
Blockchain-based decentralized identity system:
Design and security analysis

Gewu BU
Clermont Ferrand University

LIMOS
France

gewu.bu@uca.fr

Serge Fdida
Sorbonne University

LIP6
Paris, France

serge.fdida@lip6.fr

Maria Potop-Butucaru
Sorbonne University

LIP6
Paris, France

maria.potop-butucaru@lip6.fr

Bilel Zaghdoudi
Sorbonne University

LIP6
Paris, France

bilel.zaghdoudi@lip6.fr

Abstract—This paper presents a novel blockchain-based de-
centralized identity system (DID), tailored for enhanced digital
identity management in Internet of Things (IoT) and device-to-
device (D2D) networks. The proposed system features a hierar-
chical structure that effectively merges a distributed ledger with a
mobile D2D network, ensuring robust security while streamlining
communication. Central to this design are the gateway nodes,
which serve as intermediaries, facilitating DID registration and
device authentication through smart contracts and distributed
storage systems. A thorough security analysis underscores the
system’s resilience to common cyber threats and adherence to
critical principles like finality and liveness.

Index Terms—Decentralized identity, D2D, Blockchain, Decen-
tralized Storage, Smart contract

I. INTRODUCTION

In the dynamic realm of technology, the implementation
of blockchain-based services stands as a transformative force,
poised to revolutionize the landscape of decentralized appli-
cations for devices and the Internet of Things (IoT). Internet
of Things devices are often limited in terms of computational
and energy resources due to their design goals and constraints.
Due to these limitations, IoT devices often require special-
ized software and algorithms tailored for resource-constrained
environments. Optimization techniques, lightweight protocols,
and efficient algorithms are used to ensure effective opera-
tion within the available resources while meeting the desired
functionality and security requirements of IoT applications.
The importance of incorporating blockchain into the fabric of
these applications cannot be overstated, as it introduces a level
of security, transparency, and efficiency that is paramount in
our interconnected world.

The provision of blockchain-based services offers a unique
opportunity to empower and expedite the implementation of
decentralized applications for devices and IoT in a modular
and versatile manner. By breaking down the complexities
associated with bespoke development, these services serve
as building blocks, enabling developers to leverage essential
functionalities seamlessly. This modular approach not only
accelerates the development process but also fosters a more
adaptable and scalable ecosystem for a diverse range of
applications.

As we delve into specific examples of blockchain-based
services, the significance becomes clear. Smart contracts,

for instance, automate and secure agreements between de-
vices, reducing the need for intermediaries and enhancing
the efficiency of interactions. Immutable data storage on the
blockchain ensures the integrity and reliability of data gener-
ated by devices, fostering a trustworthy foundation for various
applications. Decentralized consensus mechanisms mitigate
the risks associated with centralized points of failure, con-
tributing to the resilience of the entire network.

One example of service that emerges as a linchpin in this
transformative landscape is the decentralized identity service
based on blockchain. As the backbone of secure and tamper-
resistant identification for devices, this service not only safe-
guards against unauthorized access but also empowers users
with greater control over their digital identities.

Decentralized identity systems and self-sovereign iden-
tity (SSI), especially their blockchain-based implementations,
are increasingly important in digital identity management.
Numerous surveys and studies [15] - [25] have explored
these systems’ technological, security, governance, and user-
centric aspects. These works highlight the balance between
blockchain’s immutability and transparency and SSI’s focus
on autonomy and privacy. They analyze the challenges and
benefits of decentralized identity systems, including their
potential to revolutionize traditional identity management and
give users more control over their data. Furthermore, these
studies examine the implications for regulatory compliance,
scalability, and integration with existing digital infrastructures.

Recent research efforts have increasingly focused on ex-
ploring the benefits and practical applicability of decentralized
identities and self-sovereign identities (SSIs) within the realm
of the Internet of Things (IoT). This burgeoning interest
stems from the growing recognition of the potential that
decentralized identity models, underpinned by technologies
such as blockchain and distributed ledgers, hold in addressing
core IoT challenges. In [26] for example, the authors present a
detailed analysis of the Self-Sovereign Identity (SSI) concept
and its application in the context of the Internet of Things
(IoT). It contrasts existing identity approaches like cloud-based
accounts and digital certificates with emerging SSI standards
such as Decentralized Identifiers (DIDs) and Verifiable Cre-
dentials (VCs). The authors argue that SSI, with its owner-
centric, privacy-aware, and decentralized approach, offers a

viable and attractive option for the secure identification of IoT
devices and users. While the paper discusses the theoretical
security aspects of SSI, it does not delve into a detailed study
of the security of the proposed model, such as vulnerability
assessments or resistance to specific types of cyber-attacks,
which is crucial in the context of IoT security. In [27] the
authors propose an innovative approach for implementing self-
sovereign identity (SSI) in IoT networks, particularly focusing
on the challenges posed by constrained networks. The authors
propose a new DID method tailored for IoT networks, along-
side a novel serialization mechanism for the DID document.
Additionally, the paper introduces a binary message envelope
for secure communication. This study focuses on the practical
implications of implementing SSI in constrained IoT networks,
offering a significant reduction in the size of identity metadata
and security overhead. Although the authors emphasize reduc-
ing security overhead and ensuring secure communication, this
study lacks a detailed examination of the model’s resilience
against various cyberattacks and vulnerabilities.

Furthermore, in [28] the authors focus on providing an in-
depth overview of various approaches to self-sovereign iden-
tity (SSI) and its application in IoT environments. It discusses
the evolution of digital identity, emphasizing the importance
of SSI in the context of increasing privacy concerns and the
proliferation of IoT devices. The authors compare different SSI
infrastructures, highlighting their strengths and weaknesses.
The paper also examines existing SSI solutions, such as uPort
[1], Sovrin [2], and others [3]- [14]. Although this research
provides a detailed comparison of the current SSI infrastruc-
tures and their relevance to IoT, it has a significant drawback
in terms of security. The authors discuss the cryptographic
foundations of SSI and the use of blockchain technology
to ensure safe identity management. However, they do not
conduct a thorough analysis of the security of their particular
attack model.

To the best of our knowledge, we are the first to propose
a blockchain-based hierarchical architecture specifically de-
signed to support device-to-device communication and pro-
pose a secure decentralized identity service. The originality of
our work stands in proposing an end-to-end security proof for
our decentralized identity service against a formally defined
attacker. The rest of the paper is organized as follows: Section
II presents the system architecture, Section III presents the
detailed workflow of our decentralized identity service, and
Section IV proposes the formal security proofs for our service
and finally Section V concludes the paper.

II. BLOCKCHAIN-BASED SYSTEM ARCHITECTURE

Our architecture integrates a dynamic, decentralized net-
work, incorporating a hierarchical structure with both an
upper-layer distributed ledger system and a mobile Device-
to-Device (D2D) network layer (see Figure 1). Two main
functional entities compose our architecture:

• Devices are the main component of the network. A device
is an entity or physical object that has a unique identifier,

an embedded system, and the ability to transfer data over
a network.

• The IoT gateways that act as Blockchain nodes. These
gateways maintain the connection between the devices
and the Blockchain. These nodes verify and validate
transactions corresponding to the device’s requests.

Fig. 1. Hierarchical architecture

Two groups of participant nodes in the blockchain need to
be addressed separately in our architecture:

1) Nodes that maintain the consensus algorithm of
the blockchain, can be called Miners in traditional
blockchains or Members of the Election Committee in
voting-based blockchains. They are the ones who ensure
the proper functioning of the chosen blockchain in the
architecture

2) Gateway nodes are spread at the edge of the upper
blockchain network and are the intermediary medium
to link the blockchain layer to the D2D network layer.
They follow a process of registering their DID during
system initialization.

Note that a blockchain participant may be both a miner and a
gateway node, or neither at all.

Both Gateways and D2D nodes are equipped with asym-
metric cryptography keys, which enable secure and private
communication. These keys consist of a public key and a
private key, which are uniquely generated for each device.
Furthermore, the private key is securely stored within each
device, safeguarding it from unauthorized access. It is utilized
for decrypting received encrypted data and for digitally sign-
ing messages. By leveraging these cryptographic capabilities,
including encryption, digital signatures, and hashing, each
device within the network can ensure secure and trustworthy
communication, protect sensitive information, verify the au-
thenticity of data exchanges, and be associated with a unique
identifier.

Another pivotal component of our architecture is the decen-
tralized storage system, which is intricately linked to the upper
layer of the architecture via gateway nodes. These nodes serve
as critical junction points, enabling seamless communication
and data transfer between the decentralized storage system and

the rest of the architecture. This system offers a fundamental
storage primitive for our architecture, essentially acting as the
backbone for data storage and management. It also maintains
a public-private key pair and provides a signature of retrieved
data using this key pair. By leveraging the decentralized nature
of this storage system, we ensure enhanced security, scala-
bility, and redundancy in data handling, which is crucial for
maintaining the integrity and efficiency of the entire architec-
ture. The integration of this system through gateway nodes not
only simplifies data accessibility but also bolsters the overall
resilience and robustness of our architectural framework.

III. DECENTRALIZED IDENTITY SERVICE

Our proposal introduces a Decentralized Identifier (DID)
service that offers two key functionalities: device DID regis-
tration and device DID authentication. The first functionality,
device DID registration, enables devices to acquire unique
decentralized identifiers. The second functionality, device DID
authentication, provides a mechanism for verifying the identity
of these devices. Together, these functionalities form the core
of our DID service, facilitating secure and efficient identity
management for devices in a decentralized environment.
Gateways are at the heart of our DID service and function as
controllers. They possess the ability to generate Decentralized
Identifier (DID) documents, conduct transactions, and interact
with the decentralized storage system for storing and retrieving
these documents. When a node joins the system for the first
time, it will try to establish a connection with at least one
trusted gateway node to register a network-wide unique DID.
Once a node has successfully registered its DID, other nodes
can verify its legitimacy based on this node’s DID. Nodes use
their DIDs to participate in the various communications in the
system. Since the DID is stored in the upper layer distributed
ledger along with its metadata in connected distributed storage
at the time of node registration, and cannot be tampered with,
this unique DID will replace the traditional certificate system
to verify the identification of the node.
Additionally, a smart contract is implemented, fulfilling the
essential roles of both a resolver and a secure, unalterable
registry for DIDs. This smart contract provides the function-
ality to map DIDs with their corresponding data and upholds
a reliable registry, guaranteeing the accuracy and legitimacy
of decentralized identity data.

A. Register a device’s DID

In the following, we will present a detailed, step-by-step
description of Figure 2, which illustrates the DID registration
flow.

1) The DID registration: A device requests the gateway to
register its DID by sending its public key, the verification
method, identity metadata if needed, and its signature.

2) At this stage, the gateway playing the controller role in
the DID standard architecture formulates the DID based
on the chosen verification method and the public key.
The specific format and syntax may vary depending on
the method.

3) Create a DID Document: Construct a DID document for
the IoT device. The DID document contains metadata
and cryptographic material associated with the DID. It
typically includes the public key, verification method,
and service endpoints. The structure and content of the
DID document depend on the data received from the
device.

4) Store the DID Document: A decentralized storage sys-
tem is used to store the DID document. This can be
achieved by uploading the document to the decentralized
storage system gateway and obtaining its unique iden-
tifier (the document hash) and the decentralized storage
system public key.

5) Register the DID: Call the appropriate function in the
smart contract to register the DID and link it to the
DID document hash. This step establishes the connection
between the DID and its corresponding document and
finalizes the process of identity creation.

6) The Smart contract DID registration Response: Upon
the DID registration, the smart contract responds to
the requesting gateway with the created DID and the
registration transaction hash.

7) The Gateway DID registration Response: The gateway
forwards the created DID and the decentralized storage
system public key after signing the message with its
private key to the requesting device as the final step of
the DID creation.

Fig. 2. DID registration flow

B. Authenticate a device

In the subsequent section, we will provide a thorough,
sequential breakdown of Figure 3, illustrating the DID au-
thentication flow.

1) Obtain the Device’s DID: Retrieve the specific DID
associated with the device that you want to authenticate.
This can be obtained from the device itself or from a
trusted source that provides the device’s DID.

2) Start the authentication process by sending a request
to the gateway containing the DIDtoAuthenticate, the
device’s DID, and the device’s signature.

3) Resolve the DID: The gateway uses the device’s DID
to fetch the associated device DID document identifier
(document hash) by querying the resolver smart contract.

4) Fetch the DID Document: Use the obtained device
document identifier to retrieve the associated device
DID document. This document contains the necessary
information to authenticate the device.

5) The gateway extracts the public key from the document
and verifies the device’s signature.

6) The gateway repeats the same process for the DIDtoAu-
thenticate to get its document.

7) As the final DID document response, the gateway re-
sponds to the device with a message containing the DID-
toAuthenticate document and the decentralized storage
system signature.

8) When receiving the final DID Document response mes-
sage, the device starts by verifying the decentralized
storage system signatures.

9) Extract the Verification Method: Within the fetched
DIDtoAuthenticate document, the device identifies the
verification method. The verification method specifies
the cryptographic algorithm and key material required
for authentication.

10) Retrieve the Public Key: Extract the public key that will
be used for the authentication process.

11) Verify Authentication: Use the public key to verify the
signature provided by the device to authenticate. This
process ensures that the device possesses the private key
corresponding to the public key and can provide valid
authentication proof.

Fig. 3. Authenticate device flow

IV. SECURITY ANALYSIS

In the following, we propose the security proof of our DID
service. First, we define the adversary model and the relevant
security hypotheses.

A. Formal Notations and Adversary Model

The following notations and definitions are borrowed from
Dolev, et al. [29]. A node A holds X as known information
is denoted by:

IA = {X}

Sending message from A to B with content X is denoted by:

A−B : (X)

when this is a broadcast message from A, destination will not
be mentioned :

A : (X)

The Checking operation of the legitimacy, performed by B,
for a received message is denoted by:

CheckingB((X), IB)

The checking operation verifies whether a message is legiti-
mate by comparing it with locally available information.

Encryption / Decryption operations on a particular content
X with key K is denoted by:

E(K,X)

We define an adversary node Z with the following capabil-
ities:

• Z can intercept the message sent from A to B during the
transmission.

• Z can modify the message received from a node and re-
transfer it.

• Z can generate and propagate any type of message that
may appear in the system

• When required, Z may or not perform any operation, then
give arbitrary result or response.

• Z can update IZ , when intercepting useful information.
• Z can try to decrypt encrypted message by using infor-

mation from IZ at any time.

B. System model and security hypothesis

Our system is a dynamic and decentralized network, con-
sisting of a large finite yet unbounded set of mobile devices.

We consider that in our system, nodes communicate via
messages, and wireless communication links are designed to
prevent data loss.

In our model, we distinguish between three types of mes-
sages: a signed message, a signed item part of a message, and a
non-signed message. The difference between these types lies
in the scope and verification of the cryptographic signature
applied to the message or its components. In the following,
we present a detailed explanation of each type of message:

• Signed Message: This refers to an entire message that
has been digitally signed, i.e., signA represents the
signature of a complete message signed by node A. The
signature covers every part of the message, ensuring its
integrity and authenticity. This is common in scenar-
ios where the entire content of the message needs to
be protected against tampering and impersonation. The
list of signed messages exchanged during the DID ser-
vice workflows is as follows: DIDRegistrationRe0quest,
DIDRegistrationTx, DIDRegistrationResponse, DIDDoc-
umentRequest.

• Signed item part of a message: In this case, only a
specific part or item within the message is signed, rather

than the entire message, i.e., signA(item) represents the
signature of a part or an item of a message signed by
a node A. This might be used in scenarios where only
certain critical elements of the message need integrity
and authenticity protection. The messages with a signed
item exchanged during the DID service workflows are
DIDDocumentResponse, DIDDocumentFinalResponse.

• Non-Signed Message: A non-signed message is a mes-
sage that does not have any digital signature asso-
ciated with it. The list of non-signed messages ex-
changed during the DID service workflows is as fol-
lows: StorageRequest, DIDRegistrationTxResponse, Re-
solveDIDRequest, ResolveDIDResponse, DIDDocumen-
tRequest, StorageResponse.

We list below the security hypotheses.
1) The distributed ledger system at the upper layer tolerates

the attacker previously defined.
2) Connected distributed storage system satisfies the prop-

erties of Atomicity, Consistency, Isolation and Durability
(ACID properties recalled below. This distributed storage
system tolerates attackers previously defined.

3) All Gateways are connected to the distributed storage
system via an interface. Through that interface, the com-
munication between gateways and distributed storage sys-
tem satisfies the properties of Confidentiality, Integrity,
and Availability (CIA properties recalled below), which
tolerates attackers previously defined.

4) Each device and gateway node possesses a unique pair of
asymmetric cryptography keys (public and private keys)
for secure communication. The private key is securely
stored within each device.

5) Both Gateway and D2D nodes can compute local DIDs
via public keys, establishing a mono-mapping of public
keys to DIDs.

6) Public-private key pairs are unique, uncrackable, and
support asymmetric cryptography operations such as sig-
natures, encryption, and decryption.

7) Hash function, hash(), used in the system, is considered
one-way and unbreakable.

8) A whitelist of trusted gateway nodes, with their public
keys and DIDs, is provided to joining devices during
initialization for secure connection establishment.

9) The network includes firewall-like middleware to prevent
physical attacks like flooding and DoS attacks.

10) The distributed storage system maintains a public-private
key pair and provides a signature of retrieved data using
this key pair.

The chosen upper-layer distributed storage should satisfy
the atomicity, consistency, isolation, and durability properties
listed below:

• Atomicity: all operations in a transaction, either all com-
plete or none of them.

• Consistency: The integrity of the database (storage) will
not be corrupted before the transaction begins and after
the transaction ends.

• Isolation: The storage system prevents data inconsistency
due to the execution concurrently of multiple transactions.

• Durability: once a transaction completes, changes to the
data are permanent and will not be lost.

Through a dedicated interface, gateway nodes interact with
the distributed storage system satisfying the security properties
of confidentiality, integrity, and availability listed as follows:

• Confidentiality: ensuring that information is transmitted
and stored confidentially so that unauthorized users do
not reveal the contents of the information.

• Integrity: ensuring the correctness and consistency of data
throughout its life cycle, either in transmission or in
storage.

• Availability: when one needs to operate through the
storage systems, information, and services must remain
available.

C. DID Service Security proofs

Let us begin with a basic Lemma 1.

Lemma 1. A node can verify the integrity of a signed item
(e.g., message, message field, message content etc.) by using
the corresponding public key.

Proof. When a piece of content data is signed by a signer
A, it means that the signer first computes the hash value
of this content, hdata, via hash function hash() and then it
encrypts this hash value with asymmetric encryption using
its own private key Ksct(A). The result of the encryption is
considered to be the signer’s digital signature for this content,
signA(data).

IA = {...,Kpub(A),Ksct(A), data...}
hdata = hash(data)
signA(data) = E(Ksct(A), hdata)

Later, A sends this content to another subject, B, along
with its digital signature of this content. B will have a way to
verify that the integrity of the received content has not been
compromised, i.e., that the content itself has not been tampered
with.

In order to verify the integrity of the content B needs to
know the public key corresponding to the private key used
by A for signing, Kpub(A). This public key is not a secret,
and A can send it to B either offline or, A can put its public
key in the message and send it to B. In any case, B receives
data′||sign′

A(data), and also the public key of A, K ′
pub(A).

Note that any information received by B may have been
tampered with due to the presence of malicious nodes.

IB = {...,K ′
pub(A), data′, sign′

A(data)...}

B can then perform verification to check if these received
information have been tampered with. B first computes the
hash of the received data′, h′

data, and then decrypts A’s
signature sign′

A(data) with the public key of A, K ′
pub(A).

Its decryption result should be the hash value of the content,

h′′
data, computed by A when the signature was done. Then B

compares the two hashes to see if they are identical.

h′
data′ = hash(data′)

h′′
data = E(K ′

pub(A), sign′
A(data))

CheckingB(h
′
data′ , h′′

data)

If the content of the message has not been tampered with,
then the received content is identical to the sent content.
Therefore the hash value of the content computed by A and
B are also identical.

data′ == data
h′
data′ == hdata

Also if A’s public key and its signature on the content
have not been tampered with, then decryption at B of the
signature using A’s public key will result in the hash value
of original data computed by A.

K ′
pub(A) == Kpub(A)

sign′
A(data) == signA(data)

h′′
data == hdata = E(Kpub(A), signdata(A))

So if none of the three pieces of information have been
tampered with, the check at B must pass.

CheckingB(h
′
data′ , h′′

data) == CheckingB(hdata, hdata)

In contrast, if the content of the message has been
tampered with, this will result in an incorrect hash value from
hash(data′) at B, i.e., a different value than the correct hash
value computed at A. In this case, the check will fail when B
compares the incorrect hash value computed locally by itself
with the correct hash value obtained by decryption from the
signature of A.

data′ ̸= data
h′
data′ ̸= hdata

K ′
pub(A) == Kpub(A)

sign′
A(data) == signA(data)

hdata = E(Kpub(A), signdata(A))
CheckingB(h

′
data′ , hdata)

Similarly, if A’s public key or its signature of the content
has been tampered with, this will result in B not being able to
obtain the correct hash value computed at A by decrypting the
signature. Therefore, when B compares its locally computed
correct hash with the result of the decryption, the check will
fail.

data′ == data
h′
data′ == hdata

K ′
pub(A) ̸= Kpub(A), or

sign′
A(data) ̸= signA(data)

E(K ′
pub(A), sign′

data(A)) ̸= E(Kpub(A), signdata(A))

h′′
data ̸= hdata

CheckingB(hdata, h
′′
data)

Note that under the assumption that both the hash function
and asymmetric encryption are unbreakable, a malicious node
can’t modify the message such that the hash value of the
modified content happens to be identical to the hash value
decrypted via the modified signature or the public key of A.
Therefore, the check at B always fails.

Thus, we can say that a node can confirm whether the
received content, the received signature, and the received
signer’s public key have been tampered with by the aforesaid
checks. If the check passes, it confirms that the integrity of
the signed content has not been compromised.

Next, we prove the security of the DID registration and
authentication process.

1) DID Registration: In DID registration, the D2D node at-
tempts to communicate with the gateway nodes in its whitelist,
with encryption. Upon receiving the message, the gateway
node interacts with the distributed ledger and distributed
storage to register its DID, which will be eventually sent back
to the requesting node as confirmation. We consider a DID
registration scheme to be secure if it satisfies the following
two properties:

P1 Any correct DID registration request will eventually be
accepted by the DID service.

P2 Any node invoking DID registration will eventually re-
ceive a correct DID registration response.

A correct DID registration request or response is a message
that respects the format defined in Section III. And a correct
DID registration response should be sent by a whitelisted
gateway node and its integrity should be verified by the
receiving node.

For the first property P1, we recall that according to
the hypothesis, newly joined D2D node A is pre-installed
with a whitelist containing several trusted gateway nodes
and a public-private key pair for asymmetric encryption.
DID registration requirement consists of the body of the
requirement and signature of message signed with A’s secret
key. Node A will try to send the requirement to some of the
gateway nodes in its whitelist, to increase the potential for
messages to be accepted by the DID service. Let Dst be one
of these chosen destination gateways.

IA = {...,Kpub(A),Ksct(A), whiteListA,Kpub(Dst), ...}
A−Dst : (X||signA)

where X contains A’s public key as well as related
metadata and verification method, verMD. X is encrypted
with the public key of the expected destination gateway node
Dst:

X = E(Kpub(Dst),Kpub(A)||verMD||metaData)

and sginA is the result of encryption of the hash of X by
the Ksct(A)

signA = E(Ksct(A), hash(X))

According to our hypotheses, wireless communication links
are not lossy. Therefore, any DID registration request are
eventually received by a whitelisted destination gateway node.

We then give two Lemmas 2 and 3 to show the first property
P1 in DID registration holds.

Lemma 2. If a DID registration request is received by a
whitelisted gateway, and it is encrypted by the public key of
that gateway node, then the integrity of the DID registration
request can be verified by that gateway.

Proof. Since the DID registration request is signed by the re-
questing node A, when another node B receives this message,
it needs only to obtain the public key of A, which allows it
to perform the integrity check according to the Lemma 1.

In order to obtain the public key of A, Kpub(A), the node
receiving this message will try to use its own secret key to
decrypt the message content X ′ and obtain K ′

pub(A) from it.
Note, however, a node can only decrypt the content correctly
and obtain the correct Kpub(A) and related information, if it
is the destination gateway Dst. Thus the destination gateway
node can verify the integrity of the DID registration request
according to Lemma 1.

X = E(Kpub(Dst),Kpub(A)||verMD||metaData)
A−Dst : (X||signA)
IDst = {...,Ksct(Dst), X ′, sign′

A, ...}
(K ′

pub(A)||verMD′||metaData′) == E(Ksct(Dst), X ′)
K ′

pub(A) == Kpub(A)

Since the public key used to encrypt the content of this
message is the public key of Dst, it is impossible for any
other node Z to correctly decrypt the content of the message
without the private key of Dst, and hence for any other
receiver nodes, it is impossible for them to obtain the correct
Kpub(A), and hence they will not be able to pass the integrity
check.

IZ = {...,Ksct(Z), X ′, sign′
A, ...}

(K ′
pub(A)||verMD′||metaData′) == E(Ksct(Z), X ′)

K ′
pub(A) ̸= Kpub(A)

Lemma 3. Any correct DID registration request will eventu-
ally be accepted by the DID service.

Proof. According to Lemma 2, the integrity of a DID reg-
istration request can be verified by a whitelisted destination
gateway node. Therefore based on the communication assump-
tions, there must be a correctly formatted DID registration
request whose integrity is verified that is correctly received by
a whitelisted destination gateway node. Then the gateway can
obtain the correct public key of requesting node and all related

information: verification method and metadata, and perform
the correct registration process. At this point we can say that
the DID registration request has been correctly accepted by
the proposed DID service. Therefore the first property P1
holds.

For the second property P2, since once a gateway G
in the whitelist of the requesting D2D node has correctly
received the DID registration request, it will honestly
execute the process described in Section III to complete the
DID registration. Since all interactions with the distributed
storage and the smart contract in distributed ledger layer are
performed by a whitelisted gateway node, a correct DID
registration response therefore must be generated at that
whitelisted gateway node.

IG = {..., DIDG, DIDA,Ksct(G),Kpub(sys), ...}
X = DIDG||DIDA||Kpub(sys)

signG = E(Ksct(G), hash(X))

G−A : (X||signG)

where Kpub(sys) is the public key of a public-secret key
pair maintained by the distributed storage system. This public
key is received at step 4 of DID registration by that whitelisted
gateway node. It is used in the DID authentication process.

However, it is notable that a gateway node attempting to
register a DID, will first check whether the DID has already
been registered to prevent data redundancy. Therefore, if
a malicious gateway node is the first to receive the DID
registration request of A, and tries to perform a malicious
operation in the upper distributed system with DID of A, it
is likely to cause an impact on the registration process of A,
for example it can modify the metadata or verification method
of DID, then create and store wrongly DID document to the
distributed storage system. But in fact, with the following
Lemma 4, we can see that the malicious gateway node is not
able to interrupt the correct DID registration process.

Lemma 4. If a DID registration request from a correct node
dev is received by a malicious D2D node / gateway then the
malicious D2D node / gateway cannot decrypt the DID regis-
tration request or any related information. The malicious D2D
node/gateway cannot execute correctly the DID registration
process.

Proof. We know that only gateway nodes can interact with the
distributed system and execute the DID registration according
to the description in Section III, therefore if the malicious
node that receives the DID registration request is a D2D node,
it cannot do anything except tamper with the message or
the content of message, and then forward it to other nodes.
Then, according to Lemma 2, we know that the tampering
with DID registration requests will eventually be detected by
verifying the message integrity. Therefore, in this proof, we
only consider that the malicious node that receives the DID
registration request is a gateway node.

By receiving a DID registration request from A, a malicious
gateway node Z tries to use the wrong information to disrupt
the registration process of the requesting D2D node. Z will
try to get the public key of A, then it computes the DID of A
from its public key. Let the function did() be the algorithm
for computing DID from a public key. With this function,
from one public key, only one unique DID can be obtained.

X = E(Kpub(Dst),Kpub(A)||verMD||metaData)
A−Dst : (X||signA)
IZ = {..., X ′, sign′

A,Kpub(Z),Ksct(Z)...}
K ′

pub(A)||verMD′||metaData′A ← E(Ksct(Z), X ′)
DID′

A = did(K ′
pub(A))

Since Z is a malicious gateway node, it will not be on A’s
whitelist. Therefore Z will never be able to get the correct
public key of A by decrypting the content of received message.
So it can’t compute the correct DIDA either. That means, Z
will not be able to create an error DID document with correct
DIDA to preform the DID registration and to interrupt the
registration process of other honest gateway node.

Note that a malicious gateway node can indeed request the
registration with fictitious DIDs, but it cannot predict and be
aware of the DIDs that need to be registered.

From previous lemma it follows that malicious
nodes/gateways cannot store in the distributed ledger or
distributed storage a wrong DID.

Lemmas 5, 6 and 7 below prove the second property P2.

Lemma 5. When DID registration request is accepted by the
DID service, a DID registration response from a whitelisted
gateway node will eventually be sent to the DID registration
requesting node.

Proof. According to Lemma 3, the DID registration request
message must eventually be received by a whitelisted gateway
node, which means accepted by DID service. According to
Lemma 4, malicious nodes cannot disrupt the correct DID reg-
istration process. Therefore the receiving whitelisted gateway
node must perform the DID registration operation correctly
and generate a correct response message and send it back to
the requesting node. Also according to our network model
in Section IV-B, we know that any message will eventually
be sent to any node. So we can say that a DID registration
response from a whitelisted gateway node will be eventually
received by the DID registration requesting node.

Lemma 6. If a DID registration response is received by the
requesting node from one of its whitelisted gateway nodes, then
the integrity of the DID registration response can be verified
by that requesting node.

Proof. According to Lemma 5, the requesting node A will
eventually receive a DID registration response from a gateway
node in its whitelist. To verify the integrity of this response,

A only needs to obtain the DID of the sending gateway node
from the response, and search for the corresponding public
key of that gateway node from its whitelist.

X = DIDG||DIDA||Kpub(sys)

G−A : (X||signG)

IA = {..., X ′, sign′
G, whiteListA, ...}

DID′
G ← X

K ′
pub(G)← whiteListA(DIDG)

By now, node A has obtained the public key of the signing
node, the content to be verified and the signature for the
content part. Thus according to Lemma 1, node A can verify
the integrity of the DID registration response.

Lemma 7. Any node invoking DID registration request will
eventually receive a correct DID registration response.

Proof. According to Lemma 5 and 6, A can eventually receive
a response from a whitelisted gateway node whose integrity
can be verified. Therefore as long as A does not receive a DID
registration response from a whitelisted gateway that passes
the integrity verification, it can resend the DID registration
request until it receives a response from a whitelisted gateway
whose integrity is verified. Since the whitelisted gateway node
is a honest node, it is sufficient to verify the integrity of
its response to confirm that the content of DID registration
response is correct. Hence the second property P2 holds.

Finally according to Lemma 3 and 7, both P1 and P2 of
DID registration are proven to be correct and secure. Therefore
we say that the whole DID registration process is correct and
secure.

According to Lemma 4 and 7 the DID registration process is
secure and correct and will only be performed by whitelisted
honest gateway nodes, so once a DID from a requesting D2D
node has been registered, it must be correctly stored in the
distributed ledger system and distributed storage system.

Note 1. Note that if a node correctly accomplished the
registration process then all the registration information must
have been stored correctly in distributed ledger and distributed
storage system.

2) DID Authentication: In DID authentication, when a
registered node has obtained a DID of another node (which
can be done from online or offline), it can request a gateway
node to verify if the owner of the DID is a registered node
in the system or not, and to obtain its public key as well as
the verification method for future signature verifying. Thus
through DID authentication, a node can verify the source
and integrity of the received message. We say that a DID
authentication process is secure and correct if it satisfies the
following two properties:

P1 Any correct DID authentication request will eventually
be accepted by the DID service.

P2 Any node invoking DID authentication will eventually
receive a correct DID authentication response.

A correct DID authentication request is a message that
respects the format defined in Section III. And a correct
DID authentication response is a message containing the
requesting DID document, the integrity of that DID document
is preserved.

For the first property P1, we recall that when a registered
node A wishes to verify the registration of a DID, DIDreq

and get the corresponding verification method for its signature,
it creates a DID authentication request and tries to send it
to at least a gateway node through one-hop or multi-hop
communication mentioned before, including the DID of A,
DIDA, queried DID, DIDreq , alongside A’s signature of
DID authentication request:

IA = {...DIDA, DIDreq,Kpub(A),Ksct(A), ...}
X = DIDA||DIDreq

signA = E(Ksct(A), hash(X))
A : (X||signA)

Note 2, Lemma 8 and 9 prove that the first property P1 in
DID authentication holds.

Note 2. According to our hypotheses, a DID authentication
request is eventually correctly received by at least one honest
gateway node.

Lemma 8. If a DID authentication request is received by a
gateway node, then the integrity of the DID authentication
request can be verified by that gateway node.

Proof. When a DID authentication request sent by a D2D node
A is received by a gateway node G, that G can verify its
integrity to determine if the request has been tampered with.

In order to verify the integrity of DID authentication
request, G needs to obtain the public key of A and the
corresponding verification method. Node G can first obtain
the hash value of the DID document corresponding to
A’s DID by interacting with the smart contract according
to the DID authentication process described in Section
III. With this hash value, G can then proceed to obtain
the complete DID document from the distributed storage
system, and finally, to obtain the public key of A and the
corresponding verification method through the DID document.

X = DIDA||DIDreq

A : (X||signA)
IG = {..., X ′, sign′

A, ...}
Isys = {...,Kpub(sys),Ksct(sys), ...}
h′
didDoc(A)← getDL(DID′

A)
didDoc′A||sign′

sys(didDoc′A)← getDS(h′
didDoc(A))

sign′
sys(didDoc′A) = E(Ksct(sys), hash(didDoc′A))

(K ′
pub(A)||verMD′)← didDocA

where getDL() and getDS() are two functions from dis-
tributed system. These two functions can be invoked by a gate-
way to retrieve data from distributed ledgers via smart contract

and distributed storage systems, respectively. didDocA and
hdidDoc(A) are the DID document of the sender’s DID and
its hash value, respectively. signsys(didDoc) is the signature
of retrieved DID document, didDoc, signed by distributed
storage system in step 5 of DID authentication.

Note that according to Note 1, as long as node A has
completed DID registration, the stored information such as the
public key, verification method and other metadata obtained
from its DID document must be correct.

At this point, G has obtained the public key of A, the ver-
ification method, and the corresponding signature. Therefore
according to Lemma 1, node G can verify the integrity of this
DID authentication request.

Lemma 9. Any correct DID authentication request will even-
tually be accepted by the DID service.

Proof. Finally, according to Note 2 and Lemma 8, and similar
to Lemma 3, in the case where A can try to re-transmit, a
DID authentication request that passes integrity verification
will eventually be correctly received by at least one honest
gateway node. These honest gateway node then performs
DID authentication correctly. We say, at this point, the DID
authentication requests has been received correctly by the DID
service. The first property P1 therefore holds.

For the second property P2, when an honest gateway
node G tries to reply to a DID authentication request, it
first checks the distributed ledger and distributed storage
system to see if the DID to be verified has been registered
(through the getDL() and getDS() functions). Then, G sends
the obtained complete DID document to node A along with
the corresponding signature signed by the distributed storage
system.

IG = {..., DIDreq, DIDG,Kpub(G),Ksct(G), ...}
hdidDoc(req)← getDL(DIDreq)
didDocreq||signsys(didDocreq)← getDS(hdidDoc(req))
signsys(didDocreq) = E(Ksct(sys), hash(didDocreq))
G−A : (didDocreq||signsys(req))

And for malicious node Z, not only malicious gateway
nodes, it can reply to X ′ like anything arbitrarily.

IZ = {..., X ′,Kpub(Z),Ksct(Z), ...}
Z −A : (X ′)

Lemma 10. When DID authentication request is accepted
by DID service, at least one DID registration response from
a honest gateway node will eventually be sent to the DID
authentication requesting node.

Proof. According to Lemma 9, we know that eventually the
DID authentication request will be received correctly by at
least one honest gateway node. And that honest gateway node

must perform correctly the DID authentication process and
try to reply to the requesting node correctly. During which
other nodes may also try to reply to the requesting node with
arbitrary responses.

Therefore according to our network model in Section IV-B,
all these DID authentication responses, including the one from
the honest gateway node, will eventually be received by the
requesting node.

Lemma 11. If a DID authentication response is received by
the requesting node, then the integrity of the DID document
contained in the DID authentication response can be verified
by the requesting node.

Proof. When a DID authentication response is finally received
by the requesting node A according to Lemma 10, A can verify
the integrity of the DID document in this response.

To verify the integrity of the content of DID authentication
response, i.e., the DID document, the receiving node A
only needs to know the public key to decrypt the signature
of ID-document signed by the distributed storage system,
Kpub(sys). And according to Lemma 7, we know that
any registered node will correctly receive a correct DID
registration response, which contains the public key of the
distributed storage system. Therefore, for any registered node,
it knows Kpub(sys).

IA = {..., didDocreq, signsys(req),Kpub(sys), ...}
Kpub(sys)← IA

At this point, the node A can verify the integrity of the
received DID document according to Lemma 1.

Lemma 12. Any node invoking DID authentication will even-
tually receive a correct DID authentication response.

Proof. Similar to Lemma 7, according to Lemma 10 and 11,
we know that a response sent by an honest gateway node
will eventually be received by the requesting node. And the
integrity of its content can be verified. Therefore, as long as
the node A does not receive a response that the integrity of the
content of that response has been verified, it can re-submit DID
authentication requests. Until it receives a response that the
integrity of the contents of that response is verified. Since the
content is signed by the distributed storage system, once the
integrity of the content in a response is verified, A can confirm
that it has received the correct DID authentication response
contenting the DID document of the DID to be verified.

Finally, according to Lemma 9 and 12, both two properties
of DID authentication are proven to be correct and secure.
Therefore, the DID authentication process is correct and
secure.

D. Authentication with DID Service

At this point, we have shown that both DID registration
and verification are correct and secure. Therefore, we can
abstract these two processes into two functions, didReg()
and didV er(). A node can achieve DID registration and
verification through these two functions.

Note that performing DID authentication does not, by
itself, verify the integrity of a received message during the
communication with others D2D node. Rather, it will return
the information necessary to verify the integrity of a received
message, i.e., the correct public key of the sender of the
message, and the corresponding verification method.

The following example demonstrates that through DID
service, nodes can authenticate and verify the integrity of
communications without the need for third-party certificates.

Two nodes A and B that are expected to communicate
with each other register their DIDs with the DID service:

A : didReg(Kpub(A)||verMDA||metaDataA)

B : didReg(Kpub(B)||verMDB ||metaDataB)

Later A signs and sends its DID along with the contents
of the message to B.

X = DIDA||data
signA = E(Ksct(A), hash(X))

A−B : (X||signA)

When B receives this message, it first extracts the DID of
A from the message and then performs DID authentication
process with this DID. By verifying the obtained DID
document from corresponding DID authentication response,
B can finally obtain A’s public key and its corresponding
verification method.

DIDA ← X

didDocA = didV er(DIDA)

(Kpub(A)||verMD)← didDocA

So far according to Lemma 1, the node B has obtained the
public key of A, corresponding verification method, and the
corresponding signature of A. Thus, it can verify the integrity
of this message sent by A.

V. CONCLUSION

We propose a secure distributed identity service dedicated
to device-to-device networks. The security features of our ser-
vice combines classical cryptographical tools with the recent
blockchain technology. The originality of our work steams
in proposing formal security proofs for the entire workflow
of our service. The proposed service can be used in the
implementation of other secure services such as localization,
clustering or routing. Our future work aims at designing of a
secure middleware orchestrating these services.

REFERENCES

[1] C. Lundkvist, R. Heck, J. Torstensson, Z. Mitton, and M. Sena. (2016).
Uport: A Platform for Self Sovereign Identity.

[2] A. Tobin and D. Reed, “The inevitable rise of self-sovereign identity,”
Sovrin Found., vol. 29, no. 2016, p. 18, 2016.

[3] Travel Identity of the Future, ShoCard, Cupertino, CA, USA, 2016.
[4] D. van Bokkem, R. Hageman, G.Koning, L. Nguyen, and N. Zarin,“

Self-sovereign identity solutions: The necessity of blockchain technol-
ogy,” 2019, arXiv:1904.12816.

[5] A. E. Panait, R. F. Olimid, and A. Stefanescu, “Identity management on
blockchain-Privacy and security aspects,” in Proc. Romanian Acad. A,
Math. Phys. Tech. Sci. Inf. Sci., 2020, vol. 21, no. 1, pp. 45-52.

[6] S. Y. Lim, P. T. Fotsing, A. Almasri, O. Musa, M. L. M. Kiah, T. F.
Ang, and R. Ismail, “Blockchain technology the identity management
and authentication service disruptor: A survey,” Int. J. Adv. Sci. Eng.
Inf. Tech., vol. 8, pp. 1735-1745, Sep. 2018.

[7] M. Takemiya and B. Vanieiev, “Sora identity: Secure, digital identity
on the blockchain,” in Proc. IEEE 42nd Annu. Comput. Softw. Appl.
Conf., vol. 2, Oct. 2018, pp. 582-587.

[8] O. Dib and K. Toumi, “Decentralized identity systems: Architecture,
challenges, solutions and future directions,” Ann. Emerg. Technol.
Comput., vol. 4, no. 5, pp. 19-40, Dec. 2020.

[9] M. Shuaib, N. H. Hassan, S. Usman, S. Alam, S. Bhatia, A. Mashat, A.
Kumar, and M. Kumar, “Self-sovereign identity solution for blockchain-
based land registry system: A comparison,” Mobile Inf. Syst., vol. 2022,
pp. 1-1117, Apr. 2022.

[10] M. Ali, J. Nelson, R. Shea, and M. J. Freedman, “Blockstack: A global
naming and storage system secured by blockchains,” in Proc. USENIX
Annu. Tech. Conf. (USENIX ATC), 2016, pp. 181-194.

[11] S. Y. Lim, P. T. Fotsing, A. Almasri, O. Musa, M. L. M. Kiah, T. F.
Ang, and R. Ismail, “Blockchain technology the identity management
and authentication service disruptor: A survey,” Int. J. Adv. Sci. Eng.
Inf. Tech., vol. 8, pp. 1735-1745, Sep. 2018.

[12] A. Poikola, K. Kuikkaniemi, and H. Honko, “MyData-A Nordic Model
for human-centered personal data management and processing,” Work.
Paper, 2015.

[13] A. Giaretta, S. Pepe, and N. Dragoni, “UniquID: A quest to reconcile
identity access management and the Internet of Things,” in Proc. Int.
Conf. Objects, Compon., Models Patterns, 2019, pp. 237-251.

[14] M. T. Quasim, M. A. Khan, F. Algarni, A. Alharthy, and G. M. M.
Alshmrani, Blockchain Frameworks. Cham, Switzerland: Springer, Mar.
2020.

[15] Houtan, B., Hafid, A. S., & Makrakis, D. (2020). A survey on
blockchain-based self-sovereign patient identity in healthcare. IEEE
Access, 8, 90478-90494.

[16] Shuaib, M., Alam, S., Alam, M. S., & Nasir, M. S. (2021). Self-sovereign
identity for healthcare using blockchain. Materials Today: Proceedings.

[17] Gordon, W. J., & Catalini, C. (2018). Blockchain technology for
healthcare: facilitating the transition to patient-driven interoperability.
Computational and structural biotechnology journal, 16, 224-230.

[18] Soltani, R., Nguyen, U. T., & An, A. (2021). A survey of self-sovereign
identity ecosystem. Security and Communication Networks, 2021, 1-26.

[19] Liu, Y., He, D., Obaidat, M. S., Kumar, N., Khan, M. K., & Choo, K.
K. R. (2020). Blockchain-based identity management systems: A review.
Journal of network and computer applications, 166, 102731.

[20] Kuperberg, M. (2019). Blockchain-based identity management: A survey
from the enterprise and ecosystem perspective. IEEE Transactions on
Engineering Management, 67(4), 1008-1027.

[21] Gilani, K., Bertin, E., Hatin, J., & Crespi, N. (2020, September). A
survey on blockchain-based identity management and decentralized pri-
vacy for personal data. In 2020 2nd Conference on Blockchain Research
& Applications for Innovative Networks and Services (BRAINS) (pp.
97-101). IEEE.

[22] Mühle, A., Grüner, A., Gayvoronskaya, T., & Meinel, C. (2018). A
survey on essential components of a self-sovereign identity. Computer
Science Review, 30, 80-86.

[23] Lim, S. Y., Fotsing, P. T., Almasri, A., Musa, O., Kiah, M. L. M.,
Ang, T. F., & Ismail, R. (2018). Blockchain technology the identity
management and authentication service disruptor: a survey. International
Journal on Advanced Science, Engineering and Information Technology,
8(4-2), 1735-1745.

[24] Zhu, X., & Badr, Y. (2018). Identity management systems for the internet
of things: a survey towards blockchain solutions. Sensors, 18(12), 4215.

[25] Rathee, T., & Singh, P. (2022). A systematic literature mapping on secure
identity management using blockchain technology. Journal of King Saud
University-Computer and Information Sciences, 34(8), 5782-5796.

[26] G. Fedrecheski, J. M. Rabaey, L. C. P. Costa, P. C. Calcina
Ccori, W. T. Pereira and M. K. Zuffo, ”Self-Sovereign Iden-
tity for IoT environments: A Perspective,” 2020 Global Internet
of Things Summit (GIoTS), Dublin, Ireland, 2020, pp. 1-6, doi:
10.1109/GIOTS49054.2020.9119664.

[27] Fedrecheski, G., Costa, L. C., Afzal, S., Rabaey, J. M., Lopes, R. D.,
& Zuffo, M. K. (2022). A low-overhead approach for self-sovereign
identity in IoT. In Global IoT Summit (pp. 265-276). Cham: Springer
International Publishing.

[28] Kulabukhova, N., Ivashchenko, A., Tipikin, I., & Minin, I. (2019).
Self-sovereign identity for iot devices. In Computational Science and
Its Applications–ICCSA 2019: 19th International Conference, Saint
Petersburg, Russia, July 1–4, 2019, Proceedings, Part II 19 (pp. 472-
484). Springer International Publishing.

[29] Dolev, D., & Yao, A. (1983). On the security of public key protocols.
IEEE Transactions on information theory, 29(2), 198-208.

