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Abstract. This paper proposes general meet-in-the-middle (MitM) at-
tack frameworks for preimage and collision attacks on hash functions
based on (generalized) sponge construction. As the first contribution,
our MitM preimage attack framework covers a wide range of sponge-
based hash functions, especially those with lower claimed security level
for preimage compared to their output size. Those hash functions have
been very widely standardized (e.g., Ascon-Hash, PHOTON, etc.), but are
rarely studied against preimage attacks. Even the recent MitM attack
framework on sponge construction by Qin et al. (EUROCRYPT 2023)
cannot attack those hash functions. As the second contribution, our
MitM collision attack framework shows a different tool for the collision
cryptanalysis on sponge construction, while previous collision attacks on
sponge construction are mainly based on differential attacks. Most of
the results in this paper are the first third-party cryptanalysis results.
If cryptanalysis previously existed, our new results significantly improve
the previous results, such as improving the previous 2-round collision at-
tack on Ascon-Hash to the current 4 rounds, improving the previous 3.5-
round quantum preimage attack on SPHINCS+-Haraka to our 4-round
classical preimage attack, etc.
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1 Introduction

A cryptographic hash function H, that maps a message M of arbitrary length
into a short fixed-length n-bit target T , should satisfy at least three basic se-



curity properties, i.e., (2nd-) preimage resistance and collision resistance. Due
to the breakthrough attacks by Wang et al. [58,57] on MD5 and SHA-1, the U.S.
National Institute of Standards and Technology (NIST) started new standard-
ization of hash functions in October 2008, i.e., the SHA-3 competition. After
intense competition, the Keccak sponge function family [9] designed by Bertoni
et al. won the competition in October 2012 and was subsequently standardized
by the NIST as Secure Hash Algorithm-3 [47] (SHA-3) in August 2015. Instead of
using the classical Merkle-Damg̊ard construction [45,19], Keccak adopts a new
construction called sponge construction. Due to the high efficiency and secu-
rity, the sponge construction or its variants become widely used to build hash
functions and other primitives, such as Ascon-Hash [27], Xoodyak [17], PHOTON

[36], SPONGENT [11], SPHINCS+-Haraka [7], ACE-H-256 [1], etc. Notably, Ascon

family has been selected as the winner of the NIST Lightweight Cryptography
(LWC), and PHOTON and SPONGENT are currently the ISO standard lightweight
hash. For most of the hash functions except Keccak, there is almost no cryptana-
lytic result on preimage attack. The reason may be that they (except Keccak) all
have a lower claimed security level for preimage compared to their output size.
Traditionally, for a hash function like SHA-2/3 with a n-bit digest, the security
claim against preimage attacks is 2n. However, for many new hash functions,
the claimed security for preimage is lower than 2n, e.g., Ascon-Hash and ACE-
H-256, the size of output is 256, but the security claim is just 2128 or 2192 by
their designers. At CRYPTO 2022, Lefevre and Mennink [42] proved a tight
preimage security for those sponge constructions, and increase security level of
Ascon-Hash from the 2128 preimage security as claimed by designers, to 2192

preimage security.
The Meet-in-the-Middle (MitM) attack proposed by Diffie and Hellman in

1977 [22] is a time-memory trade-off cryptanalysis of symmetric-key primitives.
During the last decades, it has been improved by more refined techniques and
exploiting additional freedoms and structures, such as the internal state guessing
[29], splice-and-cut [2], initial structure [52], bicliques [10,39], 3-subset MitM
[13], (indirect-)partial matching [2,52], guess-and-determine [53,37], sieve-in-the-
middle [16], match-box [32], dissection [24], MitM in differential view [40,30],
and differential MitM [15], etc. Automating the MitM attacks with computer-
aided tools may discover more advanced attack configurations, which was first
tried in [14,21] at CRYPTO 2011 and 2016 for AES and AES-like ciphers. At
IWSEC 2018, Sasaki [50] introduced the 3-subset MitM attacks on GIFT block
cipher with Mixed Integer Linear Programming (MILP). At EUROCRYPT 2021,
Bao et al. [4] fully automated MitM preimage attacks with MILP on AES-like
hashing, which is built from AES-like structures. Later on, this model was further
developed into models of key-recovery and collision attacks by Dong et al. [28]
and Bao et al. [5]. Schrottenloher and Stevens [54,55] simplified the language of
the automatic model and applied it in both classical and quantum settings.

MitM attack on sponge-based hash functions. The MitM attack has been widely
used to attack Merkle-Damg̊ard hash functions [52,2,35], whose compression
function is usually built from a block cipher and the PGV hashing modes [48].
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However, it was rarely used to attack sponge-based hash functions. At CRYPTO
2022, Schrottenloher and Stevens [54] first built several MitM attacks on sponge-
based hash functions, i.e., SPHINCS+-Haraka [7] and Sparkle [6]. At EURO-
CRYPT 2023, Qin et al. [49] introduced a generic framework of MitM preimage
attacks on sponge-based hashing and first built the MitM attacks on 4-round
Keccak-512 [9], 3-/4-round Ascon-XOF [27], and 3-round Xoodyak-XOF [17].

Our Contribution.

Generic MitM Preimage Attack Framework for Sponge Construc-
tions. The sponge construction [9] with b-bit internal state (b = c + r with
c-bit capacity and r-bit rate) includes two phases: the first phase is the ab-
sorbing phase, which XORs r-bit message block into the state and interleaves
with an application of the permutation; the second phase is the squeezing phase,
which returns r-bit state bits as output, and interleaves with application of
the permutation, until n bits are returned as the digest T . For SHA-3, the de-
signers choose c/2 = n and provide an n-bit security for preimage resistance.
At CRYPTO 2011, the developers of PHOTON introduced the generalized sponge
[36], that squeezes r0-bit (r0 � r) state at a time. At CRYPTO 2022, Lefevre and
Mennink [42] formally proved that the preimage security for generalized sponge
is q � minfmaxf2n�r0 , 2c/2g, 2ng. Therefore, the bit security of preimage may
not be equal to the size of digest n. For example, the length of the digest of
SPHINCS+-Haraka [7] (b = 512, n = c = r = r0 = 256) is n=256 bits, however,
the security claim against preimage attack is only 2128. In this case, we prove
that Qin et al.’s MitM framework [49] can not achieve better preimage attack
with time complexity lower than the proved bound q. In fact, there exist many
such hash functions (such as Ascon-Hash [27], PHOTON [36], SPONGENT [11], etc.)
that previous MitM attacks can not work for preimage attacks. In this paper,
we propose a new and general MitM preimage attack framework, that is appli-
cable to any (generalized) sponge construction. Moreover, we invent more MILP
modellings by exploiting the new features of the framework and dedicated hash
functions, like new matching strategies for Ascon-Hash, Xoodyak-Hash. When
applying to ACE-H-256 and SPONGENT, the sieve-in-the-middle technique [16] is
for the first time applied in the MitM automatic model, which is never applied
in previous automatic tools [4,28].

We build the first preimage attacks on round-reduced Ascon-Hash (winner
of NIST LWC), PHOTON (ISO standard), PHOTON-Beetle-Hash (finalist of NIST
LWC), ACE-H-256 (2nd round candidate of NIST LWC), SPONGENT (ISO stan-
dard), etc. Most attacks are the first cryptanalytic results since the primitives
were designed, such as PHOTON and SPONGENT, which were designed in 2011. For
SPHINCS+-Haraka, our preimage attack in the classical setting (4-round attack)
covers even more rounds than the previous quantum preimage attack (3.5-round
attack) [54]. Please find a summary in Table 1.

MitM Collision Attack Frameworks for Sponge Constructions. For
sponge constructions, the collision attacks are usually built with differential at-
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Table 1: A Summary of the Attacks. Q: quantum attack. y: The attack is invalid,
since its complexity is higher than the birthday attack.
Target Attacks Methods Rounds Time Memory Claim Generic Ref.

Ascon-Hash

Preimage
MitM 3/12 2 162 : 80 2160

2128 2192

Sect. 6.1
MitM 4/12 2 184 : 85 2178 Sect. 6.1
MitM 5/12 2 191 : 31 2190 Sect. 6.1

Collision

Di�. 2/12 2 125 -

2128 2128

[61]
Di�. 2/12 2 103 - [33]
MitM 3/12 2 116 : 74 2116 Sect. 6.2
MitM 4/12 2 124 : 85 2124 Sect. 6.2

SPHINCS + -Haraka Preimage MitM 3.5/5 2 64 : 6 Q - - 2 85 : 3 Q [54]
MitM 4/5 2 98 296 2128 2128 Sect. 5

PHOTON-80=20=16 Preimage MitM 4.5/12 2 60 224 264 264 Sect. 9.1
PHOTON-128=16=16 Preimage MitM 4.5/12 2 104 256 2112 2112 Sect. 9.1
PHOTON-160=36=36 Preimage MitM 4.5/12 2 116 236 2124 2124 Sect. 9.1
PHOTON-224=32=32 Preimage MitM 4.5/12 2 184 272 2192 2192 Sect. 9.1
PHOTON-256=32=32 Preimage MitM 4.5/12 2 208 2112 2224 2224 Sect. 9.1
PHOTON-Beetle-HashPreimage MitM 3.5/12 2 112 265 2128 2128 Sect. E.2

ACE-H -256 Preimage MitM 9/16 2 160 2128 2192 2192 Sect. 8

SPONGENT-88
Collision Di�. 6/45 y 255 : 2 - 240 240 [11]
Preimage MitM 6/45 2 74 : 63 273 280 280 Sect. 7
Preimage MitM 7/45 2 78 : 59 267 280 280 Sect. F.1

Subterranean 2.0 Preimage MitM Full 2 160 2100 2112 2224 Sect. 10

Xoodyak-XOF Preimage
Neural 1/12 - -

2128 2128
[44]

MitM 3/12 2 125 : 06 297 [49]
MitM 3/12 2 121 : 77 2118 Sect. 11

Xoodyak-Hash Collision MitM 3/12 2 125 : 23 2124 2128 2128 Sect. 11
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tacks, e.g., the collision attacks onKeccak [25,26,34,60] andAscon [33]. As in-
dicated by [38,43], by �nding partial target preimages with the MitM approach,
one can build collision attacks on Merkle-Damg�ard hash functions. In Dinur's col-
lision attack on Keccak [23], the partial target preimages were found by solving
multivariate equations instead of MitM approach. To the best of our knowledge,
the MitM approach has not yet been applied to the collision attack on sponge
constructions. We build the �rst MitM collision attack framework for sponge
constructions and immediately improve the collision attack onAscon-Hashfrom
the best previous 2 rounds [33] to the current 4 rounds, and also leads to the �rst
collision attack on 3-round Xoodyak-Hash(�nalist of NIST LWC). A summary
is given in Table 1. We give a partial experiment to verify our collision attacks
on Ascon-Hash in https://github.com/boxindev/MitM_attack_sponge .

2 Preliminaries

2.1 The Sponge Construction

The sponge construction [9] works on ab-bit internal state, which is divided
into two parts: the r -bit outer part ( r is called the rate), and c-bit inner part ( c
is called the capacity). One �rst initializes the b-bit state with the given value
(all zero for Keccak). Then, pad and divide the given message into severalr -bit
blocks. In the absorbing phase, eachr -bit message block is XOR-ed into the state
and an inner permutation f built by iterating a round function is applied. In
the squeezing phase, it produces then-bit digest T. To �nd a collision requires
at least T ime � minf 2c=2; 2n= 2g, and to �nd the preimage or second preimage
requires at least T ime � minf 2c=2; 2n g. Example hash function is SHA-3 hash
function. A relaxation of sponge introduced in the design ofPHOTON[36] is to
squeeze a larger rater 0 � r , which is called generalized sponge as shown in
Figure 1. At CRYPTO 2022, Lefevre and Mennink [42] proved a tight preimage
security for generalized sponge up toT ime � minf maxf 2n � r 0;2c= 2

g; 2n g. There-
fore, the NIST Lightweight Cryptography standard Ascon-Hash (b = 320; r =
r 0 = 64; c = 256; n = 256) does not generically achieve 2128 preimage security as
claimed, but even 2192 preimage security.

2.2 The Meet-in-the-Middle Attack on Sponge Constructions

Meet-in-the-middle is a general attack paradigm against cryptographic primi-
tives where internal states are computed along two independent chunks that are
then matched to produce a complete path solution. For Merkle-Damg�ard hash
functions or block ciphers, the two independent chunks are usually the forward
computation path and the backward computation path, i.e., the popular splice-
and-cut [2] or three-subset MitM techniques [13]. To illustrate how the MitM
attack works, we detail the 7-round attack on AES-hashing of Sasaki [51] in
Supplementary Material A as an example.

At EUROCRYPT 2023, Qin et al. [49] introduced a new MitM framework for
sponge constructions as in Figure 2, where two independent forward chunks are
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Fig. 1: The sponge construction Fig. 2: Qin et al.'s MitM attack [49]

applied (without backward chunk). Starting from the r -bit outer part determined
by M 2, the two neutral sets (red and blue neutral bits, denoted asR and B,
respectively) compute independently forward to them-bit matching point, which
is an m-bit deterministic relation on the two neutral sets by partially solving the
inverse of the permutation from the n-bit target. Assuming the deterministic
relation is gB = gR , where gB is determined by the and bits of the starting
state, and gR is determined by and bits. gB = gR is applied to �lter the
states.

When propagating the two neutral sets forward, Qin et al. found certain bit
conditions can be applied to reduce the propagation of the and neutral bits,
and therefore, improved the MitM path. Those conditions are determined by
M 1. After �nding one proper M 1 that satis�es all bit conditions, the attacker
can perform the following MitM attack. Supposing the red and blue neutral sets
of the outer part are of 2dR and 2dB values, (dR and dB are also the degrees
of freedom for the two sets of neutral bits) an MitM episode is performed as
follows:

1. For each of 2dR values, compute forward to the matching point.
2. For each of 2dB values, compute forward to the matching point.
3. Given the n-bit target, compute backward to derive an m-bit matching point.
4. Filter states.

The complexity of one MitM episode is 2max( dR ;dB ) + 2 dR + dB � m , which checks
a subspace ofM 2 of size 2dR + dB . In order to �nd an n-bit target preimage, the
episode should be repeated 2n � (dR + dB ) times. SupposingCis the time complexity
to �nd M 1, i.e., assigning proper bit conditions, then the overall time complexity
to �nd the n-bit target preimage is

C+ 2 n � (dR + dB ) � (2max( dR ;dB ) + 2 dR + dB � m ) � C + 2 n � min( dR ;dB ;m ) : (1)

Qin et al. introduced an MILP model to �nd good MitM path. They intro-
duced 5 colors to encode each bit, and each bit is represented by three binary
variables (! 0; ! 1; ! 2):

{ Gray : (1; 1; 1), global constant bits,
{ Red : (0; 1; 1), determined by bits and bits of starting state,
{ Blue : (1; 1; 0), determined by bits and bits of starting state,
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{ Green : (0; 1; 0), determined by bits, bits and bits, but the expression
does not contain the product of and bits,

{ White : (0; 0; 0), depend on the product of and bits, i.e., unknown bit.

We adopt most of the techniques from Qin et al.'s MILP model, but make some
changes for dedicated hash functions in order to �nd suitable MitM paths for
our new attack frameworks.

2.3 The Collision Attack based on MitM Approach

At FSE 2012, Li, Isobe, and Shibutani [43] converted the MitM-based partial
target preimage attacks into pseudo collision attacks. Suppose the algorithmA
can produce the t-bit partial target preimage. The collision �nding approach
works as follows:

1. Given the hash functionH that produces n-bit digest, randomly �x the t-bit
partial target as constant. Call A to produce 2(n � t )=2 di�erent ( M; T ) with
the same �xed t-bit partial target.

2. From the 2(n � t )=2 (M; T ), �nd a collision on the remaining ( n � t) bits of
the full target.

The MitM collision attacks have been applied to analyse Merkle{Damg�ard hash
functions, such asSHA-2[43], Whirlpool [28], AES-MMO[5]. However, this paper
is the �rst time to apply it to sponge constructions.

3 Generic MitM Preimage Attack Framework on Sponge

In many sponge constructions, the security claim does not match the length
of digest. For example, the length of the digest of SPHINCS+ -Haraka [7] (one
of 4 selected algorithms in NIST PQC process) isn=256 bits, however, the
security claim against preimage attack is only 2128. Qin et al.'s MitM frame-
work [49] can not achieve preimage attack with complexity better than 2128.
The reason is shown in Equation (1). The complexity of Qin et al.'s MitM at-
tack is at least 2n � min( dR ;dB ;m ) . In fact, in Qin et al.'s MitM attack, at least
one MitM episode should be performed, whose complexity is 2max( dR ;dB ) +
2dR + dB � m = 2 max( dR ;dB ;dR + dB � m ) . Therefore, considering both 2n � min( dR ;dB ;m )

and 2max( dR ;dB ;dR + dB � m ) , the optimal complexity is achieved whendR = dB =
m = n=2, which is at least 2n= 2. Therefore, for preimage attack with n = 256-bit
target, Qin et al.'s MitM attack framework can only achieve 2128 complexity at
best.

We propose a generic MitM preimage attack framework for all hash functions
based on sponge constructions as shown in Figure 3. Suppose sponge hashing
is with parameters: n-bit target size, b-bit state size, r -bit absorbing rate, c-
bit capacity, r 0-bit squeezing rate. Suppose the target isT = T1kT2k:::, where
jTi j = r 0 and jT j = n. Figure 3 only includes the �rst two blocks of target for
briefness, i.e.,T1kT2. The new framework consists of two phases:
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Fig. 3: General MitM Preimage Attack Framework

{ Phase I: Given target blocks T = T1kT2kT3k:::, we �rst �nd a capacity state
X , such that squeeze(T1kX ) = T2kT3k:::. This is the so-called constrained-
input constrained-output (CICO) problem [9], and 2 n � r 0

time is needed to
�nd X by brute-force search.
Here, we apply Qin et al.'s MitM framework [49] and place a MitM attack
in the permutation to squeezeT2. According to Eq. (1), the time to �nd X
is

2jT j�j T1 j� min( dI
R ;d I

B ;m I ) = 2 n � r 0� min( dI
R ;d I

B ;m I ) ; (2)

A valid MitM attack in this phase can �nd X with time less than 2n � r 0
.

{ Phase II: After we �nd X in Phase I, we computeS0 = f � 1(T1kX ). As
shown in Figure 3, we try to �nd a collision on the c-bit capacity, i.e.,
T runc(f (f (M 1 � S) � M 2)) c = Trunc(f � 1(f � 1(M 5 � S0) � M 4)) c = Y ,
which is called the inner collision. The Floyd's cycle �nding algorithm [31]
can trivially �nd it with time complexity of 2 c=2 with negligible memory.
Here, we introduce another attack that may �nd the inner collision with
time below 2c=2.
We �x t-bit of the capacity state Y as constants (e.g., zeros), then perform
two MitM attacks (denoted as forward MitM and backward MitM, also fol-
lowing Qin et al.'s framework) to �nd M 1kM 2 and M 4kM 5, respectively, to
meet thoset-bit zeros. Suppose the MitM attack �nds 2

c � t
2 M 1kM 2 where

the correspondingt bits are zero, and store thoseM 1kM 2 in L 1 indexed by
the un�xed c� t capacity bits, denoted asY1. Build similar table L 2 storing
M 4kM 5 indexed by Y2 (un�xed c � t capacity bits). Match the two tables
L 1 and L 2 to produce a M 1kM 2kM 4kM 5, and then compute the last block
M 3. The time complexity to build L 1 is

C1 + 2 t � min( dL 1
R ;dL 1

B ;m L 1 ) � 2
c � t

2 = C1 + 2
c
2 + t

2 � min( dL 1
R ;dL 1

B ;m L 1 ) ; (3)

and similarly, the time complexity to build L 2 is

C2 + 2 t � min( dL 2
R ;dL 2

B ;m L 2 ) � 2
c � t

2 = C2 + 2
c
2 + t

2 � min( dL 2
R ;dL 2

B ;m L 2 ) ; (4)

where C1 and C2 are the time complexities of assigning conditions for these
two MitM attacks. If C1 and C2 are smaller enough than 2c=2, we only consider
the second parts of Equation (3) and (4). When min(dL 1

R ; dL 1
B ; mL 1) > t

2 and
min(dL 2

R ; dL 2
B ; mL 2) > t

2 , the overall time complexity will be less than 2c=2.
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Remark. In Phase II , there are two independent forward and backward
MitM attacks, and share a common partial �xed value (e.g., t-bit zeros) in
the inner part, which should be chosen carefully so that both the two MitM
attacks work e�ciently.

Generally, for the generalized sponge with parameters (n; b; c; r; r0) described
in Section 2.1, the tight preimage security bound was proved to beT ime �
minf maxf 2n � r 0;2c= 2

g; 2n g [42]. To beat the general bound, we need to consider
the following popular cases:

{ Case I: If n � r 0 < c=2 < n , the general bound is 2c=2-bit. Therefore, we
only need to perform MitM attack in Phase II to derive attack better than
general bound. Typical example is SPHINCS+ -Haraka [7] with n = 256; r =
256; c = 256; r 0 = 256.

{ Case II: If n � r 0 = c=2, the general bound is both reached as 2n � r 0
(CICO

problem in squeezing phase) and 2c=2-bit (birthday problem in absorbing
phase). Therefore, we need to perform both MitM attacks inPhase I and
Phase II to derive attack better than general bound. Typical examples are
Xoodyak-Hash[17] and Gimli-Hash [8] with n = 256; c = 256; r = r 0 = 128.

{ Case III: If n � r 0 > c=2, the general bound is 2n � r 0
. Therefore, we only

need to perform MitM attack in Phase I , and perform Floyd's cycle �nding
algorithm in Phase II to get preimage attack with time lower than 2n � r 0

.
This case is very popular in hash designs. Examples includeAscon-Hash
[27], PHOTON[36], SPONGENT[11], ACE-H-256 [1], etc.

Following the new MitM framework, we give the new preimage attacks on
round-reduced SPHINCS+ -Haraka, Ascon-Hash, PHOTON, PHOTON-Beetle-Hash,
ACE-H-256, Subterranean 2.0 , SPONGENT, etc. Most of the attacks are the �rst
known cryptanalysis results on preimage attacks on the corresponding hash func-
tions.

4 MitM Collision Attack on Sponge Constructions

For collision attack on sponge constructions, the popular method is the di�eren-
tial attack, e.g., collision attacks on Keccak [25,26,34,60] andAscon [33]. In this
section, we introduce a new collision attack framework for sponge constructions
based on MitM approach. The new framework immediately improves the colli-
sion attack on Ascon-Hash from the best previous 2 rounds [33] to the current
4 rounds, and also leads to the �rst collision attack on 3-roundXoodyak-Hash.
In this section, we give two MitM collision frameworks for sponge construction
as shown in Figure 4 and 5.

{ For Collision Framework I in Figure 4, the attacker tries to �nd two mes-
sages that output the samen-bit target T directly. Generally, the birthday
attack can �nd the collision with complexity of 2 n= 2. When applying the
MitM approach as shown in Section 2.3, the attacker �rst �xes t-bit target
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and �nd 2 (n � t )=2 t-bit partial target preimages with a MitM approach, then
a collision exists among those messages. If the MitM �nds one parital target
preimage with time complexity CI smaller than 2t= 2, then the overall time
complexity is CI � 2(n � t )=2 < 2n= 2.

{ For Collision Framework II in Figure 5, the attacker tries to �nd two
messages that lead to a full state collision. Since ther -bit outer part can
be modi�ed freely by M 3, the full state collision can be achieved when the
c-bit inner part collides, which is called inner collision. Trivially, a birthday
attack can generate the inner collision in 2c=2. When applying the MitM
approach, the attacker �rst �xes t-bit target and �nd 2 (c� t )=2 t-bit partial
target preimages with a MitM approach, then an inner collision exists among
those messages. If the MitM �nds one parital target preimage with time
complexity CII smaller than 2t= 2, then the overall time complexity is CII �
2(c� t )=2 < 2c=2.

In the generalized sponge constructions, the collision security is minf 2c=2; 2n= 2g.

{ If n > c , the Collision Framework II is applied to �nd a collision with time
less than the generic bound 2c=2. Example case is the eXtendable Output
Function (XOF) when the output size is larger than c, like Xoodyak-XOF,
Ascon-XOF, etc.

{ If n = c, the attacker can chooseCollision Framework I or II to �nd
a better attack. Example cases are the most popular hash functions, like
Ascon-Hash, Xoodyak-Hash, etc.

{ If n < c , Collision Framework I should be applied. Example case is the
extendable output functions (XOFs) when the output size is smaller thanc.

Fig. 4: Collision Framework I Fig. 5: Collision Framework II

Comparison between MitM preiamge and collision attack. In Qin et
al.'s MitM preimage attack [49], given the n-bit target, the attacker inverts it to
build the m-bit matching equation. Then, the complexity of preimage attack is
about 2n � m by assuming enough degrees of freedom of the two sets of neutral
bits.

For our MitM collision attack, we have to chooset-bit partial target (or inner
part) to be �xed and invert it to get m-bit matching equation (m � t < n ).
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Assuming enough degrees of freedom of the neutral bits again, the attacker �nds
one t-bit target preimage with 2 t � m complexity on average. Then, to perform
the birthday attack on the remaining n � t bits, one needs 2(n � t )=2 t-bit target
preimages, i.e., the time is at least 2t � m � 2(n � t )=2 = 2 n= 2+ t= 2� m . Therefore, t=2
should be smaller thanm to beat the birthday bound 2n= 2, i.e., t=2 < m � t,
and m = t is the optimal case. However, it is not trivial to �nd m-bit matching
with t=2 < m � t by �xing t-bit target.

For example, in Qin et al.'s attack on Keccak [49], their 1-bit matching
equation (see equation (14) of [49]) is nonlinearly related to 4 target bits, which
is of the form like f 1(B) + g1(R) + x1 � (f 2(B) + g2(R)) = x2 + x3 + x1 � x4,
where functions f 1(B) and f 2(B) depend on blue neutral bits, g1(R) and g2(R)
depend on red, andx1; x2; x3; x4 are four target bits. In order to derive the
matching equation (a deterministic relation between red and blue bits), one can
�x x1 = 0 and x2 + x3 = constant, or x1 = 1 and x2 + x3 + x4 = constant,
i.e., at least t = 2 target bits have to be �xed to derive the m = 1 bit matching.
This is �ne for the preimage attack, such as Qin et al.'s successful preimage
attack on 4-round Keccak [49]. But it is infeasible for the collision attack, since
t=2 = 1 = m. This is the di�erence between MitM preimage and collision attack,
i.e., one good MitM preimage con�guration may not trivially be converted into
MitM collision attack.

5 Preimage Attack on 4-round SPHINCS + -Haraka

Haraka v2 [41] is a short-input AES-like hash function, which is built by employ-
ing a 256 or 512-bit permutation and the DM construction. However, in practi-
cal application of SPHINCS+ [7], one of the 4 selected algorithms of the NIST
post-quantum standardization process,Haraka v2 is integrated as SPHINCS+ -
Haraka, which is a sponge-based hashing based on the 512-bit permutation of
Haraka v2, but it was removed from the latest standardization document. The
internal state of the 512-bit permutation is the concatenation of 4 AES states,
and each round (total 5) applies two AES rounds individually on the states,
followed by a MIX operation:

0; � � � ; 15 7! (3; 11; 7; 15); (8; 0; 12; 4); (9; 1; 13; 5); (2; 10; 6; 14):

SPHINCS+ -Haraka has the con�guration ( b = 512; n = c = r = r 0 = 256).
The claimed security level is 128 bits preimage attack. At CRYPTO 2022, Schrot-
tenloher and Stevens [54] proposed a 3.5-round (out of the full 5 rounds) quantum
preimage attack. However, no classical attack exists for reduced SPHINCS+ -
Haraka till now. In this section, we mount the �rst classical preimage attack on
4-round SPHINCS+ -Haraka without the last MIX operation based on our new
MitM preimage framework in Section 3. We recall the new MitM framework in
Figure 3. The attack procedures of two phases are given as follows.

{ Phase I: Since the 256-bit digest is produced at once, i.e.T1, we only
need randomly set the value of 256-bit inner part X , and inversely com-
pute f � 1(T1kX ).
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Fig. 6: The 4-round MitM attack on SPHINCS + -Haraka
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{ Phase II: In the forward MitM of Phase II (Figure 6(a)), the starting state
is A(2) = MIX(RAES(RAES(A

(0) ))), where the message block (M 2 in Figure 3) is
absorbed inA(0) [0� 31]. In the backward MitM of Phase II (Figure 6(b)), the

starting state is MC
(5)

= MIX� 1(R� 1
AES(R

� 1
AES(MC

(7)
))), where another message

block (M 4 in Figure 3) is absorbed inMC
(7)

[0 � 31]. After the MitM attacks

�nd proper states for the starting states A(2) (forward) and MC
(5)

(backward)
, we can compute the corresponding message blocksM 2 and M 4. Note that

the bytes of the A(2) and MC
(5)

can be deduced from the inner part ofA(0)

and MC
(7)

, respectively. Fix the 16-byte MC(7) [32 � 47] and A
(0)

[32 � 47]
as zeros. Then, perform the forward and backward MitM attacks to �nd
M 1jjM 2 stored in L 1 and M 4jjM 5 stored in L 2 to satisfy those 16 zero bytes.
We detail the forward MitM in Algorithm 1 with a time complexity of about
297 and a memory complexity of 296. The time and memory is the same for
the backward MitM. Then �nd a match between L 1 and L 2 to get a right
M 1kM 2kM 4kM 5, and then computeM 3. The memory of storing L 1 or L 2 is
264. The time complexity of Algorithm 1 is analyzed as follows:

� In Line 5, the time complexity to build U is 212� 8=96 .
� In Line 9, the time complexity to traverse 12 bytes, derive M 2 and

build L 1 is 296. The memory to store L 1 is 264.

The overall time complexity to perform the preimage attack on 4-round
SPHINCS+ -Haraka is 298 and the memory is 296.

Algorithm 1: Forward MitM in the Attack on SPHINCS + -Haraka

1 Set MC(7) [32 � 47] = 0.
2 Given the value of the 8 columns bytes of A(2) determined by M 1 and �xing

the other 8 bytes as 0
3 Compute the 16 bytes of MC(4) from MC(7) [32 � 47], denoted by MC(4)

m .
4 U  [ ]
5 for each value of 12 bytes in A(2) [20 � 22; 28 � 30; 48 � 50; 56 � 58] do
6 Compute forward to SR(4) , and derive the 16 matching bytes, i.e., MC(4) [3;

4; 9; 14; 19; 20; 25; 30; 35; 36; 41; 46; 51; 52; 57; 62], denoted by MC(4)
mr .

7 U[MC(4)
mr ]  A(2) [20 � 22; 28 � 30; 48 � 50; 56 � 58].

8 end
9 for each value of 12 bytes in A(2) [0 � 2; 8 � 10; 36 � 38; 44 � 46] do

10 Compute forward to SR(4) , and derive the 16 matching bytes in MC(4) ,

denoted by MC(4)
mb

11 /* The matching equation is MC(4)
m = MC(4)

mb � MC(4)
mr */

12 Look up U[MC(4)
mb � MC(4)

m ], construct M 2 and store it in L 1 indexed by
un�xed 16 bytes in MC(7) [48 � 63].

13 end
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6 Preimage and Collision Attacks on Reduced Ascon-Hash

The 320-bit state A of Ascon is split into �ve 64-bit words, and denote A ( r )
f x;y g

to be the x-th (column) bit of the y-th (row) 64-bit word, where 0 � y � 4,
0 � x � 63. The round function consists of three operationspC (add constants),
pS (Sbox layer), and pL (linear layer). Denote the internal states of round r as
A ( r ) pS � pC����! S( r ) pL��! A ( r +1) . The full description and symbols of Ascon-Hash are
given in Supplementary MaterialB.

6.1 Preimage attack on Reduced Ascon-Hash

At CRYPTO 2022, Lefevre and Mennink [42] proved that the NIST Lightweight
Cryptography standard Ascon-Hash (b = 320; r = r 0 = 64; c = 256; n = 256)
does not generically achieve 2128 preimage security as claimed, but even 2192

preimage security. In this section, we apply the new MitM preimage attack frame-
work introduced in Section 3 to explore round-reduced preimage attacks with
complexity lower than 2192. We �rst give an advanced matching strategy and
introduce 3-/4-/5-round preimage attacks on Ascon-Hash.

New matching strategy for preimage. In Qin et al.'s model [49], the de-
terministic relations between the two neutral sets, which act as matching, are
derived by the last Sbox layer. Suppose (a0; a1; a2; a3; a4) and (b0; b1; b2; b3; b4)
are the input and output of Sbox. Let b0 be the known target bit (because the
�rst row of the state is output as target), we have b0 = a4a1 + a3 + a2a1 + a2 +
a1a0 + a1 + a0. Qin et al. gave the observation that there exists a 1-bit matching
if there is no unknown bit in ( a0; a1; a2; a3; a4) and no product of and bits,
i.e., (a1; a4), (a0; a1), and (a0; a1) should not be pair of ( , ), ( , ), or ( , ),
etc. In this case, equation of the formgB = gR can be derived byb0, wheregB is
determined by the neutral set, and gR is determined by neutral set. gB = gR

is applied as 1-bit matching.
Here we introduce a more e�cient matching strategy. Let b0 = a1(a4 + a2 +

a0) + a3 + a2 + a1 + a0, then we give the following observation:

Observation 1 If (a0; a1; a2; a3; a4) satis�es the following conditions, there ex-
ists a 1-bit matching:

1. There is no bit in (a0; a1; a2; a3; a4).
2. There is no product of and , i.e., (a1; a4 + a2 + a0) should not be ( , ),

( , ), ( , ), or ( , ), or opposite order.

3-round Preimage Attack on Ascon-Hash. Following the MitM framework
given in Figure 3, we perform the 3-round preimage attack onAscon-Hash.

In Phase I , the squeezing phase outputs four 64-bit blocks (the �rst row of
the state) as 256-bit target, i.e., T = T1kT2kT3kT4. We place a 3-round MitM
phase in the permutation to squeezeT2 (similar to Figure 3). As shown in Figure
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Fig. 7: The 3-round Preimage attack onASCON-Hash

7, we explore the symmetry inx-axis to speedup the search by cutting the full
64-bit word into 32-bit word. Therefore, the linear operation works modular 32
instead of 64. For example, the linear operation in the second row changes from
the original A ( r +1)

f� ;1g  S( r )
f� ;1g � (S( r )

f� ;1g o 61) � (S( r )
f� ;1g o 39) into the current

A ( r +1)
f� ;1g  S( r )

f� ;1g � (S( r )
f� ;1g o 29) � (S( r )

f� ;1g o 7). It is very time consuming to solve
a full MILP model. By exploring the symmetry, the model is reduced and easy
to solve. But this strategy may miss paths and may be improved by di�erent
searching algorithm, e.g., [20].

Our automatic search �nds a 3-round MitM characteristic shown in Figure 7.
Due to the symmetry, in the full MitM path, the starting state A (0) contains 64

bits and 160 bits. The �rst row of A (0) is �xed as T1 (marked as ), and the
remaining 32-bit can be freely chosen. In the computation fromA (0) to A (2) ,
the consumed degree of freedoms (DoFs) of and DoFs of are 118 and 34,
respectively. Additional, there are 12 consumed DoFs of to make a0 + a2 + a4

of A (2) become or for matching points. Therefore, dB = dR = 30, and there
are 30 matching bits. The 3-round MitM attack is given in Algorithm 2.

Analysis of Algorithm 2. In Line 13 to 21, 2130+30+30+ � states are tested against
the 192-bit T2kT3kT4, therefore, � = 2 is enough to �nd a preimage. In Line 8,
we choose �xedcB to eliminate their in
uence on the computation of cR 2 F130

2
and the 30-bit matching point (those values will determined by / as well as

/ ) for 2160 red bits in A (0) in Line 10.

{ The Line 4 to 6, the time complexity is 22+64 � 16
3� 64 = 2 66 � 2� 3:58 = 2 62:42

3-round Ascon. The fraction 16
3� 64 means that we only need to compute the

16 Sboxes related to bits in the �rst round, and 3-round Ascon has a total
of 3 � 64 Sboxes.
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Algorithm 2: Preimage Attack on 3-round Ascon-Hash: Phase I

1 Fix the �rst row of A (0) as T1

2 for 2� values of the 32-bit free gray bits in A (0) do
3 /* Precomputation */
4 for 264 values of the bits vB in A (0) do
5 Compute forward to determine the 34-bit / (denoted as cB 2 F34

2 )

in A (1) . E.g., in the bit A (1)
f 30;2g = S(0)

f 30;2g � S(0)
f 29;2g � S(0)

f 24;2g , the

S(0)
f 24;2g should be gray to make the A (1)

f 30;2g independent of blue bits,
which consumes 1 DoF of . This is actually done by computing the
24-th Sbox, where there are 4 input bits and output one bit
S(0)

f 24;2g by consumming 1 DoF of . Then, S(0)
f 24;2g is one bit of the

34-bit cB

6 Store the 64-bit values vB of A (0) in U[cB ]
7 end
8 Choose an indexcB , e.g., cB = 0, there expected 264� 34 elements in U[0]
9 /* In the following, we always fix cB as 0 */

10 for 2160 values of the bits vR in A (0) do
11 Compute forward to determine the 130-bit / (denoted as

cR 2 F130
2 ) and the 30-bit matching point. Build the table V and store

the 160-bit vR of A (0) as well as the 30-bit matching point in V [cR ]
12 end
13 for cR 2 F130

2 do
14 Retrieve the 230 elements of V [cR ] and restore vR in L 1 under the

index of 30-bit matching point
15 for 230 values vB in U[0] do
16 Compute forward to the 30-bit matching point and store vB in L 2

indexed by the 30-bit matching point.
17 end
18 for values matched betweenL 1 and L 2 do
19 if T2 is satis�ed then
20 Check if T3kT4 is satis�ed
21 end
22 end
23 end
24 end
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{ The Line 10 to 11, the time complexity is 22+160 � 90
3� 64 = 2 162 � 2� 1:09 =

2160:91 3-round Ascon.
{ The Line 14, the time complexity is 22+130+30 � 1

3� 64 = 2 162 � 2� 7:58 = 2 154:42

3-round Ascon. The fraction 1
3� 64 is because we assume that inserting an

element into L of size 230 is equivalent to one Sbox operation.
{ The Line 16, the time complexity is 22+130+30 � 50

3� 64 = 2 162 � 2� 1:94 = 2 160:06

3-round Ascon. The 50
3� 64 is because we only need to compute 50 Sboxes to

determine the 30-bit matching point.
{ The Line 21, the time complexity is 22+130+30 = 2 162 3-round Ascon.

In Phase II , it is trivial to �nd an inner collision for the 256-bit capacity
with the Floyd's cycle �nding algorithm [31] with 2 128 time and no memory.

Thereore, the total preimage attack on 3-roundAscon-Hash needs 262:42 +
2160:91+2 154:42+2 160:06+2 162+2 128 � 2162:80 time and 264+2 160+2 30+2 30 � 2160

memory.

Fig. 8: The 4-round Preimage attack onASCON-Hash

4-/5-round Preimage Attack on Ascon-Hash. The 4-round MitM charac-
teristic shown in Figure 8. Due to the symmetry, in the full MitM path, the
starting state A (0) contains 16 bits and 184 bits. The �rst row of A (0) is
�xed as T1 (marked as ), and the remaining 56-bit can be freely chosen. In
the computation from A (0) to A (2) , the consumed degree of freedoms (DoFs) of
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and DoFs of are 162 and 8, respectively. Additional, there are 8 consumed
DoFs of to make a0 + a2 + a4 become or for matching points. Therefore,
dB = 8 ; dR = 14, and there are 8 matching bits. The steps for the 4-round
MitM attack is very similar to the 3-round attack. We refer the readers to Sup-
plementary MaterialC for detailed analysis (including a detailed 4-round attack
in Algorithm 8.). The total preimage attack on 4-round Ascon-Hashneeds about
2184:85 time and 2178 memory.

The 5-round Preimage Attack on Ascon-Hash is given in Supplementary Ma-
terial C, whose complexity is about 2191:31 time and 2190 memory.

6.2 Collision attack on 3 and 4-round attack on Ascon-Hash

According to Section 4, we have two collision frameworks. InCollision Frame-
work I shown in Figure 4, the �rst row of Ascon state is the output, we have
to apply the Observation 1 to perform the MitM collision attack. In Collision
Framework II shown in Figure 5, we try to �nd messages that collide in the
256-bit capacity part. Therefore, we can �x partial capacity bits and �nd its
preimage. For the Sbox, we can �x the output bits of the capacity part, i.e.,
any of (b1; b2; b3; b4), and derive matching equations. In this case, we have a new
matching strategy.

Observation 2 (Matching Strategy for Collision Framework II) According
to Eqn. (8), if we �x b1 = b2 = b3 = b4 = 0 , then a0 = 1 ; a1 � a2 = 1 ; a3 = 0
and a4 = 0 can be derived. If there are no unknown bit in (a0; a1; a2; a3; a4),
we can immediately obtain 4 matching equations.

Obviously, the conditions of Observation 2 is much weaker than that of Obser-
vation 1. Therefore, it is more likely to produce better results. In our practi-
cal search for MitM path, we �nd better results when applying the Collision
Framework II by exploring the new matching strategy.

3-round Collision Attack on Ascon-Hash. The 3-round MitM path in Fig-
ure 9 can be used to build collision attacks onAscon-Hash, where the starting
state A (0) contains 24 bits and 36 bits, dB = 24, dR = 24, and m = t = 24.
There are totally 32 conditions on of A (0) , i.e., � = 32, which are listed in
Table 2 in Supplementary MaterialC.

We give the MitM collision attack on 3-round Ascon-Hash in Algorithm 3.
We use three message blocks (M 1; M 2; M 3) to conduct the collision attack, and
the MitM procedure is placed at the 3rd block. In one MitM episode in Line 12
to Line 19, 2dR + dB � t = 2 24+24 � 24 = 2 24 partial target preimages are expected
to obtain. We need 2(n � t )=2� (dR + dB � t ) = 2 (256 � 24) =2� 24 = 2 92 MitM episodes
to build the collision attack, i.e., 2 � � 32+4+12 = 2 92 and � = 108. The time
complexity of steps in Alg. 3 are analyzed below:

{ In Line 3, the time complexity is 2108 � 2 = 2109 3-round Ascon.
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Fig. 9: The 3-round Collision attack on ASCON-Hash

{ In Line 7, the time complexity is 2� � 32+4 � 1
3 = 2 80 � 2� 1:58 = 2 78:42 3-round

Ascon.
{ In Line 9, the time complexity is 2� � 32+4+36 � 74

192 = 2 116 � 2� 1:38 = 2 114:62

3-round Ascon.
{ In Line 12, the time complexity is 2� � 32+4+12+24 � 1

192 = 2 116 � 2� 7:58 =
2108:42 3-round Ascon.

{ In Line 14, given 24 bits of A (0) , the time of computing the 24-bit matching
point is 24 + 28 = 52 Sbox applications. Therefore, the time of Line 14 is
2� � 32+4+12+24 � (24+28)

192 = 2 116 � 2� 1:88 = 2 114:12 3-round Ascon.
{ In Line 17, the time complexity is 2� � 40+10+6+24 = 2 116 3-round Ascon.

The total time complexity is 2 109 + 2 78:42 + 2 114:62 + 2 108:42 + 2 114:12 + 2 116 �
2116:74 3-round Ascon. The memory is 26 + 2 116 = 2 116 to store U and L.

Experiment on the 3-round Collision Attack. Since the full 3-round attack
has an impractical complexity, we only implement one MitM episode to verify
the full attack indirectly. According to Algorithm 3, we �rst �x 24-bit target
as 0 in Line 1. Choose all the bits in A (0) to satisfy the 32-bit conditions
directly, and �x all other to zero. In Line 9, we prepare the tableU, since
only one MitM episode is performed, we only storeU[cR ] with cR = 0, which
needs 224 memory cost. In the MitM episode between Line 12 to 17, 224 time
complexity is needed to produce 224 preimages, whose 24-bit target value inS(2)

is 0. Obviously, to �nd 2 24 preimages with a 24-bit target �xed as 0, a brute-
force search takes 224+24=48 time. The source codes and results are available via
https://github.com/boxindev/MitM_attack_sponge .

We deploy the experiment on a computer with i9-13900KF CPU and 32GB
memory. In each experiment, the time of precomputation, i.e., building tableU,
is about 8500 seconds. Then, a MitM episode takes about 9 seconds, and about
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224:0067 preimages are produced with 24-bit 0 inS(2) . We list 10 examples in
Table 4 in Supplementary MaterialC, since all the except for 32 conditions are
set to zero in this experiment, the last 4 rows of message are �xed.

Algorithm 3: Collision Attack on 3-round Ascon-Hash

1 Fix the 24 bits 0 in S(2) as shown in Figure 9 in order to build the matching
points

2 for 2� values of (M 1 ; M 2) do
3 Compute the inner part of the state after absorbing M 2 and applying the

permutation
4 if the 32 conditions are satis�ed /* probability of 2� 32 */
5 then
6 for 264� 24� 36 = 2 4 values of the bits in M 3 do
7 Compute the bits in A (0) to A (1) , except those bits
8 for 236 values of the bits vR in A (0) do
9 Compute forward to determine the 12-bit / (denoted as

cR 2 F12
2 ), and the 24-bit matching point. Build the table U

and store the 36-bit vR of A (0) as well as the 24-bit
matching point in U[cR ]

10 end
11 for cR 2 F12

2 do
12 Retrieve the 224 elements of U[cR ] and restore vR in L 1 under

the index of 24-bit matching point
13 for 224 values of the bits vB do
14 Compute forward to the 24-bit matching point and store

vB in L 2 indexed by the 24-bit matching point
15 end
16 for values matched betweenL 1 and L 2 do
17 Compute the 256-bit capacity c from the matched and

bits and store the ( M 1 ; M 2 ; M 3 ; c) in L indexed by c
18 if the size of L is 2( n � t ) =2 = 2 116 then
19 Check L and return ( M 1 ; M 2 ; M 3) and (M 0

1 ; M 0
2 ; M 0

3)
with the same c

20 end
21 end
22 end
23 end
24 end
25 end

4-round Collision Attack on Ascon-Hash. The 4-round MitM path in Figure
10 can be used to build collision attacks onAscon-Hash, where the starting state
A (0) contains 8 bits and 54 bits, dB = 8, dR = 54 � 46 = 8, and m = t = 8.

20



Fig. 10: The 4-round Collision attack on ASCON-Hash

There are totally 52 conditions on of A (0) , i.e., � = 52, which are listed in
Table 3 in Supplementary MaterialC.

We give the MitM collision attack on 4-round Ascon-Hash in Algorithm 4.
We also use three message blocks (M 1; M 2; M 3) to conduct the collision attack,
and the MitM procedure is placed at the 3rd block. In one MitM episode in Line
12 to Line 20, 2dR + dB � t = 2 8+8 � 8 = 2 8 partial target preimages are expected
to obtain. We need 2(n � t )=2� (dR + dB � t ) = 2 (256 � 8)=2� 8 = 2 116 MitM episodes
to build the collision attack, i.e., 2 � � 52+2+46 = 2 116 and � = 120. The time
complexity of steps in Alg. 4 are analyzed below:

{ In Line 3, the time complexity is 2120 � 2 = 2121 4-round Ascon.
{ In Line 7, the time complexity is 2� � 52+2 � 1

3 = 2 70 � 2� 1:58 = 2 68:42 4-round
Ascon.

{ In Line 9, the time complexity is 2� � 52+2+54 � (54+52+24)
256 = 2 124 � 2� 0:98 =

2123:02 4-round Ascon.
{ In Line 12, the time complexity is 2� � 52+2+46+8 � 1

256 = 2 116 4-round Ascon.
{ In Line 14, given 8 bits of A (0) , the time of computing the 8-bit matching

point is 8 + 16 + 20 = 44 Sbox applications. Therefore, the time of Line 14
is 2� � 52+2+46+8 � 44

256 = 2 124 � 2� 2:54 = 2 121:46 4-round Ascon.
{ In Line 17, the time complexity is 2� � 52+2+46+8 = 2 124 4-round Ascon.

The total time complexity is 2 121 +2 68:42 +2 123:02 +2 116 +2 121:46 +2 124 � 2124:85

4-round Ascon. The memory is 254 + 2 124 = 2 124 to store U and L.
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Algorithm 4: Collision Attack on 4-round Ascon-Hash

1 Fix the 8 bits, i.e. the last 4 bits of the output of 14-th, 46-th Sboxes of A (3) ,
to build the matching points

2 for 2� values of (M 1 ; M 2) do
3 Compute the inner part of the 3rd block
4 if the 52 conditions are satis�ed /* probability of 2� 52 */
5 then
6 for 264� 8� 54 = 2 2 values of the free bits in M 3 do
7 Compute the bits in A (0) to A (1) , except those bits
8 for 254 values of the bits vR in A (0) do
9 Compute forward to determine the 46-bit / (denoted as

cR 2 F46
2 ), and the 8-bit matching point. Build the table U

and store the 54-bit vR of A (0) as well as the 8-bit matching
point in U[cR ].

10 end
11 for cR 2 F46

2 do
12 Retrieve the 28 elements of U[cR ] and restore vR in L 1 under

the index of 8-bit matching point
13 for 28 values of the bits vB do
14 Compute to the 8-bit matching point and store vB in L 2

indexed by the 8-bit matching point.
15 end
16 for values matched betweenL 1 and L 2 do
17 Compute the 256-bit capacity c from the matched and

bits and store the ( M 1 ; M 2 ; M 3 ; c) in L indexed by c
18 if the size of L is 2( n � t ) =2 = 2 124 then
19 Check L and return ( M 1 ; M 2 ; M 3) and (M 0

1 ; M 0
2 ; M 0

3)
with the same c

20 end
21 end
22 end
23 end
24 end
25 end
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Comment on the memory complexity. The straightforward version of the
attack requires to store all the preimages generated as shown in Line 17 of Algo-
rithm 3, which makes the memory complexity be of the same order as the time
complexity. However, at ASIACRYPT 2012, Khovratovich [38, Section 4] im-
plied that the memoryless collision search methods [56] may be applied, which
multiply the time complexity by a small constant without storing the preim-
ages. However, we are unable to �gure out the detailed steps of the memoryless
approach and leave it as an open problem.

7 Application to SPONGENT

7.1 Sieve-in-the-middle Technique

Usually, the matching of the MitM checks the compatibility between the two sets
of neutral bits with a simple equality test (e.g., gB = gR ) at a given round in
the hash function [51]. In [46,16], the authors proposed the sieve-in-the-middle
that leverages the valid transitions through some middle Sbox. Suppose, for the
Sbox S with n-bit input and output pair ( x; y), the attacker is able to compute
from the one set of neutral bits (e.g., bits) an juj-bit vector u that corresponds
to a part of input x of S. While compute from the red neutal bits a jvj-bit
vector v that corresponds to a part of input y of S. R(u; v) = 1 if and only if
(u; v) corresponds to a valid pair of input and output of S. Canteaut et al. [16]
gives the following de�nition and proposition.

De�nition 1. Let S : Fn
2 7! Fn

2 . Let I; J � Fn
2 be two subsets with sizesjuj and

jvj, respectively. The sieving probability of(I; J ) denotes by� I;J is the proportion
of all elements in Fj u j+ jv j

2 which can be written as (x 2 I ; S(x) 2 J ) for some x.
The pair ( I; J ) is called an (juj; jvj)-sieve for S if � I;J < 1.

Proposition 1. Any pair (I; J ) of sets of size(juj; jvj) with juj + jvj > n is a
sieve for S with sieving probability � I;J � 2n � ( ju j+ jv j ) .

There are three algorithms proposed in [46], i.e.,instant matching, gradual
matching, and parallel matching without memory. In our paper, we only �nd
application of the instant matching. Suppose the sizes of the two listsL B and
L R built from the and neutral bits are 2dB and 2dR , respectively. A formal
description of instant matching is given in Algorithm 5, the list L B and L R

are decomposed intol groups. The time complexity is � 2dB + ju j + � 2dB + dR with
memory 2dB + 2 dR .

Fig. 11: Some possible colors of match
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Algorithm 5: Instant matching

Input: L B ; L R

1 Build the tables L j such that L j [vj ] corresponds to all uj with R j (uj ; vj ) = 1
2 for (b1 ; b2 ; � � � ; bt ) 2 L B /* bi 2 L i

B */
3 do
4 L aux  ;
5 for i from 1 to l do
6 if L i [bi ] is empty then
7 go to Step 2
8 end
9 end

10 Add all tuples ( a1 ; a2 ; � � � ; al ) with aj 2 L j [bj ], 8j , to L aux

11 for (a1 ; a2 ; � � � ; al ) 2 L aux do
12 if (a1 ; a2 ; � � � ; al ) 2 L R then
13 Add ( a1 ; a2 ; � � � ; al ; b1 ; b2 ; � � � ; bl ) to L sol

14 end
15 end
16 end
17 return L sol

7.2 Introducing Sieve-in-the-middle Technique into Automatic Tool

The key point for introducing sieve-in-the-middle technique into MILP auto-
matic tool is to count the degree of matching. According to Proposition 1 and
take the 4 � 4 Sbox as example, ifjuj and jvj bits of the input and output of
Sbox are known, andjuj + jvj > 4, then the sieve probability � = 2 4� ( ju j+ jv j ) .
Therefore, in the MILP model, we let the degree of matching (DoM) for one
Sbox be� M = ( juj + jvj) � 4 in bits, and the full DoM=

P
� M . Figure 11 shows

some possible colors of match.

7.3 Description of SPONGENT

SPONGENTlightweight hash function family [12] proposed by Bogdanov et al. at
CHES 2011 is based on the generalized sponge construction instantiated with
b-bit PRESENT-type permutations. SPONGENThas been selected as ISO standard.
The round function consist of Sbox layer with 4-bit Sbox and a bit permutation
layer Pb moves bit j of the b-bit state to bit position Pb(j ):

Pb(j ) =
�

j � b=4 mod b� 1; if 2 f 0; :::; b� 2g
b� 1; if j = b� 1

The internal states of round r are denoted asA ( r ) Sbox���! S( r ) Pb�! A ( r +1) : We
only focus onSPONGENT-88, which adopts b = 88-bit permutation with capacity
c = 80, rate r = r 0 = 8, and digest n = 88. The total number of rounds
is 45. The security against preimage and collision is claimed to be 80-bit and
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40-bit, respectively. The only cryptanalysis result against one of the 3 basic
security properties (preimage, 2nd preimage, or collision) is the designer's self-
cryptanalysis, a rebound attack designed to build a 6-round collision attack on
SPONGENT-88. However, the time complexity of the rebound attack is at least
255:2 [11, Section 3.2], which is even higher than that of the trivial birthday
attack with 2 40.

6-round Preimage Attack on SPONGENT-88. The squeezing phase ofSPONGENT-88
outputs eleven 8-bit blocks as 88-bit target, i.e.,T = T1kT2k � � � kT11. Di�erent
from the MitM framework given in Figure 3, we apply inverse permutation for
the attack. Denote the output of the permutation when squeezingT2 is T2kY ,
then we let state Y be free state andT1 be �xed as target. Our MitM attack is
to �nd the preimage Y of the target T1.

The 6-round MitM characteristic is shown in Figure 12. The �rst 8 bits
of A (0) is �xed as T1 (marked as ), and the remaining 80-bit are capac-
ity which are not known. Compute the partial state of the �rst round for-
ward, 8-bit of A (1) can be deduced (marked as ), which can be used for the
matching. Since we carry out the MitM attack inversely, the starting state is
A (6) , which contains 73 bits and 6 bits. In the inverse computation from
A (6) to S(1) , the consumed degree of freedoms (DoFs) of and DoFs of are
67 and 0, respectively. Therefore,dB = 6 ; dR = 6. Accoring to the sieve-in-
the-middle, the degree of matching is 6, i.e., the DoM=2+2+1+1=6, includes
two Sboxes with 4 bits input and 2 bits output (i.e., S(1) [0; 1; 2; 3] 7!
A (1) [0; 1; 2; 3], S(1) [20; 21; 22; 23] 7! A (1) [20; 21; 22; 23]), and two Sboxes with 3

bits input and 2 bits output (i.e., S(1) [44; 45; 46; 47] 7! A (1) [44; 45; 46; 47],
S(1) [64; 65; 66; 67] 7! A (1) [64; 65; 66; 67]), which are marked by black boxes. The
6-round MitM attack is given in Algorithm 6.

Analysis of Algorithm 6. In Line 10 to 17, 267+6+6+ � states are tested against
the 80-bit T1kT3k � � � kT11, therefore, � = 1 is enough to �nd a preimage.

{ In Line 7, the time complexity is 21+73 � 20+11+6
6� 22 = 2 74 � 2� 1:83 = 2 72:17

6-round SPONGENT.
{ In Line 12, the time complexity is 21+67+6 � 35

6� 22 = 2 74 � 2� 1:92 = 2 72:08

6-round SPONGENT.
{ In Line 17, the time complexity is 21+67+6 = 2 74 6-round SPONGENT.

In Phase II , it is trivial to �nd an inner collision for the 80-bit capacity with
the Floyd's cycle �nding algorithm [31] with 2 40 time and no memory.

Thereore, the total preimage attack on 6-round SPONGENT-88is 272:17 +
272:08 + 2 74 + 2 40 � 274:63 time and 273 + 2 6 + 2 6 � 273 memory. We also �nd
a 7-round preimage attack onSPONGENT-88with 278:59 time and 267 memory.
Please check the details inSupplementary MaterialF.
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Fig. 12: The MitM preimage attack on 6-round SPONGENT-88

Algorithm 6: Preimage Attack on 6-round SPONGENT-88: Phase I

1 Fix the �rst 8 bits of A (0) as T1 , and compute forward to get the 8-bit of A (1) ,
which are marked as

2 /* According to Alg. 5, prepare tables with valid elements through
Sbox matching for the 4 Sbox. For simplicity, we build a full
table containing all valid elements. */

3 Build the table L , stored 24� 2 � 24� 2 � 23+1 � 2 � 23+1 � 2 = 2 8 valid elements
indexed by 4 + 4 + 3 + 3 = 14 blue bits, i.e.,
S(1) [0; 1; 2; 3; 20; 21; 22; 23; 44; 45; 46; 64; 65; 66]

4 /* Therefore, under each 14-bit index, there are 28=214 = 2 � 6

elements. */
5 for 2� values of the 1-bit free gray bits in A (6) do
6 for 273 values of the bits vR in A (6) do
7 Compute backward to determine the 67-bit / (denoted as

cR 2 F67
2 ) and store the 73-bit vR of A (6) in V [cR ]

8 end
9 for cR 2 F67

2 do
10 Retrieve the 26 vR from V [cR ]
11 for 26 values of bits vB do
12 Compute to derive the 4 + 4 + 3 + 3 = 14 bits

� = S(1) [0; 1; 2; 3; 20; 21; 22; 23; 44; 45; 46; 64; 65; 66]
13 if L [� ] is not empty /* Probability of 2� 6 */
14 then
15 Combine vB and 26 vR to construct the full state Y
16 if T1 is satis�ed then
17 Check if T3k � � � kT11 is satis�ed
18 end
19 end
20 end
21 end
22 end
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8 The 9-round Preimage Attack on ACE-H -256

ACE[1] is one of the second round NIST LWC candidates. It has a 320-bit
permutation and 16 iterations of round function, which is shown in Figure 13
by ignoring round constants addition. SB-64 is an 8-round unkeyed Simeck block
cipher [59] with 8-byte block. In [1], Aagaard et.al. o�ered a sponge-based hash
algorithm with ACEpremutation, denoted by ACE-H-256 with b = 320, c = 256,
r = r 0 = 64, and n = 256. The security claim by the designers on preimage
attack is 2192.

As shown in Figure 13,A (0) [0; 1; 2; 3] and C(0) [0; 1; 2; 3] are used for both ab-
sorbing and squeezing. We denote the four squeezed 8-byte blocks asT1kT2kT3kT4,
with the new attack framework as shown in Figure 3, a 9-round (out of 16 rounds)
MitM preimage attack on ACE-H-256 is found:

{ Phase I: As shown in Figure 13, givenT1 = A (0) [0-3]kC(0) [0-3] and T2 =
A (9) [0-3]kC(9) [0-3], the 32-byte capacity stateX is separated into two neutral
sets, i.e., 12 bytes and 16 bytes. In the forward computation, 8 bytes
and 12 bytes are consumed. Therefore, the DoFs of and are both
4 bytes. In the matching phase as shown in Figure 14, we use theinstant
matching strategy in [46] by seeing the four consecutiveSB-64 as one Big-
SBox. Then, 4-byte degree of match can be gotten with an addition table
L . The detailed attack is given in Algorithm 7. The precomputation time
to build L is about 2160 with a memory 2128 to store L . The time of MitM
procedure is about 2128+32 = 2 160 with a memory of 232 to store L R .

{ Phase II: Once getting a valid X , the Floyd's cycle �nding algorithm is
applied to �nd a collision at c = 256 bits inner part with time 2 128.

Hence, the time and memory complexity are both dominated by Phase I, i.e.
2160 and 2128.

9 Applications to PHOTONand PHOTON-Beetle-Hash

PHOTONlightweight hash function family [36] was proposed by Guo et al. at
CRYPTO 2011, which is also one of the ISO standards. It adopts 12-round
AES-like permutations P with an internal state of d2 elements ofs bits each
(arranged as ad � d matrix). The operations in each round are AddConstants
(AC), SubCells (SC), ShiftRows (SR), and MixColumnsSerial (MC). In [36], the
authors o�ered �ve di�erent hash variants and we focus on the PHOTON-160=36=36
with b = 196-bit P196, d = 7, s = 4, r = r 0 = 36, n = c = 160, and a 124-bit
preimage security, and keep other hash variants inSupplementary MaterialE.

9.1 Preimage Attack on 4.5-round PHOTON-160=36=36

In this section, we take PHOTON-160=36=36 as an example to show the detailed
attack procedure. Other variants can be analysed in the same way and the cor-
responding attack complexities are given in Table 1. With the new attack frame-
work as shown in Figure 3, we give a MitM preimage attack on 4.5-round without
the MCin the last round in Algorithm 12 in Supplementary MaterialE.1.
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Fig. 13: The MitM preimage attack on 9-round ACE-H-256

Fig. 14: The Big-SBox matching for 9-round preimage attack onACE-H-256

Fig. 15: The 4.5-round MitM attack on PHOTON-160=36=36
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Algorithm 7: MitM Preimage Attack on 9-round ACE-H-256

1 Let A (0) [0; 1; 2; 3]kC (0) [0; 1; 2; 3] be T1

2 /* Precomputation of instant matching */
3 Set A (5) [0; 1; 2; 3] = 0
4 L  [ ]
5 for 216� 8=128 values for bytes of � = B (6) kD (7) do
6 for 24� 8=32 values for bytes of � = A (5) [4; 5; 6; 7] do
7 if Big-SBox (A (5) ; B (6) ; D (7) )[0-3] equals to T2 [4-7] then
8 L [� ]  � /* There exists 2128+32 � 32 =2128 = 1 element under

each � on average, therefore, there are totally
2128+32 � 32=128 elements stored in L */

9 end
10 end
11 end
12 /* Main procedure of MitM preimage attack */
13 Set A (0) [4; 5; 6; 7] to be constant value
14 for 216� 8=128 possible values of bytes in A (1) and E (1) do
15 L R  [ ]
16 Compute forward to the words B (2) , C (2) , D (2) , B (3) , E (3) , D (4)

17 D (5) [0-3]  D (4) [0-3]
18 for 24� 8=32 values of D (5) [4; 5; 6; 7] do
19 A (5)  D (4) � D (5) /* This step makes A (5) [0; 1; 2; 3] = 0 */
20 Compute backward to the 16-byte values of vR = D (0) kE (0)

21 Store vR in L R indexed by D (5) [4; 5; 6; 7]
22 /* There is 1 element under each index */
23 end
24 for 24� 8=32 possible values of bytes in C (0) [4; 5; 6; 7] do
25 Compute B (0) by SB-64(C (0) ) � E (1)

26 Compute forward to � = B (6) kD (7)

27 Retrieve one element in L [� ] as � 0

28 Reconstruct the (candidate) state X by B (0) , C (0) , and L R [� 0]
29 if X satis�es 192-bit T2kT3kT4 then
30 Output X and stop
31 end
32 end
33 end
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{ Phase I: Slightly di�erent from the Figure 15, we could see SR(0) as the
starting state. There are 12 cells and 15 cells. In the forward computation,
10 and 13 are consumed. The DoFs of , , and matching are 2 cells. The
detail of the MitM attack is given in Algorithm 12. The time complexity is
about 2124� min f 8;8;8g = 2 116. The memory is 236 to store U.

{ Phase II: Since the capacity isc = 160 bits, and the Floyd's cycle �nding
algorithm �nds a collision in the capacity with 2 80 time and without memory.

Hence, the total time complexity is 2116 and memory complexity is 236.
Additionally, we give the 4.5-round attacks on all other versions ofPHOTON-

n=r=r 0 as shown in Figure 25, 26, 27, 28 inSupplementary MaterialE.1, and we
also give a 3.5-round attack onPHOTON-Beetle-Hashin Supplementary Material
E.2. The complexities are summarized in Table 1.

10 Application to Subterranean 2.0

Subterranean 2.0 family, designed by Daemen et al. [18], is a second round
candidate of NIST LWC. In the family, the designers also provide a hash func-
tion Subterranean-XOF with a 112-bit security claim [18]. The designers have
performed good study to support the 112-bit security. However, their analysis is
about generating collision on the (257-9=) 248-bit inner part in the absorbing
phase (see Section 3.4 of [18]). This may �nally lead to collision attack and there
is no cryptanalysis against preimage attack. At CRYPTO 2022, Lefevre and
Mennink proved a tight bound of 224-bit preimage security [42] under ideal per-
mutation model for Subterranean-XOF with 256-bit digest (n = 256, b = 257,
r = 9, r 0 = 32, c = 248). However, the permutation of Subterranean-XOF only
consists of 2 rounds (far from ideal). Therefore, it arises a natural open question
how the preimage attack will work for Subterranean-XOF if the permutation
is not ideal. In this section, we give the �rst preimage attack with complexity
2160 instead of the generic 2224. We emphasize our attack does not break the
designers' security claim.

The internal state of Subterranean-XOF is 257 bits, and the round function
contains four operations: � : si  si + ( si +1 + 1) si +2 , � : constant addition,
� : si  si + si +3 + si +8 , and � : si  s12i . The internal state of each round

is updated as : A ( r ) � � �
��! S( r ) ��! � ( r +1) ��! A ( r +1) . The output function is

zi = s124 i + s� 124 i , (0 6 i < 32) as shown in Table 8 inSupplementary Material
G, e.g., when i = 0, z0 = s1 + s256. After each 32-bit digest is squeezed out,
1-round function is executed to update the internal state.

Under the attack framework of Figure 3, assume that the 256-bit hash value
is T, which consists of Ti (1 � i � 8). In Phase I of Figure 3, taking the
internal state as the starting point after outputting T1, denoted asA (0) . When
(s124 i ; s� 124 i ) of A (0) is ( ), ( , ), or ( , ), the DoF for ( s124 i ; s� 124 i ) is only 1,
since the output bit zi = s124 i + s� 124 i is �xed as T1. Therefore, when counting
number of bits of (s124 i ; s� 124 i ) in A (0) , ( , ) is only counted as 1-bit . Similar
to and bits. In the matching phase, when (s124 i ; s� 124 i ) for the digest output
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has no unknown bit, 1-bit matching point is derived. The matching points can
be constructed by the digest output of A ( r ) (r � 1).

The color pattern of the MitM preimage attack for Phase I is shown in Figure
31. There are 64 bits and 100 bits in A (0) . It consumes 36 DoFs of , so that
dB = 64, dR = 64. The �nal matching points are 65 bits (DoM= 65) which are
marked with m in Figure 31 (note that two bits marked by m in A (1) , A (2) and
A (3) are served as 1-bit matching). We give the Algorithm 15 inSupplementary
Material G. The complexity is about 2160 3-round Subterranean-XOF with a
memory of 2100 to store U. In Phase II , since the size of capacity is 248 and the
Floyd's cycle �nding algorithm �nds a collision in the capacity with 2 124 time.
Therefore, the overall complexity to �nd the 256-bit target preimage is about
2160 time and 2100 memory.

11 Application to Xoodyak

The speci�cation of Xoodyak[17] (one of the �nalists of NIST LWC) is given in
Supplementary MaterialB.2. We focus onXoodyak-XOFand Xoodyak-Hash. For
Xoodyak-Hash(b = 384; c = 256; r = r 0 = 128; n = 256), the security claims are
2128 against both preimage and collision attacks, we only study it against the
collision attacks. The Xoodyak-XOFo�ers an arbitrary output length l and the
preimage resistance is min(2128; 2l ). We target on Xoodyak-XOFwith a 128-bit
digest against the preimage attack.

Collision Attack on 3-round Xoodyak-Hash. By applying the Collision
Framework II (Figure 5), we �nd the following new matching strategy.

Observation 3 (Matching Strategy of Xoodyak for Collision) Suppose the
input and output of the Sbox are(a0; a1; a2) and (b0; b1; b2), we havebi = ai �
(ai +1 � 1)�ai +2 , where0 � i � 2 according to Eqn. (9). If we �x b1 = b2 = 0 , then
a0 = a1 and a2 = 0 can be derived. If there are no unknown bit in (a0; a1; a2),
we can immediately obtain 2 matching equations.

A new 3-round MitM characteristic in Figure 19 is found in Supplementary
Material D.1. With the MitM characteristic, we can build collision attack on
Xoodyak-Hash, which is given in Algorithm 10 in Supplementary MaterialD.1.
The starting state A (0) contains 8 bits and 118 bits. There are totally 51
conditions on bits of � (0) , which are listed in Table 5. In the computation from
A (0) to � (2) , the consumed DoFs of is 110 and the consumed DoFs of is 0.
Therefore, dB = 8 ; dR = 118 � 110 = 8. We get m = t = 8 matching equations
with the deterministic relations of � (2) . The time complexity is about 2125:23

3-round Xoodyak-Hashwith the memory about 2124.

MITM preimage attack on 3-round Xoodyak-XOF. Solving with the MILP
model for Xoodyak, we get a new 3-round MITM preimage attack. The attack
Figure 20 and other details are given in Supplementary Material D.2. The attack
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parameters aredB = 8 ; dR = 118� 111 = 7, � = 53, m = 7. The time complexity
of the 3-round preimage attack is 2121:77 3-round Xoodyak-XOF, and the memory
is 2118.

12 Conclusion

In this paper, we propose the generic MitM attack frameworks for preimage
and collision attacks on sponge constructions. In the last decade, the sponge-
based hash functions with lower claimed security level for preimages compared
to their output size have been widely used and standardized. However, crypt-
analysis tools regarding the preimage attacks against those hash functions are
absent. This paper proposes the �rst generic cryptanalysis tool for preimage at-
tacks against those hash functions. Most of our results are the �rst preimage
cryptanalysis results. For example, the ISO standardPHOTONwere designed in
2011, however, no result on round-reduced preimage attack ever proposed by the
community before our results. Moreover, our MitM collision attack framework
provides a di�erent method to build collisions on sponge construction besides
the method of di�erential attack.
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Supplementary Material

A Sasaki's MitM attack on 7-round AES hashing Mode

We take the MitM preimage attack on 7-round AES-hashing in [51] as an exam-
ple.

Fig. 16: The MitM preimage attack on 7-round AES-hashing.

Denote the internal states of round r as

A ( r ) SB��! SB ( r ) SR��! SR( r ) MC��! MC ( r ) AK��! A ( r +1) :

A ( r )
f i g represents thei -th (0 � i � 15) byte of state A ( r ) numbered from up to

bottom, left to right. A ( r )
f i � j g represents thei -th byte to j -th byte of state A ( r ) .

Chunk Separation: As shown in Figure 16, the initial structure involves a
few consecutive starting steps, i.e.f MC (3) ; A (4) ; SB (4) ; SR(4) g. The MC (3)

f 0� 3g
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are chosen as neutral bytes (marked by blue) for the forward chunk and the
SR(4)

f 1� 6;8;9;11;12;14;15g (marked by red) are chosen as neutral bytes for the back-

ward chunk. Results from two chunks will match at SR(1) and MC (1) for a
partial match.

Constraints on Initial Structure: To make the initial structure work, one
needs to add 3 constraints on the neutral bytes for the forward chunkMC (3)

f 0� 3g

to avoid the impacts on the backward chunk. The bytesSR(3)
f 1;2;3g can be pre-

determined constant values as follows:
2

6
6
6
6
4

c0 = 9 � MC (3)
f 0g � e � MC (3)

f 1g � b� MC (3)
f 2g � d � MC (3)

f 3g

c1 = d � MC (3)
f 0g � 9 � MC (3)

f 1g � e � MC (3)
f 2g � b� MC (3)

f 3g

c2 = b� MC (3)
f 0g � d � MC (3)

f 1g � 9 � MC (3)
f 2g � e � MC (3)

f 3g

3

7
7
7
7
5

: (5)

There are 28 values of MC (3)
f 0� 3g when the constantsc0; c1; c2 are determined.

Similarly, adding 8 constraints on the neutral bytes for the backward chunk to
avoid the impacts on 8 bytesMC (4)

f 0;2;5;7;8;10;13;15g.

Matching through MC: According to the property of the MC operation, the
match is tested column by column. There are totally �ve bytes known in each
column of SR(1) and MC (1) . So there is one byte matching for each column.
Taking the match for �rst column as an example. The SR(1)

f 0;2g are deduced in the

forward computation and MC (1)
f 1;2;3g are deduced in the backward computation.

There is

d � SR(1)
f 0g � e � SR(1)

f 2g

= d � (b� MC (1)
f 1g � d � MC (1)

f 2g � 9 � MC (1)
f 3g) � e � (9 � MC (1)

f 1g � e � MC (1)
f 2g � b� MC (1)

f 3g):
(6)

Forward and Backwork Computation: The forward computation list con-
tains the blue neutral bits in MC (3) to SR(1) . When accounting for the con-
straints, one can compute the neutral bytes in the forward chunk by traversing
28 possible values ofMC (3)

f 0� 3g. Then store MC (3)
f 0� 3g in table L 1 indexed by the

value of SR(1) as the left part of Equ. (6) (i.e. d�SR(1)
f 0g � e�SR(1)

f 2g). Similarly, the

backward computation list contains the red neutral bits in SR(4) to MC (1) . Store
them in table L 2 indexed by the value of MC (1) as the right part of Equ. (6).
Then one can useL 1 and L 2 for a 32-bit partial match on the indices.
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B Details of Speci�cations on Ascon and XoodyakHash
functions

B.1 Ascon-Hash and Ascon-XOF

The Asconfamily [27] includes the hash functionsAscon-Hashand Ascon-Hasha
as well as the extendable output functionsAscon-XOFand Ascon-XOFawith
sponge-based modes of operations.

Ascon Permutation. The inner permutation applies 12 round functions to a
320-bit state. The state A is split into �ve 64-bit words, and denote A ( r )

f x;y g

to be the x-th (column) bit of the y-th (row) 64-bit word, where 0 � y � 4,
0 � x � 63. The round function consists of three operationspC , pS and pL .
Denote the internal states of round r as A ( r ) pS � pC����! S( r ) pL��! A ( r +1) .

{ Addition of Constants pC : A ( r )
f� ;2g = A ( r )

f� ;2g � RCr .

{ Substitution Layer pS : For each x, this step updates the columnsA ( r )
f x; �g

using the 5-bit Sbox. Assume the S-box maps (a0; a1; a2; a3; a4) 2 F5
2 to

(b0; b1; b2; b3; b4) 2 F5
2, where a0 is the most signi�cant bit. The algebraic

normal form (ANF) of the Sbox is as follows:
8
>>>><

>>>>:

b0 = a4a1 + a3 + a2a1 + a2 + a1a0 + a1 + a0

b1 = a4 + a3a2 + a3a1 + a3 + a2a1 + a2 + a1 + a0

b2 = a4a3 + a4 + a2 + a1 + 1
b3 = a4a0 + a4 + a3a0 + a3 + a2 + a1 + a0

b4 = a4a1 + a4 + a3 + a1a0 + a1

(7)

The algebraic normal form (ANF) of the inverse Sbox is as follows:
8
>>>>>><

>>>>>>:

a0 = b4b3b2 + b4b3b1 + b4b3b0 + b3b2b0 + b3b2 + b3 + b2 + b1b0 + b1 + 1
a1 = b4b2b0 + b4 + b3b2 + b2b0 + b1 + b0

a2 = b4b3b1 + b4b3 + b4b2b1 + b4b2b0 + b4b2 + b4 + b3b2 + b3b1b0 + b3b1

+ b2b1b0 + b2b1 + b2b0 + b2 + b1 + b0 + 1
a3 = b4b2b1 + b4b2b0 + b4b2 + b4b1 + b4 + b3 + b2b1 + b2b0 + b1

a4 = b4b3b2 + b4b2b1 + b4b2b0 + b4b2 + b3b2b0 + b3b2 + b3 + b2b1 + b2b0 + b1b0

(8)
{ Linear Di�usion Layer pL :

A ( r +1)
f� ;0g  S( r )

f� ;0g � (S( r )
f� ;0g o 19) � (S( r )

f� ;0g o 28);

A ( r +1)
f� ;1g  S( r )

f� ;1g � (S( r )
f� ;1g o 61) � (S( r )

f� ;1g o 39);

A ( r +1)
f� ;2g  S( r )

f� ;2g � (S( r )
f� ;2g o 1) � (S( r )

f� ;2g o 6);

A ( r +1)
f� ;3g  S( r )

f� ;3g � (S( r )
f� ;3g o 10) � (S( r )

f� ;3g o 17);

A ( r +1)
f� ;4g  S( r )

f� ;4g � (S( r )
f� ;4g o 7) � (S( r )

f� ;4g o 41):
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Ascon-Hash and Ascon-XOF. The state A is composed of the outer part with 64
bits A f� ;0g and the inner part 256 bits A f� ;i g (i = 1 ; 2; 3; 4). For Ascon-Hash, the
output size is 256 bits, and the security claim is 2128. For Ascon-XOF, the output
can have arbitrary length and the security claim against preimage attack is
min(2128; 2l ), where l is the output length. In this paper, we target on Ascon-XOF
with a 128-bit hash value and a 128-bit security claim against preimage attack.

B.2 Xoodyak and XoodooPermutation

Fig. 17: Toy version of the Xoodoostate. The order in y is opposite to Keccak

Internally, Xoodyak makes use of theXoodoo permutation [17], whose state
(shown in Figure 17) bit denoted by A ( r )

f x;y;z g is located at the x-th column,
y-th row and z-th lane in the round r , where 0� x � 3; 0 � y � 2; 0 � z � 31.
For Xoodoo, all the coordinates are considered modulo 4 forx, modulo 3 for
y and modulo 32 for z. The permutation consists of the iteration of a round
function R = � east � � � � � � west � � . The number of rounds is a parameter, which
is 12 in Xoodyak. Denote the internal states of the round r as

A ( r ) ��! � ( r ) � west���! � ( r ) ��! � ( r ) �
�! � ( r ) � east���! A ( r +1) :

� : � ( r )
f x;y;z g = A ( r )

f x;y;z g �
X 2

y 0=0
(A ( r )

f x � 1;y 0;z � 5g � A ( r )
f x � 1;y 0;z � 14g );

� west : � ( r )
f x; 0;z g = � ( r )

f x; 0;z g ; � ( r )
f x; 1;z g = � ( r )

f x � 1;1;z g ; � ( r )
f x; 2;z g = � ( r )

f x; 2;z � 11g ;

� : � ( r )
f 0;0;z g = � ( r )

f 0;0;z g � RC r ; where RC r is round-dependent constant;

� : � ( r )
f x;y;z g = � ( r )

f x;y;z g � (� ( r )
f x;y +1 ;z g � 1) � � ( r )

f x;y +2 ;z g ;

� east : A ( r +1)
f x; 0;z g = � ( r )

f x; 0;z g ; A ( r +1)
f x; 1;z g = � ( r )

f x; 1;z � 1g ; A ( r +1)
f x; 2;z g = � ( r )

f x � 2;2;z � 8g :

(9)

Xoodyak can serve as aXOF, i.e. Xoodyak-XOF, which o�ers arbitrary output
length l . The preimage resistance is min(2128; 2l ). We target on Xoodyak-XOF
with output of 128-bit hash value and 128-bit absorbed message block.

C The Details of Attacks on Ascon-Hash

C.1 Details on the 4-round Preimage attack on Ascon-Hash

The attack is given in Algorithm 8.
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Analysis of Algorithm 8. In Line 14 to 21, 2170+8+8+ � states are tested against
the 192-bit T2kT3kT4, therefore, � = 6 is enough to �nd a preimage. In Line 8,
we choose �xedcB to eliminate their in
uence on the computation of cR 2 F170

2
and the 8-bit matching point (those values will determined by / as well as

/ ) for 2178 red bits in A (0) in Line 10.

{ The Line 4 to 6, the time complexity is 216 � 4
4� 64 = 2 16 � 2� 6 = 2 10 4-round

Ascon. The fraction 4
4� 64 means that we only need to compute the 4 Sboxes

related to bits in the �rst round, and 4-round Ascon has a total of 4 � 64
Sboxes.

{ The Line 10 to 11, the time complexity is 26+178 � 142
4� 64 = 2 184 � 2� 0:85 =

2183:15 4-round Ascon.
{ The Line 14, the time complexity is 26+170+8 � 1

4� 64 = 2 184 � 2� 8 = 2 176

4-round Ascon.
{ The Line 16, the time complexity is 26+170+8 � 62

4� 64 = 2 184 � 2� 2:05 = 2 181:95

4-round Ascon.
{ The Line 20, the time complexity is 26+170+8 = 2 184 4-round Ascon.

In Phase II , it is trivial to �nd an inner collision for the 256-bit capacity
with the Floyd's cycle �nding algorithm [31] with 2 128 time and no memory.

Thereore, the total preimage attack on 4-roundAscon-Hashis 210 +2 183:15 +
2176 +2 181:95 +2 184 +2 128 � 2184:85 time and 216 +2 178 +2 14 +2 8 � 2178 memory.

C.2 Details on the 5-round Preimage attack on Ascon-Hash

The 5-round MitM characteristic shown in Figure 18. The starting state A (0)

contains 1 bits and 190 bits. The �rst row of A (0) is �xed as T1 (marked as
), and the remaining 65-bit can be freely chosen. In the computation from

A (0) to A (4) , the consumed degree of freedoms (DoFs) of and DoFs of are
187 and 0, respectively. Additional, there are 2 consumed DoFs of to make
a0 + a2 + a4 become or for matching points. Therefore, dB = 1 ; dR = 1, and
there are 2 matching bits.

The 5-round attack is given in Algorithm 9.

Analysis of Algorithm 9. In Line 7 to 14, 2189+1+1+ � states are tested against
the 192-bit T2kT3kT4, therefore, � = 1 is enough to �nd a preimage.

{ The Line 4, the time complexity is 21+190 � 54+62+48+11
5� 64 = 2 191 � 2� 0:87 =

2190:13 5-round Ascon.
{ The Line 7, the time complexity is 21+189+1 � 1

5� 64 = 2 191 � 2� 8:32 = 2 182:68

5-round Ascon.
{ The Line 9, the time complexity is 21+189+1 � 61

5� 64 = 2 191 � 2� 2:39 = 2 188:61

5-round Ascon.
{ The Line 13, the time complexity is 21+189+0 = 2 190 5-round Ascon.

In Phase II , it is trivial to �nd an inner collision for the 256-bit capacity
with the Floyd's cycle �nding algorithm [31] with 2 128 time and no memory.

Thereore, the total preimage attack on 4-round Ascon-Hash is 2190:13 +
2182:68 + 2 188:61 + 2 190 + 2 128 � 2191:31 time and 2190 + 2 1 + 2 1 � 2190 memory.
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Algorithm 8: Preimage Attack on 4-round Ascon-Hash: Phase I

1 Fix the �rst row of A (0) as T1

2 for 2� values of the 32-bit free gray bits in A (0) do
3 /* Precomputation */
4 for 216 values of the bits vB in A (0) do
5 Compute forward to determine the 8-bit (denoted as cB 2 F8

2) in

A (1) . E.g., in the bit A (1)
f 25;0g = S(0)

f 25;0g � S(0)
f 6;0g � S(0)

f 61;0g , the S(0)
f 61;0g

should be gray to make the A (1)
f 25;0g independent of blue bits, which

consumes 1 DoF of . This is actually done by computing the 61-th
Sbox, where there are 4 input bits and output one bit S(0)

f 61;0g by

consumming 1 DoF of . Then, S(0)
f 61;0g is one bit of the 8-bit cB

6 Store the 16-bit values vB of A (0) in U[cB ]
7 end
8 Choose an indexcB , e.g., cB = 0, there expected 216� 8 = 2 8 elements in

U[0]
9 /* In the following, we always fix cB as 0 */

10 for 2178 values of the 184 bits vR in A (0) do
11 Compute forward to determine the 170-bit / (denoted as

cR 2 F170
2 ) and the 8-bit matching point. Build the table V and store

the 184-bit vR of A (0) as well as the 8-bit matching point in V [cR ]
12 end
13 for cR 2 F170

2 do
14 Retrieve the 28 elements of V [cR ] and restore vR in L 1 under the

index of 8-bit matching point
15 for 28 values vB in U[0] do
16 Compute to the 8-bit matching point and store vB in L 2 indexed

by the 8-bit matching point.
17 end
18 for values matched betweenL 1 and L 2 do
19 if T2 is satis�ed then
20 Check if T3kT4 is satis�ed
21 end
22 end
23 end
24 end
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Algorithm 9: Preimage Attack on 5-round Ascon-Hash: Phase I

1 Fix the �rst row of A (0) as T1

2 for 2� values of the 65-bit free gray bits in A (0) do
3 for 2190 values of the bits vR in A (0) do
4 Fix as 0, compute forward to determine the 189-bit / (denoted as

cR 2 F189
2 ), and the 2-bit matching point. Build the table V and store

the 190-bit vR of A (0) as well as the 2-bit matching point in V [cR ]
5 end
6 for cR 2 F189

2 do
7 Retrieve the 21 elements of V [cR ] and restore vR in L 1 under the

index of 2-bit matching point
8 for 21 values of vB do
9 Compute to the 2-bit matching point and store vB in L 2 indexed

by the 2-bit matching point.
10 end
11 for values matched betweenL 1 and L 2 do
12 if T2 is satis�ed then
13 Check if T3kT4 is satis�ed
14 end
15 end
16 end
17 end

C.3 Conditions for 3-/4-round collision attacks on Ascon-Hash

The bit conditions for 3-/4-round collision attacks on Ascon-Hash are given in
Table 2 and Table 3. Table 4 shows ten messages that produce the 24-bit 0 in
S(2) for the partial experiment on 3-round collision attack on Ascon-Hash.

A (0)
f 4;1g = 1 ; A (0)

f 5;1g = 0 ; A (0)
f 6;1g = 1 ; A (0)

f 7;3g + A (0)
f 7;4g = 1 ; A (0)

f 7;1g = 0 ; A (0)
f 10;1g = 1 ;

A (0)
f 12;1g = 0 ; A (0)

f 14;3g + A (0)
f 14;4g = 1 ; A (0)

f 19;1g = 1 ; A (0)
f 21;3g + A (0)

f 21;4g = 1 ;

A (0)
f 21;1g = 0 ; A (0)

f 23;1g = 0 ; A (0)
f 26;1g = 1 ; A (0)

f 27;1g = 0 ; A (0)
f 30;1g = 0 ; A (0)

f 31;1g = 0 ;

A (0)
f 36;1g = 1 ; A (0)

f 37;1g = 0 ; A (0)
f 38;1g = 1 ; A (0)

f 39;3g + A (0)
f 39;4g = 1 ; A (0)

f 39;1g = 0 ; A (0)
f 42;1g = 1 ;

A (0)
f 44;1g = 0 ; A (0)

f 46;3g + A (0)
f 46;4g = 1 ; A (0)

f 51;1g = 1 ; A (0)
f 53;3g + A (0)

f 53;4g = 1 ;

A (0)
f 53;1g = 0 ; A (0)

f 55;1g = 0 ; A (0)
f 58;1g = 1 ; A (0)

f 59;1g = 0 ; A (0)
f 62;1g = 0 ; A (0)

f 63;1g = 0 ;

Table 2: Bit Conditions in 3-round Collision Attack on Ascon-Hash
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A (0)
f 2;3g + A (0)

f 2;4g = 1 ; A (0)
f 3;1g = 1 ; A (0)

f 3;3g + A (0)
f 3;4g = 1 ; A (0)

f 5;3g + A (0)
f 5;4g = 1 ;

A (0)
f 7;1g = 1 ; A (0)

f 9;1g = 1 ; A (0)
f 10;3g + A (0)

f 10;4g = 1 ; A (0)
f 11;3g + A (0)

f 11;4g = 1 ; A (0)
f 12;1g = 1 ;

A (0)
f 12;3g + A (0)

f 12;4g = 1 ; A (0)
f 13;1g = 0 ; A (0)

f 15;1g = 1 ; A (0)
f 16;1g = 1 ; A (0)

f 18;3g + A (0)
f 18;4g = 1 ;

A (0)
f 19;1g = 0 ; A (0)

f 20;3g + A (0)
f 20;4g = 1 ; A (0)

f 21;1g = 0 ; A (0)
f 22;1g = 1 ; A (0)

f 22;3g + A (0)
f 22;4g = 1 ;

A (0)
f 23;1g = 0 ; A (0)

f 25;1g = 1 ; A (0)
f 25;3g + A (0)

f 25;4g = 1 ; A (0)
f 26;1g = 1 ; ; A (0)

f 27;3g + A (0)
f 27;4g = 1 ;

A (0)
f 28;3g + A (0)

f 28;4g = 1 ; A (0)
f 28;1g = 1 ;

A (0)
f 34;3g + A (0)

f 34;4g = 1 ; A (0)
f 35;1g = 1 ; A (0)

f 35;3g + A (0)
f 35;4g = 1 ; A (0)

f 37;3g + A (0)
f 37;4g = 1 ;

A (0)
f 39;1g = 1 ; A (0)

f 41;1g = 1 ; A (0)
f 42;3g + A (0)

f 42;4g = 1 ; A (0)
f 43;3g + A (0)

f 43;4g = 1 ; A (0)
f 44;1g = 1 ;

A (0)
f 44;3g + A (0)

f 44;4g = 1 ; A (0)
f 45;1g = 0 ; A (0)

f 47;1g = 1 ; A (0)
f 48;1g = 1 ; A (0)

f 50;3g + A (0)
f 50;4g = 1 ;

A (0)
f 51;1g = 0 ; A (0)

f 52;3g + A (0)
f 52;4g = 1 ; A (0)

f 53;1g = 0 ; A (0)
f 54;1g = 1 ; A (0)

f 54;3g + A (0)
f 54;4g = 1 ;

A (0)
f 55;1g = 0 ; A (0)

f 57;1g = 1 ; A (0)
f 57;3g + A (0)

f 57;4g = 1 ; A (0)
f 58;1g = 1 ; ; A (0)

f 59;3g + A (0)
f 59;4g = 1 ;

A (0)
f 60;3g + A (0)

f 60;4g = 1 ; A (0)
f 60;1g = 1 ;

Table 3: Bit Conditions in 4-round Collision Attack on Ascon-Hash

Round Message (�rst row) Message (last four rows)

3

0002005b173f21cd

0a2010200a201020
0000000000000000
0102040001020400
0000000000000000

0010005f570f34ed
0010015bd71f2ccd
0020045b173d25cd
0020115b173f2dc9
0110011feb353c42
0030005f572f34ed
0030045bd70f24e9
0100001bea0f2ae3
0100111bab253966

Table 4: Preimages of 3-roundAscon-Hash in collision attack
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D The Details of Attacks on 3-round Xoodyak-XOFand
Xoodyak-Hash

D.1 Details of the 3-round Collision Attack on Xoodyak-Hash

A new 3-round MitM characteristic in Figure 19 is found. With the MitM char-
acteristic, we can build collision attack on Xoodyak-Hash, which is given in
Algorithm 10. The starting state A (0) contains 8 bits and 118 bits. There
are totally 51 conditions on bits of � (0) , which are listed in Table 5. In the
computation from A (0) to � (2) , the consumed DoFs of is 110 and the consumed
DoFs of is 0. Therefore, dB = 8 ; dR = 118 � 110 = 8. We get m = t = 8
matching equations with the deterministic relations of � (2) .

In one MitM episode in Line 10 to 15, 28+8 � 8 = 2 8 partial target preimages
are expected to obtain. We need 2(n � t )=2� 8 = 2 116 MitM episodes to build the
collision attack, i.e., 2� � 51+110 = 2 116, i.e., � = 57. Each step of Algorithm 10 is
analyzed below:

{ In Line 3, the time complexity is 257 � 513 = 2 74:02 bit operations and 257

3-round Xoodyak.
{ In Line 7, the time complexity is 257� 51+118 � 128+128+4

128� 3 = 2 123:44 3-round
Xoodyak. The fraction 128+128+4

128� 3 is because that in the last round only 4
Sboxes with matching point are computed, while there are totally 128� 3
Sboxes applications in the 3-roundXoodyak.

{ In Line 10, the time is 257� 51+110+8 � 1
384 = 2 115:42 3-round Xoodyak. This

step is just to retrieve the valuesU[cR ] and restore it in L 1. Assuming one
table access is about one Sbox application, we get the fraction1

384 .
{ In Line 12, the time is 257� 51+110+8 � 128+128+4

128� 3 = 2 123:44 3-round Xoodyak.
{ In Line 15, the time complexity is 257� 51+110+16 � 8 = 2 124 3-round Xoodyak.

The total complexity of the 3-round attack is 274:02 + 2 57 + 2 123:44 + 2 115:42 +
2123:44 + 2 124 = 2 125:23 3-round Xoodyak-Hash, and the memory to store U and
L is 2118 + 2 124 = 2 124:02 .

� (0)
f 1;0;0g = 0 ; � (0)

f 1;1;0g = 1 ; � (0)
f 2;0;0g = 1 ; � (0)

f 2;2;0g = 0 ; � (0)
f 2;0;2g = 0 ; � (0)

f 2;1;2g = 1 ; � (0)
f 3;0;2g = 0 ;

� (0)
f 3;1;2g = 1 ; � (0)

f 2;0;3g = 1 ; � (0)
f 2;2;3g = 0 ; � (0)

f 0;1;4g = 0 ; � (0)
f 0;2;4g = 1 ; � (0)

f 2;2;4g = 0 ; � (0)
f 0;0;7g = 0 ;

� (0)
f 0;1;7g = 1 ; � (0)

f 3;0;7g = 0 ; � (0)
f 3;1;7g = 1 ; � (0)

f 1;2;8g = 0 ; � (0)
f 0;1;9g = 0 ; � (0)

f 1;0;9g = 0 ; � (0)
f 2;0;9g = 1 ;

� (0)
f 2;2;9g = 0 ; � (0)

f 0;0;16g = 0 ; � (0)
f 0;1;16g = 1 ; � (0)

f 1;0;16g = 0 ; � (0)
f 1;1;16g = 1 ; � (0)

f 2;0;16g = 0 ; � (0)
f 2;1;16g = 1 ;

� (0)
f 3;0;16g = 0 ; � (0)

f 3;1;16g = 1 ; � (0)
f 1;0;17g = 0 ; � (0)

f 1;1;17g = 1 ; � (0)
f 1;2;18g = 1 ; � (0)

f 2;2;18g = 0 ; � (0)
f 3;1;21g = 1 ;

� (0)
f 2;0;23g = 0 ; � (0)

f 0;0;25g = 0 ; � (0)
f 0;1;25g = 1 ; � (0)

f 2;0;25g = 0 ; � (0)
f 2;1;25g = 1 ; � (0)

f 3;0;25g = 0 ; � (0)
f 3;1;25g = 1 ;

� (0)
f 2;1;26g = 1 ; � (0)

f 0;2;27g = 1 ; � (0)
f 1;0;27g = 0 ; � (0)

f 2;0;27g = 1 ; � (0)
f 2;2;27g = 0 ; � (0)

f 2;0;28g = 1 ; � (0)
f 0;1;30g = 1 ;

� (0)
f 3;0;30g = 0 ; � (0)

f 3;1;30g = 1 ;

Table 5: Bit Conditions in 3-round Collision Attack on Xoodyak-Hash
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Algorithm 10: Collision Attack on 3-round Xoodyak-Hash

1 Fixed t = 8 bits of � (2) as zero.
2 for 2� values of M 1 do
3 Compute the inner part of the 2nd block and solve the system of 51 linear

equations
4 if the equations have solutions /* with probability of 2� 51 */
5 then
6 for 2118 values of the bits vR in A (0) do
7 Compute forward to determine 110-bit / bits (denoted as

cR 2 F110
2 ), and the 8-bit matching point. Build the table U and

store the 118-bit vR of A (0) as well as the 8-bit matching point
in U[cR ].

8 end
9 for cR 2 F110

2 do
10 Retrieve the 28 elements of V [cR ] and restore vR in L 1 under the

index of 8-bit matching point
11 for 28 values of vB do
12 Compute forward to the 8 matching point and store vB in L 2

indexed by the 8 matching point.
13 end
14 for values matched betweenL 1 and L 2 do
15 Compute the 256-bit capacity c from the matched and cells

and store the (M 1 ; M 2 ; c) in L indexed by c
16 if the size of L is 2( n � t ) =2 = 2 124 then
17 Check L and return ( M 1 ; M 2) and (M 0

1 ; M 0
2) with the same

c
18 end
19 end
20 end
21 end
22 end
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D.2 New MITM preimage attack on 3-round Xoodyak-XOF

The 3-round MITM characteristic is shown in Figure 20. The starting state
A (0) contains 8 bits and 118 bits. There are totally 53 conditions on
bits of � (0) , which are listed in Table 6. In the computation from A (0) to � (2) ,
the consumed DoFs of is 111 and the consumed DoFs of is 0. Therefore,
dB = 8 ; dR = 118 � 111 = 7. We get m = 7 matching equations as Equ. (10)
with the deterministic relations of � (2) .

� (2)
f 1;2;8g = � (2)

f 1;2;8g � (� (2)
f 1;0;8g� 1)� � (2)

f 1;1;8g; � (2)
f 1;2;10g = � (2)

f 1;2;10g � (� (2)
f 1;0;10g� 1)� � (2)

f 1;1;10g;

� (2)
f 2;2;10g = � (2)

f 2;2;10g � (� (2)
f 2;0;10g� 1)� � (2)

f 2;1;10g;�
(2)
f 1;2;17g = � (2)

f 1;2;17g � (� (2)
f 1;0;17g � 1) � � (2)

f 1;1;17g;

� (2)
f 1;2;26g = � (2)

f 1;2;26g � (� (2)
f 1;0;26g � 1)� � (2)

f 1;1;26g;�
(2)
f 1;2;31g = � (2)

f 1;2;31g � (� (2)
f 1;0;31g � 1)� � (2)

f 1;1;31g;

� (2)
f 2;2;31g = � (2)

f 2;2;31g � (� (2)
f 2;0;31g � 1)� � (2)

f 2;1;31g:
(10)

We give the attack procedure in Algorithm 11. In the MitM episode in Line
9 to 19, a space of 27+8 = 2 15 is searched. In order to search a 128-bit preimage,
we have to search a space of 2� � 53+111+15 = 2 128, i.e., � = 55. Each step of
Algorithm 11 is analyzed below:

{ In Line 2, the time complexity is 255 � 533 = 2 72:2 bit operations and 255

3-round Xoodyak.
{ In Line 6, the time complexity is 255� 53+118 � 128+128+7

128� 3 = 2 119:45 3-round
Xoodyak. The fraction 128+128+7

128� 3 is because that in the last round only 7
Sboxes with matching point are computed, while there are totally 128� 3
Sboxes applications in the 3-roundXoodyak.

{ In Line 9, the time is 255� 53+111+7 � 1
384 = 2 111:41 3-round Xoodyak. This

step is just to retrieve the valuesU[cR ] and restore it in L 1. Assuming one
table access is about one Sbox application, we get the fraction1

384 .
{ In Line 11, the time is 255� 53+111+8 � 128+128+7

128� 3 = 2 120:45 3-round Xoodyak.
{ In Line 14, the time complexity is 255� 53+111+15 � 7 � 2

3 = 2 120:41 3-round
Xoodyak.

{ In Line 15, we only compute 5 Sboxes with� (2) to gain a �lter of 2 � 5, whose
time complexity is 255� 53+111+15 � 7 � 5

128� 3 = 2 114:73 3-round Xoodyak.
{ In Line 18, we check the remaining states with the remaining 128� 7� 5 = 116

Sboxes, which is 255� 53+111+15 � 7� 5 � 116
384 = 2 114:27 3-round Xoodyak.

The total complexity of the 3-round attack is 272:2 + 2 55 + 2 119:45 + 2 111:41 +
2120:45+2 120:41+2 114:73+2 114:27 = 2 121:77 3-round Xoodyak-XOF, and the memory
to store U is 2118.

E Attacks on PHOTONand PHOTON-Beetle-Hash

E.1 Preimage Attacks on round-reduced PHOTON

All hash variants of PHOTONare given in Table 7.
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