hash by using a salt, to
the same effect.) The name “with retry” comes from this resampling process. The hash preimage is
output as a signature for the message (together with the salt, if a salt was used).

In the ROM, a simple way to simulate the signature oracle is to choose a preimage uniformly at
random, apply the public-key trapdoor function to that preimage, then program the random oracle so
that the hash of the message matches the output of the trapdoor function. This approach comes with
two caveats.

– First, this process may not yield the same signature distribution as a real signature. In fact, in
the case of UOV signatures, the two distributions are quite far apart (it can be shown that their
statistical distance is lower-bounded by an absolute constant, cf. Appendix B). This explains why,
despite UOV being the dominant approach for modern multivariate signatures, standard UOV
signatures do not have a security proof.

– Second, when programming the random oracle, there is no guarantee that the programmed value
is uniformly distributed. Hence, the proof must also argue that the programmed oracle remains
statistically close to uniform. Although the problem is subtle, addressing the first issue is not
enough to settle the second one, as noted in [CDP22]. We defer a complete treatment to Section 5,
and remain at a high level for now.

In [SSH11], Sakumoto et al. introduce a clever way to address the first issue by specifying a resam-
pling process that guarantees that the two distributions are statistically close (or in fact, identical, in
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the case of UOV-based systems). However, their analysis fails to account for the second issue. This
was pointed out by Chatterjee et al. in [CDP22], who proposed a workaround. However, their solution
comes at a significant cost in performance. For more details, we refer the reader to Section 5.

Here, we follow the same approach as [SSH11,KX22] to address the first issue. The core of our
contributions is to address the second, remaining issue, i.e. we show that the modified random oracle
remains statistically close to uniform.

2.2 Our Techniques

Following [SSH11,CDP22,KX22], we investigate an approach for signatures in the Hash-and-Sign with
Retry framework that enables provable security. New to this work is that we aim to analyze the security
of this approach in depth, in order to derive sharp bounds that are directly applicable to the real-world
parameters of NIST submissions. Towards that end, we introduce several new techniques. The purpose
of this section is to provide a high-level view of them.

In the provable approach of [SSH11,CDP22,KX22], the signature algorithm proceeds by first fixing
the random coins used to invert the trapdoor function defined by the public key, then resampling
the salted hash of the message (by changing the salt), until it falls within the range of the trapdoor
function. The signature is then the preimage of the message hash. Moreover, we focus on the relevant
case where the signature algorithm is deterministic (employed in most schemes based on Hash-and-Sign
with Retry, such as NIST candidates UOV, MAYO, PROV). That is, for a given message, the random
coins used to invert the trapdoor function are determined by the message and secret key.

In that setting, we say that a salt is suitable for a given message if the salted hash of the message
lies within the image of the trapdoor function (when using the random coins fixed by the message).
Using a sequence of standard game hops, we show that the security of the signature scheme reduces
to the security of the following distinguishing game: given an oracle that takes as input a message-salt
pair, and inputs 1 if the salt is suitable for the message, 0 otherwise, no adversary can distinguish the
real world (where the suitability oracle follows the distribution of real signatures) from the ideal world
(where the suitability oracle follows the distribution of simulated signatures). We do not elaborate on
that argument here, and focus instead on the rest of the proof.

Stochastic dominance and replacement lemma. In the ideal world, for each message, one random
salt is “forced” to be suitable by reprogramming the random oracle. As a result, for each message, the
suitability oracle outputs 1 slightly more often in the ideal world than in the real world. The goal of
the analysis is to show that the two worlds remain statistically indistinguishable. The main obstacle is
that, in the real world, answers of the suitability oracle to distinct queries are not independent, which
makes the analysis quite complex1.

To circumvent that issue, we first observe that if we modify the suitability oracle to answer 1 “less
often” (in a specific sense), then an optimal adversary trying to distinguish the two worlds is more
likely to guess that it lives in the real world. (At a rough intuitive level, this makes sense, since the
real-world suitability oracle answers 1 slightly less often.) We want to use this observation to argue
that if we replace the real-world distribution of the suitability oracle to answer 1 “less often”, but leave
the ideal-world distribution untouched, then this can only increase the adversary’s advantage.

To formalize that idea of “less often”, we need a partial order over binary distributions. For that
purpose, we use the notion of stochastic dominance. Given an arbitrary partial order over a set Ω,
stochastic dominance defines a partial order on distributions over Ω. Using that notion, the above

1 Depending on the exact definition of the suitability oracle, the answers of the oracle to distinct queries are
not independent either in the real world, or in the ideal world.
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intuitive idea can be expressed cleanly. This is captured in a key replacement lemma (Lemma 13),
which is stated at a high level of generality: if a distribution Q covers a distribution P (Definition 15),
and P stochastically dominates another distribution R, then ∆(P,Q) ≤ ∆(R,Q), where ∆() denotes
the statistical distance. Hence, if our goal is to upper-bound ∆(P,Q), then we are free to “replace” P
by R.

The point of this technique is that it allows us to replace the real-world distribution of the suitability
oracle by any distribution that is lower with respect to the stochastic dominance order. We use this
to replace it with a distribution where the oracle’s answers to distinct queries are independent. In
summary, we show that it is possible to modify the real-world distribution by making it answer 1
slightly less often, in such a way that the oracle’s answers become pairwise independent (when defining
each answer as a random variable); all the while ensuring that the adversary’s advantage can only
increase, thanks to the replacement lemma. After the replacement, oracle answers are independent in
both the ideal and the real world.

Hellinger distance. At this point, the adversary is tasked with distinguishing between two oracles,
both of which answer each query by sampling independent Bernoulli variables. (Recall that a Bernoulli
variable Ber[p] is a binary random variable equal to 1 with probability p, and 0 with probability
1 − p.) The advantage of the adversary can then be analyzed using standard techniques for that
setting, namely Rényi divergences. Rényi divergences are a family of maps that take as input two
distributions, and output a measure of “how close” the two distributions are. They play an important
role in lattice-based cryptography [BLL+15,Pre17,PGMP19]. The Rényi divergence of parameter 1,
also called the Kullback-Leibler divergence, is the most commonly used. Here, we use the Hellinger
distance instead, which corresponds (up to composition with a fixed function) to the Rényi divergence
of parameter 1/2. The Hellinger distance has appeared in various cryptographic settings, especially
recently [Ste12,Yas21,Lee24], and turns out to yield a sharper bound than Kullback-Leibler in our
context.

To see why the Hellinger distance is helpful in our setting, consider the simplified case where the
adversary is trying to distinguish between a vector of q independent Bernoulli variables Ber[p], and a
vector of q independent Bernoulli variables Ber[p′], where p 6= p′ are two constants. A näıve hybrid
argument shows that the statistical distance between the two vectors is O(q). In reality, an analysis
based on the Hellinger distance (or the Kullback-Leibler divergence) shows that it is O

(√
q
)

(which
is tight). Intuitively, this is because the hybrid argument fails to take advantage of the independence
between each vector entry: the hybrid argument would remain valid even if the variables were not inde-
pendent. To contrast, the Hellinger distance is (sub-)additive over sequences of independent variables:
it naturally accounts for independence.

In the end, the Hellinger distance allows to derive a security bound for Hash-and-Sign with Retry
signatures that grows sublinearly with the number of hash queries, which is inherently impossible to
prove without going beyond standard hybrid arguments.

Adaptive to non-adaptive reduction. The proof sketched so far only holds in the non-adaptive
setting, where the adversary’s queries are fixed in advance. It does not hold in the adaptive setting,
where the adversary’s queries may depend on the answers to past queries. The main culprit is the
replacement lemma. We want to apply the replacement lemma to the vector of answers provided by
the suitability oracle to the adversary’s queries. Unfortunately, when we replace one distribution with
another, in the adaptive setting, the adversary’s queries may change. As a result, the new answers may
be completely unrelated to the original ones.

Deducing adaptive security from a non-adaptive proof is notoriously thorny. Generic techniques
such as complexity leveraging can incur huge reduction factors. We adopt a different approach.
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In our setting, the adversary queries a suitability oracle. Suppose that the adversary issues q queries,
chosen among a total of N possible distinct queries. The oracle provides binary answers. The answer
to each possible query can be viewed as a Bernoulli variable (which is not, in general, independent
from the variable associated with a different query). The situation can be formalized as a box-opening
game (Definition 17): there are N closed boxes, each containing a Bernoulli variable. The vector of N
Bernoulli variables contained in the boxes follows one of two possible distributions, corresponding to
a real and ideal worlds. The adversary is allowed to open q boxes of her choice. She must then guess
whether the variables were sampled from the real or the ideal distributions.

Suppose that the vector of N Bernoulli variables defining (say) the real-world distribution is
permutation-invariant (Definition 16), in the sense that if we arbitrarily permute the variables, the
distribution of the vector remains unchanged. If this is true for both the real and ideal worlds, then
which boxes the adversary chooses to open is irrelevant, since the distribution of answers will be the
same. In that case, an adaptive adversary performs no better than a non-adaptive one. This yields a
case where a very simple adaptive-to-non-adaptive reduction is possible, with no loss in the reduction.
Unfortunately, for the actual suitability oracle we wish to analyze, the relevant distributions are not
permutation-invariant. Let us then set this idea aside for now; we will come back to it later.

We introduce the idea of replacement game (Definition 18). In a replacement game, each world
is defined by a pair of vectors of N Bernoulli variables. The first vector is called the original vector,
and the second vector is called the replacement vector. (The distributions of the two vectors are
not in general independent.) A replacement game starts as a normal box-opening game, where the
content of the boxes correspond to the original vector. Once the adversary has finished opening boxes
however, the contents of the boxes are replaced by the replacement vector. Then the adversary is
forced to make a guess based only on the final contents of the boxes. (This can be formalized concisely,
see Definition 18.) A box-opening game is the special case of a replacement game where the original
and replacement vectors are equal (with probability 1), in both worlds.

To circumvent issues that arise when we use the replacement lemma to modify a distribution, we
consider replacement games, and only ever modify the distribution of replacement vectors. This means
that the distribution of adversarial queries is not affected. As a result, we show that we can essentially
reuse the analysis of the non-adaptive case. Like in the non-adaptive case, we reach a state where the
replacement vectors are independent Bernoulli variables. Moreover, with slightly more effort, we can
arrange that the replacement distributions are identically distributed independent Bernoulli variables
(Lemma 29), in both worlds.

At that point, the replacement distributions are permutation-invariant. This means that the adver-
sary’s queries are irrelevant, exactly in the same sense as the simple permutation-invariant argument
sketched earlier. Hence an adaptive adversary performs no better than a non-adaptive one. Further-
more, the distribution of original vectors is irrelevant, and the adversary’s advantage is equal to the
advantage of a non-adaptive adversary playing a standard box-opening game between the two re-
placement distributions (Lemma 25). We can then directly reuse the last part of the analysis of the
non-adaptive case (involving the Hellinger distance), which concludes the analysis.

While this adaptive-to-non-adaptive reduction is not generic, the underlying ideas are somewhat
general: if we decouple the distribution used by the adversary to compute queries (previously, “original
distribution”) from the distribution used to compute the final guess (previously, “replacement distri-
bution”), then we can alter the latter distribution without touching the former, essentially with the
same freedom as if we were in the non-adaptive case, since the adversary’s queries are not affected by
the changes. While this decoupling modifies the nature of the game, if at the outcome of the reasoning,
the replacement distributions become permutation-independent, then the game collapses back into
a normal game with a single distribution per world. Moreover, in the final game, non-adaptive and
adaptive adversaries coincide.
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While this approach requires some care to avoid subtle issues related to adaptivity, in the end,
it allows us to derive a bound in the adaptive setting that matches the non-adaptive bound exactly.
There is no loss in the reduction. Moreover, instead of having to write a new proof, we are able to
reuse most of the analysis of the non-adaptive case, with a few (key) additional arguments.

3 Preliminaries

3.1 Notation

We use the notation [a, b]N for the integer interval {a, . . . , b}; and [a, b]R for the real interval {x ∈ R : a ≤
x ≤ b}. All distributions in this work are over finite sets. A probability distribution P over a (finite) set
Ω is a map P : Ω → [0, 1]R such that

∑
ω∈Ω P (ω) = 1. Given an event E ⊆ Ω, P (E) =

∑
e∈E P (e) is

the probability of E according to P . Note that P ({ω}) = P (ω). If X ∈ Ω is a random variable, we write
pX for the probability distribution of X (implicitly over the ambient space Ω). If P is a distribution,
we write X ∼ P if the distribution of X is P , i.e. pX = P . Given a distribution P over the reals, E[P ]
denotes the expectation of P . The statistical distance between two distributions, denoted by ∆(·, ·), is
∆(A,B) = (1/2) ·

∑
ω |A(ω)− B(ω)| = maxE⊆Ω |A(E)− B(E)| = maxE⊆Ω A(E)− B(E). Given A a

probabilistic algorithm, A(x; r) denotes the output of A on input x, with random tape r.

3.2 Distributions

Let Ber[p] denote the Bernoulli distribution over {0, 1}, defined by Ber[p](1) = p. Let Bin[q, p] denote
the binomial distribution with q trials, each with probability of success p. That is, the distribution of
the sum of q independent random variables, each distributed according to Ber[p].

Operations on distributions. If P and Q are two distributions over Ω, P+Q denotes the distribution
of X + Y , where X ∼ P and Y ∼ Q are two independent random variables. The tensor product of
distributions is defined as follows. If P and Q are two distributions over Ω1 and Ω2 respectively, P ⊗Q
denotes the distribution of (X,Y ), where X ∼ P and Y ∼ Q are two independent random variables.
Equivalently, P ⊗Q is the distribution over Ω1 ×Ω2 defined by:

(P ⊗Q)(ω1, ω2) = P (ω1)Q(ω2).

Hypergeometric distribution. Given n, x, y ∈ N with x, y ≤ n, the hypergeometric distribution
Hyp[n, x, y] is defined as follows. Consider a pool of n balls, of which x are distinguished. Then
Hyp[n, x, y] denotes the number of distinguished balls among y balls picked uniformly at random out
of the pool, without replacement. By convention, let Hyp[·,−1, ·] = −1 (i.e. for all n, y, Hyp[n,−1, y]
takes the value −1 with probability 1). A few properties of the hypergeometric distribution that will
be useful are listed next.

– Hyp[n, x, y] = Hyp[n, y, x]. This is because the distribution can be equivalently described as picking
x balls at random among n, then y balls at random among the same n, then outputing the number
of balls that were picked both times.

– Hyp[n, x, y](k) =
(
x
k

)(
n−x
y−k
)(
n
y

)−1
=
(
y
k

)(
n−y
x−k
)(
n
x

)−1
.

– Hyp[N,Bin[N, p], q] = Bin[q, p]. This is because having Bin[N, p] distinguished balls among N total
balls amounts to having each individual ball be distinguished with probability p, independently.
Hence the number of distinguished balls among the q picked balls is Bin[q, p].
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3.3 Stochastic Dominance

Definition 1 (Coupling). Given two distributions P over Ω1, and Q over Ω2, a coupling of P and
Q is a pair of random variables (X,Y ) in Ω1 ×Ω2 such that X ∼ P , and Y ∼ Q.

Note that there exist in general many couplings (X,Y ) of P and Q. Typically, for “interesting”
couplings, X and Y are not independent.

We restrict the following definition to finite sets to avoid issues of measurability, and because it
suffices for our purpose. Given a partial order ≤Ω on some set Ω, stochastic dominance defines a partial
order �Ω on distributions over Ω.

Definition 2 (Stochastic dominance). Let (Ω,≤Ω) be a finite partially ordered set, and let P ,
Q be two distributions over Ω. Q is said to stochastically dominate P with respect to ≤Ω, written
P �Ω Q, if any one of the following equivalent conditions is fulfilled.

1. There exists a coupling (X,Y ) of P and Q such that Pr[X ≤Ω Y ] = 1.
2. For any S ⊆ Ω that is closed upwards (with respect to ≤Ω), Q(S) ≥ P (S). (S is said to be closed

upwards with respect to ≤Ω if for all s ∈ S, for all t ∈ Ω, s ≤Ω t implies t ∈ S.)
3. For any ≤Ω-increasing map f : Ω → R, E[f(P )] ≤ E[f(Q)]. (We use “increasing” in the non-strict

sense: f is ≤Ω-increasing if for all x ≤Ω y in Ω, f(x) ≤ f(y) in R.)

Remark 1. We state the equivalence between the three definitions for completeness, but in this work,
we will only use 1⇒ 2, which is straightforward. The implication 3⇒ 1 is sometimes called Strassen’s
theorem.

Throughout this document, � denotes the stochastic dominance order that arises from ≤ (over,
say, Z), and �n denotes the stochastic dominance order that arises from the usual component-wise
order ≤n on Zn.

Definition 3 (Stochastically increasing). Given two partial orders (Ω1,≤1) and (Ω2,≤2), and a
probabilistic map F : Ω1 → Ω2, we say that F is stochastically increasing if any one of the following
equivalent statements holds.

1. Given any two elements x ≤1 y in Ω1, F (x) �2 F (y).
2. Given any two distributions P �1 Q over Ω1, F (P ) �2 F (Q).

Note on terminology. In the literature, the term “stochastic dominance” is sometimes used for
specific choices of the underlying order ≤Ω , most commonly Ω = R and ≤Ω is the usual order over
the reals. Here, we use the term “stochastic dominance” in the most general sense, where �Ω arises
from an arbitrary partial order ≤Ω .

3.4 Security Notions

In this subsection, we recall standard notions of security for signature schemes, preimage-sampleable
function, and hash-and-sign with retry.

Definition 4 (Digital Signature Scheme). A Digital Signature Scheme S consists of three algo-
rithms:

– S.KeyGeneration: this algorithm takes as input a security parameter λ, given as 1λ, and outputs
a public key pk and a secret key sk;
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– S.Sign: this algorithm takes as input a secret key sk and a message msg ∈ M, and outputs a
signature sig = (salt, s), where salt ∈ R;

– S.Verify: this algorithm takes as input a public key pk, a message msg, and a signature sig and
outputs a bit.

The algorithms S.Sign and S.Verify have oracle access to a hash function H : R × M →
{0, 1}f(λ). We define the security of signature schemes using the standard security notion of Existential
Unforgeability under Chosen Message Attack. Some proofs will be in the non-adaptive case, i.e. where
all the queries are decided before the interactions with the signing oracle.

Definition 5 (EUF-CMA security). Let H be a random oracle, and let A be an adversary. The advan-
tage of A against the EUF-CMA security of a signature scheme S = (S.KeyGeneration, S.SignH, S.VerifyH)
is defined as

AdvEUF-CMA
S (A) = Pr[S.Verify(pk,msg, sig) = >],

where (pk, sk)← S.KeyGeneration(), (msg, sig)← AH,S.SignH(sk,·)(pk), and S.SignH(sk, ·) was never
queried on msg.

Algorithm 1 The Hash-and-Sign with Retry paradigm based on a PSF T.

1: procedure S.KeyGeneration(1λ)
2: (F, I)← T.Gen(1λ)
3: sk← I
4: pk← F
5: return (sk, pk)

1: procedure S.VerifyH(pk,msg, sig)
2: (salt, s)← sig
3: return F(s) = H(msg||salt)

1: procedure S.Sign(sk,msg)
2: z ← I1()
3: repeat
4: salt←$ R
5: s← I2(z,H(salt,msg))
6: until s 6= ⊥
7: return (salt, s)

Next, we define preimage-sampleable functions and their security. In algorithm 1, we give a formal
description of the Hash-and-Sign with Retry paradigm, that turns a preimage-sampleable function into
a signature scheme.

Remark 2. Compared to [KX22], we slightly modify the terminology around preimage-sampleable func-
tion. First, we split the inverse trapdoor I into a pair (I1, I2), which is necessary to use the techniques
of [SSH11]. Second, in [KX22], the term weak preimage-sampleable is used to describe any tuple of
algorithms with the appropriate inputs and outputs, whereas preimage-sampleable is reserved for the
case that those algorithms fulfill some correctness properties. Here, the first type of tuple is simply
called preimage-sampleable, and we give a correctness definition separately, rather than baking it into
the definition. This follows common usage in cryptography, and allows greater flexibility, by mak-
ing it possible to talk about different flavors of correctness (for instance, computational or statistical
correctness).

Definition 6 (Preimage-Sampleable Function (PSF)). A PSF T consists of four algorithms:

– Gen: this algorithm takes as input a security parameter and outputs a function F : X → Y with
a trapdoor I;
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– F: this algorithm takes as input a value x ∈ X and deterministically outputs F(x);
– I = (I1, I2): the first algorithm takes no input and samples a value z ∈ Z; the second algorithm

takes as input z ∈ Z, y ∈ Y, and outputs x ∈ X or ⊥.
– SampDom: this algorithm takes as input F : X → Y and outputs x ∈ X .

Definition 7 (Correctness of a PSF). Let T be a PSF. T is correct if for any (F, I) ← Gen(λ),
the following conditions hold.

1. F(x) is uniform over Y for x← SampDom(F).
2. For all y ∈ Y, given z ← I1(), I2(z, y) outputs either ⊥, or x satisfying F(x) = y.
3. For all y ∈ Y, given z ← I1(), the distribution of I2(z, y) (over the random coins of I1 and I2) is

equal to the distribution of x← SampDom(F) conditioned on F(x) = y.

Definition 8 (Security of a PSF (PS security) [KX22]). Let T be a PSF. The advantage of an
adversary A against the PS security of T is defined as follows:

AdvPST (A) =
∣∣∣Pr
[
PSA0 = 1

]
− Pr

[
PSA1 = 1

]∣∣∣,
where PS0 and PS1 are the games defined in Algorithm 2.

Algorithm 2 Preimage sampling game.

1: procedure PSb

2: (F, I)← Gen(1λ)
3: b∗ ← ASampleb(F)
4: return b∗

1: procedure Sample1
2: xi ← SampDom(F)
3: return xi

1: procedure Sample0
2: zi ← I1()
3: repeat
4: yi ←$ Y
5: xi ← I2(zi, yi)
6: until xi 6= ⊥
7: return xi

Definition 9 (INV security). Let A be an INV adversary against T, trying to invert the public
function F. We define its advantage as AdvINVT (A) = Pr[F(x) = y], with (F, ·) ← Gen(1λ) and y ←$

Y, x← A(F, y).

4 New Security Proof for Hash-and-Sign with Retry

Our proof targets signatures following the Hash-and-Sign with Retry framework, as defined by Algo-
rithm 1. Our goal is to prove the security bound given in Theorem 1.

Because we target the deterministic setting, where the random coins used to compute signatures are
(pseudo-randomly) fixed by the message and secret key, it is convenient to introduce some additional
notation. In the algorithms below, r1, r2, etc. are pseudo-random values generated from the secret key
and the input message. Formally, we define ri = Hrand(sk‖msg‖i). The RO used to hash the message and
salt is denoted by H. The Hrand,Hsalt,Hs are hash functions modeled as uniformly random functions,
but they do not need to be ROs. (They are only here to write the derandomized version of the signature
algorithm.) It is assumed the signature algorithm is a hash-and-sign with retries, and I1, I2,F, are the
functions defining the underlying preimage-sampleable TDF.
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Algorithm 3 Real and ideal signature algorithms.

1: procedure Real-Sign(msg)
2: v← I1(; r1)
3: i← 1
4: repeat
5: salt← r2i
6: s← I2(v,Hreal(msg‖salt); r2i+1)
7: i← i+ 1
8: until s 6= ⊥
9: return (salt, s)

1: procedure Hreal(x)
2: if x has already been determined then
3: return previous output for x
4: else
5: return fresh uniform value

1: procedure Ideal-Sign(msg)
2: salt← Hsalt(sk,msg)
3: s← SampDom(;Hs(sk,msg))
4: Hideal(msg‖salt)← F(s) . Program RO
5: return (salt, s)

1: procedure Hideal(x)
2: Parse x as msg‖ salt
3: Ideal-Sign(msg) . Discard output
4: if x has already been determined then
5: return previous output for x
6: else
7: return fresh uniform value

Real world. The real world is the real signature algorithm, in its derandomized variant, given in
Figure 3.

Ideal world. In the ideal world, the signature algorithm is replaced by the ideal variant in Figure 3.
That is, signing is done by first choosing the salt and signature s (pseudo-)randomly, then programming
the RO so that H(salt‖msg) = F(s).

Random oracle. In both worlds, H is modeled as a RO. Because the RO behaves slightly differently
between the two worlds, we define Hreal and Hideal separately in Algorithm 3. When queried on an
input, if the corresponding output has already been fixed in a previous step, H sends back the same
output. If it has not been fixed yet, a fresh uniformly random output is sent back, and subsequent
queries to the same input will yield the same output. This behavior is the same in both worlds. The
only difference in the RO between the two worlds is that in the ideal world, the signature algorithm
programs one value of the RO for each message. In addition, in the ideal world, any call to the random
oracle on input msg‖salt first triggers a signature call Ideal-Sign(msg), whose output is discarded.
Even though the output is discarded, the call has an impact because Ideal-Sign(msg) programs the
value of Hideal(msg‖·) on one salt input.

An important remark is that while Hreal is a proper random oracle (it is a uniformly random
function), this is not the case ofHideal. Indeed, some output values are programmed by Ideal-Sign, and
those values are not uniformly random (when conditioned on the adversary’s view): their distributions
depend on key material. The core of the proof below will be to show that this is not a problem. More
precisely, the main object of the proof will be to show that, even though Hideal is not perfectly uniformly
random, it is statistically indistinguishable from a uniformly random function, given the adversary’s
view, up to a negligible quantity.

Main theorem. First, we need some notion expressing the fact that the preimage-sampleable TDF
(specifically, I2) does not return ⊥ too often. This will help us to state the bound.
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Definition 10. We say that a preimage-sampleable TDF is (f, ε)-well-behaved for the signature scheme
if it satisfies the following properties:

– In the main loop of the real signature algorithm I2 returns s 6= ⊥ with probability p = 1, or some
probability p ≤ 1/2, over the randomness of the salt.

– Except with probability ε, over the choice of v, i.e. the randomness of r1, p ≥ f .

Intuitively, f cannot be too small, because (except with probability ε), the main loop of the real
signature scheme may have to iterate 1/f times before finding a valid signature in rare cases. The
requirement p 6∈]1/2, 1[ is not absolutely required, but simplifies the bound, and holds true for our
applications.

We present our main result in two parts. First, Proposition 1 assumes that the preimage-sampleable
function is perfectly secure, and focuses on bounding the advantage of an adversary trying to distin-
guish the ideal world from the real world. Second, Theorem 1 gives a bound on the advantage on an
adversary against the EUF-CMA-security of the Hash-and-Sign with Retry construction. Theorem 1
follows immediately from Proposition 1. Indeed, in short, once we have a bound on the adversary’s
ability to distinguish the two worlds, it suffices to bound the advantage of the adversary in the ideal
world. Thus, Proposition 1 contains the core of our argument, while Theorem 1 is the relevant result
in terms of applications.

Proposition 1. Consider an adversary trying to distinguish the two worlds, making qsign queries to
the signing oracle, and qH queries the random oracle H. Assume the underlying preimage-sampleable
TDF is correct, (f, ε)-well-behaved, and that it is perfectly secure: the advantage of any adversary in
PS security game (Definition 8) is zero. Let q = qsign + qH. Let N = 2lensalt be the cardinality of the salt
space. Then the advantage of the adversary is bounded by:

O
(

log(f−1)√
f

·
√
q

N

)
+ qe−Ω(fN) + qε.

Theorem 1. Let T be a correct, (f, ε)-well-behaved PSF, and let HaST be the instantiation of the
Hash-and-Sign with Retry construction using T as the trapdoor. Let A be an adversary against the
EUF-CMA-security of HaST that issues at most qH random oracle queries, qsign signature queries, and
runs in time at most t. Then, there exists an adversary B against the PS-security of T and an adversary
C against its INV-security such that

AdvEUF-CMA
HaST

(A) ≤ AdvPST (B) + qε+ qhAdv
INV
T (C) +

1

|Y|

+O
(

log(f−1)√
f

·
√
q

N

)
+ qe−Ω(fN).

where q = qH + qsign. Besides, B (resp. C) runs in time t′ = t + O(qsign + qh) (resp. t′′ = t + (qH +
qsign + 1)(tT + O(1)) where tT is an upper-bound on the running time to evaluate the TT.F function).
Moreover, B is allowed at most qh + qsign queries.

Theorem 1 is a corollary of Proposition 1, and follows using standard arguments, see for exam-
ple [Beu22b, Proof of Lemma 8]. We provide a proof in Appendix D for completeness.

4.1 Proof of Proposition 1

For simplicity, we are going to assume that all pseudo-random-values ri used for derandomization are
perfectly random. In reality, they are generated from a seed via a PRF (or whichever other primitive
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is used to generate the pseudo-random values), and we need some game hops to first replace them by
truly uniform values. In the final bound, this would add a term for the distinguishing advantage against
the PRF. The same goes for Hsalt and Hs: we are going to assume they are uniformly random functions.
Note that we do not require those hashes to be ROs: they can be replaced by PRFs. Treating them as
perfectly random avoids adding PRF terms everywhere, and does not affect the argument otherwise.

Let Greal denote the real-world game, where the signature algorithm is instantiated by Real-Sign
in Algorithm 3. Let Gideal denote the ideal-world game, where the signature algorithm is instantiated
by Ideal-Sign in Algorithm 3.

Hybrid 0. Hybrid 0 is the ideal game G0 := Gideal.

Hybrid 1. In the ideal game, the signature s is sampled using SampDom. The security of the preimage-
sampleable TDF implies that this is the same as first sampling v← I1, then sampling an image y←$ R
uniformly at random in the range R of F, and finally sampling the signature as s← I2(v,y). (In that
statement, we are treating the random tapes of all algorithms involved as uniformly random; in other
words, what we are saying is that the outputs of the two processes yield identical distributions of s
when the hash functions/ri’s are uniformly random).

Let G1 (hybrid 1) denote the ideal game, except Ideal-Sign is replaced by Ideal-Sign1: Per the

Algorithm 4 Real and ideal signatures in G1 (differences with G0 highlighted).

1: procedure Real-Sign(msg)
2: v← I1(; r1)
3: i← 1
4: repeat
5: salt← r2i
6: s← I2(v,Hreal(msg‖salt); r2i+1)
7: i← i+ 1
8: until s 6= ⊥
9: return (salt, s)

1: procedure Hreal(x)
2: if x has already been determined then
3: return previous output for x
4: else
5: return fresh uniform value

1: procedure Ideal-Sign1(msg)
2: v← I1(; r1)
3: i← 1
4: repeat
5: y←$ R using random coins r2i
6: s← I2(v,y; r2i+1)
7: i← i+ 1
8: until s 6= ⊥
9: salt← r0

10: Hideal(msg‖salt)← y . Program RO

11: return (salt, s)

1: procedure Hideal(x)
2: Parse x as msg‖ salt
3: Ideal-Sign(msg) . Discard output
4: if x has already been determined then
5: return previous output for x
6: else
7: return fresh uniform value

discussion above, G0 and G1 are identically distributed from the adversary’s perspective.

For v an output of I1, let us denote by R(v) the set of y’s such that I2(v,y) 6= ⊥. (The output
of I2 depends on a random tape, but whether it outputs ⊥ does not depend on the random tape as
implied by Definition 7, so the previous sentence is well-defined.) For information, note that for a given
v, the probability p from the earlier definition of well-behaved is |R(v)|/|R|.
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Hybrid 2. Fix a message msg (and hence a vector v). For a salt s, define f(s) = H(msg‖s), the hash
value obtained for this choice of salt. Say that the salt s is suitable if f(s) ∈ R(v). In other words,
suitable salts (for a given message) are salts for which a signature is possible (I2 will not return ⊥).

In the discussion that follows, we are picturing the random oracleH as having predefined (uniformly
random) values for all inputs. So for each message, a salt is either suitable, or it is not, depending on
that predefined image. When the RO is programmed on some input, we are overwriting the predefined
value for that input. Importantly, we are careful to always program the oracle on a given input before
the input has a chance to be queried. Otherwise, the behavior of the oracle could change during the
game, which is not allowed. This is the role of the first two lines of Hideal in Algorithm 3: if the hash
input is parsed as msg|salt, Ideal-Sign(msg) is called immediately for that message, to make sure the
RO programming for msg has occurred. Note that the programming for a given message is always the
same, due to the derandomized nature of the algorithm. (As an alternative, we could have equivalently
called Ideal-Sign(msg) on every possible message at the beginning of the game.)

Ideal-Sign1 programs the ROH so thatH(msg‖salt) is a uniform element ofR(v), for one uniform
salt. That is, Ideal-Sign1 forces one random salt to be suitable. Afterwards, Ideal-Sign1 picks that
salt to sign the message. A priori, there may exist other salt values s that are suitable (for the same
message). Suppose that after programming the RO to force the chosen value salt to be suitable, Ideal-
Sign1 does not pick salt for the signature, but instead picks a uniformly random salt among suitable
salts (which could still be the programmed salt, but could also be another salt if other suitable salts
exist).

A key observation is that this modification of Ideal-Sign1 makes no difference to the output
distribution of the algorithm. Indeed, after the RO is programmed, there is nothing special about the
programmed salt: it is one of potentially many suitable salts, all of which follow the same distribution
(for all of them, H(msg‖salt) is uniform in R(v)). Another key observation is that the real-world
signature algorithm picks a uniformly random suitable salt to sign the message.

Combining these two observations, we arrive at this conclusion: the ideal signature can be modified
as follows. First, program the RO as in the previous hybrid. Afterwards, instead of choosing the
programmed salt to sign the message, call the real-world signature algorithm to choose a uniform
salt among suitable salts. The previous discussion implies that this modification does not change the
output distribution of the ideal signature algorithm.

Let G2 denote the ideal game Gideal, except Ideal-Sign is replaced by Ideal-Sign2, which works
as explained above. Pseudo-code is given in Algorithm 5.

In Algorithm 5, we have refactored the real-world signature algorithm Sign by introducing a Sign-
v subroutine, but the actual algorithm is unchanged. (Implicitly, when Sign-v calls H, it calls Hreal

when called in the real world, and Hideal when called in the ideal world.) Meanwhile, Ideal-sign2

is identical to Ideal-sign1, except for the very last line: we now return a signature computed as
in the real world. Per the earlier discussion, the output of Ideal-sign2 is distributed identically to
Ideal-sign1, and hence also to the original ideal-world signature Ideal-sign.

Hybrid 3. Hybrid G3 is the same as G2, except the first part of Ideal-Sign2 (the part that programs
the RO) is moved from the Ideal-Sign routine to the RO Hideal, as depicted in Algorithm 6.

Again, the games G2 and G3 are identical: we have simply moved the random oracle programming
from Ideal-Sign to Hideal, using the same computation. Note that Ideal-Sign does the programming
on every call, but for a given message msg, all computed values are the same, soHideal could equivalently
do the programming only once per new msg input.

Hybrid 4. So far, all hybrids are identically distributed. We have merely rewritten the ideal game
Gideal in various equivalent ways. The point is that in the latest hybrid G3, Ideal-Sign3 is identical
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Algorithm 5 Real and ideal signatures in G2 (differences with G1 highlighted).

1: procedure Real-Sign2(msg)
2: v← I1(; r1)
3: return Sign-v(v,msg,Hreal)

1: procedure Sign-v(v,msg,H)
2: i← 1
3: repeat
4: salt← r2i
5: s← I2(v,H(msg‖salt); r2i+1)
6: i← i+ 1
7: until s 6= ⊥
8: return (salt, s)

1: procedure Hreal(x)
2: if x has already been determined then
3: return previous output for x
4: else
5: return fresh uniform value

1: procedure Ideal-Sign2(msg)
2: v← I1(; r1)
3: i← 1
4: repeat
5: y←$ R using random coins r2i
6: s← I2(v,y; r2i+1)
7: i← i+ 1
8: until s 6= ⊥
9: salt← r0

10: H(msg‖salt)← y . Program RO
11: return Sign-v(v,msg,Hideal)

1: procedure Hideal(x)
2: Parse x as msg‖ salt
3: Ideal-Sign(msg) . Discard output
4: if x has already been determined then
5: return previous output for x
6: else
7: return fresh uniform value

Algorithm 6 Ideal signature in G3 (differences with G2 highlighted).

1: procedure Ideal-Sign3(msg)
2: v← I1(; r1)
3: return Sign-v(v,msg,Hideal3)

1: procedure Sign-v(v,msg,H)
2: i← 1
3: repeat
4: salt← r2i
5: s← I2(v,H(msg‖salt); r2i+1)
6: i← i+ 1
7: until s 6= ⊥
8: return (salt, s)

1: procedure Hideal3(x)
2: Parse x as msg‖salt . other forms of input are irrelevant
3: v← I1(; r1) . is the same v from Ideal-Sign because r1 is the same
4: i← 1
5: repeat
6: y←$ R using random coins r2i
7: s← I2(v,y; r2i+1)
8: i← i+ 1
9: until s 6= ⊥

10: salt← r0
11: H(msg‖salt)← y . Program RO

12: if x has already been determined then
13: return previous output for x
14: else
15: return fresh uniform value
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to the real signature algorithm. The only difference between G3 and Greal is in the RO H. In fact, the
last part of Hideal3 is identical to Hreal: the specific difference lies in the random oracle programming
that occurs in the first part of Hideal3.

Hybrid 4 is the real game G4 = Greal. As noted, the difference between G3 and Greal lies entirely
in the RO. The rest of the proof is dedicated to bounding the advantage of an adversary trying to
distinguish G3 from G4 = Greal (that is, essentially, an adversary trying to distinguish Hreal from
Hideal3).

4.2 Arguing about the Indistinguishability of Real and Ideal RO

The case of a single message. In the remainder, we focus on bounding the advantage of an adversary
trying to distinguish G3 from G4 = Greal. Towards that end, fix a message msg, and let us look at the
adversary’s view. For now, let us focus on queries relevant to msg: that is, signatures on msg, and hash
queries of the form msg‖s for some salt s. “Suitable” will mean suitable for msg.

The only difference between G3 and G4 lies in the random oracles Hreal versus Hideal3. Moreover,
the two random oracles are identical, except for the fact that Hideal3 programs one uniformly random
salt value to be suitable. Beyond that, the two worlds behave identically. There are two ways for the
adversary to access the hash oracle.

1. The adversary can query the signature oracle, which reveals a salt salt that is suitable.
2. The adversary can directly query the hash oracle.

We are going to assume that prior to querying the hash oracle on msg‖s, the adversary always
first queries the signature oracle on msg (increasing the number of signature queries as necessary),
and learns both the chosen salt, and its hash image. Thus, the adversary always knows one suitable
salt value (and its image). Moreover, there is now only one way for the adversary to access the hash
oracle, which is to query it directly. Without loss of generality, we assume the adversary always queries
salt values that are pairwise distinct, since querying the same value is useless. We also assume the
adversary does not query the chosen salt from the signature of msg, since the hash value for that salt
is already known. Call that salt the special salt. Summing up, from now on, the adversary only issues
hash oracle queries, on salts that are pairwise distinct, and also distinct from the special salt. (Still
focusing on a single message msg.)

Let p = |R(v)|/|R| be the probability that a salt is suitable for msg, where v is determined by
msg. Let us look at the distribution of the number of suitable salts observed by the adversary after
performing q hash oracle queries for msg, and not counting the special salt. (We do not care whether
the adversary is able to recognize which salts are suitable, we are simply counting the number of
suitable salts among salts queried by the adversary).

– In the ideal world, the special salt is automatically suitable. Other salts have a probability p of being
suitable, independently for each salt. Thus, the number of suitable salts observed by the adversary
after q queries (not counting the special salt) is distributed according to Bin[q, p]. (Where Bin[q, p]
is the binomial distribution defined by the number of successful coin flips after q independent coin
flips, each with a probability of success p.)

– In the ideal world, the situation is more complex. The special salt is suitable, except in the case that
there exists no suitable salt at all, which happens with probability (1− p)N . The total number of
suitable salts across all N possible salts is distributed according to Bin[N, p]. However, one suitable
salt (if it exists) was reserved for the special salt, so the number of suitable salts among salts that
the adversary can query is Bin[N, p]− 1 (where the special value −1 corresponds to the case that
no suitable salt exists). (The notation Bin[N, p] − 1 means the distribution of X − 1, where X
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is a random variable X ∼ Bin[N, p].) Thus, the adversary issues q queries among N − 1 possible
salts, of which Bin[N, p] − 1 are suitable. Recall that the hypergeometric distribution Hyp[n, d, q]
is the number of distinguished balls after drawing q balls from a pool of n balls, of which d are
distinguished (without replacement). In conclusion, the number of suitable salts observed by the
adversary in the real world is Hyp[N − 1,Bin[N, p]− 1, q] (with the convention Hyp[·,−1, ·] = −1,
corresponding to the special case where there was no suitable salt at all, even for the special salt).2

Suppose that the adversary observes k suitable salts among the q queried salts (more precisely, if
we include the special salt, the number of suitable salts is 1 + k; the value k = −1 is thus reserved
for the special case where even the special salt is not suitable). The key point is the following. If we
condition the randomness of either game on the adversary observing exactly k suitable salts, then
the distribution of the adversary’s view is the same in both games. Indeed, which k salts are suitable
among the q queried salts is uniformly random among the

(
q
k

)
possibilities, in both worlds. Moreover,

images of suitable salts are uniformly random (independently) in R(v), again in both worlds. Likewise,
images of unsuitable salts are uniformly random (independently) in R \R(v). Hence, the adversary’s
view in both worlds is distributed identically when the number of suitable salts is fixed.

To put this differently, there exists a probabilistic map F that takes as input the number of suitable
salts observed by the adversary, and outputs the adversary’s view conditioned on having observed
that number of salts; and that map F is the same in both worlds. This implies that the statistical
distance between the adversary’s view in both worlds is bounded by the statistical distance between
the distributions of the number of observed suitable salts. Indeed, recall that the statistical distance
∆ satisfies ∆(F (A), F (B)) ≤ ∆(A,B) for any pair of distributions A,B, and any probabilistic map
F (sometimes called the data-processing inequality). Since the adversary’s view in G3 is F (Bin[q, p]),
and the adversary’s view in G4 is F (Hyp[N − 1,Bin[N, p]− 1, q]), the statistical distance between the
adversary’s view in the two worlds is bounded by:

∆(Bin[q, p],Hyp[N − 1,Bin[N, p]− 1, q]).

Multiple messages. So far, we have acted as if the adversary had to spend all q queries on a single
message msg. In reality, the adversary may split their q queries among m ≤ q distinct messages. For
now, for simplicity, we focus on a selective adversary: that is, the adversary chooses in advance which
message-salt pair to query, without adapting new queries to past answers. The general case is deferred
to Appendix E.

Let us say that a message msg is queried if the adversary asks for the signature of msg, or if the
adversary asks for the hash of an input of the form msg‖s for some salt s. Let m be the number of
distinct messages queried by the adversary. Let msg1, . . . ,msgm be the queried messages. As in the
previous section, if a hash input msgi‖s is queried, we assume the adversary first queries the signature
of msgi, and learns the associated special salt (the one chosen for the signature), and its image. In the
remainder, we assume the adversary knows the signature, special salt, and hash image for all msgi’s.

As a consequence, all queries related to msgi are queries to the hash oracle, on inputs of the form
msgi‖s for various salts s. Let qi be the number of such queries for msgi. Since we don’t count signature
queries (they are “free” for the m ≤ q queried messages), we have q =

∑m
i=1 qi.

If we look at the adversary’s view related to a given message msgi, everything happens as in the
single-message case from the previous section. Let vi denote the vector v associated with msgi. Let

2 The notation Hyp[N − 1,Bin[N, p]− 1, q] is defined in the natural way: it describes the distribution obtained
by first sampling X ∼ Bin[N, p], then sampling from Hyp[N − 1, X − 1, q]. Alternatively, viewing x 7→
Hyp[N, x, q] as a probabilistic map, it is the image of the distribution Bin[N, p]− 1 by that map, hence the
notation.
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fi = |R(vi)|/|R| be the probability that a salt for msgi is suitable. Then the distribution of the number
of observed suitable salts for msgi is Bin[qi, fi] in the ideal world, and Hyp[N − 1,Bin[N, fi]− 1, q] in
the real world. It is worth noting that if fi = 1, then all salts are suitable, and there is not difference
between the real and ideal worlds for msgi. It follows that we can focus our attention on i’s such that
fi < 1.

The number of suitable salts for each msgi is independent, since the vectors vi are sampled inde-
pendently. Hence if we look at the vector of length m recording the number of suitable salts for each
msgi, the distribution of that vector is:

Ideal world:

m⊗
i=1

Bin[qi, fi]

Real world:

m⊗
i=1

Hyp[N − 1,Bin[N, fi]− 1, qi].

As in the case of a single message, the adversary’s view conditioned on a given realization of that
vector is identical in both worlds. Equivalently, there exists a probabilistic function F that takes as
input the vector of the number of suitable messages for each msgi, and outputs the adversary’s view
conditioned on that vector. That function is identical in both worlds. To construct F , for each msgi,
and given the number of suitable salts ki for msgi, choose at random ki distinct queries among the qi
queries of the adversary related to msgi, and sample their image uniformly at random in R(vi); for
the other qi− ki queries, sample their image uniformly at random in R\R(vi). Regarding the special
salt, F picks the special salt uniformly at random in R(v), except in the special case ki = −1, where it
is picked outside R(v) (and in that case, all other salts are sampled in the same way). The adversary’s
view in G3 is F (

⊗m
i=1 Bin[qi, fi]), and it is F (

⊗m
i=1 Hyp[N − 1,Bin[N, fi]− 1, qi]) in G4.

We conclude that the statistical distance between G3 and G4 is bounded by:

∆

(
m⊗
i=1

Bin[qi, fi],

m⊗
i=1

Hyp[N − 1,Bin[N, fi]− 1, qi].

)
(1)

The next stage of the proof is to analyze this statistical distance, using the ideas sketched in the
technical overview.

4.3 Core Mathematical Results

Our goal is to upper-bound the expression (1). The bound is given in Theorem 2. Below, we use the
notation N ′ = N − 1, which turns out to be a more relevant quantity in the full proof. Let:

Dideal =

m⊗
i=1

Hyp[N ′,Bin[N ′, fi], qi] =

m⊗
i=1

Bin[qi, fi],

Dreal =

m⊗
i=1

Hyp[N ′,Bin[N ′ + 1, fi]− 1, qi].

Theorem 2 (core result).

∆(Dideal,Dreal) = O
(

log(f−1)√
f

·
√
q

N

)
+ qe−Ω(fN).
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The full proof is given in Appendix C in the selective setting, and in Appendix E in the adaptive
setting. A high-level overview was given in the technical overview. In addition, we provide below
a more precise description of the layout of the proof, in the selective setting (as explained in the
technical overview, we are ultimately able to reuse the same core ideas in the adaptive setting).

We want to bound the statistical distance between Dideal and Dreal. For now, let us pretend that
m = 1, and look at a single component:

Cideal = Bin[qi, fi],

Creal = Hyp[N ′,Bin[N ′ + 1, fi]− 1, qi].

If we could somehow “replace” Bin[N ′ + 1, fi]−1 by Bin[N ′, fi − εi] in the expression of Creal, for some
well-chosen εi, we would be quite happy. Indeed, we would then only have to bound the statistical
distance between:

Cideal = Bin[qi, fi],

C′real = Hyp[N ′,Bin[N ′, fi − εi], qi] = Bin[qi, fi − εi].

The hypergeometric distribution has disappeared, and we are left with the task of bounding the
statistical distance between two binomial distributions with the same number of trials. This can be
done using standard techniques, typically via the Kullback-Leibler divergence.

The crux of our argument is that such a replacement is possible. First, we introduce a notion of
covering (Definition 15), then we prove a replacement lemma (Lemma 13) that states the following. If
P,Q,R are three distributions such that Q covers P , and P stochastically dominates R, then:

∆(P,Q) ≤ ∆(R,Q).

Such a lemma provides what we want: if P, S,R are in the correct configuration, and we are trying
to upper-bound ∆(P,Q), then we are allowed to replace P by R, since that can only increase the
statistical distance.

This “replacement lemma” was designed with our goal in mind: the distributions Cideal, Creal, C′real
are in the correct configuration to apply the lemma. That is, we show:

– Cideal covers Creal (Lemma 14);
– Creal stochastically dominates C′real (Lemma 17).

Technically, we do not exactly show the second point: instead, we show that Creal and C′real are expo-
nentially close in statistical distance to distributions P and R such that P stochastically dominates R
(the exact statement is given in Lemma 17). That is enough for the argument to go through.

That was when looking at a single component (m = 1). In reality, we need to bound ∆(Dideal,Dreal)
for an arbitrary number of components m ≥ 1. We use the exact same proof structure for the general
case. In fact, because the components are independent, much of the analysis reduces to the case of a
single component (cf. Appendix C.3).

In the end, thanks to the replacement technique sketched above, we are left with bounding the
statistical distance between binomials (Appendix C.4). The most standard way to do so would be
to use the Kullback-Leibler divergence. In our setting, the Hellinger distance yields a slightly better
bound, so we use that instead.

5 Application to MQ-based Signature Schemes

5.1 Overview of Provable Security for UOV-based Signature Schemes

The TUOV PSF. For the remainder of the paper, we fix a finite field F. Let n and m be two positive
integers, and let v = n−m. We say that a quadratic multivariate polynomial is a (n,m)-OV-polynomial
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if it is of the following form:

q : Fn −→ F

(x1, . . . , xn) 7−→
v∑
i=1

n∑
j=i

αi,jxixj .

The UOV scheme relies on a tupleQ = (q1, . . . , qm) of (n,m)-OV-polynomials that are chosen uniformly
at random (i.e. the αi,js are sampled uniformly at random from F). The first v coordinates of a (n,m)-
OV-polynomial are called vinegar variables, while the remaining m coordinates are the oil variables.
Note that, once a value is assigned to all vinegar variables, Q becomes linear in the oil variables. For
any v = (x1, . . . , xv) ∈ Fv, we denote Q(v, ·) this linear map. In order to hide the decomposition of
the input space into oil and vinegar variables, a secret invertible linear map T : Fn ←− Fn is chosen
uniformly at random in GL(F, n). The UOV trapdoor IQ,T then operates as follows:

– I1 simply samples a vector v ∈ Fv uniformly at random;
– I2Q,T simply tries to find o ∈ Fm such that Q(v,o) = y, given v ∈ Fv and y ∈ Fm; if the equation

admits one or more solutions, it samples one uniformly at random and then outputs T −1(v,o),
else it outputs ⊥.

The public one-way function F is defined as F = Q ◦ T , and SampDom samples a uniformly random
vector x in Fn. As a slight generalization, the TUOV−

δ
PSF is defined analogously, but the secret map

Q is a m-tuple of (n,m+ δ)-OV-polynomials. It is easy to see that TUOV = TUOV−0
.

The Original UOV scheme. The original UOV scheme, as introduced in [KPG99], is specified in
Algorithm 7. Its key generation algorithm corresponds to the sampling of a TUOV instance (F, IQ,T ).
Generating a signature boils down to:

– hashing the message msg (using an optional random salt salt);
– sampling vinegar values and using I2Q,T to compute a value s until there is a solution.

The signature (salt, s) will then satisfy F(s) = H(msg||salt), which corresponds to the equality that is
checked by the verification algorithm. More modern descriptions [BCH+23] will sample vinegar values
until the associated linear system is full-rank. It is also possible to turn UOV into a deterministic
signature scheme by deriving all the random coins from the message and an additional secret key,
using for example an eXtendable Output Function (XOF). The security of UOV is thus built on
the hardness of inverting a UOV public key. Unfortunately, formally proving this security reduction
remains an open problem to this day. As pointed out in [SSH11], the output of the signature algorithm
is not uniformly distributed, as the vinegar variables are not uniformly random in Fv. Instead, this
distribution is skewed based on the secret key. This makes the usual proof strategy of reducing the
EUF-CMA-security of the signature scheme to its security without a signature oracle hard to apply, as
it will be difficult to sample from the distribution of signatures using only the knowledge of the public
key. To solve this issue, Sakumoto et al. introduced different way of computing signatures, which is
dubbed modified UOV (or mUOV for short) [SSH11].

The modified UOV scheme. In [SSH11], two important changes were made to the original UOV
scheme:

1. the use of a random salt becomes mandatory, and its length is directly related to the security of
the scheme3;

2. the vinegar value v is now sampled once, uniformly at random.
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Algorithm 7 The Original UOV scheme.

1: procedure UOV.KeyGeneration(1λ)
2: (F, IQ,T )← TUOV.Gen(1λ)
3: sk← IQ,T
4: pk← F
5: return (sk, pk)

1: procedure UOV.VerifyH(pk,msg, sig)
2: (salt, s)← sig
3: return F(s) = H(msg||salt)

1: procedure UOV.Sign(sk,msg)
2: salt←$ R
3: repeat
4: v← I1()
5: s← I2Q,T (v,H(msg||salt))
6: until s 6= ⊥
7: return (salt, s)

Algorithm 8 The Modified UOV scheme.

1: procedure mUOV.KeyGeneration(1λ)
2: (F, IQ,T )← TUOV.Gen(1λ)
3: sk← IQ,T
4: pk← F
5: return (sk, pk)

1: procedure mUOV.VerifyH(pk,msg, sig)
2: (salt, s)← sig
3: return F(s) = H(msg||salt)

1: procedure mUOV.Sign(sk,msg)
2: v← I1()
3: repeat
4: salt←$ R
5: s← I2Q,T (v,H(msg||salt))
6: until s 6= ⊥
7: return (salt, s)

New salt values are generated until the hash value belongs to the image of Q(v, ·). A formal description
of mUOV can be found in Algorithm 8. These modifications have the benefit of turning the signature
generation into a preimage sampling experiment for TUOV. The authors then prove the following result.

Lemma 1 ([SSH11]). If A is an adversary against the PS-security of TUOV, then

AdvPSTUOV
(A) = 0.

Using Lemma 1, they deduce the following security reduction in the Random Oracle Model (ROM).

Theorem 3 ([SSH11]). Let A be an adversary against the EUF-CMA-security of mUOV that runs in
time t, makes at most qsign signature queries and qH random oracle queries. There exists an adversary
B against the INV-security of TUOV that satisfies

AdvEUF-CMA
mUOV (A) ≤ qH + qsign + 1

1− (qsign + qH)qsign/|R|
AdvINVTUOV

(B).

Besides, B runs in time t′ = t + (qH + qsign + 1)(tUOV + O(1)) where tUOV is an upper-bound on the
running time to evaluate the TUOV.F function.

A critical step in the proof of Theorem 3 is to build a simulator S for simulating the signing process
without the knowledge of the mUOV secret. In a nutshell, in order to generate a signature for a message
msg, S proceeds as follows:

– it samples a uniformly random signature (salt, s) in R× Fn;

3 This can still be done deterministically from the output of a XOF.
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– it programs the random oracle H so that H(msg||salt) = F(s).

Sakumoto et al. argue that, given Lemma 1, S is indistinguishable from a legitimate signer as long as
H(msg||salt) has never been queried before by the adversary. However, as pointed out by Chatterjee
et al., the proof of this theorem contains two potential gaps [CDP22]:

– since F is neither bijective nor known to be regular, for a fixed F, the value F(s) has no reason to
be uniformly random when s←$ Fn. Because the random oracle is programmed to take this value,
its distribution is no longer uniform.

– in Algorithm 8, salts are actually chosen uniformly at random among salts that yield a value that
belongs to the image of Q(v, ·), which creates a difference with the distribution of salts that are
generated by S.

Taking these issues into account, they prove the following result.

Theorem 4 ([CDP22]). Let A be an adversary against the EUF-CMA-security of mUOV that runs in
time t, makes at most qsign signature queries and qH random oracle queries. There exists an adversary
B against the INV-security of TUOV that satisfies

AdvEUF-CMA
mUOV (A) ≤ qHAdvINVTUOV

(B) + 2
qsign
|F|

.

Besides, B runs in time t′ = t + (qH + qsign + 1)(tUOV + O(1)) where tUOV is an upper-bound on the
running time to evaluate the TUOV.F function.

In a nutshell, the authors prove that, as long as the choice of v yields a full-rank linear map, salts
and outputs of F are both uniformly random. Thus, the statistical distance between both distributions
can be upper-bounded by 2

qsign
|F| . Unfortunately, this results in a scheme that can only be proven secure

when the size of the underlying field is superpolynomial in the security parameter. Recently, Kosuge
and Xagawa proved the security of the mUOV scheme in the QROM [KX22].

Theorem 5 ([KX22], Proposition B.4). For any quantum EUF-CMA adversary A of mUOV is-
suing at most qs classical queries to the signing oracle and qH quantum random oracle queries to H,
there exist an INV adversary B issuing qs sampling queries such that

AdvEUF-CMA
mUOV (A) ≤(2qH + 1)2AdvINVT (B) +

3

2
q′sign

√
q′sign + qH + 1

|R|

+ 2(qsign + qH + 2)

√
q′sign − qsign
|R|

,

where q′sign is a bound on the total number of queries to H in all the signing queries, and the running
time of Bis about that of A.

Using a similar proof in the classical setting, it would be possible to prove that, for any classical
adversary A against the EUF-CMA-security of mUOV, one has4

AdvEUF-CMA
mUOV (A) ≤qHAdvINVT (B) + q′sign

qH
|R|

+ 2qH
q′sign − qsign
|R|

.

4 A recent update of [KX22] makes a similar observation.
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Besides, for the deterministic variant of mUOV, this bound could be improved to

AdvEUF-CMA
mUOV (A) ≤ qHAdvINVT (B) +

q′′signqH

|R|
+ 2

qH(q′sign − qsign)
|R|

, (2)

where q′′sign denotes an upper-bound on the total number of random oracle queries during a single call
to the signing oracle. We do not provide a sketch of this proof, as in the following section an analogous
bound will be proven with a slightly different strategy. We note that the bound from Eq. (2) depends
on the value of q′sign and q′′sign. In [SSH11], the authors argue that the expected value of q′′sign is equal to
2, and thus the one of q′sign is equal to 2qsign.

On variants of UOV. Eq. (2) yields better security bounds for some variants of mUOV. Indeed, if τ
denotes the probability thatQ(v, ·) is not full-rank when v is chosen uniformly at random, the expected
value of q′sign− qsign becomes τqsign. As an example, the UOV− and MAYO trapdoor parameters can be
chosen so that τqsign ≈ 1, which ensures security as long as qH � |R|.

5.2 Application of Theorem 1 to mUOV and mUOV−

Let us fix three integers n,m, and δ such thatm+δ ≤ n. Let mUOV−δ denote the variant of mUOV where
the underlying quadratic system Q = (q1, . . . , qm) consists of (n,m + δ)-OV-polynomials. Standard
mUOV corresponds to δ = 0. The NIST candidate PROV corresponds to δ = 8.

In order to apply Theorem 1 to mUOV−δ , the critical step is to find two real numbers f and ε such
that TUOV−

δ
is (f, ε)-well-behaved. Note that, during the computation of I2, the value of p is exactly

1
|F|m−r where r is the rank of the linear map Q(v, ·). Let us denote Mv ∈ Fm×(m+δ) the matrix of the

linear map Q(v, ·) for any v ∈ Fn−m−δ, and qi the i-th component of Q for i = 1, . . . ,m. By definition,
it is clear that the j-th coefficient of the i-th row of Mv is exactly the coefficient of xn−m−δ+j of
qi(v, ·). More formally, this coefficient is equal to

n−m−δ∑
k=1

αik,jvk, where qi(x) =

n−m−δ∑
j=1

n∑
k=j

αij,kxjxk.

It is clear that, if v is null, then the rank of Mv is 0. Otherwise, Mv is a uniformly random matrix
since the αij,k are uniformly random and independent. In order to accurately study the rank of Mv,
we rely on the following result.

Lemma 2 ([Lan95,Lev05]). Let n, N and r be three integers such that 1 ≤ r ≤ N ≤ n. One has

p(|F|, N, n, r) := Pr[rank(A) = r]

=|F|(r−N)(n−r)
∏N
j=N−r+1

(
1− |F|−j

)∏n
j=n−r+1

(
1− |F|−j

)∏r
j=1(1− |F|−j)

,

where the probability is taken over the uniformly random choice of A in FN×n.

Combining our previous remark and Lemma 2, we get

Pr[rank(Mv) = r] =


1

|F|n−m−δ +
(

1− 1
|F|n−m−δ

)
1

|F|m(m+δ) if r = 0,(
1− 1

|F|n−m−δ

)
p(|F|,m,m+ δ, r) if r = 1, . . . ,m.

For any λ, let r0(λ) be the biggest r such that 2λ Pr[rank(Mv) < r] ≤ 1. In that case, TUOV−
δ

is(
1

|F|m−r0(λ) ,Pr[rank(Mv) < r0(λ)]
)

-well-behaved. Applying Theorem 1, we get the following result.

23



Corollary 1. Let A be an adversary against the EUF-CMA-security of mUOV−δ that issues at most
qH random oracle queries, qsign signature queries, and runs in time at most t. Then, there exists an
adversary B against the INV-security of TUOV−

δ
such that

AdvEUF-CMA
mUOV (A) ≤ O

(
(m− r0(λ)) log(|F|)|F|(m−r0(λ))/2

√
q

|R|

)
+ qPr[rank(Mv) < r0(λ)] + qAdvINVTUOV

(B) + qe
−Ω

(
|R|

|F|m−r0(λ)

)
,

where q = qH + qsign. Besides, B runs in time t′ = t+ (qH + qsign + 1)(tUOV + O(1)) where tUOV is an
upper-bound on the running time to evaluate the TUOV.F.

We now evaluate the security of various instances of mUOV− using the bound from Corollary 1.
In Table 1, we apply the parameter sets from the UOV submission to the NIST PQC competi-
tion [BCD+23] to the mUOV signature scheme. Then, in Table 2, we apply Corollary 1 to the PROV
submission [PCF+23], which is actually an instance of mUOV−8 . We remark that our bounds allows us
to optimize the |R| parameter. This is done in Table 3.

Variant λ |F| n m |salt| |sig| |pk| |sk| f log(f−1)/
√
f ε τ

mUOV-Ip 128 256 112 44 16 128 43576 48 2−24 3× 215 2−127.99 1/15

mUOV-Is 128 16 160 64 16 96 66576 48 2−20 5× 212 2−143 1/255

mUOV-III 192 256 184 72 16 200 189232 48 2−32 221 2−199 1/255

mUOV-V 256 256 244 96 16 260 446992 48 2−40 5× 223 2−287 1/255
Table 1. Parameter sets and corresponding key and signature sizes for the mUOV signature scheme, in bytes,
based on the parameter sets of the UOV submission. τ is an upper-bound on the probability that Mv is not
full-rank.

Variant λ |F| n m δ |salt| |sig| |pk| |sk| f log(f−1)/
√
f ε τ

PROV-I 128 256 136 46 8 24 160 68326 16 2−8 27 2−159 2−71

PROV-III 192 256 200 70 8 32 232 215694 24 2−16 212 2−263 2−71

PROV-V 256 256 264 96 8 40 304 524192 32 2−16 212 2−263 2−71

Table 2. Parameter sets and corresponding key and signature sizes for the PROV signature scheme, in bytes.
τ is an upper-bound on the probability that Mv is not full-rank.

Scheme mUOV PROV

Variant Ip Is III V I III V

Alternative |salt| 11 10 15 20 9 14 18

New |sig| 123 90 199 264 145 214 282

Table 3. Alternative salt sizes (in Bytes) for mUOV and PROV based on the application of Theorem 1. Updated
corresponding signature sizes (in Bytes) are provided for reference.
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Remark 3. When r = rank(Mv) > 0, the expected number of salt sampling is |F|m−r. This means
that the signature algorithm may leak the value of r with a simple timing attack, depending on the
probability τ that Mv is not full-rank. Tables 1 and 2 illustrate the fact that an adequate choice for
δ can protect against such attacks, as it is unlikely that PROV will ever need to sample an additional
salt as long as qsign � 271.

5.3 Application of Theorem 1 to MAYO

Alternative description of TUOV. In this section we present an alternative way to describe the UOV
trapdoor due to Beullens [Beu21]. Let F be a UOV public map and let (Q, T ) be its corresponding
secret key. Let us also denote V = T −1(Fn−m × {0}m) and

O = T −1({0}n−m × Fm).

It is clear that Fn = V +O. Moreover, for any o ∈ O, one has F(o) = 0. Hence, an alternative way of
describing the secret key associated to F is the description of V and O. Besides, as stated in [Beu21,
Theorem 1], to any UOV public map, we can associate a bilinear form F′ defined as

Fn × Fn −→ Fm

(x,y) 7−→ F(x + y)− F(x)− F(y).

Let us fix any t ∈ Fm. This gives us an alternative way of solving the equation F(s) = t using the
knowledge of V and O. Indeed, let us fix any v ∈ V . Then, for any o ∈ O, one has

F(v + o) = F(v) + F(o) + F′(v,o),

with F(o) = 0. Hence, solving F(s) = t is equivalent to find o ∈ O such that

F′(v,o) = t− F(v),

which is linear in o.
Finally, in order to shorten the secret key and to simplify the computations, one can generate O

such that Fn = Fn−m × {0}m +O.

The TMAYO PSF. Let us TMAYO be a trapdoor function used in MAYO [Beu22b]. The function
TMAYO.Gen first generates a subspace O ⊂ Fn of dimension o, along with a quadratic map F :
Fn −→ Fm such that F(O) = {0}, as described at the start of this section. Moreover, for 1 ≤ i, j ≤ k,
let Ei,j be a matrix such that

E =

E1,1 · · · E1,k

...
. . .

...
Ek,1 · · · Ek,k


is non-singular. Then, it generates the quadratic map F∗ as follows:

(Fn)
k −→ Fm

(x1, . . . ,xk) 7−→
k∑
i=1

Ei,iF(xi) +
∑

1≤i<j≤k

Ei,jF
′(xi,xj).

The function TMAYO.F will be the quadratic map F∗, while TMAYO.I will work as follows:
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– TMAYO.I1 simply samples v = (v1, . . . ,vk) ∈ (Fn−o × {0}o)k uniformly at random;
– TMAYO.I2 tries to solve in o = (o1, . . . ,ok) ∈ Ok the linear system of equations

F∗(v1 + o1, . . . ,vk + ok) = y, (3)

where y is the target that was provided as input, and outputs v + o.

Finally, TMAYO.SampDom simply samples a value uniformly at random in (Fn)
k
. Note that, for Eq.(3)

to admit solutions with a high probability, it is required that m ≤ ko.

The MAYO Signature Scheme. In [Beu22b], Beullens introduces the MAYO signature scheme as a
variant of the original UOV, as specified in Algorithm 9. Note that, in that case, the signature algorithm
will continue to sample vinegar values until the corresponding linear system of equations is full-rank.
Just like in the original UOV scheme, it is possible to prove the security of MAYO since signatures are
uniformly random when the system is full-rank. In particular, the following theorem is proven.

Theorem 6 ([Beu22b], Theorem 6). Let A be an adversary against the EUF-CMA-security of

MAYO that runs in time t, makes qsign signing queries and qH random oracle queries. Let τ = |F|k−n+o

q−1 +
|F|m−ko
|F|−1 be a bound on the restarting probability and suppose qsignτ < 1, then there exists an adversary

B against the INV-security of TMAYO that runs in time t+ Õ(qsign + qH) such that

AdvEUF-CMA
TMAYO

(A) ≤
(
AdvINVTMAYO

(B) +
1

|F|m

)
(1− qsignτ)−1 +

(qH + qsign)qsign
|R|

.

Algorithm 9 The Original MAYO scheme.

1: procedure MAYO.KeyGeneration(1λ)
2: (F, IO)← TMAYO.Gen(1λ)
3: sk← IO
4: pk← F
5: return (sk, pk)

1: procedure MAYO.VerifyH(pk,msg, sig)
2: (salt, s)← sig
3: return F(s) = H(msg||salt)

1: procedure MAYO.Sign(sk,msg)
2: salt←$ R
3: repeat
4: v← I1()
5: until F∗(v + o) is full-rank
6: s← I2O(v,H(msg||salt))
7: return (salt, s)

Remark 4. In [Beu22b], Beullens actually breaks down the INV-security of TMAYO in two problems:

– distinguishing the public map F from a uniformly random quadratic map F0;
– solving the so-called Whipped MQ problem, which consists in solving the equation F∗0(x) = y for

a uniformly random y in Fm.

The full description of these problems is not needed for our discussion, so that we do not formally
introduce them.

Remark 5. MAYO has also been submitted to the NIST PQC competition for digital signature schemes [BCC+23].
As in the case of UOV, we will now introduce a modified MAYO algorithm, dubbed mMAYO, and we
will study its security based on the submitted parameter sets for the original scheme.
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The modified MAYO Signature Scheme. As in Section 5.2, we introduce the mMAYO signature
scheme that is an instantiation of the probabilistic hash and sign with retry construction, using TMAYO

as the trapdoor. A formal description is given in Algorithm 10. In order to apply Theorem 1, we need
to study the PS-security of TMAYO and to determine appropriate values for f and ε. First, we note that
one has the following result.

Lemma 3 ([Beu22b]). Let A be an adversary against the PS-security of TMAYO. One has

AdvPSTMAYO
(A) = 0.

While [Beu22b] does not rely on the PSF formalism, this result can be seen as a byproduct of the
proof of [Beu22b, Lemma 7]. For the sake of completeness, we briefly sketch the proof of Lemma 3.

Proof. Recall that v is chosen uniformly at random in (Fn−o × {0}o)k by I1. Once v is fixed, one gets
a linear map of rank r ≤ m. The Sample0 game will then sample uniformly at random a target y such
that the system admits solutions. Then, I2 samples such a solution o ∈ Ok uniformly at random. Since
there are exactly |F|ko−r possible solutions for each of the |F|r suitable y, o will be uniformly random
in Ok. Due to the fact that

(Fn)
k

=
(
Fn−o × {0}o

)k
+Ok,

the output of I2 will indeed be uniformly random in (Fn)
k
.

Second, as a consequence of the proof of [Beu22b, Lemma 2], one has the following two cases:

– either v1, . . . ,vk are linearly dependent,
– or the linear part of the system F∗(v + o) is equivalent to Mvo, where Mv is a uniformly random

matrix in |F|m×ko.

Using [Beu22b, Lemma 9], the first case occurs with a probability that is bounded by |F|
k−n+o

|F|−1 , which

is negligible in all MAYO parameter sets. We can thus use the following approximation:

Pr[rank(Mv) = r] ' p(|F|, ko,m, r)

if r = 1, . . . ,m, and Pr[rank(Mv) = 0] is negligible. Using a similar strategy as in Section 5.2, let r0(λ)
be the maximum r such that 2λ Pr[rank(Mv) < r] . 1. Then TMAYO is (f, ε)-well-behaved, with

(f, ε) =

(
1

|F|m−r0(λ)
,Pr[rank(Mv) < r0(λ)]

)
.

Applying Theorem 1, we get the following result.

Corollary 2. Let A be an adversary against the EUF-CMA-security of mMAYO that issues at most
qH random oracle queries, qsign signature queries, and runs in time at most t. Then, there exists an
adversary B against the INV-security of TMAYO such that

AdvEUF-CMA
mMAYO (A) ≤ O

(
(m− r0(λ)) log(|F|)|F|(m−r0(λ))/2

√
q

|R|

)
+ qPr[rank(Mv) < r0(λ)] + qAdvINVTMAYO

(B) + qe
−Ω

(
|R|

|F|m−r0(λ)

)
,

where q = qH + qsign. Besides, B runs in time t′ = t + (qH + qsign + 1)(tMAYO + O(1)) where tMAYO is
an upper-bound on the running time to evaluate the TMAYO.F function.
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Algorithm 10 The Modified UOV scheme.

1: procedure mMAYO.KeyGeneration(1λ)
2: (F, IO)← TMAYO.Gen(1λ)
3: sk← IO
4: pk← F
5: return (sk, pk)

1: procedure mMAYO.VerifyH(pk,msg, sig)
2: (salt, s)← sig
3: return F(s) = H(msg||salt)

1: procedure mMAYO.Sign(sk,msg)
2: v← I1()
3: repeat
4: salt←$ R
5: s← I2O(v,H(msg||salt))
6: until s 6= ⊥
7: return (salt, s)

We now evaluate the security of various instances of mMAYO using the bound from Corollary 2.
In Table 4, we apply the parameter sets from the MAYO submission to the NIST PQC competi-
tion [BCC+23] to the mMAYO signature scheme, while Table 5 presents optimized salt sizes based on
Corollary 2.

Variant λ |F| n m o k |salt| |sig| |pk| |sk| f log(f−1)/
√
f ε τ

mMAYO1 128 16 66 64 8 9 24 321 1168 24 2−8 27 2−131 2−36

mMAYO2 128 16 78 64 18 4 24 180 5488 24 2−8 27 2−131 2−36

mMAYO3 192 16 99 96 10 11 32 577 2656 32 2−8 27 2−203 2−60

mMAYO5 256 16 133 128 12 12 40 838 5008 40 2−12 3× 28 2−319 2−68

Table 4. Parameter sets and corresponding key and signature sizes for the mMAYO signature scheme, in bytes,
based on the parameter sets of the MAYO submission. τ is an upper-bound on the probability that Mv is not
full-rank [BCC+23].

Scheme mMAYO

Variant 1 2 3 5

Alternative |salt| 9 9 13 18

New |sig| 306 165 558 816

Table 5. Alternative salt sizes (in Bytes) for mMAYO based on the application of Theorem 1. Updated
corresponding signature sizes (in Bytes) are provided for reference.

We also note that, as long as the vinegar variables that are sampled during a signing query lead
to a full-rank system, MAYO and mMAYO have exactly the same behavior. Hence, the bound from
Corollary 2 also applies to MAYO with an additional qsignτ term. This yields the following result.

Corollary 3. Let A be an adversary against the EUF-CMA-security of MAYO that issues at most
qH random oracle queries, qsign signature queries, and runs in time at most t. Then, there exists an
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adversary B against the INV-security of TMAYO such that

AdvEUF-CMA
MAYO (A) ≤ O

(
(m− r0(λ)) log(|F|)|F|(m−r0(λ))/2

√
q

|R|

)
+ qsignτ

+ qPr[rank(Mv) < r0(λ)] + qAdvINVTMAYO
(B) + qe

−Ω
(

|R|
|F|m−r0(λ)

)
,

where q = qH + qsign and τ is an upper-bound on the probability that Mv is not full-rank. Besides, B
runs in time t′ = t + (qH + qsign + 1)(tMAYO + O(1)) where tMAYO is an upper-bound on the running
time to evaluate the TMAYO.F function.

Remark 6. We note that neither Theorem 6 nor Corollary 3 give meaningful bounds for the MAYO1,
MAYO2 and MAYO3 parameter sets. However, both results do apply for MAYO5, and our bound would
allow the salt length to be safely reduced from 40 bytes to 18 bytes.

6 Conclusion

In this work, we prove a new generic result on the security of the hash-and-sign with retry construction
when it is based on a (f, ε)-well-behaved preimage-sampleable function. In particular, this proof relies
on a new combinatorial tool that allows us to get adaptive security from a non-adaptive argument.
Moreover, our bound is tighter than previous bounds, since its security degradation is of the form
log(f−1)

√
q√

f |R| + qε, where R is the salt space of the signature scheme. To show the applicability of our

result, we use it to revisit the security proof of the PROV submission to the NIST PQC competition.
Moreover, we provide variants of the UOV and MAYO submissions, using the same parameter sets,
whose security can actually be proven using our result.

As a first open problem, it will be nice to look at the quantum security proof of Kosuge and
Xagawa [KX22] and see if we can gain the

√
q factor. Another problem will be to study if our new

technique from adaptive-to-non-adaptive proof can have other applications.
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A Additional Proofs for Section 2

A.1 Probabilistic Lemmas

Lemma 4. Let P be a distribution on Ω, and let E ⊆ Ω such that P (E) > 0. Let Q be the distribution
on E induced by P (i.e. Q(ω) = P (ω)/P (E)). Then:

∆(P,Q) ≤ 2P (E).

Definition 11 (Stochastically increasing). Given two partial orders (Ω1,≤1), (Ω2,≤2), and a
probabilistic map F : Ω1 → Ω2, we say that F is stochastically increasing if any one of the following
equivalent statements holds.

1. Given any two elements x ≤1 y in Ω1, F (x) �2 F (y).

2. Given any two distributions P �1 Q over Ω1, F (P ) �2 F (Q).

Proof of equivalence. 2 ⇒ 1. Let x (resp. y) denote the distribution on Ω1 where x (resp. y) has
probability 1. Applying condition 2 to P = x and Q = y yields condition 1.

1 ⇒ 2. Consider a coupling (X,Y ) witnessing P �1 Q. For each x ≤1 y in Ω1, let (Xx,y, Yx,y) be
a coupling witnessing F (x) �2 F (y). Let (X ′, Y ′) be sampled as follows. First, sample x, y from (the
distribution of) (X,Y ). Then sample x′, y′ from (the distribution of) (Xx,y, Yx,y). This is well-defined
because x ≤1 y, by construction of (X,Y ). We have X ′ ∼ F (X), Y ′ ∼ F (Y ), and x′ ≤2 y

′. Hence
(X ′, Y ′) is a coupling witnessing F (P ) �2 F (Q).

A.2 Hellinger distance

Definition 12 (Hellinger distance). Given two probability distributions P and Q over a finite set
Ω, the Hellinger distance between P and Q is:

Hel(P,Q) =

√
1

2

∑
ω∈Ω

(√
P (ω)−

√
Q(ω)

)2
.
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Given two distributions P and Q over Ω, if we denote by
√
P the vector in RΩ defined by

√
P (ω) =√

P (ω), then the Hellinger distance is simply the (normalized) 2-norm of
√
P −

√
Q:

Hel(P,Q) =
1√
2

∥∥∥√P −√Q∥∥∥
2
.

Up to composition with a fixed function, the Hellinger distance is equal to the Rényi divergence
of parameter 1/2. This relates the Hellinger distance to the Kullback-Leibler divergence, which is the
Rényi divergence of parameter 1, and which shares similar features. Of interest to us are the fact that
both quantities are well-behaved with respect to tensor products (Lemma 10), and can be used to
bound the statistical distance (Lemma 11).

In this work, we will only make use of a few properties of the Hellinger distance, which are stated
next and proved in Appendix A.

Lemma 5. Let P , Q be two probability distributions over a finite set Ω.

Hel(P,Q)
2

= 1−
∑
ω∈Ω

√
P (ω)Q(ω).

The next lemma states that the squared Hellinger distance is sub-additive over tensor products.

Lemma 6 (Sub-additivity). Let P1, Q1 (resp. P2, Q2) be two probability distributions over a finite
set Ω1 (resp. Ω2).

Hel(P1 ⊗ P2, Q1 ⊗Q2)
2 ≤ Hel(P1, Q1)

2
+ Hel(P2, Q2)

2
.

The next lemma relates the Hellinger distance to the statistical distance, playing a role similar to
Pinsker’s inequality for the Kullback-Leibler divergence.

Lemma 7. Let P , Q be two probability distributions over a finite set Ω.

∆(P,Q) ≤
√

2Hel(P,Q).

Lemma 8 (Data-processing inequality). Let P , Q be two probability distributions over Ω. Let
F : Ω → Ω′ be a probabilistic map.

∆(F (P ), F (Q)) ≤ ∆(P,Q),

Hel(F (P ), F (Q)) ≤ Hel(P,Q).

Remark 7. The data-processing inequality is true for all f -divergences, of which the statistical distance
and Hellinger distance are special cases.

Lemma 9. Let P , Q be two probability distributions over a finite set Ω.

Hel(P,Q)
2

= 1−
∑
ω∈Ω

√
P (ω)Q(ω).

Proof. Hel(P,Q)
2

=
1

2

∑
ω∈Ω

(√
P (ω)−

√
Q(ω)

)2
=

1

2

(∑
ω∈Ω

P (ω) +
∑
ω∈Ω

Q(ω)

)
−
∑
ω∈Ω

√
P (ω)Q(ω)

= 1−
∑
ω∈Ω

√
P (ω)Q(ω).
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Remark 8. The quantity
∑
ω∈Ω

√
P (ω)Q(ω) is sometimes called the Hellinger affinity, or Bhattacharyya

coefficient.

Remark 9. A corollary of Lemma 9 is that the Hellinger distance ranges over [0, 1]R (a consequence of
the normalization factor 1/

√
2 in Definition 12).

Lemma 10 (Sub-additivity). Let P1, Q1 (resp. P2, Q2) be two probability distributions over a
finite set Ω1 (resp. Ω2).

Hel(P1 ⊗ P2, Q1 ⊗Q2)
2 ≤ Hel(P1, Q1)

2
+ Hel(P2, Q2)

2
.

Proof. By Lemma 9:

Hel(P1 ⊗ P2, Q1 ⊗Q2)
2

= 1−
∑

(ω1,ω2)∈Ω1×Ω2

√
P1(ω1)Q1(ω1)P2(ω2)Q2(ω2)

= 1−

( ∑
ω1∈Ω1

√
P (ω1)Q(ω1)

)( ∑
ω2∈Ω2

√
P (ω2)Q(ω2)

)
= 1−

(
1− Hel(P1, Q1)

2
)(

1− Hel(P2, Q2)
2
)

= Hel(P1, Q1)
2

+ Hel(P2, Q2)
2 − Hel(P1, Q1)

2Hel(P2, Q2)
2

≤ Hel(P1, Q1)
2

+ Hel(P2, Q2)
2
.

Lemma 11. Let P , Q be two probability distributions over a finite set Ω.

∆(P,Q) ≤
√

2Hel(P,Q).

Proof. Using the Cauchy-Schwartz inequality:

∆(P,Q) =
1

2

∑
ω∈Ω

|P (ω)−Q(ω)|

=
1

2

∑
ω∈Ω

∣∣∣√P (ω)−
√
Q(ω)

∣∣∣(√P (ω) +
√
Q(ω)

)
≤ 1

2

√∑
ω∈Ω

(√
P (ω)−

√
Q(ω)

)2
·
√∑
ω∈Ω

(√
P (ω) +

√
Q(ω)

)2
=

1√
2
Hel(P,Q) ·

√
2 + 2

∑
ω∈Ω

√
P (ω)Q(ω)

≤
√

2Hel(P,Q)

where the last line uses
∑
ω∈Ω

√
P (ω)Q(ω) ≤ 1, which follows from Lemma 9.

B Lower Bound on the Statistical Distance between the Real and the
Ideal Distributions in UOV

Let F : Fnq → Fmq be the UOV mapping (where m is the number of oil variables, n is the number of
oil + vinegar variables. By an abuse of notation, F−1 is the the function that associates to y ∈ Fmq its
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preimage, as computed by a honest UOV signature algorithm. Let F−1 is a probabilistic map: it first
samples the vinegar variables uniformly at random, then computes valid oil variables if they exist. For
the purpose of this note, we do not care exactly how F−1 chooses among possible preimages if there
are multiple solutions. The only thing that matters is that as long as a solution exists, F−1 always
outputs a solution. It never samples new vinegar variables, unless there is no solution for the current
choice of vinegar variables. In other words, there is no “rejection sampling”.

Real distribution. The real distribution is defined to be the distribution seen by the adversary
when observing honest signatures. It is:

DR = {(F−1(y), y) : y ←$ Fmq }

Proof distribution. The proof distribution is the distribution used in the proof we discussed last
time, where the challenger first chooses x ∈ Fnq uniformly at random, programs the random oracle to
output F (x) on a certain message, then outputs x as signature for that message. It is:

DP = {(x, F (x)) : x←$ Fnq }

Proposition 2. The statistical distance between DR and DP is non-negligible. In fact, it is lower-
bounded by a non-zero constant.

Both distributions DR and DP are defined over pairs (x, y) where y = F (x). In particular, y is
entirely determined by x. As a consequence, we can restrict our attention to the distribution of the
first element of the pair for both distributions. Consequently, in the remainder, by a small abuse of
notation, we view DR and DP as distributions over Fnq .

Definition 13. Let O ⊂ Fnq denote the oil subspace. Two elements x, x′ ∈ Fnq are said to be twins,
written x T x′, if F (x) = F (x′) and x′ − x ∈ O.

The twin relation T is an equivalence relation. From now on, the twins of x means the elements
of the equivalence class of x for T . The point of the definition is that the twins of x ∈ Fnq are exactly
the elements x′ ∈ Fnq that have the same image and the same vinegar variables as x. The argument
we will make is that in the real UOV distribution DR, the probability that an element x is output by
F−1 is constrained by its number of twins.

For i ∈ N∗, let Ai denote the elements of Fnq that have exactly i twins (including themselves).

Lemma 12. The probability that a uniformly random y is such that F−1(y) ∈ A2 is lower-bounded by
some constant5 C > 0 (except with negligible probability over the choice of F ).

For each pair of twins in A2, pick whichever twin has a lower probability for DR (if both twins have
the same probability, pick one arbitrarily). Let A′2 ⊂ A2 be the set of those “lower probability” twins.
Note that |A′2| = |A2|/2. In the remainder, the notation D∗(x) means “the probability of sampling x
according to distribution D∗”. The final computation below only uses of the following three facts.

1. For x ∈ A′2, DP (x) = q−n since DP is uniform.
2. For x ∈ A′2, DR(x) ≤ (1 − ε)q−n for some constant ε > 0 (except with negligible probability

over the choices of F and x). This is because the probability of choosing x for DR is exactly the
probability of drawing y = F (x) when sampling uniformly over Fmq , and that F−1 chooses the
vinegar variables to be x mod O, and that F−1 chooses x among the possible twins. The first event
has probability q−m; the second event has probability C ′q−(n−m) for some 1 < C ′ < 2 (except

5 The probability is something like 1/(2e), by standard concentration bounds it won’t deviate much from that
value.
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with negligible probability over the choices of F and x), because F−1 samples the vinegar variables
uniformly among those that have a solution, which is a fraction 1 − 1/e or so; and the last event
has probability less than one half by definition of A′2. (We don’t compute all this precisely, but it’s
worth noting that we can “beat out” any constant corrective factor by using Ai for some constant
i > 2 instead of A2, which means exact constants don’t really matter.)

3. By Lemma 12, the cardinality of A2 is Ω(qn). Indeed, as already observed, there are Ω(qm)
valid choices for pairs (F (x), x mod O), and each pair maps to a distinct T -equivalence class.
By Lemma 12, the probability that a pair maps to A2 is Ω(1). Hence there are Ω(qm) distinct
T -equivalence classes in A2. A fortiori the cardinality of A2 is Ω(qn). The same holds for A′2 since
it is half the size of A2.

At this point, we’ve found a set of constant probability (namely A′2) where DP and DR disagree by a
constant factor > 1. This is enough to imply that the statistical distance between the two distributions
is Ω(1), as shown in the following computation.

∆(DP ,DR) =
1

2

∑
x∈Fnq

|DP (x)−DR(x)| ≥ 1

2

∑
x∈A′2

|DP (x)−DR(x)|

≥ |A′2|q−nε/2 = Ω(1).

C Proof of Theorem 2

We use the same notation as in Section 4.

C.1 Covering Relationship

Definition 14 (upwards closure). Let (Ω,≤Ω) be a partial order, and let S ⊆ Ω. The upwards
closure of S (with respect to ≤Ω), written up≤Ω (S), is defined by:

up≤Ω (S) = {y ∈ Ω : ∃x ∈ S, x ≤Ω y}.

If the relevant partial order ≤Ω is clear from context, we may simply write up(S). The set S is said to
be closed upwards (with respect to ≤Ω) if up≤Ω (S) = S.

The next definition is not standard (and new to our knowledge), but will play a central role in the
analysis. Recall that up≤Ω (S) denotes the upwards closure of S (Definition 14).

Definition 15 (covering relationship). Given a partial order (Ω,≤Ω), and two distributions P
and Q over Ω, we say that Q covers P with respect to ≤Ω if:

up≤Ω ({ω ∈ Ω : P (ω) < Q(ω)}) ⊆ {ω ∈ Ω : P (ω) ≤ Q(ω)}.

The next lemma is the reason we introduce the notion of cover. It says that if Q covers P , then
when upper-bounding ∆(P,Q), we are free to replace P with any distribution R that is stochastically
dominated by P .

Lemma 13 (Replacement lemma). Given a partial order (Ω,≤Ω), let P , Q, R, R′ be distributions
over Ω. If Q covers P (with respect to ≤Ω), and P stochastically dominates R (again with respect to
≤Ω), then:

∆(P,Q) ≤ ∆(R,Q).

More generally, if Q covers P , and P stochastically dominates R′, then:

∆(P,Q) ≤ ∆(R,Q) +∆(R,R′).
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Proof. Let us prove the second, more general statement. Let:

S = up≤Ω ({ω ∈ Ω : P (ω) <Ω Q(ω)}).

Since Q covers P , we have:

{ω ∈ Ω : D1(ω) <Ω D2(ω)} ⊆ S ⊆ {ω ∈ Ω : D1(ω) ≤Ω D2(ω)}.

Recall that the statistical distance between P and Q can be defined as:

∆(P,Q) = max
E⊆Ω

(Q(E)− P (E))

= max
E⊆Ω

∑
e∈E

(Q(e)− P (e)).

The maximum is reached for E = S, since S contains all e’s such that Q(e) − P (e) > 0, and none of
the e’s such that D2(e)−D1(e) < 0. This implies ∆(P,Q) = Q(S)− P (S).

On the other hand, since S is closed upwards and P stochastically dominates R′, R′(S) ≤ P (S).
This implies R(S) ≤ P (S) +R(S)−R′(S) ≤ P (S) + maxE⊆Ω(R(E)−R′(E)) = P (S) +∆(R,R′).

Putting everything together, we get:

∆(P,Q) = Q(S)− P (S)

≤ Q(S)−R(S) +∆(R,R′)

≤ max
E⊆Ω

(Q(E)−R(E)) +∆(R,R′)

= ∆(R,Q) +∆(R,R′).

C.2 The Case of a Single Component

In this section, we first consider the case m = 1, so that q = q1. Let p = f1. Let:

Cideal = Bin[q, p]

Creal = Hyp[N ′,Bin[N ′ + 1, p]− 1, q].

That is, Cideal and Creal are the distributions Dideal and Dreal when m = 1.

Lemma 14. For all q ≤ n in N∗, and for all p ∈ [0, 1]R, Bin[q, p] covers Hyp[n,Bin[n+ 1, p]− 1, q].

Proof. Let X ∼ Bin[n, p] and let h be the probabilistic map defined by h(x) ∼ Hyp[n, x, q], for x ∈
[−1, n]. (Recall the convention Hyp[·,−1, ·] = −1, which means that h is well-defined on [−1, n]N.) We
have h(X − 1) ∼ Hyp[n,Bin[n, p]− 1, q]. Let us compute for k ∈ [0, n]:

Hyp[n,Bin[n, p]− 1, q](k) = Pr[h(X − 1) = k]

=

n−q+k+1∑
i=k+1

Pr[X = i] Pr[h(X − 1) = k| X = i]

=

n−q+k+1∑
i=k+1

Bin[n, p](i)Hyp[n, i− 1, q](k),
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where the sum is taken over i ∈ [k + 1, n − q + k + 1] because Hyp[n, i− 1, q](k) = 0 outside of that
interval. Continuing:

Hyp[n,Bin[n, p]− 1, q](k) =

n−q+k+1∑
i=k+1

pi(1− p)n−i
(
n

i

)(
q

k

)(
n− q

i− 1− k

)(
n

i− 1

)−1

=

n−q+k+1∑
i=k+1

pi(1− p)n−i
(
q

k

)(
n− q

i− 1− k

)
n− i+ 1

i

= pk+1(1− p)q−k−1
(
q

k

) n−q∑
i=0

pi(1− p)n−q−i
(
n− q
i

)
n− i− k
i+ k + 1

= Bin[q, p](k)
p

1− p

n−q∑
i=0

Bin[n− q, p](i)n− i− k
i+ k + 1

.

As a consequence:

Hyp[n,Bin[n, p]− 1, q](k)

Bin[q, p](k)
=

p

1− p

n−q∑
i=0

Bin[n− q, p](i)n− i− k
i+ k + 1

.

In the sum on the right-hand side, every summand is decreasing as a function of k, hence the sum is
decreasing.

Observe:

Hyp[n,Bin[n+ 1, p]− 1, q](k) = Hyp[n,Bin[n, p] + Ber[p]− 1, q](k)

= Hyp[n,Bin[n, p]− Ber[1− p], q](k)

= pHyp[n,Bin[n, p], q](k) + (1− p)Hyp[n,Bin[n, p]− 1, q](k)

= pBin[q, p](k) + (1− p)Hyp[n,Bin[n, p]− 1, q](k).

Hence the quotient:

Hyp[n,Bin[n+ 1, p]− 1, q](k)

Bin[q, p](k)
= p+ (1− p)Hyp[n,Bin[n, p]− 1, q](k)

Bin[q, p](k)

is also decreasing as a function of k.
It follows that if for some k ≥ 0, we have:

Bin[q, p](k) ≥ Hyp[n,Bin[n+ 1, p]− 1, q](k),

then the inequality remains true for larger k’s. The previous statement only considers k ≥ 0, disre-
garding the special case k = −1. However, note that:

Hyp[n,Bin[n+ 1, p]− 1, q](−1) > 0 = Bin[q, p](−1),

so the statement is still true for all k ≥ −1. Hence Bin[q, p] covers Hyp[n,Bin[n+ 1, p]− 1, q].

Recall that � denotes the stochastic dominance order arising from ≤ (over the integers).

Lemma 15. There exist two distributions P and Q over N, such that ∆
(
P,Bin

[
N ′, p− 2 log(p−1)/N ′

])
=

e−Ω(pN ′), ∆(Q,Bin[N ′ + 1, p]− 1) = e−Ω(pN ′), and P � Q.
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Proof. Let η = 2 log(p−1)/(pN ′). Let X1, . . . , X
′
N be independent identically distributed variables

Xk ∼ Ber[p]. Let Y1, . . . , Y
′
N be independent identically distributed variables Yk ∼ Ber[1− η]. Let

Z1, . . . , Z
′
N be defined by Zk = min(Xk, Yk). Observe that Zk ∼ Ber

[
p− 2 log(p−1)/N ′

]
.

Let S = {i ∈ [1, N ′]N : Xi = 1}. Let E denote the event |S| ≥ pN ′/2. Let S′ denote the first pN ′/2
elements of S (for ≤, or for any arbitrary fixed order), if E holds, and S′ = ∅ otherwise. Let F denote
the event: ∃i ∈ S′, Yi = 0. Let 1F ∈ {0, 1} be the random variable equal to 1 if the event F occurs, 0
otherwise.

Conditioned on E, the probability of F is exactly the probability that at least one variable Yi is
equal to 0 among pN ′/2 fixed variables, which is to say:

Pr[F |E] = 1− (1− η)pN
′/2

= 1− elog(1−2 log(p−1)/(pN ′))pN ′/2

≥ 1− p,

where the last inequality is because log(1− 2 log(p−1)/(pN ′))pN ′/2 is increasing as a function of N ′,
so it is upper-bounded by its limit log(p). Let W ∼ Ber[1− p] be a new independent random variable.

Define P to be the distribution of
∑N ′

i=1 Zi, conditioned on the event E. Define Q to be the

distribution of
(∑N ′

i=1Xi

)
− W , conditioned on the event E. Define Q′ to be the distribution of(∑N ′

i=1Xi

)
− 1F , conditioned again on the event E. We claim that this choice of P and Q satisfies

the statement of the lemma.

By a standard Chernoff bound, the probability of E is e−Ω(pN ′). We start by showing that

∆
(
P,Bin

[
N ′, p+ 2 log p−1/N ′

])
= 2e−Ω(pN ′) = e−Ω(pN ′). This follows from Lemma 4, because

∑N ′

i=1 Zi ∼
Bin
[
N ′, p+ 2 log p−1/N ′

]
, and P is the same distribution conditioned on E. Regarding Q, observe that(∑N ′

i=1Xi

)
−W ∼ Bin[N ′, p]−Ber[1− p] = Bin[N ′, p] +Ber[p]− 1 = Bin[N ′ + 1, p]− 1. Hence we have(∑N ′

i=1Xi

)
−W ∼ Bin[N ′ + 1, p]− 1, and Q is the same distribution conditioned on E. It follows that

∆(Q,Bin[N ′ + 1, p]− 1) = e−Ω(pN ′).

We now show P � Q. Since Pr[F | E] ≥ 1− p, Q trivially stochastically dominates Q′. Moreover:

Pr

 N ′∑
i=1

Xi

− 1F ≥
N ′∑
i=1

Zi

 = 1

since Xi ≥ Zi for all i, and 1F = 1 only if Xi > Zi for some i ∈ S. This means that Q′ stochastically
dominates P . By transitivity, Q stochastically dominates P .

Lemma 16. The map h : x 7→ Hyp[N ′, x, q] is stochastically increasing.

Proof. Choose x ≤ y. We need to show Hyp[N ′, x, q] � Hyp[N ′, y, q]. Let Z be sampled uniformly at
random among subsets of [1, N ′]N of cardinality q. Let X = Z ∩ [1, x]N. Let Y = Z ∩ [1, y]N. Observe
that |X| ∼ Hyp[N ′, x, q], and |Y | ∼ Hyp[N ′, y, q]. Moreover, Pr[|X| ≤ |Y |] = 1 since X ⊆ Y . Hence by
Definition 2.1, the coupling (|X|, |Y |) witnesses Hyp[N ′, x, q] � Hyp[N ′, y, q].

Lemma 17. There exist two distributions P and Q over N, such that ∆
(
P,Bin

[
q, p− 2 log(p−1)/N ′

])
=

e−Ω(pN ′), ∆(Q,Hyp[N ′,Bin[N ′ + 1, p]− 1, q]) = e−Ω(pN ′), and P � Q.
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Proof. By Lemma 15, there exist P ′ and Q′ such that ∆
(
P ′,Bin

[
N ′, p− 2 log(p−1)/N ′

])
= e−Ω(pN ′),

∆(Q′,Bin[N ′ + 1, p]− 1) = e−Ω(pN ′), and P ′ � Q′. Let P = Hyp[N ′, P ′, q] and Q = Hyp[N ′, Q′, q].
Using the data-processing inequality for the statistical distance (Lemma 8):

∆
(
P,Bin

[
q, p− 2 log(p−1)/N ′

])
= ∆

(
Hyp[N ′, P ′, q],Hyp

[
N ′,Bin

[
N ′, p− 2 log(p−1)/N ′

]
, q
])

≤ ∆
(
P ′,Bin

[
N ′, p− 2 log(p−1)/N ′

])
= e−Ω(pN ′).

Likewise for ∆(Q,Bin[q, p]) = e−Ω(pN ′). Furthermore, because P ′ � Q′ and Hyp[N ′, ·, q] is stochasti-
cally increasing (Lemma 16), P � Q.

Let ε = 2 log(p−1)/N ′. Putting all lemmas we have seen in this section together, we have that Cideal
covers Creal, and Creal stochastically dominates Bin[q, p− ε] up to some negligible quantity eΩ(−pN ′) (“up
to” in the sense of Lemma 17). With these two facts, we can apply the replacement lemma (Lemma 13)
to deduce:

∆(Cideal, Creal) ≤ ∆(Bin[q, p],Bin[q, p− ε]) + e−pN
′
.

That is what we want, because ∆(Bin[q, p],Bin[q, p− ε]) can be bounded rather tightly using the
Hellinger distance. In the next section, we will realize the same steps in the general case m ≥ 1.

C.3 The General Case : Multiple Components

Recall that our goal is to bound the statistical distance between:

Dideal =

m⊗
i=1

Bin[qi, fi];

Dreal =

m⊗
i=1

Hyp[N ′,Bin[N ′ + 1, fi]− 1, qi].

Define:

D′real =

m⊗
i=1

Bin
[
qi, fi − 2 log(f−1i )/N ′

]
.

Recall that ≤n denotes the usual component-wise order over Zn. Here, we also extend ≤ (resp. ≤n)
to be defined over Z ∪ {+∞} (resp. (Z ∪ {+∞})n), in the natural way. Recall that �n denotes the
stochastic dominance order arising from ≤n.

Lemma 18. Dideal covers Dreal with respect to ≤m.

Proof. In the proof of Lemma 14, we have shown that the quotient:

Hyp[n,Bin[n+ 1, p]− 1, q](k)

Bin[q, p](k)
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is decreasing as a function of k, for k ∈ [0, n], and even for k ∈ [−1, n] if we define the quotient x/0 to
be +∞ for x > 0. It follows that the quotient:

Dreal(k1, . . . , km)

Dideal(k1, . . . , km)

=
(
⊗m

i=1 Hyp[N ′,Bin[N ′ + 1, fi]− 1, qi])(k1, . . . , km)

(
⊗m

i=1 Bin[q, fi])(k1, . . . , km)

=

m∏
i=1

Hyp[N ′,Bin[N ′ + 1, fi]− 1, qi](ki)

Bin[q, fi](ki)

is ≤m-decreasing as a function of (k1, . . . , km). Indeed, every factor in the product is ≤-decreasing as
function of ki. We conclude that Dideal covers Dreal with respect to ≤m.

Lemma 19. Let P1, . . . , Pn, Q1, . . . , Qn be distributions over a set Ω, equipped with a partial order
≤Ω. Let ≤Ωn denote the component-wise order induced by ≤Ω: (ω1, . . . , ωn) ≤Ωn (ω′1, . . . , ω

′
n) iff for

all i, ωi ≤Ω ω′i. Let �Ω (resp. �Ωn) be the stochastic dominance orders arising from ≤Ω (resp. ≤Ωn).
If for all i, Pi �Ω Qi, then

⊗n
i=1 Pi �Ωn

⊗n
i=1 Pi.

Proof. Let Di denote the distribution of a coupling (Ai, Bi) witnessing Pi �Ω Qi. Sample the random
variable ((X1, Y1), . . . , (Xn, Yn)) from D1

⊗
. . .
⊗
Dn. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn).

We claim that the coupling (X,Y ) witnesses
⊗n

i=1 Pi �n
⊗n

i=1Qi. Indeed, X ∼
⊗n

i=1 Pi, and
Y ∼

⊗n
i=1Qi. Moreover, for all i, Xi ≤Ω Yi holds with probability 1, so X ≤Ωn Y holds with

probability 1.

Lemma 20. There exist two distributions P and Q over Nm, such that ∆(P,D′real) = qe−Ω(pN ′),

∆(Q,Dreal) = qe−Ω(pN ′), and P �m Q.

Proof. This is a consequence of Lemmas 17 and 19. Indeed, let εi = 2 log(f−1i )/N ′. by Lemma 17, for
each i ≤ m, there exist distributions Pi, Qi such that

∆(Pi,Bin[q, fi − εi]) = e−Ω(fiN
′) = e−Ω(fN ′),

∆(Qi,Hyp[N ′,Bin[N ′ + 1, fi]− 1, q]) = e−Ω(fiN
′) = e−Ω(fN ′),

and Pi � Qi. Set P =
⊗m

i=1 Pi and Q =
⊗m

i=1Qi. By a standard hybrid argument, we have:

∆

(
P,

m⊗
i=1

Bin[q, fi − εi]

)
= me−Ω(fN ′)

∆

(
Q,

m⊗
i=1

Hyp[N ′,Bin[N ′ + 1, fi]− 1, q]

)
= me−Ω(fN ′).

Moreover, by Lemma 19, P �m Q.

Lemma 21.
∆(Dideal,Dreal) ≤ ∆(Dideal,D′real) + qe−Ω(pN ′).

Proof. This is a direct consequence of Lemmas 13, 18 and 20. Indeed, Lemmas 18 and 20 show that
the premises of Lemma 13 are satisfied by Dideal,Dreal,D′real, and the conclusion of Lemma 13 yields
the desired result.
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C.4 Moving to the Hellinger Distance

By Lemma 21, we have reduced our original problem to upper-bounding the distance between:

Dideal =

m⊗
i=1

Bin[qi, fi];

D′real =

m⊗
i=1

Bin
[
qi, fi − 2 log(f−1i )/N ′

]
.

Lemma 22. Let 0 ≤ ε ≤ p ≤ 1.

Hel(Ber[p],Ber[p− ε]) ≤ ε√
p(1− p)

.

Proof.

2Hel(Ber[p],Ber[p− ε])2 =
(√
p−
√
p− ε

)2
+
(√

1− p+ ε−
√

1− p
)2

= p
(

1−
√

1− ε/p
)2

+ (1− p)
(√

1 + ε/(1− p)− 1
)2

≤ pε
2

p2
+ (1− p) ε2

(1− p)2

=
ε2

p(1− p)
,

where the first inequality uses
√

1− ε/p ≥ 1− ε/p and
√

1 + ε/(1− p) ≤ 1 + ε/(1− p).

Lemma 23.

Hel(Dideal,D′real) ≤
2 log(f−1)√

f
·
√
q

N ′
.

Proof. This follows essentially from Lemmas 10 and 22. Indeed, let Sum(x1, . . . , xk) =
∑k
i=1 xi (we use

the same notation for all k’s). Let εi = 2 log(f−1i )/N ′. Using Lemma 10, the data-processing inequality
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for the Hellinger distance (Lemma 8), and Lemma 22, we have:

Hel(Dideal,D′real)
2

= Hel

(
m⊗
i=1

Bin[qi, fi],

m⊗
i=1

Bin[qi, fi − εi]

)2

≤
m∑
i=1

Hel(Bin[qi, fi],Bin[qi, fi − εi])2

=

m∑
i=1

Hel

(
Sum

(
qi⊗
i=1

Ber[fi]

)
,Sum

(
qi⊗
i=1

Ber[fi − εi]

))2

≤
m∑
i=1

Hel

(
qi⊗
i=1

Ber[fi],

qi⊗
i=1

Ber[fi − εi]

)2

≤
m∑
i=1

qi∑
i=1

Hel(Ber[fi],Ber[fi − εi])2

≤
m∑
i=1

qi∑
i=1

ε2i
fi(1− fi)

≤
m∑
i=1

qi∑
i=1

4 log2(f−1)

N ′2f(1− f)

≤ 8 log2(f−1)

f

q

N ′2
,

where the last inequality uses 1− f ≥ 1/2.

Corollary 4.

∆(Dideal,D′real) ≤
4 log(f−1)√

f
·
√
q

N ′
.

Proof. This is a direct consequence of Lemmas 11 and 23.

Theorem 2 follows immediately from Lemma 21 and Corollary 4, which concludes the proof.

D Proof of Theorem 1

Let A be an adversary against the EUF-CMA-security of HaST. By definition, one has

AdvEUF-CMA
HaST

(A) = Pr[HaST.Verify(pk,msg, sig) = >],

where (pk, sk)← S.KeyGeneration(), (msg, sig)← AH,S.SignH(sk,·)(pk), and S.SignH(sk, ·) was never
queried on msg. Using Proposition 1, it is easy to see that, for some adversary B against the PS-security
of T, one has

AdvEUF-CMA
HaST

(A) ≤ AdvPST (B)+O
(

log(f−1)√
f

·
√
q

N

)
+qe−Ω(fN)+qε+Pr[HaST.Verify(pk,msg, sig) = >],

where (pk, sk)← S.KeyGeneration(), (msg, sig)← AH,S.Ideal-SignH(sk,·)(pk), and S.Ideal-SignH(sk, ·)
was never queried on msg. First note that the Ideal-Sign only requires access to the public key T.F
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of HaST. Hence, it can be turned into an adversary C against the INV-security of T as follows. C starts
the game by sampling an index i ∈ {1, . . . , qh} uniformly at random. It will then run A and answer its
queries by perfectly simulating the ideal-world signing oracle, except on its i-th random oracle query.
In that case, it will answer the target value y that it has been given. When A outputs (msg, (salt, s)),
C checks if it corresponds to the i-th random oracle query. If that is the case, it outputs s, and other-
wise it aborts. The probability that A succeeds is exactly Pr[HaST.Verify(pk,msg, sig) = >], as the
target value y was sampled uniformly at random. The probability that A succeeds, while it has never
queried the random oracle on the input msg||salt is at most 1/|Y|. Moreover, since no information on
i is revealed to A, the probability that it outputs a forgery for the i-th random oracle query is 1/qh.
Hence, one has

AdvINVT (C) ≥ Pr[HaST.Verify(pk,msg, sig) = >]− |Y|−1

qh
.

E Proof in the adaptive setting

We use the same notation as the previous section.

E.1 Preliminaries

Definition 16 (Permutation invariance). X = (Xi)
n
i=1 be a sequence of n binary random vari-

ables. Let σ denote an arbitrary permutation of {1, . . . , n}, and let σ(X) = (Xσ(i))
n
i=1. We say that X

is permutation-invariant if for all σ, X and σ(X) follow the same distribution.

E.2 Box-opening and Replacement Games

Definition 17 (Box-opening game). Let n, q be two integers, representing respectively the number
of boxes, and the numbers of queries. Let X0 = (X0

i )ni=1 and X1 = (X1
i )ni=1 be two sequences of

n binary random variables. The box-opening game BoxGq
(
X0,X1

)
is a two-player game between a

challenger and an adversary. The game proceeds as follows.

1. The challenger picks b←$ {0, 1}, and samples a vector x = (xi)
n
i=1 from the distribution Xb.

2. The adversary asks q box-opening queries to the challenger. For the k-th box-opening query, the
adversary adaptively chooses an index ik in [1, n], sends it to the challenger, and receives xik .

3. After asking q box-opening queries, the adversary must pick a bit b′. The adversary wins if b′ = b.

Definition 18 (Replacement game). Let n, q, X0, X1 be as in the box-opening game (Defini-
tion 17). Let X′0 = (X ′0i )ni=1 and X′1 = (X ′1i )ni=1 be two additional sequences of n binary random
variables. Note that X0 (resp. X1) need not be independent from X′0 (resp. X′1). The replacement
game RepGq

(
(X0,X′0), (X1,X′1)

)
is a two-player game between a challenger and an adversary. The

game proceeds as follows.

1. The challenger picks b←$ {0, 1}, and samples a vector x = (xi)
n
i=1 from the distribution Xb.

2. The adversary asks q box-opening queries to the challenger. For the k-th box-opening query, the
adversary adaptively chooses an index ik in [1, n], sends it to the challenger, and receives xik .

3. After asking q box-opening queries, the adversary picks b′ = 1 if Pr[(X ′0i1 , . . . , X
′0
ik

) = (xi1 , . . . , xik)] ≤
Pr[(X ′1i1 , . . . , X

′1
ik

) = (xi1 , . . . , xik)], b′ = 0 otherwise. The adversary wins if b′ = b.

Definition 19 (Selective adversaries). Given a box-opening (resp. replacement) games G, we write
GSel for the same game with the added constraint that the adversary must be selective. That is, all
adversarial queries must be sampled at the start, independently of the challenger’s answers. We use
the term adaptive for the original game, where this added constraint does not exist.
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Definition 20 (Optimal advantage). Given a box-opening (resp. replacement) games G, we write
opt(G) for the advantage of the best adversary playing the game.

The proof of the following two lemmas is immediate.

Lemma 24. Let q ≤ n in N, and let X0 = (X0
i )ni=1 and X1 = (X1

i )ni=1 be two sequences of n binary
random variables. Then:

opt
(
BoxGq

(
X0,X1

))
= opt

(
RepGq

(
(X0,X0), (X1,X1

))
.

Lemma 25. Let q ≤ n in N, and let X0, X′0, X1, X′1 be four sequences of n binary random
variables. Suppose that X′0 and X′1 are both permutation-invariant. Then:

opt
(
RepGq

(
(X0,X′0), (X1,X′1)

))
= opt

(
BoxGSel

q

(
X′0,X′1

))
.

E.3 Main Argument

Setup. The main proof in the Section 4 is divided into two parts. The first part is a series of game hops.
The second part is an analysis of the difference between the real and ideal worlds in the penultimate
game. The only difference between the two worlds lies in the random oracle. Relevant queries to the
random oracle are of the form “msg‖salt” (queries not of that form behave identically in both worlds,
and have no impact on the proof).

Let us use the same notation as in the original selective proof (Appendix C). Since the adversary
is limited to q queries, at most q distinct messages can be queried. Let us fix arbitrarily q pairwise
distinct messages (msgi)

q
i=1. For each msg‖salt query, the only relevant information about the message

is whether it is equal to an already queried message. If it is distinct from all previously queried messages,
then the exact choice of message has no bearing on the distribution. As a consequence, we can assume
without loss of generality that the i-th distinct message queried by the adversary is msgi. Let fi denotes
the probability that a salt for msgi is suitable, for i ∈ [1, q]N.

As noted in the selective proof, for a given query msg‖ salt, the distribution of the corresponding
hash is determined by whether salt is suitable for msg or not. More precisely, in both the real and ideal
worlds, the observed hash value can be expressed as a probabilistic function of a single bit equal to
1 if the pair is suitable, 0 otherwise. This function is the same in both worlds. As a consequence, for
each query msg‖ salt, instead of revealing the hash value to the adversary, we can reveal whether the
pair is suitable, and this can only increase the probability of success of the adversary.

For i ∈ [1, q]N, j ∈ [1, N ]N, let X real
i,j (resp. X ideal

i,j ) be the random variable equal to 1 if the j-th salt for
msgi is suitable in the real world (resp. in the ideal world), 0 otherwise. Let w ∈ {real, ideal}. For fixed i,
the vector (Xw

i,j)
N
j=1 is permutation-invariant, since all salts play a symmetrical role. As a consequence,

the distribution of that vector is entirely determined by the random variable Sw
i =

∑N
j=1X

w
i,j . Indeed,

in both worlds, given Sw
i , the distribution of (Xw

i,j)
N
j=1 is uniformly random among binary vectors with

Hamming weight exactly Sw
i .

Let Sw denote the vector of random variables (Sw
1 , . . . , S

w
q ). Given Sw, define M(Sw) to be the

distribution over q × N binary matrices defined by i-th row being sampled uniformly at random
among binary vectors with Hamming weight Sw

i . The distribution of the variables Xw
i,j is M(Sw). As a

consequence, an adversary trying to distinguish the ideal world from the real world is exactly playing
the box-opening game BoxGq

(
M(S ideal),M(Sreal)

)
.

In conclusion, in order to upper-bound the probability of distinguishing the two worlds in the
adaptive case, it suffices to upper-bound:

opt
(
BoxGq

(
M(S ideal),M(Sreal)

))
.
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To fully describe those games, it remains to express S ideal and Sreal. Following the analysis of the
selective case, for i ∈ {1, . . . , q}, we have:

S ideal
i ∼ Bin[N ′, fi], Sreal

i ∼ Bin[N ′ + 1, fi]− 1.

Core result. The rest of this section is to prove the following theorem. Define f = min fi, as in the
selective case.

Theorem 7 (main result, adaptive case).

opt
(
BoxGq

(
M(S ideal),M(Sreal)

))
= O

(
log(f−1)√

f
·
√
q

N ′

)
+ qe−Ω(fN ′).

E.4 Proof of Theorem 7

Notation. If v = (v1, . . . , vn) is a vector, and I is a subset of [1, n]N, then vI denotes the vector:

vI = (vi1 , . . . , vi|I|),

where i1 < · · · < i|I| are the elements of I. Likewise, if X = (X1, . . . , Xn) is a random variable, then
XI denotes (Xi1 , . . . , Xi|I|).

Lemma 26 (Replacement lemma, adaptive version). Let q ≤ n ∈ N. Let P , Q, R, R′ be
random variables ranging over {0, 1}n. If QI covers PI (with respect to ≤|I|) for all I ⊆ [1, n]N, and
Pr[P ≥n R] = 1, then:

opt(BoxGq(P,Q)) ≤ opt
(
RepGq((P,R), (Q,Q))

)
.

More generally, if QI covers PI for all I, and Pr[P ≥Ω R′] = 1, then:

opt(BoxGq(P,Q)) ≤ opt
(
RepGq((P,R), (Q,Q))

)
+∆(R,R′).

Proof. Let us start with the first inequality. Our goal is to show that an optimal adversary has a higher
advantage in the game opt

(
RepGq((P,R), (Q,Q))

)
than in the game opt(BoxGq(P,Q)). In both games,

the adversary is trying to distinguish between two worlds. In the case b = 1, those two worlds are the
same in both games (since the original and replacement distributions is (Q,Q) on both sides). The
difference occurs in the case b = 0. In that case, in the first game (resp. second game), the original
and replacement distributions are (P, P ) (resp. (P,R)). To prove the inequality, we show that for each
possible realization of P , if the adversary guesses correctly in the first game, then she always guesses
correctly in the second game.

Let (p, r) be an arbitrary realization of (P,R). Since Pr[P ≥n R] = 1, we have p ≥n r. Without
loss of generality, the adversary is deterministic. Hence the adversary’s queries i1, . . . , iq are fixed by
p. Recall we are trying to show that if the adversary guesses correctly in the first game, then she
also guesses correctly in the second game. Also recall that we are in the case b = 0. Assume that the
adversary guesses correctly in the first game. We need to show that she also guesses correctly in the
second game.

Let I = {i1, . . . , iq}. Because the adversary guesses correctly in the first game, we have Pr[PI =
pI ] ≥ Pr[QI = pI ]. Because QI covers PI , this inequality remains true if we replace pI by any vector
v ≤q pI . In particular, we have Pr[PI = rI ] ≥ Pr[QI = rI ], which means that the adversary guesses
correctly in the second game.
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The second inequality follows immediately by applying the data-processing inequality for the sta-
tistical distance to the map v 7→W (RepGq((P, v), (Q,Q))) (assimilating v on the right-hand side with
a constant distribution) on inputs R and R′, where W (G) is the random variable equal to 1 if the
adversary wins the game G, 0 otherwise.

The proofs of the next two lemmas are straightforward adaptions of the corresponding lemmas in
the selective case (namely, Lemma 18 and Lemma 20), since the original distribution (and hence the
distribution of adversarial queries) remains unchanged.

Lemma 27. For all I ⊆ [1, q]N× [1, N ′]N, M((Bin[N ′, fi])
q
i=1)I covers M((Bin[N ′ + 1, fi]−1)qi=1)I with

respect to �|I|.

Define:

S′reali = Bin
[
N ′, fi − 2 log(f−1i )/N ′

]
.

Lemma 28. There exist two distributions P and Q over q×N ′ binary matrices, such that ∆
(
P, S′real

)
=

qe−Ω(pN ′), ∆
(
Q,Sreal

)
= qe−Ω(pN ′), and P �qN ′ Q.

Putting the previous lemmas together, we get:

opt
(
BoxGq

(
M(S ideal),M(Sreal)

))
= opt

(
RepGq

(
(M(S ideal),M(S ideal)), (M(Sreal),M(Sreal))

))
≤ opt

(
RepGq

(
(M(S ideal),M(S ideal)), (M(Sreal),M(S′real))

))
+ qe−Ω(pN ′).

Let:

S′′ideali = Bin[N ′, f ]

S′′reali = Bin
[
N ′, f − 2 log(f−1)/N ′

]
.

Lemma 29. It holds that:

opt
(
RepGq

(
(M(S ideal),M(S ideal)), (M(Sreal),M(S′real))

))
≤ opt

(
RepGq

(
(M(S ideal),M(S′′ideal)), (M(Sreal),M(S′′real))

))
Proof. We proceed by building a direct reduction between the two games. Let A be an adversary
against the first game. We want to build an adversary B against the second game, such that the
advantage of B (in the second game) is at least as high as the advantage of A (in the first game). If
this is possible for an arbitrary A, then by applying this construction to an optimal A, we obtain the
desired result.

Let A be an arbitrary adversary playing the first game. We now build an adversary B playing the
second game. B begins by calling A, and forwarding queries and answers back and forth between A and
its own game instance, until all q queries i1, . . . , iq are issued. (It is worth noting that the distribution
of query answers is the same in both games, whether we are in the ideal or real world.)
B then receives the replaced query answers x1, . . . , xq. Let:

pi =
1− fik
1− f

.

For each k ∈ [1, q]N, B samples yk from the distribution xk ∨ Ber[pi], where ∨ represents the usual or
operator on {0, 1}. (Equivalently, if xk = 1, then yk = 1, otherwise yk is sampled from Ber[pi].)
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By construction, each xk was sampled according to Ber[f ] in the ideal world, and Ber
[
f − 2 log(f−1)/N ′

]
in the real world. The point of the yk’s is that, by choice of pi, yk is distributed according to Ber[fik ].
That is, in the ideal world, y1, . . . , yq is sampled exactly as in the replacement distribution of the first
game. On the other hand, in the real world, the distribution of yk follows a Bernoulli distribution of
parameter:

fik −
2 log(f−1)(1− pi)

N ′
.

The replacement distribution in the first game would yield a parameter:

fik −
2 log(f−1ik )

N ′
.

Simple functional analysis shows that the second expression is always higher (this follows from the fact
that x 7→ log(1/x)/(1 − x) is decreasing over the open interval ]0, 1[). Hence, given yk, B can build a

sample from Ber

[
fik −

2 log(f−1
ik

)

N ′

]
by doing a mixture of yk and Ber[fik ]. Such as mixture leaves the

ideal-world distribution Ber[fik ] of yk unchanged.
In the end, this transformation maps the sample y1, . . . , yq from the replacement distribution of

the second game to the replacement distribution of the first game, whether we are in the ideal world
or the real world. The newly created sample can then be fed to the adversary A, and B mirrors the
final output of A. Because all inputs of A have the correct distribution, the probability of success of
B is exactly the same as A.

Observe that M(S′′ideal) and M(S′′real) are permutation-invariant. Hence we can apply Lemma 25
to get:

opt
(
RepGq

(
(M(S ideal),M(S′′ideal)), (M(Sreal),M(S′′real))

))
= opt

(
BoxGSel

q

(
M(S′′ideal),M(S′′real)

))
.

Thus, we reduce to the selective case. Whence the exact same analysis as Corollary 4 yields:

opt
(
BoxGSel

q

(
M(S′′ideal),M(S′′real)

))
= ∆

(
Bin[q, f ],Bin

[
q, f − 2 log(f−1)/N ′

])
≤ 4 log(f−1)√

f
·
√
q

N ′
,

which concludes the proof of Theorem 7.
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