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Abstract. The Fiat-Shamir transformation is a widely employed tech-
nique in constructing signature schemes, known as Fiat-Shamir signature
schemes (FS-SIG), derived from secure identification (ID) schemes. How-
ever, the existing security proof only takes into account classical signing
queries and does not consider superposition attacks, where the signing
oracle is quantum-accessible to the adversaries. Alagic et al. proposed a
security model called blind unforgeability (BUF, Eurocrypt’20), regarded
as a preferable notion under superposition attacks.

In this paper, we conduct a thorough security analysis of FS-SIGs in
the BUF model. First, we propose a special property for ID schemes
called quantum special honest-verifier zero-knowledge (qsHVZK), which
is stronger than classical HVZK. We prove that qsHVZK is a sufficient
property for BUF (with implicit rejection) of the resulting FS-SIG in
the quantum random oracle model (QROM). Next, we give an efficient
construction of (a weaker variant) of qsHVZK ID scheme based on the
quantum hardness of LWE problems.

To avoid enhancing the requirement of HVZK, we then progress to the
deterministic FS-SIG (DFS) for more efficient constructions. We show
that if the pseudorandom function is quantum-access-secure (QPRF),
then we can prove the BUF security of the resulting DFS only with
the requirement of the standard (multi-)HVZK in the QROM. A similar
result can be extended to the hedged version of FS-SIG.

Keywords: Fiat-Shamir transform, digital signatures, identification schemes,
superposition attacks, quantum random oracle

1 Introduction

1.1 Background

The Fiat-Shamir transformation [25] serves as a fundamental tool for convert-
ing interactive protocols into their non-interactive ones. Specifically, given a
three-round identification scheme (ID scheme), we can apply this transforma-
tion to construct a signature scheme known as the Fiat-Shamir signature scheme



(FS-SIG). This transformation incorporates a hash function H, resulting in the
scheme denoted as FS[ID,H]. More precisely, if the underlying ID scheme is secure
and honest-verifier zero-knowledge (HVZK) and if we model H as a quantum ran-
dom oracle (QRO [9]), then FS[ID,H] is existentially unforgeable under chosen
message attacks (EUF-CMA) [22,30,36,37].

Two types of security models are used in the post-quantum security analysis:
Q1 and Q2 [34] . In both settings, the adversary can execute (offline) quantum
computations. The difference is that in Q1 security, the online communications
of the adversary should be classical rather than quantum. Regarding the sig-
nature schemes, the adversary can only send classical messages to the signing
oracle before forging a signature. The EUF-CMA is of this type. The adver-
sary succeeds if it forges a signature for a fresh message that has never been
queried to the signing oracle. By contrast, in Q2 security, the adversary can
send messages in quantum states

∑
m,t αm,t |m, t〉 to the signing oracle and ob-

tain quantum signatures in response
∑

m,t αm,t |m, t⊕ Sig(sk,m; r)〉. Such an
attack, called superposition attack, could occur in many scenarios [19]. There is
a large amount of research in Q2 models on various cryptographic primitives,
such as pseudorandom functions [48], MACs [1], encryption schemes [11,14] and
signature schemes [11,15].

In the Q2 setting, defining a fresh forgery is not as natural as in Q1. We
cannot record the list of signing queries. The adversary can, for instance, send
a superposition of all the messages m ∈ M to the signing oracle with a single
quantum query. Boneh and Zhandry [11] propose the first notion in the Q2 model
for a signature scheme, called EUF-qCMA, where the adversary is required to
eventually output (q + 1) forgeries after q signing queries. However, this “plus-
one-type” notion is then considered insufficient in practice [1, 28]. For instance,
the adversary may send signing queries starting with 0 (in superpositions), and
then gain the ability to forge a signature for a message starting with 1. It suc-
cessfully forged a fresh signature, but unfortunately cannot be ruled out from
EUF-qCMA.

We usually care more about the freshness than the number of forgeries.
Recently, Alagic et al. [1] propose a preferable notion called blind unforgeability
(BUF). Informally speaking, the signing oracle holds an ϵ-subset of the message
space, say the blind region Bϵ. The signing oracle only signs the messages m 6∈ Bϵ

in superposition, and the adversary is eventually required to return a forgery for
some m∗ ∈ Bϵ. It ensures that the forgery is not contained in any signing queries
and is thus fresh. In many cases, an automated signing machine is programmed
to (or not to) only sign certain types of messages. The BUF security guarantees
that any adversary cannot forge a signature for any message that is impossible
to be signed by the signing oracle even if it is quantum-accessible.

As one of the most general and practical constructions of signature schemes,
FS-SIG requires comprehensive cryptanalysis under various attacks, not limited
to CMAs in the Q1 models. As far as we know, there is neither a concrete
superposition attack nor security proof for FS-SIG in the Q2 type. It is tempting
to ask the following question:
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Are Fiat-Shamir signature schemes still secure under superposition attacks?

1.2 Our Contributions

As a preparation work, we give fine-grained security notions on BUF, which
are natural extension from previous work. Previously, a quantum signing oracle
maps |m, t〉 to |m, t⊕ Sig(sk,m; r)〉. In [14], Carstens et al. propose a weaker
version called embedding oracle for encryption schemes, where the input register
only includes the quantum state of plaintexts and the response register is always
initialized by the all-zero state. We extend it to the signature scheme. That is, an
embedding blind signing oracle maps |m〉 |0〉t to |m, Sig(sk,m; r)〉 for m 6∈ Bϵ and
to |m,⊥〉 otherwise. We call the new notion under the embedding signing oracle
as weak blind unforgeability (wBUF). The embedding oracle frequently appears
in many quantum cases. For instance, even if the signing machine is open for
quantum queries, the initial state for computation may still be prepared by itself
and out of the control of adversaries.

In addition, we give a variant of BUF with implicit rejection (say BUF 6⊥),
which is frequently used in key encapsulations and encryptions. For the message
m in the blind region, the blind signing oracle returns a random string F(m; r)
instead of ⊥. It is equivalent to the original version when the signing oracle is
classical, but it is non-trivial for quantum settings.

Next, we try to prove BUF for FS-SIGs. Recall that to prove the EUF-CMA
for FS-SIG, the ID scheme is supposed to be post-quantum sound and honest-
verifier zero-knowledge (HVZK) [30, 36, 37]. However, an HVZK ID scheme is
not enough for BUF: it only ensures that a classical honest-verifier transcript
is zero-knowledge, but a quantum signature may contain a quantum state of
exponentially-many transcripts, which may leak information. We later give an
example of HVZK ID scheme whose security can be completely broken from
quantum transcripts3.

Thus, we need to enhance the requirement of HVZK. To fill the gap, we pro-
pose stronger variants of HVZK, called (weak) quantum special honest-verifier
zero-knowledge (wqsHVZK/qsHVZK), which remains zero-knowledge given quan-
tum transcripts of the ID scheme. We show that they are sufficient for proving
(weak) BUF with implicit rejection of FS-SIG in the QROM.

Result 1 (Informal.) If an identification scheme ID is post-quantum secure and
(weak) qsHVZK, then the resulting Fiat-Shamir signature FS[ID,H] is (weak)
BUF in the QROM.

Next, a natural question is how to construct an ID scheme with stronger
properties. We construct a weak qsHVZK ID scheme based on noisy trapdoor
claw-free function families (NTCFs), which can be based on the quantum hard-
ness of learning with errors (LWE) problem. Interestingly, NTCFs are mainly
used in constructing protocols proving quantum computing capabilities (say,
3 But it is an open question whether it implies an attack on the resulting FS-SIG.
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proof of quantumness) in previous work. To the best of our knowledge, it is the
first application related to identification and zero-knowledge.

Result 2 (Informal.) If LWE problem is hard in the post-quantum settings, then
there exists a post-quantum secure and wqsHVZK identification scheme.

Unfortunately, the construction is less efficient and we do not know how to
construct a (strong) qsHVZK ID scheme. Thus, we try to seek another solution to
achieve (strong) BUF. Note that if the signature algorithm is deterministic, then
BUF and wBUF are equivalent. Inspired by this, we then turn to deterministic
Fiat-Shamir signature scheme (DFS).

Similar to the original one, it is also necessary to enhance the requirements.
The difference is, we now only need to enhance the property of the pseudorandom
function (PRF) instead of the ID scheme, which is much easier to implement.

Result 3 (Informal.) If an identification scheme ID is post-quantum secure and
HVZK, H is a random oracle, and PRF is a quantum-access pseudorandom func-
tion, then DFS[ID,H,PRF] is (weak) BUF/BUF 6⊥ in the QROM.

Finally, we move to another variant called hedged Fiat-Shamir signature
scheme (HFS [4]), where the randomness is computed with an additional nonce.
Similarly, we prove the BUF security of HFS with standard HVZK. Furthermore,
we extend the security model to the case where the adversary can control both
the message and the nonce as in [4] but under superposition attacks, and also
give the security proof.

Result 4 (Informal.) If an identification scheme ID is post-quantum secure and
HVZK, and H and G are secure hash functions, then HFS[ID,H,G] is (weak)
BUF/BUF 6⊥ in the QROM, even in the case that the nonce is also under control
in the quantum signing queries.

Our contributions are concluded in Figure 1.

1.3 Technical Overview

How to prove the security for FS-SIG? Let us first review how to prove
EUF-CMA of FS-SIG from HVZK. First, it reduces the EUF-NMA (no message
attacks) from the soundness of the underlying ID scheme [22,37]. Next, it reduces
EUF-CMA to the EUF-NMA by simulating the signing oracle with the simulator
Sim of HVZK. Roughly, to answer a query m, the reduction generates a simulated
transcript (ã, c̃, z̃) and reprograms H(pk, ã,m) := c̃. Due to the high entropy of
ã, it is infeasible for a quantum polynomial-time (QPT) adversary to detect the
reprogramming [30].

Then, it is not hard to see that the second step does not work when the signing
oracle is quantum-accessible: the reduction now needs to generate a superposition
of transcripts (ã, c̃m, z̃m) with a common ã. Here are the problems. First, the
reduction cannot simulate transcripts with a common ã and distinct cm’s due

4



wBUF6⊥

of FS-SIG

BUF 6⊥

of FS-SIG

EUF-CMA
of FS-SIG

?

6

�
wqsHVZK

Th.3

6

LWE

Th.2

�
qsHVZK

Th.3

�
HVZK

[22, 30,36,37]

Secure
3-round

ID scheme

-
HVZK+QPRF

Th.4,5,6

-
HVZK+PRF

/
Coro.2

-
HVZK+PRF

[6] EUF-CMA
of DFS

BUF/BUF 6⊥

of DFS/HFS

Fig. 1. Sufficient properties for provable security of (variants of) FS-SIG.

to the special soundness. Second, the reduction cannot reprogram H(pk, ã,m) as
before, since the reduction cannot learn m: a measurement will cause collapse
on the quantum query, and the adversary can immediately detect it with high
probability.

To fill the gaps, we define a new and stronger variant of HVZK, called quan-
tum special honest-verifier zero-knowledge (qsHVZK), which is essentially a quan-
tum version of multi-special-HVZK [30] defined in a game-based manner de-
scribed as follows: Let Trans(sk, ·) be an oracle that takes as input c and returns
an honest transcript (a, c, z) conditioned on challenge c. There exists an efficient
simulator Sim(pk, ·) that also takes as input c and returns a transcript (ã, c, z̃).
The adversary has the negligible advantage of distinguishing oracle Sim(sk, ·)
from Trans(pk, ·) after sending multiple (but polynomially-many) queries.

Then, we extend the above definition to the quantum-accessible settings.
We show a direct (and weak) version at first. Given a quantum challenge |ϕ〉 =∑

c αc |c〉, the honest oracle Trans returns |ϕ′〉 =
∑

c αc |a, c, za,c〉, where (a, St)←
Com(sk) and za,c = Resp(sk, c, St; r) for random r. On the other hand, the sim-
ulator Sim must be a quantum algorithm, returning a simulated state

∣∣∣ϕ̃′〉. We
require that oracles Trans and Sim cannot be distinguished with polynomially-
many quantum queries. Without loss of generality, we always assume that Sim
measures a-register at the end.

Next, we can simulate the embedding signing oracle of FS[ID,H] in the QROM
equipped with Sim. Informally, given a query

∑
m αm |m〉, pick a random oracle

U mapping the message to the challenge space ChSet. (Note that a new U is
picked in each signing query.) Then, perform U on m and get

∑
m αm |cm,m〉,

where cm = U(m). Then, run Sim(pk, ·) on the c-register, we get a quantum
state indistinguishable with

∑
m αm |a, cm, za,cm ,m〉. Next, uncompute cm with

another query to U and discard c-register, we have
∑

m αm |a, za,cm ,m〉, which
is quite close to a quantum state of signatures, and a-register is a pure state and
can be measured as ã.
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To make the simulated signatures valid, we reprogram H(pk, ã,m) = cm :=
U(m) for all m ∈M. In other words, H(a,m) is syntactically reprogrammed by
U(m) after checking whether a = ã holds. Then, we use a generalized version of
reprogramming lemma [30] to show that the reprogramming operation cannot
be detected even if an exponential number of records are reprogrammed.

However, we only simulated the embedding oracle. For a general one, we need
to map |m, t1, t2〉 to |m, t1 ⊕ a, t2 ⊕ za,cm〉. If we simply perform an xor opera-
tion to the response state, we then have

∑
m,t1,t2

αm |m, t1 ⊕ a, t2 ⊕ za,cm , za,cm〉.
Here is the problem: since the third and fourth register are entangled, we cannot
discard the fourth register as “the garbage”. We cannot uncompute it either: Sim
is obviously a probabilistic algorithm and we cannot compute za,cm twice with
the same a.

Thus, we turn back to the definition of new (and stronger) HVZK. Now,
we redefine Trans as follows: Given |ϕ〉 =

∑
c,z αc,z |c, z〉, it returns |ϕ′〉 =∑

c,z αc,z |a, c, z ⊕ za,c〉. Denote the previous version by emTrans instead. It is
a natural extension to the non-embedding one. If it still can be simulated by
Sim, we can use the above approach to simulate the non-embedding oracle with-
out additional xor operations.

Finally, the adversary should return a forgery (m∗, (a∗, z∗)) after the queries.
We desire that H(pk, a∗,m∗) has not been reprogrammed above. (Otherwise, it
is not a valid forgery for the original FS[ID,H].) Thus, we carefully reprogram
H(pk, ã,m) only for m 6∈ Bϵ and finish the reduction from BUF to EUF-NMA.
Then, since EUF-NMA can be reduced to the security of the underlying ID
scheme in previous work, we complete the proof.

How to construct a wqsHVZK ID scheme? We then try to construct a
wqsHVZK ID scheme from known primitives. We introduce the trapdoor claw-
free function family (TCF) as a building block. Roughly, a (non-noisy) trapdoor
claw-free function implies fb : {0, 1}λ 7→ {0, 1}λ for b ∈ {0, 1} and a trapdoor
function f−1b such that: (1) f0(·) and f1(·) are bijective; (2) it is hard to find a
claw (x0, x1) such that f0(x0) = f1(x1), and (3) one can inverse f0(·) and f1(·)
using the trapdoor f−1b .

Then, a TCF implies a wqsHVZK ID scheme. We give a simple example with
1-bit challenge (and thus 1-bit soundness) and it can be simply extended to a full
version by picking multiple commitments. The public key and the secret key are
f and f−1, respectively. The commitment contains a random y

$← {0, 1}λ. Given
the challenge c, the response is x = f−1c (y). The verification algorithm returns
1 iff fc(x) = y. Previous work [37] shows that the soundness of an ID scheme
can be proven from two properties: 2-soundness and strict soundness [45]. The
2-soundness can be reduced to the claw-free property: two responses for a same
y and different c immediately implies a claw. The strict soundness is implied
from the fact that fb(·) is injective.

We next prove the (perfect) wqsHVZK property. Given a quantum challenge
|ϕ〉 = α |0〉+ β |1〉, we are supposed to output a uniformly random y and |ϕ′〉 =
α |0, x0〉 + β |1, x1〉 such that f0(x0) = f1(x1) = y. Let λ be the length of x.
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We can make it by generating a uniform state of |x〉, say |ϕx〉 =
∑

x 2
−λ/2 |x〉,

computing f on |ϕ〉 ⊗ |ϕx〉, and finally measuring the value. The state before
measurement can be written as∑

x

α

2λ/2
|0, x, f0(x)〉+

β

2λ/2
|1, x, f1(x)〉

=
∑
y

α

2λ/2

∣∣0, f−10 (y), y
〉
+

β

2λ/2

∣∣1, f−11 (y), y
〉
.

After the measurement on y-register, the result is y∗ ∈ {0, 1}λ with prob-
ability 2−λ(α2 + β2) = 2−λ and the final state is thus α

∣∣0, f−10 (y∗), y∗
〉
+

β
∣∣1, f−11 (y∗), y∗

〉
, which are the same as the honest response.

As far as we know, only a relaxation of TCF, say noisy TCF [12,13], can be
constructed based on post-quantum assumptions, such as the quantum hardness
of learning with error (LWE) problem [41]. In the formal version, we replace the
TCF with a noisy TCF, and the above properties still hold.

How to prove BUF for the deterministic FS-SIG? We then turn to the
deterministic FS-SIG, where the randomness is replaced by PRF(k,m) with a
pseudorandom function PRF. In the sense of EUF-CMA, the security of FS[ID,H]
immediately implies that of the deterministic one (DFS[ID,H,PRF], or simply
DFS) assuming that PRF is post-quantum secure [8]. However, the cases are
different in the sense of BUF. A quantum signature of DFS includes a mixed
state of the commitment a, while that of FS-SIG includes a pure commitment.
It is, interestingly, simpler to simulate the signing oracle in a reduction.

Again, we need to enhance the requirement for proving BUF compared to
EUF-CMA: a post-quantum secure PRF is not enough, since PRF runs with
quantum states in signing queries but post-quantum security only ensure the
indistinguishability with classical queries. A superposition attack on PRF may
immediately breaks the resulting DFS (see Proposition 2). A natural solution is
to instead use a quantum-access-secure one, say QPRF [48].

Then, the resulting DFS[ID,H,PRF] can be proven BUF, where ID is only re-
quired to be standard multi-HVZK. The proof sketch is history-free following the
ideas of [11, 36]. Let U′ be a random oracle. To simulate the (non-embedding)
signing oracle, the reduction computes (am, cm, zm) = Sim(pk;U′(m)) on m-
register and XORs (am, cm) to the response register. Then, reprogram H(pk, a,m)
as follows: compute (am, cm, zm) = Sim(pk;U′(m)) and return cm if a = am.

There is still a problem. Multi-HVZK only guarantees the indistinguishabil-
ity when polynomial number of transcripts are given, while a superposition of
(am, cm, zm) = Sim(pk;U′(m)) may contain an exponential number of them. To
solve this, we use the small-range distribution lemma [48] and replace U′ with a
random oracle mapping to a polynomial-size space, and the adversary cannot tell
the different. Finally, if we only reprogram H condition that m 6∈ Bϵ, a forgery
from A then implies a forgery of FS[ID,H].
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Extension to hedged Fiat-Shamir signatures. The hedged Fiat-Shamir
signature (HFS, [4]) is a variant of DFS. The randomness of the signing algorithm
is replaced with G(sk,m, n), where G is modeled as a QRO, sk is the secret key
and n is a nonce. If FS[ID,H] is EUF-CMA, then the hedged version HFS[ID,H,G]
is secure even if the nonce n is also controlled by the adversary [4, 30].

Thus, two security models should be considered for HFS: the adversary can
send quantum message queries or message-and-nonce queries. Note that the pre-
vious approaches in CMA model [4,30] cannot be directly extended to our case:
they need to check whether a message-nonce pair is queried twice, which is triv-
ial in the quantum-access setting. We again use the history-free approach to fill
the gap. As a price, the security bound in the second model is looser than the
first one.

1.4 Related Work

Fiat-Shamir Signature schemes. The security of Fiat-Shamir signatures can
be proven in two steps. First, EUF-NMA can be reduced to the special soundness
in the ROM [7] by the forking lemma [40]. Next, EUF-CMA can be reduced to
EUF-NMA when the underlying ID scheme is HVZK. The first step fails in the
quantum setting due to the hardness of quantum rewinding [3]. A series of work
is done to analyze the security of Fiat-Shamir transformation [21–23, 30, 36, 37]
in the QROM.

Superposition Attacks. Superposition attacks are first considered for pseu-
dorandom functions [18,48], and then extended to MACs [1,10,28,31,44], block
ciphers [27], one-way functions [32], public-key encryption schemes [11, 17] and
signatures [1,11,16]. As for signature schemes, Lamport’s scheme [1], Winternitz
scheme [39] and GPV signatures based on the QSIS assumption [16] are proven
secure in the BUF model. Lamport’s scheme, Merkle’s scheme, deterministic
GPV [11] and variant of SPHINCS+ [47] are proven secure in the EUF model.

Very recently, Xagawa [46] proves the security of DFS under superposition at-
tacks in concurrent work with a similar approach. His proof focuses on memory-
tight reductions, and thus requires the ID scheme to be lossy and statistical
HVZK, while our proof only requires computational multi-HVZK.

De-randomized and Hedged Signatures. De-randomization of a signature
scheme can avoid the risk of randomness failures [6,8], but arise the vulnerability
under fault attacks. A hedged construction is general to avoid such attacks. The
security notion of the hedged Fiat-Shamir signatures is formally defined in [4] in
ROM, and extended to QROM in [30].

2 Security Notions under Superposition Attacks

Blind Unforgeability [1] is a preferable security notion for signature schemes un-
der superposition attacks [16,39]. Let ϵλ ∈ (0, 1). Define a probabilistic algorithm
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Blind(Mλ, ϵλ) that outputs a subset of Mλ, say Bϵ, such that each m ∈ Mλ

is placed in Bϵ independently with probability ϵλ. Then, define the quantum-
accessible blind signing oracle as follows. Let Rλ be the randomness space of
SigO. In each query, it randomly picks r ←Rλ

4, and maps

BSigO : |m, t〉 7→ |m, t⊕BϵSig(sk,m; r)〉 ,

where

BϵSig(sk,m; r) :=

{
⊥ if m ∈ Bϵ

Sig(sk,m; r) if m 6∈ Bϵ

.

Additionally, we define an embedding version called emBSigO that maps

emBSigO : |m〉 |0〉t → |m,BϵSig(sk,m; r)〉 .

Then, we define BUF with implicit rejection. Here, the signing oracle (pri-
vately) picks a random oracle F mapping to the signature space and lets

BϵSig6⊥(sk,m; r) :=

{
F(m, r) if m ∈ Bϵ

Sig(sk,m; r) if m 6∈ Bϵ

.

BSigO6⊥ and emBSigO 6⊥ are similarly defined by replacing BϵSig with BϵSig6⊥.

Definition 1. Let Γ = (Gen, Sig,Ver) be a signature scheme and ϵλ > 0. Let
∗ ∈ {EUF-NMA,EUF-CMA, ϵλ-BUF}. For an adversary A, let Adv∗Γ (λ,A) :=
Pr[Exp∗Γ (λ,A)], defined in Figure 2. We say Γ is ∗ if for any QPT adversary A,
there exists a negligible function negl such that Adv∗Γ (λ,A) ≤ negl(λ).

In particular, if for any QPT adversary A, there exists a negligible function
negl such that Advϵλ-BUF

Γ (λ,A) ≤ negl(λ) holds for any ϵλ, we omit ϵλ and simply
say that Γ is BUF5.

Additionally, we say it is weak BUF (wBUF)/BUF 6⊥/wBUF 6⊥ on the same
condition except that BSigO is replaced with emBSigO/BSigO6⊥/emBSigO 6⊥.

Remark 1. WhenMλ is exponentially large, it is inefficient to pick Bϵ fromMλ

and store it. To solve this, we can simulate this step by using a random function
F′ :Mλ 7→ [2λ] and define m ∈ Bϵ ⇔ F′(m)/2λ ≤ ϵλ. F′ can be instantiated by
a pseudorandom function or a random oracle.

4 The reason why the randomness is chosen globally for all messages in superposition
in a quantum signing oracle has been discussed in [11], Section 3.

5 If ϵλ ≥ 1 or negligibly close to 0 or 1, then all QPT adversary can only succeed in
ϵλ-BUF experiment with negligible probability regardless of whether the scheme is
secure. Even so, we do not place such restrictions on ϵλ, as such “trivial experiments”
does not contradict our security notion.
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Exp∗
Γ (λ,A) SigO(m)

(pk, sk)← Gen(1λ) σ ← SigO(sk,m)
L = ∅ L = L ∪ {m}
(m∗, σ∗)← A|O〉(pk) //∗ = EUF-NMA return σ

(m∗, σ∗)← ASigO,|O〉(pk) //∗ = EUF-CMA
return VerO(pk,m∗, σ∗) = 1 ∧m∗ 6∈ L

Expϵλ-BUF
Γ (λ,A) BSigO(m)

(pk, sk)← Gen(1λ) r ←Rλ //Global for all m
Bϵ ← Blind(Mλ, ϵλ) If m ∈ Bϵ return ⊥
(m∗, σ∗)← A|BSigO〉,|O〉(pk) σ = SigO(sk,m; r)

return VerO(pk,m∗, σ∗) = 1 ∧m∗ ∈ Bϵ return σ

Fig. 2. Security experiment of a signature scheme Γ = (Gen, Sig,Ver).

In the following, we omit the security parameter λ if it is clearly known.
With a deterministic signing algorithm, BUF and wBUF are equivalent since

BSigO can be simulated by a query to emBigO, an xor operation, and another
query to emBigO for uncomputation.

Corollary 1. A deterministic signature scheme is ϵ-BUF if and only if it is
ϵ-wBUF.

3 Blind Unforgeability of Fiat-Shamir Signature Schemes

In this section, we analyze the sufficient properties for proving the blind unforge-
ability of Fiat-Shamir signature schemes.

3.1 Quantum Special Honest-Verifier Zero Knowledge

As a preparation work, we propose a stronger variant of HVZK for identification
(ID) schemes. (See details in Appendix A.3 about the definitions and standard
properties of ID schemes.)

Let ID = (IGen,Com,Resp, IVer) be an ID scheme. We define the quantum-
accessible transcript oracle Trans(sk, ·) as follows: Take as input a quantum state
of challenge and response

∑
c,z αc,z |c, z〉. It runs (a, St)← Com(sk) and returns

|a〉⊗
∑

c,z αc,z |c, z ⊕ Resp(sk, c, St; r)〉 6, which can be instantiated by a quantum
circuit running ID. We say ID is quantum special honest-verifier zero-knowledge if
there exists a quantum simulator Sim(pk, ·), whose behavior is indistinguishable
with Trans(sk).
6 The query state may be entangled with some local states from the sender. In this case,

we assume that the local states are also sent to the oracle and returned unchanged,
and omit the local states for simplicity.
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Remark 2. Here, the input state does not explicitly include a-register. It is natu-
ral to consider a more general version, say Trans′, that maps

∑
a,c,z αa,c,z |a, c, z〉

to
∑

a,c,z αa,c,z |a⊕ a′, c, z ⊕ z′c〉, where (a′, c, z′c) are transcripts in superposition.
Indeed, Trans immediately implies Trans′: Treat a-register as a part of the local
state and send

∑
a,c,z αa,c,z |a, c, z〉 to Trans. Obtain |a′〉⊗

∑
a,c,z αa,c,z |a, c, z ⊕ z′c〉

with unchanged a-register. Then, xor a′-register to a-register and measure and
discard a′-register. Also, Trans′ implies Trans by adding |0〉a to the input.

In addition, we define embedding transcript oracle, say emTrans, which is the
same as Trans except that the z-register of the input is always all-zero state. In
other words, it maps

∑
c αc |c〉 |0〉z to |a〉 ⊗

∑
c αc |c,Resp(sk, c, St; r)〉.

Definition 2. (Computationally/Statistically Quantum Special Honest Verifier
Zero-Knowledge (qsHVZK)). We say that ID is q-time computationally/statistically-
qsHVZK if there exists a QPT algorithm Sim such that for (pk, sk) ← IGen(1λ)
and all QPT/unbounded adversary A, there exists a negligible function ε such
that

Advq-qsHVZK
ID,Sim (A) :=

∣∣Pr[ATrans(sk,·)(pk)]− Pr[ASim(pk,·)(pk)]
∣∣ ≤ ε(λ),

where q denotes the maximum number of quantum queries from A. 7 In addi-
tion, we say it is q-time computationally/statistically weak qsHVZK on the same
condition except that Trans is replaced with emTrans.

Next, we show that qsHVZK is strictly stronger than the classical HVZK by
constructing a counterexample as follows.

Construction 1 Let ID = (IGen,Com,Resp, IVer) be a secure identification scheme
with challenge space ChSet of size N = 2l for some integer l. Let G be a quan-
tum random oracle mapping to the randomness of IGen and GenPrime(n) be the
algorithm that randomly picks a prime in [n/2, n). Let PRF be a pseudorandom
function mapping ChSet to {0, 1}λ. Construct ID′ as follows:

– IGen(1λ): p← GenPrime(
√
N), s = G(p), k $← {0, 1}κ, (pk, sk)← IGen(1λ; s).

Let sk′ = (sk, k, p). Return (pk, sk′).
– Com′(sk′): Parse sk′ = (sk, k, p). Return Com(sk).
– Resp′(sk′, c, St): Parse sk′ = (sk, k, p). d = PRF(k, c mod p). z ← Resp(sk, c, St).

Return z′ := (z, d).
– IVer′(pk, a, c, z′): Parse z′ = (z, d). Return IVer(pk, a, c, z).

Theorem 1. If ID is computationally multi-HVZK, then ID′ is secure and com-
putationally multi-HVZK, but not qsHVZK.

The proof sketch is similar to the counterexample in [11]. We only show
the sketch here and delay the formal proof in Appendix C.1. Compared with
7 Note that the challenge may contain some c 6∈ ChSet, since |ChSet| may not be a

power of 2 in some cases.
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ID, the transcripts of ID′ additionally include a pseudorandom value d with a
secret period p, the trapdoor of the keys. Suppose G is a classical random oracle,
and LG is the list of queries from the adversary. We consider the following two
cases: (1) If p 6∈ LG, then (pk, sk)← IGen(1λ;G(p)) is perfectly indistinguishable
with (pk, sk) ← IGen(1λ). A simulator can generate simulated transcripts as
before with an additional d. (2) If p ∈ LG, the simulation will be problematic.
However, it happens with negligible probability, since the only information about
p in the adversary’s view (before sending p to G) is that p is the secret period
of the pseudorandom function, and only polynomially-many input-output pairs
of the function are given from the transcripts. Assuming PRF is perfect, then p
is information-theoretically hidden and thus infeasible to be included in LG. By
Lemma 5, the proof can be extended to a quantum random oracle G.

On the other hand, if Trans is quantum-accessible, we can then construct an
oracle that only computes d(c) := PRF(k, c mod p) in a quantum manner. By
period-finding algorithm, we can retrieve p and then the secret key. Thus, Trans
is never zero-knowledge and cannot be simulated due to the soundness.

3.2 A secure wqsHVZK identification scheme from noisy trapdoor
claw-free function families

In this section, we show an example of a wqsHVZK identification scheme (with
overwhelming completeness) assuming the existence of noisy trapdoor claw-free
function families (NTCFs, see Appendix A.5), which can be implied from the
quantum hardness of (Ring-)LWE [12,13].

Construction 2 Let F be a NTCF. ID = (IGen,Com,Resp, IVer) is constructed
as follows:

– IGen(1λ): (k, tk)← FuncGen(1λ). pk := k. sk := tk. Return (pk, sk).
– Com(sk): For i ∈ [λ], x

(0)
i

$← X . Pick yi ← fk,0(x
(0)
i ) using sk. Return

((y1, ..., yλ), (y1, ..., yλ)).
– Resp(sk, c, St): Parse c = (c1, ..., cλ) ∈ {0, 1}λ and St = (y1, ..., yλ). For

i ∈ [λ], xi = Inv(sk, ci, yi). Return x = (x1, ..., xλ).
– IVer(pk, a, c, z): Parse a = (y1, ..., yλ), c = (c1, ..., cλ) and z = (x1, ..., xλ).

Return 1 iff Chk(k, ci, xi, yi) = 1 for each i ∈ [λ].

Theorem 2. ID in Construction 2 has overwhelming completeness, post-quantum
soundness and statistical weak qsHVZK.

We delay the proof in Appendix C.2.

3.3 Fiat-Shamir Signature Schemes

Construction 3 Let ID = (IGen,Com,Resp, IVer) be an identification scheme
and H be a hash function mapping to ChSet, the challenge space of ID. The
Fiat-Shamir signature FS[ID,H] is constructed as follows.

12



– FS.Gen(1λ) : (pk, sk)← IGen(1λ). sk′ := (pk, sk). Return (pk, sk′).
– FS.Sig(sk′,m) : Parse sk′ = (pk, sk). (a, St) ← Com(sk). c := H(pk, a,m).

z ← Resp(sk, c, St). Return (a, z).
– FS.Ver(pk,m, (a, z)). Return IVer(pk, a,H(pk, a,m), z).

If ID has perfect/overwhelming completeness, then the resulting FS[ID,H]
is perfect/overwhelming correct. Then, the following lemmas imply that post-
quantum security and HVZK of an identification scheme are sufficient for proving
the EUF-CMA security of the resulting Fiat-Shamir signature schemes.

Lemma 1. [22,37] If ID is post-quantum sound and H is modeled as a quantum
random oracle, then FS[ID,H] is EUF-NMA.

Next, we show that (weak) qsHVZK is sufficient for proving the (weak) BUF 6⊥
of FS-SIG. Since EUF-NMA security of FS-SIG has been proven in Lemma 1.
The remaining work is reducing BUF 6⊥ to EUF-NMA with qsHVZK.

Theorem 3. If ID is post-quantum sound, computationally qsHVZK, and has γ-
bit min-entropy, and H is modeled as a quantum random oracle, then FS[ID,H]
is BUF with qs signing queries. Formally, let ϵ ∈ (0, 1). Assume there exists a
quantum algorithm A that breaks ϵ-BUF security of FS[ID,H] with qs quantum
signing queries and qh quantum hash queries. Then, there exists (1) a quantum
adversary B breaking EUF-NMA of FS[ID,H] with qh queries to H, (qs + 2qh)
queries to its own quantum random oracle, and (2) a quantum adversary C break-
ing qs-qsHVZK with regard to the qsHVZK-simulator Sim such that

Advϵ-BUF 6⊥

FS[ID,H](A) ≤ AdvEUF-NMA
FS[ID,H] (B) + Advqs-qsHVZK

ID,Sim (C) + q2s · 2−γ+1 +
3

2
qs
√
qh2−γ ,

where Time(B) ≈ Time(A) +Θ(qs) and Time(C) ≈ Time(A).
In addition, the above statement also holds if BUF6⊥ and qsHVZK are replaced

with wBUF 6⊥ and wqsHVZK, respectively.

We delay the proof in Appendix C.3.

4 Blind Unforgeability of Deterministic Fiat-Shamir
Signature Schemes

In this section, we analyze the BUF security of the deterministic Fiat-Shamir sig-
nature schemes. Here, we only focus on BUF instead of wBUF/BUF 6⊥/wBUF6⊥,
since the proof can be simply extended to other versions.

4.1 Deterministic Fiat-Shamir Signatures

Construction 4 Let ID be an identification scheme and PRF be a pseudorandom
function mapping to the randomness space of ID with key space {0, 1}κ. The
deterministic Fiat-Shamir signature scheme DFS[ID,H,PRF] is constructed as
follows:

13



– DFS.Gen(1λ) : k $← {0, 1}κ. (pk, sk) ← IGen(1λ). sk′ := (pk, sk, k). Return
(pk, sk′).

– DFS.Sig(sk′,m) : Parse sk′ = (pk, sk, k). (a, St) := Com(sk;PRF(k, 0||m)).
c := H(pk, a,m). z := Resp(sk, c, St;PRF(k, 1||m)). Return (a, z)

– DFS.Ver(pk,m, (a, z)). Return IVer(pk, a,H(pk, a,m), z).

Lemma 2. ( [6]) If FS[ID,H] is EUF-CMA and PRF is a pseudorandom func-
tion, then DFS[ID,H,PRF] is also EUF-CMA.

We give a separating example of DFS showing that the requirements for
EUF-CMA is not sufficient for BUF. Here, the PRF is classical-query-secure but
not QPRF. The resulting DFS is immediately EUF-CMA from Lemma 2, but
not BUF.

Corollary 2. Assume pseudorandom functions exist. Then, there exists a pseu-
dorandom function PRF′ such that for any k-special-sound ID, DFS[ID,H,PRF′]
is not BUF in the QROM.

Proof. The proof is similar to Theorem 1, so we only show the sketch. We first
consider the signing oracle without a blind region. Let PRF be a post-quantum
pseudorandom function. Define PRF′((k, p),m) := PRF(k,m mod p) for some
large prime p. Then, PRF′ is pseudorandom with secret period p. Fix the keys
and denote (am, Stm) := Com(sk;PRF′(k,m)) and f(m) := am. Then f(m) can
be calculated by querying m to the signing oracle. Note that f also has period
p, which can be retrieved by the period-finding algorithm in Lemma 8.

Then, for i ∈ [k] and some m0 ∈ M, query mi := m0 + ip with pure state
to the signing oracle, and obtains (ami

, zmi
), where ami

are equal to some a for
each i. Since H is modeled as a random oracle, cmi

:= H(pk, a, ip) are distinct
with overwhelming probability for each i. The adversary can run the extractor
of special soundness to extract the secret key of ID, and then be able to forge
signatures for any messages. From Lemma 9, the attack can be extended to the
case when the signing oracle is partially blind for some polynomial ϵ, and thus
break BUF.

It is natural to enhance the requirement of PRF to QPRF to avoid the above
attack. Next, we show that QPRF is sufficient for provable security.

4.2 Provable Security

Theorem 4. Let ID be a post-quantum sound identification scheme that is multi-
HVZK with distinguisher’s advantage at most εHVZK with power τ , and PRF be
a quantum-accessible pseudorandom function. Assume there exists an adversary
A that can break the BUF security of DFS[ID,H,PRF] with qs queries to the
signing oracle and qh queries to H. Then, there exist (1) a quantum adversary
B breaking EUF-NMA of FS[ID,H′] with (qh + 1) queries to the quantum oracle
H′ and (2qs + 3qh) queries to its own quantum random oracle, (3) a quantum
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distinguisher D breaking Ind-qPRF of PRF with 2qs quantum queries and (4) a
negligible function εHVZK such that for any ϵ,

Advϵ-BUF
DFS[ID,H,PRF](A) ≤ 2

√
AdvEUF-NMA

FS[ID,H′] (B) + 54
(
q3τεHVZK

) 1
τ+2 + 2AdvInd-qPRF

PRF (D),
(1)

where Time(B) ≈ Time(A) +Θ(q), Time(D) ≈ Time(A) and q = qs + qh.

We delay the proof in Appendix C.4.

5 Blind Unforgeability of Hedged Fiat-Shamir Signature
Schemes

In this section, we analyze the security for hedged Fiat-Shamir signature schemes,
where the signing algorithm additionally takes a random nonce n as the input.

5.1 Hedged Fiat-Shamir Signature Schemes and New Security
Notions

Construction 5 Let ID be an identification scheme, H and G be random oracles
mapping to the challenge and the randomness space of ID respectively. The hedged
Fiat-Shamir signature scheme HFS[ID,H,G] is constructed as follows:

– HFS.Gen(1λ) : (pk, sk)← IGen(1λ). sk′ := (pk, sk). Return (pk, sk′).
– HFS.Sig(sk′,m, n) : Parse sk′ = (pk, sk). (a, St) := Com(sk;G(sk, 0||m,n)).

c := H(pk, a,m). z := Resp(sk, c, St;G(sk, 1||m,n)). Return (a, z).
– HFS.Ver(pk,m, (a, z)). Return IVer(pk, a,H(pk, a,m), z).

Next, we give fine-grained security notions for HFS against superposition
attacks. Aranha et al [4] consider a stronger adversary than CMA that can also
control the nonce in the (classical) signing queries. We extend this model to the
superposition attack case, where the message and the nonce are both quantum-
accessible. To separate the two cases, we call the previous BUF security BUF-
qCMA, where only the message can be controlled. For the case that the nonce
is also controlled (in a quantum-accessible manner), we call it BUF-qCNMA.

Definition 3. Let HFS[ID,H,G] be depicted in Construction 5 and experiments
be depicted in Figure 3. Define Advϵ-BUF-qCMA

HFS[ID,H,G] (A) and Advϵ-BUF-qCNMA
HFS[ID,H,G] (A) as in

Definition 1. We say HFS[ID,H,G] is blind unforgeable under quantum cho-
sen message attacks (BUF-qCMA) or blind unforgeable under quantum chosen
nonce and message attacks (BUF-qCNMA) if for any polynomial adversary A
and any ϵ, there exists a negligible function negl such that Advϵ-BUF-qCMA

HFS[ID,H,G] (A) or
Advϵ-BUF-qCNMA

HFS[ID,H,G] (A) is upper-bounded by negl(λ).
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Expϵ-BUF-qCMA
HFS[ID,H,G] (λ,A) Expϵ-BUF-qCNMA

HFS[ID,H,G] (λ,A) BSigO(m) N-BSigO(m,n)

(pk, sk)← Gen(1λ) n
$← N //Global for all m

Bϵ ← Blind(Mλ, ϵ) If m ∈ Bϵ return ⊥

(m∗, a∗, z∗)← A|BSigO〉,|H〉,|G〉(pk) (am, Stm) = Com(sk;G(sk, 0||m,n))

(m∗, a∗, z∗)← A|N-BSigO〉,|H〉,|G〉(pk) cm = H(pk, am,m)

c∗ = H(pk, a∗,m∗) zm = Resp(sk, cm, Stm;G(sk, 1||m,n))
return IVer(pk, a∗, c∗, z∗) = 1 ∧m∗ ∈ Bϵ return (am, zm)

Fig. 3. Blind Unforgeablity Experiment of HFS[ID,H,G].

5.2 Provable Security

Theorem 5. Let ID be a secure identification scheme that is multi-HVZK with
advantage power τ , and has γ-bit min-entropy. Let ϵ ∈ (0, 1). Assume there
exists an adversary A that can break BUF-qCMA security of HFS[ID,H,G] with
qs queries to the signing oracle, qh queries to H, and qG queries to G. Then, there
exist (1) a quantum adversary B breaking EUF-NMA of FS[ID,H′] with (qh +1)
queries to the quantum oracle H′ and O(qsqh) queries to its own quantum random
oracle and (2) a negligible function εHVZK such that

Advϵ-BUF-qCMA
HFS[ID,H,G] (A) ≤ min

{
8(qs+1)2ϵ,

(
2qG√

ϵ
+1

)(
2
√

AdvEUF-NMA
FS[ID,H′] (B)+negl

)1/2}
,

(2)
where negl = q2s

2κ + 11qsq
3/2

2γ/2 + 54
(
q3τεHVZK

) 1
τ+2 , Time(B) ≈ Time(A) + Θ(qsqh)

and q = 2qs + qh.

Remark 3. If we replace G(sk, ·) with G(k, ·) in the hedged construction, where
k

$← {0, 1}κ′ be an additional part of the secret key (which is essentially the
construction in [6]). From Lemma 2.2 in [42], the left-hand side of Equation (2)
can be bounded by 2

√
AdvEUF-NMA

FS[ID,H′] (B) + 2qs · 2−κ
′/2 + negl (independent to qG),

a tighter bound.

Theorem 6. Let ID be a secure identification scheme that is multi-HVZK with
advantage power τ , and has γ-bit min-entropy. Let ϵ ∈ (0, 1). Assume there
exists an adversary A that can break BUF-qCNMA security of HFS[ID,H,G] with
probability pA and with qs queries to the signing oracle, qh queries to H, and qG
queries to G. Then, there exist (1) a quantum adversary B breaking EUF-NMA
of FS[ID,H′] with (qh + 1) queries to the quantum oracle H′ and O(q4) queries
to its own quantum random oracle and (2) a negligible function εHVZK such that

Advϵ-BUF-qCNMA
HFS[ID,H,G] (A) ≤ min

{
8(qs+1)2ϵ,

(
2qG√

ϵ
+1

)(
2
√

AdvEUF-NMA
FS[ID,H′] (B)+negl

)1/2}
,

(3)
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where negl = 34q9/4

2γ/4 + 54
(
q6τεHVZK

) 1
2τ+2 , Time(B) ≈ Time(A) + Θ(q4/pA) and

q = 2qs + qh.

The proof sketch is similar to that of Theorem 4. We delay the proof in
Appendix C.5 and C.6.

6 Conclusion and Open Questions

In this paper, we give comprehensive cryptanalysis on BUF security of (common
variants of) FS-SIG. There are still open questions and we believe they are
interesting enough for further research.

– Fiat-Shamir with Aborts. Fiat-Shamir with aborts (FSwBA) [38] is a
variant of Fiat-Shamir transformation from ID schemes with polynomial
completeness. Recent work [5,20] fixes a flaw in the security proof of FSwBA
in [36]. Note that the proof of Theorem 4,5,6 for DFS/HFS in this paper use
a similar approach as in [36], the similar problem also appears in FSwBA.
It is an open question whether our results can be extended to FSwBA.

– Practical Superposition Attacks. Although we explain the hardness of
proving BUF for FS-SIGs from the standard requirements, it is still an open
question whether superposition attacks can be more powerful than classical
CMAs for practical schemes, such as lattice-based FS-SIGs.

– Construction of qsHVZK. We only attempt to construct a weak qsHVZK
scheme and it is not as efficient as the practical ones. It is an open question
that whether we can construct a more practical ID scheme with (weak)
qsHVZK. It is also interesting to observe whether practical lattice-based ID
schemes can be proven qsHVZK.
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A Preliminaries

A.1 Notations

For integer n ≥ 1, [n] denotes the set {1, ..., n}. For a set S, |S| denotes the
cardinality of S, and x

$← S means that x is uniformly picked from S. We
say f : N 7→ R is a negligible function if for every constant C, there exists
NC ∈ N such that f(n) < n−C holds for any n > NC . Let D1, D2 be two
distributions. Define the statistical distance between D1 and D2 as ∆(D1, D2) =
1
2 maxx

∣∣Pr[x← D1]− Pr[x← D2]
∣∣.

Let Of be the oracle computing (classical) function f : {0, 1}m 7→ {0, 1}n,
we say Of is quantum-accessible, say |Of 〉, if Of behaves as an unitary operator
Uf that maps a (m + n)-qubit

∑
m,t αm,t |m, t〉 to

∑
m,t αm,t |m, t⊕ f(m)〉. In

particular, if H : X 7→ Y is a function modeled as a random oracle, then |H〉 is
the corresponding quantum random oracle that maps |x, y〉 to |x, y ⊕ H(x)〉. In
particular, we assume that any quantum register (adaptively) has a base denoted
by the error symbol ⊥.

Let M be a classical polynomial-time algorithm with input space X, random-
ness space R, and output space Y . We write y = M(x; r) indicating that y is the
output of M with input x ∈ X and randomness r ∈ R. We say OM is the oracle
running M: (1) takes as input x; (2) picks r

$← R and (3) returns M(x; r). The
quantum-accessible OM, say |OM〉, runs as follows: (1) picks r

$← R, (2) takes as
input |ϕ〉 =

∑
x,t αx,t |x, t〉 and (3) returns |ϕ′〉 =

∑
x,t αx,t |x, t⊕M(x; r)〉. Let

M be an algorithm that outputs a bit, we simply write Pr[M⇒ 1] as Pr[M].
For a density function f on domain X, the support of f is denoted by

SUPP(f) := {x : f(x) > 0}. For two density functions f1 and f2 with the same
domain X, the Hellinger distance between f1 and f2 is denoted by H2(f1, f2) =
1−

∑
x∈X

√
f1(x)f2(x).

A.2 Pseudorandom Functions

Definition 4. ( [48]) Let PRF : K×{0, 1}n 7→ {0, 1}λ, where K is the key space.
Let F : {F : {0, 1}n 7→ {0, 1}λ} be the function family mapping {0, 1}n to {0, 1}λ.
Let A be a quantum polynomial-time (QPT) adversary. Define

AdvInd-PRF
PRF (A) :=

∣∣Pr [APRF(k,·)(1λ)|k $← K
]
− Pr

[
AF(·)(1λ)|F $← F

]∣∣,
and

AdvInd-qPRF
PRF (A) :=

∣∣Pr [A|PRF(k,·)〉(1λ)|k $← K
]
− Pr

[
A|F(·)〉(1λ)|F $← F

]∣∣.
We say PRF is a pseudorandom function (PRF) if for all QPT adversary

A, there exists a negligible function negl such that AdvInd-PRF
PRF (A) ≤ negl(λ). Ad-

ditionally, if AdvInd-qPRF
PRF (A) ≤ negl(λ), we also say PRF is an indistinguishable

quantum pseudorandom function (Ind-qPRF), or in short QPRF.
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A.3 Identification Schemes

Definition 5. An identification scheme ID consists of four algorithms IGen,
Com, Resp, and IVer:

– IGen(1λ) takes as input the security parameter and outputs a key pair (pk, sk).
We assume that pk defines a (samplable) challenge space ChSet.

– Com(sk) takes as input a secret key sk and output a commitment a and a
state St.

– Resp(sk, c, St) takes as input a secret key sk, challenge c and a state St. It
outputs a response z.

– IVer(pk, a, c, z) takes as input a public key pk, a commitment a, a challenge
c and a response z. It outputs a bit b ∈ {0, 1}.

The corresponding canonical identification protocol between a prover P and a
verifier V runs as follows. (pk, sk) ← IGen(1λ). P and V respectively holds sk
and pk. First, P runs (a, St) ← Com(sk) and sends a to V. Then, V randomly
picks c

$← ChSet and sends c to P. P runs z ← Resp(sk, c, St) and sends z to
V. Finally, V runs b = IVer(pk, a, c, z) and returns b. We say (a, c, z) in the
communication between P and V is a transcript of ID, and say it is a valid
transcript for pk if IVer(pk, a, c, z) = 1.

In this paper, we always require a secure ID be (perfectly) complete and
post-quantum sound:

– Completeness: For (pk, sk)← IGen(1λ), (a, St)← Com(sk), and z ← Resp(sk, c, St).
If c ∈ ChSet, it holds that IVer(pk, a, c, z) = 1. Otherwise, z = ⊥ and
IVer(pk, a, c, z) = 0. We say it has overwhelming completeness if IVer(pk, a, c, z) =
0 holds with negligible probability for some c, where the probability is taken
over the randomness of IGen, Com and Resp.

– Post-quantum soundness: DenoteA = (A1,A2) as follows. (pk, sk)← IGen(1λ).
(a, |ϕ〉)← A1(pk). c

$← ChSet. z ← A2(c, |ϕ〉). Then, Pr[IVer(pk, a, c, z) = 1]
is negligible for any QPT algorithm A, where the probability is taken over
the choice of c and the randomness of IGen and A. 8

In addition, (pk, sk) ← IGen(1λ) should be hard relation, which means the
computational hardness of computing sk from pk.

Definition 6. We say ID has γ bits of min-entropy if

Pr
(pk,sk)←Gen

[
max

a
pa,sk ≤ 2−γ

]
≥ 1− 2−γ ,

where pa,sk := Pr
[
a = a′|(a′, St)← Com(sk)].

Definition 7. (Multi-HVZK.) For an identification scheme ID, we say an algo-
rithm Sim is a simulator of ID that takes as input pk and outputs a transcript
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q-HVZKb
ID,Sim(λ,A)

(pk, sk)← IGen(1λ)
For i ∈ [q]

(a
(0)
i , St

(0)
i )← Com(sk)

c
(0)
i

$← ChSet
z
(0)
i ← Resp(sk, c(0)i , St

(0)
i )

(a
(1)
i , c

(1)
i , z

(1)
i )← Sim(pk)

b′ ← A
(
pk, (a

(b)
i , c

(b)
i , z

(b)
i )i∈[q]

)
return b′

Fig. 4. Multiple HVZK Experiment.

(a, c, z). For some integer q ≥ 1, denote q-HVZK experiment of ID as in Figure
4.

Let τ be some constant. We say ID is computationally/statistically multiple
honest-verifier zero-knowledge (multi-HVZK) with advantage power τ if there
exists a polynomial-time algorithm Sim such that for any QPT/unbounded ad-
versary A, there exists a negligible function ε such that for any q

Advq-HVZK
ID,Sim (A) :=

∣∣Pr[q-HVZK0
ID,Sim(λ,A)]− Pr[q-HVZK1

ID,Sim(λ,A)]
∣∣ ≤ qτε(λ),

(4)
where ε is independent to q.

Remark 4. The motivation for introducing τ is to clearly describe the relation
between the advantage and the number of transcripts. In practice, the multi-
HVZK property is usually proven by showing that the left-hand side of Equation
(4) is upper-bounded by some µ(q, ξ, λ), where ξ is the running time of the
adversary. Our definition essentially requires µ(q, ξ, λ) ≤ qτε(ξ, λ) where ε is
negligible in λ and independent to q.

If ID is statistically HVZK with advantage ε, then it is immediately statisti-
cally multi-HVZK with advantage ε and τ = 1. As for the computational setting,
HVZK does not directly imply multi-HVZK [4]. Fortunately, many well-known
computationally HVZK ID scheme is also computationally multi-HVZK in our
definition. For example, the ID scheme used in KKW protocol and Picnic2 [35]
is proven computationally multi-HVZK with τ = 1 [4].

A (classical) transcript oracle Trans(sk, ·) is defined as follows: Take as input
a challenge c. It runs (a, St)← Com(sk), z ← Resp(sk, St, c) and returns (a, z).

Definition 8. (Special HVZK.) We say ID is computationally/statistically spe-
cial honest-verifier zero-knowledge if there exists an efficient algorithm Sim such
that Sim(pk, ·) and Trans(sk, ·) is computationally/statistically indistinguishable.
8 In some literature, the soundness is defined with adversaries that additionally have

polynomially-many transcripts. In this paper, we use the version without transcripts
since the gap can be filled by multi-HVZK property.
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Definition 9. (2-Soundness [37].) We say ID is post-quantum 2-soundness if
for any quantum adversary A, there exists a negligible function negl such that

Pr

[
IVer(pk, a, c, z) = IVer(pk, a, c′, z′) = 1 ∧ c 6= c′

]
< negl(λ), (5)

where the probability is taken over the randomness of (pk, sk) ← IGen(1λ) and
(a, c, z, c′, z′)← A(pk).

Definition 10. (Strict Soundness [45]. 9) We say ID is strictly sound if z = z′

holds for any IVer(pk, a, c, z) = IVer(pk, a, c, z′) = 1, where (pk, sk) ← IGen(1λ)
and c ∈ ChSet.

Definition 11. (Special Soundness. [29]) For some constant k, We say ID is
k-special-sound if there exists a QPT algorithm Ext such that: For (pk, sk) ←
IGen(1λ), let (a, ci, zi) be valid transcripts for pk such that ci 6= cj for i 6= j.
Taking as input pk, a and (ci, zi)i∈[k], Ext extracts the secret key sk with non-
negligible probability.

Lemma 3. ( [37]10) Suppose ChSet = {0, 1}λ where λ is the security parameter.
If ID has (1) overwhelming completeness, (2) post-quantum 2-soundness, and (3)
strict soundness, then it is post-quantum sound.

A.4 Signature Schemes

Definition 12. An (oracle-aided) digital signature scheme Γ consists of three
algorithms Gen, Sig, Ver with an oracle O:

– Gen(1λ) takes as input the security parameter and returns a public key pk
and a secret key sk. We assume that pk decides a message space Mλ.

– SigO(sk,m) takes as input a secret key sk and a message m ∈Mλ. It returns
a signature σ.

– VerO(pk,m, σ) takes as input the public key pk, a message m ∈ Mλ and a
signature σ, and returns a bit b ∈ {0, 1}.

In this paper, we require that signature schemes should be overwhelming correct,
which means that for all m ∈Mλ, VerO(pk,m, σ) = 1 holds with all but negligible
probability, where (pk, sk)← Gen(1λ) and σ ← SigO(sk,m).

9 Also known as (perfect) unique response in [24,26].
10 There are some differences with the original version in [37]: First, the original ver-

sion requires weak collapsingness instead of strict soundness, which is a weaker
property. Second, the original additional requires computational HVZK, since the
post-quantum soundness in [37] considers transcripts but ours does not.
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A.5 Noisy Trapdoor Claw-free Function Families

Let X and Y be two finite sets. A noisy trapdoor claw-free function maps x ∈ X
to a distribution of Y.

Definition 13. Let K, X and Y be finite sets and λ be the security parameter.
A NTCF is a function family F : {fk,b : X → DY}k∈K,b∈{0,1} such that

1. (Efficient Function Generation.) There exists an efficient sampling algorithm
FuncGenF that samples a key k ∈ K and a trapdoor tk.

2. (Trapdoor Injective Pair.) For (k, tk)← FuncGenF , it holds that:
(a) There exists an efficient deterministic algorithm Inv such that for all

b ∈ {0, 1}, x ∈ X and y ∈ SUPP(fk,b(x)), it holds that Inv(tk, b, y) = x.
(b) There exists a perfect matching Rk ⊆ X 2 such that fk,0(x0) = fk,1(x1)

iff (x0, x1) ∈ Rk.
(c) There exists an efficient classical sampling algorithm such that given tk

and x ∈ X , it samples y ← fk,0(x).
3. (Efficient Range Superposition.) There exists a function f ′k,b : X → DY such

that for all k ∈ K and b ∈ {0, 1}:
(a) For all (x0, x1) ∈ Rk and y ∈ SUPP(f ′k,b(xb)), it holds that Inv(tk, b, y) =

xb and Inv(tk, b⊕ 1, y) = xb⊕1.
(b) There exists an efficient predicate Chk such that Chk(k, b, x, y) = 1 if and

only if y ∈ SUPP(f ′k,b(x)). From 3(a), it implies that if Chk(k, 0, x0, y) =
Chk(k, 1, x1, y) = 1, then we have (x0, x1) ∈ Rk.

(c) There exists a negligible function δ such that for every k ∈ K, it holds
that

E
x

$←X

[
H2

(
fk,b(x), f

′
k,b(x)

)]
< δ(λ), (6)

where H2 denotes the Hellinger distance.
(d) There exists an efficient quantum algorithm Samp(k) that maps

|b〉 |0〉x |0〉y 7→
1√
|X |

∑
x,y

√
(f ′k,b(x))(y) |b, x, y〉 .

4. (Claw-free Property.) For any QPT adversary A, there exists a negligible
function ϵ such that

Pr
(k,tk)←FuncGenF (1λ)

[
(x0, x1)← A(k) : (x0, x1) ∈ Rk

]
< ϵ(λ).

Remark 5. Properties 2(c) is not required in the original definition of NTCFs
[12,13], but implicitly hold in their constructions based on LWE and Ring-LWE.
It ensures that our scheme can be implemented by a classical algorithm.
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B Toolbox

Lemma 4. Let f1 and f2 be two density functions with domain X . Let |ϕ1〉 =∑
x∈X

√
f1(x) |x〉 and |ϕ2〉 =

∑
x∈X

√
f2(x) |x〉. Then, the trace distance be-

tween |ϕ1〉 and |ϕ2〉 is

Tr(|ϕ1〉 − |ϕ2〉) :=
1

2
‖ |ϕ1〉 − |ϕ2〉 ‖1 ≤

√
1− (1−H2(f1, f2)2),

where H2 denotes the Hellinger distance.

Lemma 5. (Query Extraction Variant of One-way to Hiding Lemma. [2]) Let X
and Y be two sets and S ⊂ X be an arbitrary subset. Let O1 be a random function
mapping to X to Y , and OS be a random function mapping S to Y . Denote by
O2 the function that: (1) for ∀x ∈ S, O2(x) = OS(x); (2) for ∀x 6∈ S, O2(x) =
O1(x). Let inp be arbitrary input. Then, for any (potentially unbounded) quantum
algorithm A that distinguish O1,O2 with q queries, there exists an extractor
FindA such that∣∣Pr[A|O1〉(inp)]− Pr[A|O2〉(inp)]

∣∣ ≤ 2q

√
Pr[x ∈ S : x← Find|O1〉

A (inp)],

where Find|O1〉
A (inp) runs as follows: pick i

$← [q], run A(inp) until the i-th query
to O1, measure the i-th query and output the measurement result.

Lemma 6. (Adaptive Reprogramming Lemma. [30]) Let X and Y be two sets
and O : X 7→ Y be a random function. For some x ∈ X, y ∈ Y , denote by
Ox 7→y the function that is the same as O except mapping x to y. Define the
adaptive reprogramming game Reprob as in Figure 5. Let ρ(r) be the r-th input
to Repgoram and ρ(r)(x) be the marginal distribution of ρ(r). For any quantum
algorithm A that has R queries to Reprogram and qs queries to Ob, it holds that∣∣Pr[Repro0(A)]− Pr[Repro1(A)] ≤

∑
r∈[R]

(√
qρ

(r)
max +

1

2
qρ(r)max

)
, (7)

where ρ
(r)
max := Emax

x
ρ(r)(x).

Game Reprob(A) Reprogram(ρ)

O1 := O0 x← ρ, y
$← Y

b′ ← A|Ob〉,Reprogram O1 := Ox 7→y
1

return b′ return x

Fig. 5. Adaptive reprogramming games for b ∈ {0, 1}.
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Lemma 7. (Small-range Distribution Lemma. [11, 48]) Let X and Y be sets
and l be some integer. Let O1 : X 7→ Y be a random oracle. Pick yi

$← Y for
each i ∈ [l] and a random function V : X 7→ [l]. Let O2 be the oracle such that
O2(x) = yV(x). Then, for any adversary A with q queries, it holds that∣∣Pr[A|O1〉]− Pr[A|O2〉]

∣∣ ≤ 27q3/l.

In this paper, we use the random oracles in Lemma 7 to model hash functions,
whose input is a string of arbitrary length. Without loss of generality, we assume
that X covers [l] (if not, let X ′ = X ∪ [l] and replace the domain of O1 with X ′).
Then, O2 can be expressed by O1(V(m)).

Lemma 7 can be generalized to the case that O′1 : X × Y 7→ Z and O′2
behaves as O′1(V(x), y) for a random V : X 7→ [l]. Then, A|O

′
1〉 and A|O

′
2〉 is also

27q3/l-close. We can consider O1 in Lemma 7 as a map from x ∈ X to a function
f : Y 7→ Z.

Lemma 8. (Period Finding Algorithm. [43]) Let M be a power of 2. Let f be
a function with period p ∈ [M/2,M). That is, p is the smallest one in [M ] such
that f(x) ≡ f(x mod p) holds for all x. Then, there exists a quantum algorithm
with quantum queries to f that outputs p with constant probability.

Lemma 9. ( [1]) Let X,Y be non-empty sets and ϵ ∈ [0, 1]. Let Bϵ ← Blind(X, ϵ).
Let f, g : X 7→ Y be functions such that f(x) = g(x) for all x 6∈ Bϵ. Let Of be
an oracle computing f and A be a quantum algorithm that sends q queries to
oracle O. It holds that

E
Bϵ

[
∆
(
A|Of 〉,A|Og〉

)]
≤ 2q

√
ϵ.

Lemma 10. ( [33]) Let X be a non-empty set and ϵ ∈ [0, 1]. Let Bϵ ← Blind(X, ϵ),
and f : X 7→ {0, 1} be a Boolean function such that f(x) = 1 if and only if
x ∈ Bϵ. Then for any (potentially unbounded) quantum algorithm A that has at
most q queries to f , it holds that

Pr
Bϵ

[f(x) = 1 : x← A|f〉] ≤ 8(q + 1)2ϵ.

C Security Proof

C.1 Proof of Theorem 1

The non-zero-knowldege has been proven in the sketch, and the post-quantum
sound (without given transcripts) is obvious. We only need to prove the multi-
HVZK. Let Sim be the simulator of ID, we construct a simulator of Sim′(pk) of
ID′ as follows. Run (a, c, z) ← Sim(pk) and pick d

$← {0, 1}λ. Return (a, c, z′)
where z′ = (z, d).

The q-time HVZK experiment of ID′ for A is analyzed as follows.
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– Game G0: The original multi-HVZK experiment of A. That is, G0
b(A) de-

notes q-HVZKb
ID,Sim′(λ,A).

– Game G1: Replace the PRF(k, ·) with a random function F(·). Due to the
pseudorandomness of PRF, Pr[G0

1(A)] and Pr[G0
0(A)] are negligibly close

(say εPRF), and Pr[G1
1(A)] = Pr[G1

0(A)].
– Game G2: Let (a(0)i , c

(0)
i , z

′(0)
i )i∈[q] be the honest transcripts. Denote by Bad

the event that b = 0 there exist i 6= j such that c
(0)
i ≡ c

(0)
j mod p. Let G2

output 0 if Bad happens.
Since c

(0)
i ’s are truly random. (c(0)i − c

(0)
j ) mod p is uniform distributed in

Zp for each i and j. For any b ∈ {0, 1}, it holds that∣∣Pr[Gb
2(A)]− Pr[Gb

1(A)]
∣∣ ≤ Pr[Bad] ≤

∑
s∈[q]

s− 1

p
<

q2√
N

,

– Game G3: In the key generation, make IGen(1λ;G(λ)) irrelevant to p. That
is, picks another (inaccessible) random function G′ and replace IGen(1λ;G(p))
with IGen(1λ;G′(p)). From Lemma 5, if A could distinguish the G3 from G2,
then there exists an extractor FindA outputting p. That is, for any b ∈ {0, 1}∣∣Pr[Gb

3(A)]− Pr[Gb
2(A)]

∣∣ ≤ 2qG

√
Pr

[
p← Find|G〉A (pk)

]
,

where the probability is taken over G, b, p← GenPrime(N) and the random-
ness of ID, Sim and A.
Note that the only information about p in A’s view is that p cannot divide
a difference between any two of the challenges from the q transcripts when
b = 0. (When b = 1, A cannot obtain any information about p.) Note that
each difference has at most two prime factors in [

√
N/2,

√
N). Since there

are
(
q
2

)
differences and Ω

(√
N/ log

√
N
)

many primes in [
√
N/2,

√
N). We

have

Pr
[
p← Find|G〉A (pk)

]
≤ 1

Ω
(√

N/ log
√
N
)
−

(
q
2

) = O

(
q2 logN√

N

)
.

– In G3, the key generation is independent of p. An adversary A in G3 can be
used to construct a reduction B that breaks q-time HVZK of ID. Given pk and
q transcripts (ai, ci, zi)i∈[q], R picks p← GenPrime(N). R aborts and return
0 if there exists i 6= j such that ci ≡ cj mod p. Then, pick a random function
F : ChSet 7→ {0, 1}λ and computes di = F(ci), and lets z′i := (zi, di). Send pk
and (ai, ci, z

′
i)i∈[q] to A, and return what A returns. B perfectly simulates

the input to A with regard to G3. We thus have
∣∣Pr[G0

3(A)]−Pr[G1
3(A)]

∣∣ ≤
Advq-HVZK

ID (B).
To sum up, we have

Advq-HVZK
ID (A) =

∣∣Pr[G0
0(A)]− Pr[G1

0(A)]
∣∣

≤ Advq-HVZK
ID (B) + 4qG ·O

(√
q2 logN√

N

)
+

q2√
N

+ εPRF,

which is negligible when q and qG is polynomial.
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Game Gb
0-Gb

3

p← GenPrime(N) For i ∈ [q]

(pk, sk) = IGen(1λ;G(p)) //G0-G2 (a
(0)
i , St

(0)
i )← Com(sk)

(pk, sk)← IGen(1λ) //G3 c
(0)
i

$← ChSet
k

$← {0, 1}κ z
(0)
i ← Resp(sk, c(0)i , St

(0)
i )

If ∃i 6= j s.t. c(0)i ≡ c
(0)
j mod p //G2-G3 d

(0)
i := PRF(k, c(0)i mod p) //G0-G1

return 0 d
(0)
i := F(c(0)i mod p) //G2-G3

b′ ← A
(
pk, (a

(b)
i , c

(b)
i , z

(b)
i , d

(b)
i )i∈[q]

)
(a

(1)
i , c

(1)
i , z

(1)
i )← Sim(pk)

return b′ d
(1)
i

$← {0, 1}λ

Fig. 6. Games G0 to G3 in the proof of Theorem 1.

C.2 Proof of Theroem 2

Due to Lemma 3, we need to prove the completeness, 2-soundness, strict sound-
ness and weak qsHVZK from the properties in Definition 13.

– Overwhelming Completeness. If ci = 0, Chk(k, ci, xi, yi) = 1 immedi-
ately holds from property 3(a) and 3(b). We then consider the case that
ci = 1. Note that yi ← fk,0(x

(0)
0 ) for uniform x

(0)
0 . Then, the distribution of

yi is the same as y′i ← fk,1(x
(1)
i ) for a uniform x

(1)
i (since Rk is a perfect

matching), and xi = Inv(tk, 1, y′i) = x
(1)
i from property 2(b). Then, from

property 3(c), y′i ∈ SUPP(f ′k,1(xi)) with overwhelming probability and thus
Chk(k, 1, xi, y

′
i) = 1 holds.

– 2-soundness. Let A be an adversary breaking 2-soundness of ID with non-
negligible probability. A successful A(pk) outputs (xi,0, xi,1, yi) for some i :
ci 6= c′i such that Chk(k, 0, xi,0, yi) = Chk(k, 1, xi,1, yi) = 1. It implies that
(x0, x1) ∈ Rk from property 3(b) and it breaks the claw-free property.

– Strict Soundness. Let Ver(pk, a, c, z) = Ver(pk, a, c, z′) = 1 where pk = k,
a = (y1, ..., yλ), c = (c1, ..., cλ), z = (x1, ..., xλ) and z′ = (x′1, ..., x

′
λ). It

implies that yi ∈ SUPP(f ′k,ci(xi)) ∩ SUPP(f ′k,ci(x
′
i)) for any i ∈ [λ]. From

property 3(a), we have xi = Inv(tk, ci, y′i) = x′i and thus z = z′.
– Weak qsHVZK. We construct a quantum Sim for weak qsHVZK. For sim-

plicity, we show the one-bit challenge version for i ∈ [λ], and it immediately
implies the full version.
1. Taken as input pk and the quantum state |ϕ0〉 =

∑
ci∈{0,1} αci |ci〉, pre-

pare a state
|ϕ1〉 =

∑
ci∈{0,1}

αci |ci〉 |0〉x |0〉y .

2. Run Sampk on |ϕ1〉. We have

|ϕ2〉 =
1√
|X |

∑
ci,x,y

αci

√
(f ′k,ci(x))(y) |ci, x, y〉 .
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Due to Lemma 4, it is at trace distance at most δ(λ) from

|ϕ′2〉 =
1√
|X |

∑
ci,x,y

αci

√
(fk,ci(x))(y) |ci, x, y〉 ,

3. If we measure the third register of |ϕ′2〉, the result is y∗ ∈ SUPP(fk,b(X ))
with probability

py∗ =

∥∥∥∥ 1√
|X |

∑
ci,x:y∗∈SUPP(fk,ci

(x))

αci

√
(fk,ci(x))(y

∗) |ci, x, y∗〉
∥∥∥∥

=

∥∥∥∥ 1√
|X |

∑
ci

αci

√
(fk,ci(Inv(tk, ci, y∗)))(y∗) |ci, Inv(tk, ci, y∗), y∗〉

∥∥∥∥
=

1

|X |

(
α2
0 · fk,0

(
Inv(tk, 0, y∗)

)
(y∗) + α2

1 · fk,1
(
Inv(tk, 1, y∗)

)
(y∗)

)
.

From property 2(a)(b), we have
(
x∗0, x

∗
1

)
:=

(
Inv(tk, 0, y∗), Inv(tk, 1, y∗)

)
∈

Rk and thus fk,0(x
∗
0) = fk,1(x

∗
1). Then, we have

py∗ =
1

|X |
· (α2

0 + α2
1)fk,0(x

∗
0)(y

∗) =
1

|X |
· fk,0(x∗0)(y∗).

Note that py∗ is exactly the probability that the real Com algorithm
outputs y∗ as the commitment:

Pr[(y∗, y∗)← Com(sk)] =
∑
x

Pr[x
$← X ] · Pr[y∗ ← fk,0(x)]

=Pr[x∗0
$← X ] · Pr[y∗ ← fk,0(x

∗
0)]

=
1

|X |
· fk,0(x∗0)(y∗).

After the measurement, the final state is

|ϕ′3〉 =
1
√
py∗

1√
|X |

∑
ci

αci

√
(fk,ci(Inv(tk, ci, y∗)))(y∗) |ci, Inv(tk, ci, y∗), y∗〉

=
∑
ci

αci |ci, Inv(tk, ci, y∗)〉 |y∗〉 ,

which is the same as the real response of emTrans(sk) conditioned on
(y∗, y∗)← Com(sk).

We can see that the output of Sim (for 1-bit challenge) is at distance at most
λδ(λ) from emTrans. Thus, after q queries, any unbounded A can distinguish
the two with probability at most qλδ(λ), which is a negligible function of λ.
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C.3 Proof of Theroem 3

As preparation work, we prove a generalized version of Lemma 6.

Lemma 11. (Generalized Adaptive Reprogramming Lemma.) Let X1, X2 and
Y be sets and O : X1 × X2 7→ Y be a random function. Let U be the family of
all functions mapping X2 7→ Y . Let S be an arbitrary subset of Y2. For x ∈ X1

and U ∈ U , denote by Ô = O(x1,·)
S7→U(·) the function that is the same as O

except that Ô(x1, x2) = U(x2) for all x2 ∈ S ⊂ X2. Define the multiple adaptive
reprogramming game MReprob as in Figure 7. For any quantum algorithm A that
has R queries to MReprogram and q queries to Ob, it holds that∣∣Pr[MRepro0(A)]− Pr[MRepro1(A)]

∣∣ ≤ ∑
r∈[R]

(√
qρ

(r)
max +

1

2
qρ(r)max

)
, (8)

where ρ
(r)
max := Emax

x
ρ(r)(x).

Game MReprob(A) MReprogram(ρ)

O1 := O0 x← ρ U $← U

b′ ← A|Ob〉,MReprogram O1 := O(x,·) S7→U(·)
1

return b′ return x

Fig. 7. Multiple adaptive reprogramming games for b ∈ {0, 1}.

Proof. The proof is straightforward from Lemma 6 by the following observations:

– If there exists an adversary A that distinguishing MReprob with O : X1 ×
X2 7→ Y and subset S ⊂ X2, then there exists an adversary A′ that dis-
tinguishes MRepro′b with O′ : X1 × S 7→ Y and subset S′ = S with the
same probability. It is obvious since MReprogram makes no sense for x 6∈ S.
Formally, A′ runs as follows. Given O′b : X1 × S 7→ Y , A′ picks a ran-
dom oracle OS : X1 × S 7→ Y , where S := X2\S. Then, let Ob(x1, x2) :=
O′b(x1, x2) for x2 ∈ S and Ob(x1, x2) := OS(x1, x2) for x2 ∈ S. When A
queries MReprogram(ρ), A′ also queries MReprogram′(ρ) and returns to A
what it obtains. Note that in MReprogram′, the U′ is randomly picked from
U ′ = {u′ : S 7→ Y }. It is equivalent to randomly picking U from U and only
x ∈ S is used. A′ perfectly simulates the queries from A and wins if A does.

– We then prove the indistinguishability of MRepro′b. Note that a random func-
tion O′ : X1 × S 7→ Y can be written as a random function Õ′ : X1 7→ U ′.
that is, a function mapping x1 ∈ X1 to a function u ∈ U ′. In other words,
O′ runs as follows: on input (x1, x2), it runs u = Õ′(x1) and returns u(x2).
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Then, MRepro′ can be considered a special case of Repro for Õ′ : X1 7→ U ′
in Lemma 6. Note that Equation (7) is not related to the range size of the
oracle. We then have Equation (8).

Let A be an adversary breaking BUF of FS[ID,H], we attempt to construct
a reduction to break EUF-NMA of FS[ID,H]. We add an additional operation in
BSigO6⊥ with a counter that counts the number of signing queries. The hybrid
argument of the BUF experiment of A is described as follows.

– Game G0: The original BUF experiment of A.
– Game G1: Let r = (r1, r2) be the randomness of Com and Resp. The signing

oracle is modified as follows. It picks a fresh random oracle F′ with the same
range as F and defines

f(m) :=

{
F′(m) if m ∈ Bϵ

0|σ| if m 6∈ Bϵ

.

Then, it computes σ = Sig(sk,m; r) for all m (instead of m 6∈ Bϵ). Finally, it
returns σ ⊕ f(m). That is, the signing oracle computes Sig for each m ∈M
rather than only for m 6∈ Bϵ, and then “erases” the signatures of m ∈ Bϵ by
performing xor with F′(m).
Since F is a random function, G0 and G1 is perfectly indistinguishable if r
is not repeatly used. We have∣∣Pr[G1(A)]− Pr[G0(A)]

∣∣ ≤ q2s · 2−λ ≤ q2s · 2−γ . (9)

– Game G2: For j ∈ [qs], let aj be the commitment in the j-th query. (Note
that aj can be computed in a classical manner.) The experiment aborts if
aj has appeared in the previous signing queries. We have∣∣Pr[G2(A)]− Pr[G1(A)]

∣∣ ≤ q2s · 2−γ . (10)

Note that we assume the commitment has at least γ-bit max entropy (which
happens with all but probability 2−γ taken over the randomness of Gen)
from this step, and the probability has been included in Equation (10).

– Game G3: In each query with index j, pick a quantum oracle Uj :Mλ 7→

ChSet. Then, after computing aj , reprogram H with H(aj ,·)
Bϵ7→Uj(·). In other

words, after the j-th query, the random oracle H(s, a,m) additionally checks
whether a = aj ∧ s = pk, and if so returns Uj(m). See Figure 8 for details.
The difference between G3 and G2 is adaptively reprogramming H. Due to
the min-entropy of ID, we have ρ

(r)
max ≤ 2−γ for each r in Lemma 11. We

have ∣∣Pr[G3(A)]− Pr[G2(A)]
∣∣ ≤ 3qs

2

√
qh2−γ . (11)

– Game G4: Replace cm,j = H(pk, aj ,m) with cm,j = Uj(m) in the j-th
query to BSigO6⊥. See Figure 8 for details. The only difference appears on
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m ∈ Bϵ: zm,j is not a valid signature for m ∈ Bϵ, since H(pk, aj ,m) are not
reprogrammed by Uj(m) for m ∈ Bϵ. However, it can never be detected by
A since those zm,j ’s will be eventually erased by plussing a random string
F′(m) in the final step. Thus, the probability of G4 and G3 are the same.

– Game G5: Reorder the operations in BSigO6⊥ as in Figure 8. Formally, (1) let
j = j+1; (2) pick Uj ; (3) compute cm,j = Uj(m); (4) compute (aj , Stj); (5)
compute zm,j ; (6) check whether aj has appeared and finally (7) reprogram
H. Additionally, we instead run Step (4) in a quantum manner and perform
an additional measurement on a-register after Step (5). The probability of
G4 and G3 is the same.

BSigO6⊥(m) //G3 BSigO6⊥(m) //G4 BSigO(m) 6⊥ //G5

j = j + 1 j = j + 1 j = j + 1

(r1, r2)
$←R1 ×R2 (r1, r2)

$←R1 ×R2 Uj
$← U

(aj , Stj) = Com(sk; r1) (aj , Stj) = Com(sk; r1) cm,j = Uj(m)

If aj ∈ {ai}i∈[j−1] If aj ∈ {ai}i∈[j−1] (r1, r2)
$←R1 ×R2

return ⊥ return ⊥ (aj , Stj) = Com(sk; r1)

Uj
$← U Uj

$← U zm,j = Resp(sk, cm,j , Stj ; r2)

H := H(pk,aj ,·)
Bϵ7→Uj(·) H := H(pk,aj ,·)

Bϵ7→Uj(·) If aj ∈ {ai}i∈[j−1]

cm,j = H(pk, aj ,m) cm,j = Uj(m) return ⊥

zm,j = Resp(sk, cm,j , Stj ; r2) zm,j = Resp(sk, cm,j , Stj ; r2) H := H(pk,aj ,·)
Bϵ7→Uj(·)

return (aj , zm,j)⊕ f(m) return (aj , zm,j)⊕ f(m) return (aj , zm,j)⊕ f(m)

Fig. 8. BSigO6⊥ in Game G3 to G5 in Theorem 3.

In G5, the quantum signing oracle BSigO6⊥ can be considered as follows:
1. Let j = j + 1. Take as input |ϕj,1〉 =

∑
m,ta,tz

α
(j)
m,t1,t2 |m, t1, t2〉, where

t1 and t2 denotes the a and z parts of t-register respectively.
2. Pick Uj

$← U as a quantum random oracle. Compute Uj on m-register.
Formally,

|ϕj,2〉 =
∑

m,t1,t2

α
(j)
m,t1,t2 |m, t1, t2, cm,j〉 ,

where cm,j := Uj(m).
3. Let Trans(sk, ·) be the quantum transcript oracle of ID. Send c-register

and t2-register to Trans(sk, ·) (treating other registers as the local states).
We have,

|ϕj,3〉 =
∑

m,t1,t2

α
(j)
m,t1,t2 |m, t1, t2 ⊕ zm,j , cm,j〉 |aj〉 ,

where (aj , Stj) = Com(sk, r1) and zm,j = Resp(sk, cm,j , Stj ; r2).
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4. Measure and discard a-register as aj . Xor aj to t1-register. Abort if
aj ∈ {ai}i∈[j−1].

5. Uncompute Uj from m-register to c-register. We have

|ϕj,5〉 =
∑

m,t1,t2

α
(j)
m,t1,t2 |m, t1 ⊕ aj , t2 ⊕ zm,j〉 |0〉c .

Discard c-register.

6. Reprogram H with H(pk,aj ,·)
Bϵ7→Uj(·).

7. Compute f = (fa, fz) from m to (t1, t2)-register, we finally have

|ϕj,7〉 =
∑

m,t1,t2

α
(j)
m,t1,t2 |m, t1 ⊕ aj ⊕ fa(m), t2 ⊕ zm,j ⊕ fz(m)〉 .

– Game G6: Replace Trans(sk, ·) in Step 3 with the simulator Sim(pk, ·) of
qsHVZK. We have∣∣Pr[G6(A)]− Pr[G5(A)]

∣∣ ≤ Advqs-qsHVZK
ID,Sim (C), (12)

for some QPT adversary C.
– In Game G6, BSigO6⊥ does not require sk any more, and thus an adversary
B can then use A to attack the EUF-NMA of FS[ID,H]. Formally, B is given
a public key pk and a random oracle H. Then, B picks a blind region Bϵ ←
Blind(Mλ) and runs A|BSigO 6⊥〉,|H〉(pk). B answers H and BSigO6⊥ queries as
in Game G5. 11 In this process, B requires (qs + 2qh) queries to its own
random oracles, qs queries to H, and the running time is approximately
Time(A) +Θ(qs), where Θ(qs) comes from qs computations of Sim.
Finally, B obtains a forgery (m∗, (a∗, z∗)) for some m∗ ∈ Bϵ from A. Since
m∗ ∈ Bϵ, H(pk, a∗,m∗) is never reprogrammed in Game G5. Thus, it is
a valid signature for FS[ID,H], and the EUF-NMA security is broken. We
have AdvEUF-NMA

FS[ID,H] (B) ≥ Pr[G5(A)]. From Equation (9),(10), (11) and (12),
we complete the proof.
With the same approach, we can prove the wBUF 6⊥ of FS[ID,H] with the
requirement of wqsHVZK. The only difference is that the t2 register is ini-
tialized by all-zero state. Thus, in Step 3 of Game G4, Trans can be replaced
with emTrans, which can be simulated from wqsHVZK in Game G5.

11 To decrease the queries to the random oracle from B, we can improve the strategy
of answering H as follows. Pick a random oracle U′ : [qs] × Mλ 7→ ChSet and
replace Uj(·) with U′(j, ·) in Game G5. Define Count(a) = j iff a = aj and otherwise
Count(a) = 0. (Note that the behavior of Count is changed after each signing query.)
For H-queries, take as input (s, a,m, y) in superposition. If s = pk and Count(a) =
j > 0, xor U′(Count(a),m) to y. Otherwise, xor H(s, a,m) to y. In each H-query, B
needs two queries to its own random oracles.
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C.4 Proof of Theroem 4

Fix ϵ > 0. Let pA := Advϵ-BUF
DFS[ID,H,PRF](A) and Keysλ be the set of all key pairs

(pk, sk)← IGen(1λ). That is

E(pk,sk)←Keysλ

[
Pr

[
A(pk) wins

]]
= pA,

where the winning probability of A(pk) is taken over the choice of H, k and the
random tape of A,Blind.

Denote Badλ =
{
(pk, sk) ∈ Keysλ : Pr[A(pk) wins] ≥ pA/2

}
. It holds that

|Badλ|/|Keysλ| ≥ pA/2. (13)

Fix some (pk, sk)← IGen(1λ). We discuss the hybrid arguments as follows.

– Game G0(pk, sk): The ϵ-BUF experiment of DFS[ID,H,PRF] for A in the
case that the keys are given by (pk, sk)← IGen(1λ).

– Game G1(pk, sk): Replace the pseudorandom function with two random or-
acles (U1,U2) (see Figure 9). The difference between the winning probability
of G1 and G2 implies a distinguisher D of PRF. Here the distinguisher sends
2qs quantum queries to the oracle (PRF(k, 0||·),PRF(k, 1||·)) or (U1,U2). Let
εqPRF = AdvInd-qPRF

PRF (D), where D sends at most 2qs queries. We have

|Pr[G1(pk, sk)]− Pr[G0(pk, sk)]| ≤ εqPRF. (14)

Game G1-G3(pk, sk) BSigO(m)

Bϵ ← Blind(Mλ, ϵ) If m ∈ Bϵ return ⊥
(m∗, (a∗, z∗))← A|BSigO〉,|H〉(pk) (am, Stm) = Com(sk;U1(m))
c∗ = H(pk, a∗,m∗) //G1 cm = H(pk, am,m) //G1-G2

c∗ = H′(pk, a∗,m∗) //G2-G3 cm = U(m) //G3

If m∗ ∈ Bϵ ∧ IVer(pk, a∗, c∗, z∗) = 1 zm = Resp(sk, cm, Stm;U2(m))
return 1 return (am, zm)

return 0
H(s, a,m)

If m ∈ Bϵ return H′(s, a,m) //G2-G3

(am, Stm) = Com(sk;U1(m)) //G3

If a = am ∧ s = pk return U(m) //G3

return H(s, a,m)

Fig. 9. Games G1, G2 and G3 in the proof of Theorem 4.
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– Game G2(pk, sk): Pick a random oracle H′ with the same distribution as H.
Program H(s, a,m) with H′(s, a,m) if m ∈ Bϵ. See Figure 9. The probability
is the same as G1.

– Game G3(pk, sk): Pick a random oracle U : Mλ 7→ ChSet. Reprogram
H(s, a,m) for s = pk∧m 6∈ Bϵ as follows. Run (am, Stm) = Com(sk;U1(m)).
If a = am, return U(m). Otherwise, return H(pk, a,m). Note that for each
m 6∈ Bϵ, there is exactly one am such that H(pk, am,m) is (non-adaptively)
reprogrammed with a uniform element U(m). Thus, the distribution of H
is exactly the same after reprogramming and the probability of G3 is equal
to that of G2. Note that in the signing queries, cm = H(pk, am,m) can be
replaced with cm = U(m).

– Game G4(pk, sk): Let q = qs + qh and l = 54q3/pA.12 Pick small-range
distribution on (U1,U,U2). Formally, pick a random oracle V mapping to [l],
replace U1(m) , U(m) and U2(m) with U1(V(m)) , U(V(m)) and U2(V(m)),
respectively. See Figure 10. From Lemma 7, we have∣∣Pr[G4(pk, sk)]− Pr[G3(pk, sk)]

∣∣ < 27q3/l = pA/2. (15)

Game G4(pk, sk) BSigO(m)

Bϵ ← Blind(Mλ, ϵ) If m ∈ Bϵ return ⊥
(m∗, (a∗, z∗))← A|BSigO〉,|H〉(pk) (am, Stm) = Com(sk;U1(V(m)))
c∗ = H′(pk, a∗,m∗) cm = U(V(m))
If m∗ ∈ Bϵ ∧ IVer(pk, a∗, c∗, z∗) = 1 zm = Resp(sk, cm, St;U2(V(m)))

return 1 return (am, zm)
return 0

H(s, a,m)

If m ∈ Bϵ return H′(s, a,m)
(am, Stm) = Com(sk;U1(V(m)))
If a = am ∧ s = pk

return U(V(m))
return H(s, a,m)

Fig. 10. Game G4 in the proof of Theorem 4.

– Game G5(pk, sk): Before running A, run (ãi, S̃ti) = Com(sk;U1(i)) and
z̃i = Resp(sk,U(i), S̃ti;U2(i)) for ∀i ∈ [l] in advance. The probability is the
same as G4.
Then, BSigO(m) (in the non-blind region) can be directly returned with
(ãV(m), z̃V(m)). In response to H in G5, it is not necessary to run Com as
well. See Figure 11.

12 Here, q = qs + qh because (U1,U,U2) is queried q times in G3. Note that in a
computation of BSigO (or H′), U1(m), U(m) and U2(m) can be computed with a
single query to (U1,U,U2).
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– Game G6(pk, sk): Replace (ãi, c̃i, z̃i) with Sim(pk). Let Expl-HVZK
ID,Sim (C, pk, sk)

be the specific HVZK experiment for the adversary C with the key pair
(pk, sk). The difference between the probability of G6 and G5 implies a
distinguisher between Sim(pk, ·) and Trans(sk, ·) with l transcripts. We have

∣∣Pr[G6(pk, sk)]− Pr[G5(pk, sk)]
∣∣ ≤ Pr

[
Expl-HVZK

ID,Sim (C, pk, sk)
]
, (16)

where Expl-HVZK
ID,Sim (C, pk, sk) denotes the multi-HVZK experiment for C on con-

dition that (pk, sk)← IGen.
– Game G7(pk, sk): As a final step, we try to avoid calculating l transcripts at

the beginning of the experiment to decrease the running time of the reduction
algorithm. Pick a random oracle U′ mapping [l] to the randomness space of
Sim. G7 does not run Sim in advance. Instead, it runs Sim(pk;U′(V(m)))
when (aV(m), cV(m), zV(m)) is required in the signing and hash queries. See
Figure 11. The probability of G7 is the same as G6.

Game G5-G7(pk, sk) BSigO(m)

Bϵ ← Blind(Mλ, ϵ) If m ∈ Bϵ return ⊥
For ∀i ∈ [l] return (ãV(m), z̃V(m)) //G5-G6

(ãi, S̃ti) = Com(sk;U1(i)) //G5 (am, cm, zm) = Sim(pk;U′(V(m))) //G7

c̃i = U(i) //G5 return (am, zm) //G7

z̃i = Resp(sk, c̃i, S̃ti;U2(i)) //G5

(ãi, c̃i, z̃i)← Sim(pk) //G6 H(s, a,m)

(m∗, (a∗, z∗))← A|BSigO〉,|H〉(pk) If m ∈ Bϵ return H′(s, a,m)
c∗ = H(pk, a∗,m∗) If a = ãV(m) ∧ s = pk //G5-G6

If m∗ ∈ Bϵ ∧ IVer(pk, a∗, c∗, z∗) = 1 return c̃V(m) //G5-G6

return 1 (am, cm, zm) = Sim(pk;U′(V(m))) //G7

return 0 If a = am ∧ s = pk
return cm

return H′(s, a,m)

Fig. 11. Games G5 to G7 in the proof of Theorem 4.

– Game G7 does not need the secret key sk in the experiment any more. We
use A breaking Game G7 to construct an adversary breaking EUF-NMA of
FS[ID,H′]. Given pk and access to H′, B treats H′ as the position in G7, and
simulates BSigO-queries and H queries for A(pk) as in G7. If A successfully
returns (m∗, a∗, z∗), it implies that IVer(pk, a∗,H′(pk, a∗,m∗), z∗) = 1 and
thus it is a valid signature for pk with regard to FS[ID,H′]. From Equation
(13), (14), (15), and (16), we have
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Pr
[
ExpEUF-NMA

FS[ID,H′] (B)
]

≥ Pr
IGen

[
(pk, sk) ∈ Badλ

]
· Pr

[
G7(pk, sk)

∣∣(pk, sk) ∈ Badλ

]
≥pA

2
·
(
pA − εqPRF −

1

2
pA − Pr

[
Expl-HVZK

ID,Sim (C, pk, sk) = 1
∣∣pk ∈ Badλ

])
=
1

4
p2A −

1

2
pAεqPRF −

1

2
pA · Pr

[
Expl-HVZK

ID,Sim (C, pk, sk) = 1
∣∣pk ∈ Badλ

]
From Markov’s inequality, we have

Pr
[
Expl-HVZK

ID (C, pk, sk) = 1
∣∣(pk, sk) ∈ Badλ

]
≤ |Keysλ|
|Badλ|

·Advl-HVZK
ID,Sim (C)

≤ 2lτ

pA
· εHVZK.

Thus,

p2A ≤4Pr
[
ExpEUF-NMA

FS[ID,H′] (B)
]
+ 2pAεqPRF + 4lτεHVZK

=4Pr
[
ExpEUF-NMA

FS[ID,H′] (B)
]
+ 2pAεqPRF +

4 · (54q3)τεHVZK
pτA

,

and

1 ≤
4Pr

[
ExpEUF-NMA

FS[ID,H′] (B)
]

p2A
+

2εqPRF
pA

+
4 · (54q3)τεHVZK

pτ+2
A

. (17)

If any of the three terms in the right-hand side of Equation (17) is larger
than 1, then Equation (1) immediately holds and we are done. Otherwise,
we have

1 ≤

√
4Pr

[
ExpEUF-NMA

FS[ID,H′] (B)
]

p2A
+

2εqPRF
pA

+ τ+2

√
4 · (54q3)τεHVZK

pτ+2
A

,

and thus

pA ≤ 2
√

AdvEUF-NMA
FS[ID,H′] (B) + 2εqPRF +

(
4 · (54q3)τεHVZK

) 1
τ+2

.

Apart from the only query to A, the reduction B additionally requires qh
queries to H,H′ and (qs+qh) queries to V,U′, Sim. We have Time(B) ≈ Time(A)+
Θ(q), where Θ(q) comes from (qs + qh) quantum computations of Sim.

Remark 6. If we replace PRF(k, ·) with a hash function G(k, ·) modeled as a
quantum random oracle, then εqPRF can be replaced with 2qG

√
2−κ from Lemma

2.2 in [42], where qG be the maximum number of queries to G.
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C.5 Proof of Theorem 5

Due to Lemma 10, any (potentially unbounded) adversary can output a message
m ∈ Bϵ with probability at most 8(qs + 1)2ϵ (without considering the forgery).
It immediately implies the first bound in Equation (2). Then, we focus on the
proof of the second one.

We first show that the access to G is not helpful. The proof sketch is simi-
lar to Theorem 5 in [30]. Let HFS′[ID,H,G] (and HFS′′[ID,H,G]) be variants of
HFS[ID,H,G] as follows: Pick another random oracle G′ as parts of the secret key.
In the j-th query, replace G(sk, 0||·, nj) and G(sk, 1||·, nj) with G′(sk, 0||·, nj) and
G′(sk, 1||·, nj) (and G′(sk, 0||·, j), G′(sk, 1||·, j)). In other words, G is indeed not
used in the signing algorithm of HFS’ and HFS′′.

We observe that Advϵ-BUF-qCMA
HFS′[ID,H,G](A) and Advϵ-BUF-qCMA

HFS′′[ID,H,G](A) differ only if there
appears a collision in n1, ..., nqs . Thus, for any A and ϵ, it holds that∣∣Advϵ-BUF-qCMA

HFS′[ID,H,G](A)−Advϵ-BUF-qCMA
HFS′′[ID,H,G](A)

∣∣ ≤ q2s · 2−κ. (18)

Then, we show that Advϵ-BUF-qCMA
HFS[ID,H,G] (A) and Advϵ-BUF-qCMA

HFS′[ID,H,G](A) are close. Let
Expϵ-BUF-CMA

Γ (A, pk, sk) be the BUF-qCMA experiment for Γ on condition that
(pk, sk) ← IGen and Advϵ-BUF-CMA

Γ (A, pk, sk) := Pr[Expϵ-BUF-CMA
Γ (A, pk, sk)] be

the BUF-qCMA experiment for Γ on condition that (pk, sk) ← IGen. From
Lemma 5, we have

∣∣Advϵ-BUF-CMA
HFS[ID,H,G](A, pk, sk)−Advϵ-BUF-CMA

HFS′[ID,H,G](A, pk, sk)
∣∣ ≤ 2qG

√
Pr[sk ← Find′A(pk)],

(19)
where Find′A is the same as FindA except that it only output the first |sk| bits.

We construct an adversary B′ to break BUF of HFS′ as follows: Given pk, run
Find′A(pk). That is, pick i

$← [qG], run A(pk) until the i-th query to G, measure
the G-query, and output the first |sk| bits. Then, randomly pick m∗

$←Mλ, and
compute z∗ ← Sig(sk,m∗). Finally, return (m∗, z∗).

If Find′A(pk) succeeds in extracting sk, then B′ can break BUF security with
at least probability ϵ. (It is able to forge signatures for any messages, but only
the ones in Bϵ meet the requirement of ϵ-BUF experiment.) That is,

Advϵ-BUF-CMA
HFS′[ID,H,G](B′, pk, sk) ≥ ϵ · Pr[sk ← Find′A(pk)]. (20)

From Equation (18), (19), and (20), we have

Advϵ-BUF-CMA
HFS[ID,H,G](A, pk, sk) ≤

(
2qG√

ϵ
+ 1

)√
Advϵ-BUF-CMA

HFS′[ID,H,G](B′, pk, sk),

≤
(
2qG√

ϵ
+ 1

)√
Advϵ-BUF-CMA

HFS′′[ID,H,G](B′, pk, sk) + q2s · 2−κ,

where Time(B′) ≈ Time(A).
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Then, we move to bound Advϵ-BUF-qCMA
HFS′′[ID,H,G](A) for any A. (To make the expres-

sions consistent, we still use “A” to denote the adversary for HFS′′, which is
indeed the B′ in the last paragraph.) Define pA := Advϵ-BUF-qCMA

HFS′′[ID,H,G](A) and Badλ

as in the proof of Theorem 4.

– Game G0(pk, sk): The original ϵ-BUF-qCMA experiment of HFS′′ for A
conditioned on (pk, sk)← IGen(1λ). Recall that G is never used in HFS′′, so
we omit the G-queries from A.

– Game G1(pk, sk): Pick two random oracles H′ and Uh with the same distri-
bution as H. Program H(s, a,m) with H′(s, a,m) for m ∈ Bϵ as in the proof
of Theorem 4. Otherwise, let H(s, a,m) = Uh(s, a,m). Additionally, let U1

and U2 be random oracles mapping to the randomness space of the signing
algorithm. We replace G′(0||m||nj) and G′(1||m||nj) in the signing queries
with U1(m||j) and U2(m||j), respectively. See Figure 12. The probability is
the same as G1.

– Game G2(pk, sk): Let q = 2qs + qh and l = 54q3/pA. Pick a random oracle
V mappingMλ× [qs] to [l]. Replace U1(m, j), U2(m, j) and Uh(s, a,m) with
U1(V(m), j), U2(V(m), j), and Uh(s, a,V(m)), respectively. See Figure 12.
From Lemma 7, it holds that

∣∣Pr[G2(pk, sk)]− Pr[G1(pk, sk)]
∣∣ ≤ 27q3

l
= pA/2. (21)

Game G1-G2(pk, sk) BSigO(m)

For j ∈ [qs] nj
$← N j = j + 1

If ∃(j1, j2) ∈ [qs]
2 : nj1 = nj2 ∧ j1 6= j2 If m ∈ Bϵ return ⊥

return 0 (am, Stm) = Com(sk;U1(m, j)) //G1

j = 0 cm = Uh(pk, am,m) //G1

Bϵ ← Blind(Mλ, ϵ) zm = Resp(sk, cm, Stm;U2(m, j)) //G1

(m∗, (a∗, z∗))← A|BSigO〉,|H〉(pk) (am, Stm) = Com(sk;U1(V(m), j)) //G2

c∗ = H′(pk, a∗,m∗) cm = Uh(pk, am,V(m)) //G2

If m∗ ∈ Bϵ ∧ IVer(pk, a∗, c∗, z∗) = 1 zm = Resp(sk, cm, St;U2(V(m), j)) //G2

return 1 return (am, zm)
return 0

H(s, a,m)

If m ∈ Bϵ return H′(s, a,m)
return Uh(s, a,m) //G1

return Uh(s, a,V(m)) //G2

Fig. 12. Games G1 and G2 in the proof of Theorem 5.
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– Game G3(pk, sk): For any (i, j) ∈ [l]×[qs], runs (ãi,j , S̃ti,j) := Com(sk;U1(i, j))
before running A. It aborts if there exists i ∈ [l] and j1, j2 ∈ [l] such that
ãi,j1 = ãi,j2 and j1 6= j2. Due to the min-entropy of ID, we have

|Pr[G3(pk, sk)]− Pr[G2(pk, sk)]| ≤ l · q2s · 2−γ =
54q2sq

3

pA2γ
. (22)

– Game G4(pk, sk): Pick a random oracle U : [l] × [qs] 7→ ChSet. Program
H(pk, a,m) as follows. If ∃j ∈ [qs] such that a = ãV(m),j , return U(V(m), j).
(Note that there exists at most one j ∈ [l] such that a = ãV(m),j .) Otherwise,
return Uh(pk, a,V(m)).
For each i ∈ [qs], there are exact l number of ãi,j such that Uh(pk, ãi,j , i) is
reprogrammed with U(i, j). The probability of G4 is the same as G3 since U
is a random oracle.
In Game G4, cm = Uh(pk, am,V(m)) in the j-th query can be replaced with
cm = U(V(m), j).

– Game G5: c̃i,j and z̃i,j are computed in advance for all (i, j) ∈ [l] × [qs].
The probability is the same as G4. Note that cm and zm in the j-th query
of BigO can be directly replaced with c̃V(m),j and z̃V(m),j , respectively.

– Game G6: (ãi,j , c̃i,j , z̃i,j) is replaced with Sim(pk). Similar to the proof of
Theorem 4, we have∣∣Pr[G6(pk, sk)]− Pr[G5(pk, sk)]

∣∣ ≤ Pr
[
Explqs-HVZK

ID,Sim (C, pk, sk)
]
. (23)

– Game G7: Similar to the final step in the proof of Theorem 4, we again
pick a random oracle U′ : [l]× [qs] 7→ RSim to avoid computing lqs simulated
transcript in advance. However, it is not straightforward since we need to
check whether a collision appears in the commitments and triggers aborts.
(Formally, check whether there exists (i, j1, j2) such that ai,j1 = ai,j2 for
distinct j1 and j2.) This “bad event” can only be checked after the large
number of Sim computations.
Indeed, there is not need to check it in such an explicit manner, since we
have already considered the negligible probability of this bad event in the
hybrid between G3 and G2. Let BadU′pk ⊂ R

lqs
Sim be the set of all the func-

tions f : [l] × [qs] 7→ RSim such that there exists (i, j1, j2) ∈ [l] × [qs]
2 :

Sim(pk;U′(i, j1)) = Sim(pk;U′(i, j2)) ∧ j1 6= j2. Then, G7 does not needs to
compute lqs transcripts, but instead checks whether U ∈ BadU′pk and if so
returns 0. The probability is the same as G6

– If the adversary wins G7 with non-negligible probability, we construct BA
to break BUF-qCNMA of FS[ID,H′]. B randomly picks three random oracles
U′,V,Uh, and runs A|H〉 as in G7 without checking whether U′ ∈ BadU′pk
really holds. If U′ ∈ BadU′pk, then B perfectly simulates the queries to A,
and succeeds if and only if A succeeds in G7. Thus,

Pr
[
ExpEUF-NMA

FS[ID,H′] (B)
]
≥ Pr

[
ExpEUF-NMA

FS[ID,H′] (B) ∧ U′ 6∈ BadU′pk
]
= Pr[G7(pk, sk)].

(24)
Let εHyb = 54q2sq

3/pA2
γ . From Equation (21), (22), (23), and (24), we have
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Game G3-G6(pk, sk) BSigO(m)

Bϵ ← Blind(Mλ, ϵ) j = j + 1
If ∃(j1, j2) ∈ [qs]

2 : nj1 = nj2 ∧ j1 6= j2 If m ∈ Bϵ return ⊥
return 0 im = V(m)

j = 0 am = ãim,j , Stm = S̃tim,j

For (i, j) ∈ [l]× [qs] cm = Uh(pk, am, im) //G3

(ãi,j , S̃ti,j) = Com(sk;U1(i, j)) cm = U(im, j) //G4

c̃i,j = U(i, j) //G5 zm = Resp(sk, cm, Stm;U2(im, j)) //G3-G4

z̃i,j = Resp(sk, c̃i,j , S̃ti,j ;U2(i, j)) //G5 zm = z̃im,j //G5-G6

(ãi,j , c̃i,j , z̃i,j)← Sim(pk) //G6 return (am, zm)
If ∃(i, j1, j2) ∈ [l]× [qs]

2 : ai,j1 = ai,j2 ∧ j1 6= j2
return 0 H(s, a,m)

(m∗, (a∗, z∗))← A|BSigO〉,|H〉(pk) If m ∈ Bϵ return H′(s, a,m)
c∗ = H′(pk, a∗,m∗) For j ∈ [l] //G4-G6

If m∗ ∈ Bϵ ∧ IVer(pk, a∗, c∗, z∗) = 1 If s = pk ∧ a = ãV(m),j //G4-G6

return 1 return U(V(m), j) //G4

return 0 return c̃V(m),j //G5-G6

return Uh(s, a,m)

Fig. 13. Games G3 to G6 in the proof of Theorem 5

Game G7(pk, sk) BSigO(m,n)

For j ∈ [qs] nj
$← N j = j + 1

If ∃(j1, j2) ∈ [qs]
2 : nj1 = nj2 ∧ j1 6= j2 If m ∈ Bϵ return ⊥

return 0 (am, cm, zm) = Sim(pk;U′(V(m), j))

U′ ←Rlqs
Sim return (a, z)

If U′ ∈ BadU′
pk return 0

Bϵ ← Blind(Mλ, ϵ) H(s, a,m)

(m∗, (a∗, z∗))← A|BSigO〉,|H〉(pk) If m ∈ Bϵ return H′(s, a,m)
c∗ = H′(pk, a∗,m∗) For j ∈ [qs]
If m∗ ∈ Bϵ ∧ IVer(pk, a∗, c∗, z∗) = 1 (am,j , cm,j , zm,j) = Sim(pk;U′(V(m), j))

return 1 If a = am,j return cm,j

return 0 return Uh(s, a,m)

Fig. 14. Game G7 in the proof of Theorem 5.
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AdvEUF-NMA
FS[ID,H′] (B)

≥ Pr
IGen

[
(pk, sk) ∈ Badλ

]
· Pr

[
G7(pk, sk)

∣∣(pk, sk) ∈ Badλ

]
≥pA

2
·
(
pA − εHyb −

1

2
pA − Pr

[
Explqs-HVZK

ID,Sim (C, pk, sk) = 1
∣∣pk ∈ Badλ

])
=
1

4
p2A −

1

2
pAεHyb −

1

2
pA · Pr

[
Explqs-HVZK

ID,Sim (C, pk, sk) = 1
∣∣pk ∈ Badλ

]
≥1

4
p2A −

27q2sq
3

2γ
−
(
54q3

pA

)τ

εHVZK.

Thus,

1 ≤
4AdvEUF-NMA

FS[ID,H′] (B)
p2A

+
27q2sq

3

p2A2
γ−2 +

4 · (54q3)τ

pτ+2
A

εHVZK,

and

pA ≤ 2
√

AdvEUF-NMA
FS[ID,H′] (B) + qs

√
27q3

2γ−2
+

(
4 · (54q3)τεHVZK

) 1
τ+2

.

In total, B needs (qh + 1) queries to H′, qh queries to Uh and (qs + qsqh)
queries to U′,V, Sim.

C.6 Proof of Theorem 6

Similar to the proof of Theorem 5, we first define HFS′ where G(sk, 0||·, ·) and
G(sk, 1||·, ·) are replaced with U1(·, ·) and U2(·, ·), repectively. We have

Advϵ-BUF-qCNMA
HFS[ID,H,G] (A) ≤

(
2qG√

ϵ
+ 1

)√
Advϵ-BUF-qCNMA

HFS′[ID,H,G] (B′).

for some B′ with running time approximately the same as A.
Let pA := Advϵ-BUF-qCNMA

HFS′[ID,H,G] (A). Define Badλ as in the proof of Theorem 5.

– Game G0(pk, sk): The original BUF-qCNMA experiment of HFS′ for A
conditioned on (pk, sk)← IGen(1λ). We omit G-queries as above.

– Game G1(pk, sk): Program H with H′ for m ∈ Bϵ and otherwise with Uh as
in Theorem 5.

– Game G2(pk, sk): Let q = 2qs + qh and l = 54q3/pA. Pick random oracles
V,W mapping to [l]. Replace U1(m,n) and U2(m,n) with U1(V(m),V(W(n))
and U2(V(m),V(W(n)), respectively. Replace Uh(s, a,m) with Uh(s, a,V(m)).
See Figure 15 for detail. From a generalization of Lemma 7, it holds that

|Pr[G2(pk, sk)]− Pr[G1(pk, sk)]| ≤
27q3

l
= pA/2. (25)
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Game G1-G2(pk, sk) BSigO(m,n)

Bϵ ← Blind(Mλ, ϵ) If m ∈ Bϵ return ⊥
(m∗, (a∗, z∗))← A|BSigO〉,|H〉(pk) (am,n, Stm,n) = Com(sk;U1(m,n)) //G1

c∗ = H′(pk, a∗,m∗) cm,n = Uh(pk, am,n,m) //G1

If m∗ ∈ Bϵ ∧ IVer(pk, a∗, c∗, z∗) = 1 zm,n = Resp(sk, cm,n, Stm,n;U2(m,n)) //G1

return 1 (am,n, Stm,n) = Com(sk;U1(V(m),W(V(m), n))) //G2

return 0 cm,n = Uh(pk, am,n,V(m)) //G2

zm,n = Resp(sk, cm,n, Stm,n;U2(V(m),W(V(m), n))) //G2

H(s, a,m) return (am,n, zm,n)

If m ∈ Bϵ return H′(s, a,m)
return Uh(s, a,m) //G1

return Uh(s, a,V(m)) //G2

Fig. 15. Games G1 and G2 in the proof of Theorem 6.

– Game G3(pk, sk): For any (i, j) ∈ [l]2, run (ãi,j , S̃ti,j) := Com(sk;U1(i, j))
in advance. Abort if there exists i, j1, j2 ∈ [l] such that ãi,j1 = ãi,j2 and
j1 6= j2. Due to the min-entropy of ID, we have

∣∣Pr[G3(pk, sk)]− Pr[G2(pk, sk)]
∣∣ ≤ l3 · 2−γ =

543q9

p3A2
γ
. (26)

– Game G4(pk, sk): Pick a random oracle U : [l]2 7→ ChSet. Program H(pk, a,m)
as follows. If ∃j ∈ [l] such that a = ãV(m),j , return U(V(m), j). Similar to
the proof of Theorem 5, the probability of G4 is the same as G3.
In G4, cm,n in SigO can be replaced with U(V(m),W(V(m), n))

– Game G5(pk, sk): c̃i,j and z̃i,j are computed in advance for all (i, j) ∈ [l]2.
Then cm,n and zm,n is directly replaced with c̃i,j and z̃i,j , where i = V(m)
and j = W(i, n). The probability is the same as G4.

– Game G6(pk, sk): (ãi,j , c̃i,j , z̃i,j) is replaced with (ãi,j , c̃i,j , z̃i,j)← Sim(pk).
Similar to the proof of Theorem 4, we have

∣∣Pr[G6(pk, sk)]− Pr[G5(pk, sk)]
∣∣ ≤ Pr

[
Expl2-HVZK

ID,Sim (C, pk, sk) = 1
]
. (27)

– Game G7: Pick a random oracle U′ : [l]2 7→ RSim. Replace (ãi,j , c̃i,j , z̃i,j) in
BigO and H queries with Sim(pk′,U′(i, j)). Let BadU′pk ⊂ Rl2

Sim be the set
of all the functions f : [l]2 7→ RSim such that there exists (i, j1, j2) ∈ [l]3 :
Sim(pk;U′(i, j1)) = Sim(pk;U′(i, j2)) ∧ j1 6= j2. If U′ ∈ BadU′pk, return 0.
Then, in G7, it is not necessary to compute l2 transcripts before running A.
The probability of G7 is the same as G6.

– Then, we construct BA to break BUF-qCNMA of FS[ID,H′]. B randomly
picks four random oracles U′,W,V,Uh, and runs AH′ as in G7 without check-
ing whether U′ ∈ BadU′pk exactly holds. If U′ ∈ BadU′pk, then B perfectly
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Game G3-G6(pk, sk) BSigO(m,n)

Bϵ ← Blind(Mλ, ϵ) If m ∈ Bϵ return ⊥
For (i, j) ∈ [l]2 im,n = V(m), jm,n = W(V(m), n)

(ãi,j , S̃ti,j) = Com(sk;U1(i, j)) am,n = ãim,n,jm,n

c̃i,j = U(i, j) //G5 cm,n = Uh(pk, am,n, im,n) //G3

z̃i,j = Resp(sk, c̃i,j , S̃ti,j ;U2(i, j)) //G5 cm,n = U(im,n, jm,n) //G4

(ãi,j , c̃i,j , z̃i,j)← Sim(pk) //G6 zm,n = Resp(sk, cm,n, Stm,n;U2(im,n, jm,n)) //G3-G4

If ∃(i, j1, j2) ∈ [l]3 : ãi,j1 = ãi,j2 ∧ j1 6= j2 zm,n = z̃im,n,jm,n //G5-G6

return 0 return (am,n, zm,n)

(m∗, (a∗, z∗))← A|BSigO〉,|H〉(pk)
c∗ = H′(pk, a∗,m∗) H(s, a,m)

If m∗ ∈ Bϵ ∧ IVer(pk, a∗, c∗, z∗) = 1 If m ∈ Bϵ return H′(s, a,m)
return 1 For j ∈ [l] //G4-G6

return 0 If s = pk ∧ a = ãV(m),j //G4-G6

return U(V(m), j) //G4

return c̃V(m),j //G5-G6

return Uh(s, a,m)

Fig. 16. Games G5 to G6 in the proof of Theorem 6.

simulates the queries to A, and succeeds if and only if A succeeds in G7.
Thus,

Pr
[
ExpEUF-NMA

FS[ID,H′] (B)
]
≥ Pr

[
ExpEUF-NMA

FS[ID,H′] (B) ∧ U′ 6∈ BadU′pk
]
= Pr[G7(pk, sk)].

(28)

Let εHyb = 543q9/p3A2
γ . From Equation (25), (26), (27), and (28), we have

AdvEUF-NMA
FS[ID,H′] (B)

≥ Pr
IGen

[
(pk, sk) ∈ Badλ

]
· Pr

[
G7(pk, sk)

∣∣(pk, sk) ∈ Badλ

]
≥pA

2
·
(
pA − εHyb −

1

2
pA − Pr

[
Expl2-HVZK

ID,Sim (C, pk, sk) = 1
∣∣pk ∈ Badλ

])
=
1

4
p2A −

1

2
pAεHyb −

1

2
pA · Pr

[
Expl2-HVZK

ID,Sim (C, pk, sk) = 1
∣∣pk ∈ Badλ

]
≥1

4
p2A −

543q9

p2A2
γ−1 −

(
54q3

pA

)2τ

εHVZK.

Thus,

1 ≤
4AdvEUF-NMA

FS[ID,H′] (B)
p2A

+
543q9

p4A2
γ−3 +

4 · (54q3)2τ

p2τ+2
A

εHVZK,
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and

pA ≤ 2
√

AdvEUF-NMA
FS[ID,H′] (B) +

4

√
543q9

2γ−3
+

(
4 · (54q3)2τεHVZK

) 1
2τ+2

.

In total, B needs (qs + qh) queries to V, qs queries to W, (qh + 1) queries to
H′, qh queries to Uh and l(qs + qh) queries to U′, Sim.
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