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Abstract. Secure two-party computation allows two mutually distrust-
ing parties to compute a joint function over their inputs, guaranteeing
properties such as input privacy or correctness.
For many tasks, such as joint computation of statistics, it is important
that when one party receives the result of the computation, the other
party also receives the result. Unfortunately, this property, which is called
fairness, is unattainable in the two-party setting for arbitrary functions.
So weaker variants have been proposed.
One such notion, proposed by Pass et al. (EUROCRYPT 2017) is called
∆-fairness. Informally, it guarantees that if a corrupt party receives the
output in round r and stops participating in the protocol, then the honest
party receives the output by round ∆(r). This notion is achieved by using
so-called secure enclaves.
In many settings, ∆-fairness is not sufficient, because a corrupt party is
guaranteed to receive its output before the honest party, giving the corrupt
party an advantage in further interaction. Worse, as ∆ is known to the
corrupt party, it can abort the protocol when it is most advantageous.
We extend the concept of ∆-fairness by introducing a new fairness notion,
which we call hidden ∆-fairness, which addresses these problems. First of
all, under our new notion, a corrupt party may not benefit from aborting,
because it may not, with probability 1/2, learn the result first. Moreover,
∆ and other parameters are sampled according to a given distribution
and remain unknown to the participants in the computation.
We propose a 2PC protocol that achieves hidden ∆-fairness, also using
secure enclaves, and prove its security in the Generalized Universal
Composability (GUC) framework.

Keywords: Two-party computation · trusted computing · ∆-fairness.

1 Introduction

Secure two-party computation (2PC) allows two mutually distrusting parties to
jointly compute a function over private inputs by exchanging messages with each
⋆ This is the extended version of Hidden ∆-fairness: A Novel Notion for Fair Secure
Two-Party Computation, published at ACISP 2024. This extended version contains
the full proof of the proposed protocol.
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other. 2PC has applications in settings such as auctions or comparing of statistics.
Even if one of the parties is corrupt, properties such as correctness or privacy
of the inputs can be achieved. Another desirable but not usually guaranteed
property in 2PC is fairness. Fairness guarantees, colloquially speaking, that either
all parties receive the output, or no party does.

However, fairness as stated above, also known as complete fairness, is hard to
achieve, and in the case of 2PC and for arbitrary (efficiently computable) functions,
impossible to realize [10]. Gordon et al. showed that certain non-trivial functions
can be computed in the two-party setting with complete fairness [14] under
suitable cryptographic assumptions. It has since been an open question whether
this result also extends to other functions. Thus, various weaker versions of fairness
have been introduced over the years which aim to improve on efficiency and the
range of computable functions. The research in fair multi-party computation
(MPC) reaches back to the 1980s [19,10], and has addressed a wide range of
fairness notions, from complete fairness [14,9,11], partial fairness[13,1], and
gradual release fairness [4] to fairness with penalties [3].

∆-fairness. As opposed to the above notions, which are detached from any
measure of time, we address ∆-fairness, originally proposed by Pass et al. together
with a ∆-fair 2PC protocol [17], π∆. Here, fairness is linked to time which is
measured in rounds. In a protocol that operates in rounds, ∆-fairness is achieved
if one party in that protocol gets the output in r rounds and the other party gets
the output after at most ∆(r) rounds for a polynomial function ∆.

Pass et al.’s protocol π∆ relies on the ideal trusted computing interface Gatt
[17]. Gatt is a globally shared trusted computing functionality in the universal
composability with global setup (GUC) framework. With a globally shared
functionality, all parties access the same instance of this functionality. A secure
processor, modelled with Gatt, guarantees confidentiality and integrity of the
programs executed in isolation (called enclaves) and the stored secrets, even if the
host is malicious. Secure processors also provide a feature called remote attestation,
where any party can confirm the integrity of the executed program. Similar to
modern secure processors such as Intel SGX [12], Gatt features anonymous remote
attestation. The implementation in Intel SGX uses Direct Anonymous Attestation
[5] to allow the revocation of individual processors in case of a compromise while
still preserving anonymity. Gatt models anonymous remote attestation by sharing
the same private key between all secure processors to create an attestation, hiding
the signing party.

In many protocols achieving complete fairness, in case of a premature abort
by the adversary, the output is set to a trivial value and only if the adversary
behaves honestly until the output is available, all parties receive an output. With
∆-fairness, despite a premature abort by the adversary, the honest party is
guaranteed to receive an output eventually. However, ∆-fairness as proposed by
Pass et al. has the major disadvantage that, by definition, the current delays are
known to the parties and the corrupt party receives the output before the honest
party with certainty, which may result in practical advantages for the adversary
when the remaining runtime of the protocol can be manipulated.
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Consider the example where two parties each decide to buy or sell stocks
based on a (secret) analysis of public data. To make a better decision, they want
to compare their analyses and calculate how much profit they would make. They
do so via the ∆-fair two-party computation protocol. If their predictions match,
they both want to take action (i.e., buy or sell the stocks). Otherwise, no action
will be taken. (In this example, we assume that a corrupt input can stop the
other party, but not change their behaviour.) The time at which the result of
the comparison is learned is crucial, as the earlier one buys/sells, the better
the price. If the corrupt party receives the output before the honest party with
certainty, the corrupt party may even break the agreement to buy or sell the
stocks all alone. Further, if a party aborts the computation prematurely such
that it receives the result before a deadline, e.g. before the stock market closes
and the other party would receive the result after the deadline, the aborting
party has a major advantage in its buying or selling decision.

Hidden ∆-fairness. In this paper, we address the problem of adversarial advantage
in ∆-fair protocols. We introduce a new variant of ∆-fairness, called hidden ∆-
fairness. Informally, hidden ∆-fairness differs from standard ∆-fairness in that
the delay is not known to either party, by hiding the parameters inside the enclave
instances of Gatt. If a 2PC protocol achieves hidden ∆-fairness, the corrupt party
can receive the output in r rounds and either delay the honest party’s output
until for ∆(r) rounds or the honest party also receives the output by in r rounds.
However since the concrete values of r and ∆(r) are hidden, it does not learn how
much time it has, and its advantage is reduced compared to standard ∆-fairness.
Using Gatt, we can realize hidden ∆-fairness efficiently.

In the above example, if the adversary has no knowledge about the time at
which it and the other party receive the output, and if it does not receive the
result before the honest party with certainty, the advantage of the adversary
declines. The adversary could receive the result at a time at which the stock
prices may no longer match their analysis. Since the honest party may receive
the output at the same time as the adversary, buying or selling the stocks all
alone might no longer be feasible.

For a two-party computation protocol with an adversary corrupting at most
one party, we define hidden ∆-fairness as follows.

Definition 1 (Hidden ∆-fairness, informal). If a 2PC protocol operates
in rounds and ∆ is a polynomial unknown to both parties, hidden ∆-fairness
guarantees that if the corrupt protocol party receives the output in r rounds, the
honest party receives the output either in r rounds or at least in ∆(r) rounds.

We further introduce a protocol πh∆, which allows two parties to compute
any efficiently computable function while achieving hidden ∆-fairness. We base
our protocol on Pass et al.’s protocol π∆.

When using trusted computing, i.e. enclaves, as opposed to cryptographic
tools like garbeled circuits for MPC protocols, most of the complexity vanishes.
However, a trivial solution, that may come to mind first, is not possible. Consider
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a 2PC protocol where two parties with access to an enclave each wish to compute
a joint function on private inputs. Both parties would send their input to its
enclave. One enclave sends its value to the other enclave over a previously
established secure channel. The receiving enclave computes the function and
sends the output back to the sending enclave; afterwards both enclaves return
the output to the parties respectively. As long as both parties are honest and the
receiving party is trustworthy, this approach works. In two-party computation
with a dishonest majority, the above protocol can be exploited if the receiving
enclave is corrupt. As communication between the enclaves goes through the
parties, the malicious party can drop the message containing the output (i.e.
aborting the protocol prematurely) meant for the honest party while receiving
the output itself, breaking fairness. Additionally, Pass et al. showed [17], both
parties are required to have access to a enclave in order to UC-realize 2PC in the
above explained Gatt model.

Therefore, some mechanism enforcing that both parties eventually receive the
output despite premature abort needs to be established.

We consider a synchronous protocol execution that operates in rounds. In
each round, a party receives a message, processes the message to generate a new
message, which is sent to other parties participating in this protocol instance.
Both πh∆ and π∆ utilize the parameters δ and ∆. δ is the delay, such that, after
being initialized and decreased each round, upon expiration, a party can receive
the output of the computation. ∆, as stated above, is a polynomial function by
which the delay δ is reduced during the protocol.

In π∆, where both parties start with the same delay, if the first party aborts
the protocol prior to sending a message, it prevents second party to enter a new
round while the first party can execute the protocol for an additional round.
Since delays are updated once each round, the aborting party is in the lead.
In πh∆ the adversary only receives the output before the honest party with a
probability of 50% which is achieved by carefully choosing the initial delays. In
addition, we limit the adversary’s ability to predict the remaining delay δ based
on the initial delay and ∆ by randomly choosing the initial delay and ∆ instead
of using predefined values and keeping the parameters hidden in the parties
secure processors. From a game theory perspective, hidden-∆ fairness improves
the fairness guarantees in comparison to ∆-fairness. We show the security of our
protocol using the generalized universal composability framework [7].

In the following, we give an informal description of our protocol πh∆.

1.1 Protocol Description

We assume that two parties have access to a secure processor which is used to
start an enclave each. Upon given the private inputs, the enclaves are used to
compute the function on the inputs and release the output to the hosts after a
certain amount of time. To achieve that both enclaves release the output at the
same time, the enclaves jointly negotiate the program parameters.

– Upon initialization, both enclaves individually draw a random initial delay
δi[0], a polynomial function ∆i(·) and a bit bi, i ∈ {0, 1}.
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– After establishing a secret channel and calculating a common coin c ∈ {0, 1}
from both bits b0 and b1, the enclaves commonly determine the parameters
δ′[0] := δc[0] and ∆′(·) := ∆c(·) used for this run.

– Enclave ec sets its initial delay δ[0] to δ′[0]·r/∆′(1), while enclave e1−c sets its
initial delay to δ′[0].

– Now, the enclaves start exchanging acknowledgement (ack) messages. In
each round r, each enclave receives a message, updates the remaining delay
δ[r] := δ[r−1]·r/∆′(r) and creates a message for the opposite enclave.

– If δ[r] of one party drops below a threshold, both parties now are able to
retrieve their output.

To illustrate the above example of stock trading, consider the simple instance
of the above introduced protocol in Fig. 1. Imagine both parties are able to buy
or sell stocks until a deadline denoted with r = 6. On the left hand side of Fig. 1,
both parties are honest and run the protocol as described. When the first party’s
delay drops below 1, both parties are able to retrieve the output in round 4 and
thus have time to trade stocks until round 6. On the right hand side, p0 is corrupt
and does not send its ack message in round 2. Honest party p1 sends its round 2
message to p0, meaning that p0 can run the protocol for another round. Since the
delay of p0 is 1 at this time, it can receive the output until round 6 and be able
to trade stocks. The honest party, with delay δ1[2] = 16, will not be able to do
so until the deadline is over. If the corrupt party had aborted one round earlier,
neither party could trade stocks with delays δ0[2] = 4 and δ1[1] = 64 respectively.
If the corrupt party had aborted one round later, both party would be able to
trade stocks, as the delay of the corrupt party is < 1. As the parameters ∆ and
δ[0] are hidden, the time at which an abort is most beneficial to p0 is unknown.

1.2 Contribution

In this paper we make the following contributions. We address various disadvan-
tages of the original ∆-fairness. First, we define a new notion of fairness, namely
hidden ∆-fairness based on ∆-fairness. We do so via the ideal functionality Ff,h∆

which hides the current delay from both parties, allows for a variable output
order and delays the output for both parties. We also define the accompanying
protocol πh∆, that implements a hidden ∆-fair two-party computation protocol
and that securely realizes Ff,h∆ in the GUC framework.

1.3 Related Work

Many secure MPC protocols require cryptographic tools like garbled circuits
or secret sharing. Another promising option for providing confidentiality and
privacy in secure MPC is trusted computing. With formalising trusted computing
devices, or trusted execution environments (TEEs) through a globally shared
ideal functionality, Pass et al. [17] laid the groundwork for provable MPC using
trusted computing. They show that two-party computation in this setting requires
that both involved parties need to be equipped with a TEE.
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Fig. 1. c = 0,∆(r) = 4, δ[1] = 256. Left: both parties honest, right: p0 corrupt

Similarly, Barbosa et al. [2] addresses formalizing trusted computing with
the focus on composition and attestation in systems relying on hardware-based
trusted computing. Their work only provides formalization posing application to
MPC as future work.

Aside from this formalization of trusted computing in MPC, other work shows
that TEEs can be used to provide the basis for MPC in practice. Similar to
Pass et al., Choi et al. [8] explores the adaption of TEEs in MPC. They focus on
practical solutions for utilizing the security guarantees of trusted computing as
well as the practical differences between commercially available TEEs. They also
survey existing work utilizing TEEs in MPC, presenting a comparison of different
techniques used in MPC, addressing properties like integrity of code and data,
and overhead. While our work pushes the boundaries of achievable fairness with
idealized trusted computing, their work does not specifically address fairness but
rather other limiting factors like mobile friendly MPC.

Paul et al. [18] propose a MPC protocol based on TEEs and public ledgers.
They provide an attack on existing work [9], demonstrating that the fairness
guarantee vanishes if the underlying MPC protocol does not guarantee correctness.
Based on this attack, they propose a fair MPC protocol that is resistant against
the aforementioned attack. In comparison to our work, their approach requires a
public ledger in addition to TEEs on every party.
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1.4 Outline

In Section 2 we briefly introduce the G(UC) framework, describe the concept
of Trusted Computing and define the global functionality Gatt. We also give
definitions of several building blocks. In Section 3.1 we define the hidden ∆-fair
2PC ideal functionality Ff,h∆. The protocol πh∆ is described and defined in
Section 4. The security proof is given in Section 5 using the GUC framework.
Section 6 concludes this work.

2 Preliminaries

This section introduces the (G)UC framework, trusted computing and the ideal
functionality Gatt and defines building blocks.

2.1 Notation

Let λ ∈ N denote the security parameter. For some hybrid Hi, let outi denote
its output. Let negl(λ) denote an unspecified negligible function in λ. For some
set X, let x

$← X denote that x is sampled uniformly at random from X. For
a ≤ b ∈ N, let [a, b] = {a, . . . , b}.

2.2 (Generalized) Universal Composability

In this paper, we use a variant of the well-known Universal Composability (UC)
framework [6] called Generalized Universal Composability (GUC) [7]. In the
following, we give a very short and intentionally incomplete introduction to
(G)UC security. For a complete treatment, we refer the interested reader to the
respective papers.

Following the real-ideal paradigm [16], Universal Composability allows to
analyze the security of a probabilistic polynomial-time (PPT) protocol π by
comparing it to an ideal functionality F , which captures the task to be performed,
as well as the desired security guarantees.

Real Execution. In more detail, the protocol π (whose execution is called the
real execution) is executed in the presence of an adversary A, modelled as a PPT
Turing Machine, and an environment Z, which is modelled as a non-uniform PPT
Turing Machine. When Z is started, it gets an input consisting of the security
parameter in unary notion, as well as some (not necessarily computable) non-
uniform advice. Z, serving as an interactive distinguisher, chooses and provides
the inputs to the protocol parties and also receives their output. Throughout the
execution, it may freely communicate with the adversary, which may corrupt an
arbitrary subset of protocol parties. Corrupted parties are jointly controlled by
the adversary and may arbitrarily deviate from the protocol, capturing the setting
of active or malicious or byzantine corruption. Moreover, the adversary controls
the communication network, which we assume to provide ideally authenticated
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communication. In particular, the adversary may report all messages exchanged
between protocol parties to the environment. Thus, depending on the adversary,
the environment may have full control and information of the execution: It
knows all inputs and outputs and may observe all communication. Furthermore,
the adversary may simply receive commands from the environment (e.g. which
parties to corrupt or which messages to send on behalf of corrupted parties). The
adversary may also report all information it receives to the environment. This
adversary is called the dummy adversary D. At the end of the execution, the
environment outputs a single bit.

Ideal Execution. In the execution with the ideal functionality F , the protocol
parties do not exchange messages with each other. Instead, they directly send their
inputs to the ideal functionality, which performs the desired task by definition.
Then, it returns the results to the parties, which output them to the environment.
As the ideal functionality is incorruptible and its communication with the parties
ideally secure, this ideal execution is secure by definition. Also part of the
execution with an ideal functionality is the adversary. Like in the real execution,
it can corrupt parties to learn their inputs and outputs. It may also interact with
the ideal functionality through interfaces on behalf of the corrupted parties as
well as through interfaces provided for the adversary. These interfaces capture
adversarial influence that cannot be ruled out in principle, e.g. the delay of
outputs, and depend on the functionality and the model of execution.

Proving Security. To prove the security of π, i.e. that it realizes the ideal
functionality F , it is necessary to prove that no PPT environment can distinguish
between an interaction with π and an adversary and interaction with F and an
adversary. If this holds, then all properties guaranteed by F , which is secure by
definition, carry over to the execution of π—otherwise, the executions would not
be indistinguishable. At first glance, this may seem impossible to prove, as in the
execution of π, the protocol parties execute messages, whereas in the execution
of F , no messages are exchanged.

To bridge this gap, the proof of security entails to prove the existence of
a so-called simulator, which acts as the adversary in the ideal execution. The
task of the simulator is to simulate the execution of the real protocol—while
actually interacting with the ideal functionality F . In particular, the simulator
must simulate the messages the protocol parties would send in the real execution.
However, this must be done with what little information the ideal functionality
provides. In particular, the simulator usually does not know the inputs (and often
the outputs) of the honest parties. Nevertheless, it must be able to simulate their
messages in an indistinguishable way.

Realizing an Ideal Functionality. The above definition can be captured in the
following, still informal, definition of realizing an ideal functionality.

Definition 2 (Realizing an Ideal Functionality, informal). Let π be a PPT
protocol and let F be an ideal functionality. We say that π (UC-) realizes F if



Hidden ∆-fairness: A Novel Notion for Fair Secure Two-Party Computation 9

for every PPT adversary A, there exists a PPT simulator S such that for every
PPT environment Z, the output of Z in the execution with π and A and in the
execution with F and S is computationally indistinguishable.

Synchronous Execution. Similar to [17], we assume a synchronous and round-
based model of execution. In particular, we assume that the environment calls
each party once each round. This allows the parties to keep track of the current
round. We also assume that all messages sent by honest parties in round r are
delivered at the beginning of round r + 1. If a party receives no message from
the opponent party in one round, it assumes the opponent party has halted the
execution. The party then discards all future incoming messages.

Time and Clocks in (G)UC. In our protocol and functionalities, we make use of
the “time” passed since a protocol has started. Both functionalities and protocols
measure time passed in rounds. One round is a “tick” on a global network clock.
We say that a functionality is clock-aware if it can query the current time.

2.3 Trusted Computing

We use the concept of trusted computing, i.e., we assume the existence of a
secure processor that provides integrity and confidentiality of loaded programs,
executions of programs, and stored information, and that provides anonymous
attestation over its programs and data. An instance of a program on a secure
processor we call an enclave.

We utilize the secure processor abstraction Gatt (see Definition 3). Gatt is a
global ideal functionality, i.e. accessible from multiple protocols. It captures the
anonymous attestation abstractions which is the core of secure computing and
that is implemented by actual trusted execution processors, e.g. Intel SGX [12],
Arm Trustzone and others. The immediate and uninterruptable inputs/outputs
between a party and Gatt model the fact that an adversary controlling the network
still cannot prevent a party from interacting with its own enclave. Therefore,
Gatt models parties that have a secure processor embedded in their system. The
secure processor cannot communicate directly with the outside world, but only
interacts with the parties hosting the secure processor, which can then relay
messages to other parties. Gatt has two stateful enclave operations, install and
resume which we explain below.

On initialization, Gatt generates a pair of keys (mpk, sk) of signature scheme
Σ. Every party can query the public key mpk. Deviating from [17], we allow any
party and the adversary to install (and run) enclaves. Any party that has an
attested secure processor, i.e. that can run enclaves can call enclave operations
and produce attestations under secret key sk. This is a modification to the original
definition, where only registered parties can run enclaves. Note that the same key
pair (mpk, sk) is used to sign (and verify) every call to an enclave. As the signature
contains the enclave ID, but not the identity of its owner, this models anonymous
attestation. Using the install operation, a party p can load a program prog
with identifier idx on its local processor. Upon installing, Gatt chooses a random
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identifier eid for each installed enclave program. Gatt holds the current state of
each installed program in a field T . After installation, p can resume the program
prog with input inp statefully using resume. Gatt executes prog using the current
status mem and the input inp and sends outp and a signature σ over the program,
output, idx and eid back to p.

Formally, Gatt is defined as follows:

Definition 3 (Global functionality Gatt (based on [17])). Gatt interacts
with a set of parties and is parameterized with an EUF-CMA secure signature
scheme Σ. On initializing, draw mpk, sk

$← Σ.KeyGen and set T = ∅. When a
party p or the adversary requests the master public key, send mpk to p. Gatt has
the following stateful enclave operations:

– When receiving install(idx, prog) from a party p or the adversary, if p is
honest, assert idx = sid, and generate nonce eid ∈ {0, 1}λ, store T [eid, p] :=

(idx, prog,
→
0 )

– When receiving resume(eid, inp) from p, if there exists no entry
(idx, prog,mem) := T [eid, p], abort. Otherwise, calculate (outp,mem′) =
prog(inp,mem), update T [eid, p] := (idx, prog,mem′), calculate signature
σ := Σ.Sigmsk(idx, eid, prog, outp) and send (outp, σ) to p.

The environment Z can access Gatt acting as a corrupt party or acting as an
honest party for non-challenge protocol instances with different session identifiers
than challenge sid.

2.4 INT-CTXT Security

In the following, we will state the definition of INT-CTXT security, which
informally captures the property that an adversary, given a set of ciphertexts with
plaintexts of its choice, cannot create a new ciphertext that can be successfully
decrypted.

Definition 4 (INT-CTXT Security). Let AE = (Enc,Dec) be a symmet-
ric encryption scheme. Let ExpIND−CTXT

A,AE (λ, z) be the output of the following
experiment:

1. Generate a key sk
$← {0, 1}λ. Furthermore, initialize C = ∅ and win = false.

2. Let OEnc(sk,m) denote the following oracle:
(a) c← Enc(sk,m) and add c to C.
(b) Return c.

3. Let OVfy(sk, c) denote the following oracle:
(a) If c /∈ C and ⊥ ≠ m← Dec(sk, c), set win = true.
(b) Return m ̸= ⊥.

4. Execute AOEnc(sk,·),OVfy(sk,·)(1λ, z).
5. If win = true, return 1. Otherwise, return 0.

We say that AE is INT-CTXT-secure if for every PPT adversary A, there exists
a negligible function negl such that for every λ ∈ N and every z ∈ {0, 1}∗, it holds
that Pr[ExpINT−CTXT

A,AE (λ, z) = 1] ≤ negl.
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3 Hidden ∆-fair Functionality Ff,h∆

In this section we define our requirements for the variant of the ∆-fairness
property, which we call hidden ∆-fairness, via the ideal functionality Ff,h∆.

3.1 Ideal Functionality Ff,h∆ for hidden ∆-fair 2PC

In short, ∆-fairness in multi-party computation means that, when ∆ is a function
and time can be measured in rounds, when the malicious party receives the
output of the computation in r rounds, the honest party receives the output in at
most round ∆(r). In our functionality, this is achieved via a delay, that is initially
set to an exponentially high value.1 Each round the delay is reduced according to
∆, i.e. divided by ∆. When the delay has expired, i.e. dropped below a threshold,
the parties can obtain the output of the computation.

As we motivated in the introduction, the original ∆-fairness (as given in [17,
Fig. 10]) enables the adversary to exploit the knowledge of the delay and the
guaranteed first output delivery in some applications. These advantages, such as
the knowledge of exact delays, enables and incentivizes the adversary to abort
the protocol prematurely at a specific point in time. We address these issues in
this section by stating three requirements for our notion hidden ∆-fairness (h∆).
Afterwards, we show how these requirements are implemented in the proposed
hidden-∆ functionality Ff,h∆. We have the following requirements.

1. Hidden delay : Current delay is hidden from the adversary.
2. Variable output order : The adversary cannot always receive the output before

the honest party does.
3. Delayed output : Prevent the adversary from receiving the output immediately

when requested.

Our functionality achieves these requirements as follows.
Hidden delay We achieve this requirement by choosing the initial delay δ[0]

and the delay reduction function ∆(·) at random from appropriately defined
sets. These parameters are drawn by the functionality and are not passed to the
adversary. These parameters define the delay in each round.

Variable output order The functionality chooses a bit b at random. The
adversary receives the output in r rounds when the delay is below a certain
threshold. The honest party, depending on the bit b, either also receives the
output in r rounds or at least in ∆(r) rounds.

Delayed output The adversary can issue to (abort, sid), upon which the
functionality stores the current delay d = δ[r] as well as the remaining delay of
the honest party, denoted as D. Upon issuing (output, sid), depending on the
bit b and if more time has passed than the stored values d resp. D, the output is

1 The functionality offers the option to return no output to the honest party in case
of a very early abort. Since the initial delay is exponentially high, the polynomially
bounded adversary never actually receives the output.
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returned to the calling party. If no abort took place, the output is available to
both parties when the current delay is below a threshold.

In the following we provide a detailed description of the functionality Ff,h∆

as well as the formal definition (Definition 5). The functionality uses several
variables that are specific for one session, each denoted with a session identifier sid.
For clarity, we abbreviate any variable nsid with n. To distinguish the parameters
drawn by the functionality and in the protocol, in the following, we use the
notation ∆F and δF .
Ff,h∆ works as follows. The functionality operates in rounds. It internally

holds state of the current round, denoted as r, which is periodically increased,
starting at r = 0. In each round the functionality updates the delay as explained
below. Each party is called once a round to call one of the functionality’s
functions, also explained below. After receiving the inputs from both parties, the
functionality randomly draws a function ∆F (·)

$← fâ where fâ := {∆F (r) : r 7→
â · r}â∈[2,λ2]. The functionality also randomly draws a bit b and initializes a flag
z = ⊥. The functionality uses ∆F (·) to calculate δF [r] every round.

The parties can call two functions. First, a party can choose to call (abort,
sid). If this abort takes place before round r = 5, the opponent party shall never
receive an output. In the case of an abort prior to round 5, the functionality
thus sets z = j where pj is the opponent party. We include this feature due
to practical constraints in the real protocol where the adversary can abort the
protocol on behalf of a corrupted party before the honest party has had a chance
to start the protocol properly, which happens in round 5, preventing the honest
party to receive the output. We note that this limitation is also present in the
original notion of ∆-fairness and seems to be inherent to the considered setting.
However, [17] does not capture this explicitly in the ideal functionality. For the
parameters used in [17], this is not necessary, as the honest party would receive
the output in the ideal execution after a super-polynomial number of rounds
if the adversary aborts early on. As (G)UC executions only take a polynomial
number of steps, this output does not actually occur.

If the abort takes place in round r = 5 or later, the functionality stores the
current round r∗ := r, the delay d := δF [r

∗] and the delay of previous round,
i.e. D := ∆F (δF [r

∗]). In theory both parties can call (abort, sid), however no
honest party would benefit from aborting.

The second function of the functionality a party can call is (output, sid) to
request the output from the functionality. There are two cases. In the first case,
(abort, sid) has not been called by a party. Then, if δF [r] < 1 for current round r
and after asserting that (outp0, outp1) has been stored2, the functionality returns
the respective output to the calling party.

In the second case, in a previous round r∗, (abort, sid) has been called. If
the corrupt party is calling, it is returned the output if more rounds has passed
since round r∗ than stored value d. If the honest party, say pj , is calling (output,
sid), it is returned the output when more rounds has passed since round r∗ than

2 Anytime a party calls the functionality, this assertion is verified. If this assertion fails
in any case the functionality stops its execution.
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d in case b = j, or, when more rounds has passed since round r∗ than D in case
b ̸= j. The honest party is only returned the output when (abort, sid) has been
called after round 4, i.e. if z ̸= j.

Definition 5 (Hidden ∆-fair 2PC functionality Ff,h∆). Ff,h∆ interacts
with parties p0 and p1 in a session denoted with sid.

1. When receiving ( compute, sid, inpi) from pi where i ∈ {0, 1}, if p1−i has sent
( compute, inp1−i), let (outp0, outp1) = f(inp0, inp1). Store (sid, outp0, outp1).
Initialize z = ⊥.

2. Draw random bit b
$← {0, 1}, function ∆F (·)

$← fâ and an initial delay
δF [0] = 2x where x

$← [λ/2, λ]. Set r = 0 and periodically increase r. Set
δF [4] := δF [0].

3. When receiving ( abort, sid) from pi in round r = 5, set z = 1− i.
4. In each round from round r = 5, calculate δF [r] according to ∆F (·)
5. When receiving ( abort, sid) from pi in round r ≥ 5,

(a) Assert (sid, outp0, outp1) has been stored.
(b) Store r∗ := r, D := ∆F (δF [r

∗]) and d := δF [r
∗].

6. When receiving ( output, sid) from pj in round r, proceed as follows
– Assert (sid, outp0, outp1) has been stored.
– If abort has not been called and if δF [r] < 1 , return outpj to pj.
– Else, if abort has been called,

(a) Let r′ := r− r∗ denote the rounds passed since abort has been called.
(b) If b = j, if r′ > d and z ̸= j, return outpj to pj.
(c) If b ̸= j,

i. If j corresponds to party pj corrupted by A, if r′ > d and z ̸= j,
return outpj to pj.

ii. Otherwise, if r′ > D and z ̸= j, return outpj to pj.
– Otherwise, return ⊥.

7. When receiving ( status, sid) from A,
– Return ⊥ if output returned to less than two parties.
– Return finished if output returned to both parties.

4 Hidden ∆-fair Two-Party Computation Protocol

This section describes our proposed protocol πh∆ which follows the structure of
the original protocol π∆ (as specified in [17, Figure 12]). The full protocol can be
found in Algorithm 2 which internally calls the enclave program in Algorithm 1.

4.1 System Model

In the following we define the system model used in our proposed protocol. Let
(p0, p1) be a set of two parties participating in a two-party computation protocol
that operates in rounds. Let r denote the current round. p0 and p1 have a private
input inp0 resp. inp1. After executing the 2PC protocol, the parties receive the
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output outp0 resp. outp1. Let AE = (Enc,Dec) be an IND-CPA- and IND-CTXT-
secure symmetric encryption scheme. (g, p) $← GenGrp(1λ) are generator and
group modulus of group Z∗

p where |p| = λ is published by a trusted third party.
Let Σ = (Sign,Ver) be an EUF-CMA-secure digital signature scheme.

To define the parameters for the 2PC protocol, let δ[r] be the delay field and
∆(r) the delay reduction function. Let fa := {∆(r) : r 7→ a · r}a∈[2,λ] be a family
of functions. δ[r], being recursively defined dependent of ∆, is the remaining run
time of the 2PC protocol. δ[0] is initialized with some positive integer x ∈ [λ/2, λ],
δ[0] := 2x. For round r, δ[r] is defined recursively, δ[r] := δ[r−1]·r/∆(r).

4.2 Design Requirements

Recall the three goals, hidden delay, variable output order and delayed output,
previously defined for Ff,h∆ in Section 3.1. We describe how the protocol realizes
these goals. We also describe the security implications of these realizations.
Afterwards, we give a detailed description of our proposed protocol.

Hidden delay Similar to the functionality, the protocol hides the delay from the
parties by letting the enclaves choose the initial delay δ[0] and delay reduction
function ∆(·) randomly. Imagine there is a deadline in the future such that it
is beneficial for the adversary when it receives the output before the deadline
and the honest party after the deadline. Then there is one round at which it
must abort such that this scenario takes place3. The hidden delay prevents
the adversary from selectively aborting the protocol prematurely at this round
and thus brings the probability that the adversary aborts the protocol at its
desired point in time to 1/r∗ where r∗ is the total number of rounds if no party
aborts. The number of rounds r∗ is defined by the initial delay δ[0] and ∆(·).
If these parameters were known, the adversary could always abort the protocol
prematurely such that it has an advantage in the underlying protocol utilizing
the 2PC (e.g. calculating statistics) by knowing the result early with a significant
time margin or such that the honest party receives the result at a point in time
where the underlying protocol has already finished.

Variable output order The enclaves draw a random bit each which get combined
into a common coin. The coin, unknown to the parties, decides which party
obtains the lower delay right from the start. If both parties are honest, the
protocol makes the output available to both parties at the same time. If one party
is corrupt and aborts prematurely, the coin decides if both parties receive the
output simultaneously or if the honest party receives the output after the corrupt
party in case of a premature abort. This mechanism reduces the probability to
receive the output first 50% as opposed to 100% if the output order were fixed in
favor of the adversary.
3 If the adversary aborts before said round both parties would receive the output after

the deadline since the delays are too high, if the adversary aborts after this round
both parties would receive the output before the deadline, see Figure 1
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Delayed output Each party’s enclave holds state of the current delay. Only if
δ[r∗] < 1 in round r∗, a party can obtain the output from the enclave. If no party
aborts the protocol prematurely, both parties can obtain the output in round
r∗, independent of the common coin c. If a party, say pi, aborts the protocol
prematurely, either both parties can obtain the output in r′ rounds if c ̸= i or
the honest party receives the output at least in ∆2(r′) rounds. We achieve this
by setting the initial delay of pi to δ[0]·r

∆(r) where δ[0] is p1−i’s initial delay. Then,
in case of an abort, p1−i is “two rounds behind”.

4.3 Protocol Description

The protocol works as follows. If any assertion fails the party aborts execution
and hands control back to Z.

– On initialization, the parties run a setup phase, where the parties’ enclaves
commonly decide on a initial delay δ[0], the delay reduction function ∆(·) and
a common coin c. They also exchange their private inputs for later evaluation.

– If c = i, pi’s initial delay is δ[1]. Otherwise, pi’s initial delay is δ[0] to
accommodate a higher delay for pi.

– After initialization, the parties exchange ack messages. In each round an ack
message is received, the enclave can update its current delay according to
∆(·). If the delay of pc has expired, both parties can obtain the output from
their enclave.

– If a party aborts and stops sending ack messages before δ[r] < 1, the timer
decreases only linearly for both parties. When one party received an ack
message in the current round while the other party did not, the first party’s
delay is either equal to or lower than the second party’s delay by a factor of
∆(∆(r))/r2, depending on the coin c.

In order to illustrate the last point, consider the following example, depicted
in Figure 2. After initialization, the parties decided on the parameters ∆(r) = 4 ·r,
c = 0, and δ[0] = 64. Since c = 0, p0’s initial delay in round 1 is δ0[1] = 16,
whereas p1’s initial delay is δ1[1] = 64. First, imagine that p0 is corrupt and
does not send its ack message, denoted as m0, to p1 in round r = 2. p1, acting
honestly, sends its ack message m1 to p0 in round r = 2. Then, in round r = 3,
p0 can call its enclave using message m1. After this round, p0’s delay is δ0[3] = 1.
Since p1 could never enter round r = 3, its delay is δ[2] = 16. We have that
(4r·δ0[3])·4r

r2 = 4 · 4 · δ0[3] = δ1[2].
Consider the same example except that c = 1. Then, δ0[1] = 64 and δ1[1] = 256.

Again, p0 can enter round r = 3, thus δ0[3] = 4. p1’s round counter remains at
r = 2 and δ1[2] = 4. In this case we have that δ0[3] = δ1[2].

Note that if a party stops receiving messages and thus stops invoking its
enclave functions, the round counter stops progressing and round counters might
deviate from the actual time. This is why we included an explicit round counter
that is increased in the enclave program instead of the implicit round counter
in π∆. Upon aborting, the delays only decrease linearly, which is denoted by
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r = 1
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r = 3
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δ0[1] = 16
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ack ack

ack acké

p0 c = 1

δ0[1] = 64

δ0[2] = 16

δ0[3] = 4
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δ1[1] = 16

δ1[2] = 4

ack ack

ack acké

Fig. 2. Simplified protocol procedure of corrupt p0 and honest p1 where ∆(r) = 4r and
δ[0] = 64. Left: c = 0, right: c = 1

decreasing δ∗ periodically in the protocol. This means that every round a party
does not invoke its enclave the delay δ∗ is decreased by 14.

Now let us look at the different sets fa resp. fâ used by the protocol resp. the
functionality to draw the function ∆(·) resp. ∆F . As demonstrated in the above
example, in the protocol πh∆, after p0 has aborted, the delay for the honest party
p1 is ∆(·) ·∆(·) times the delay of p0 when c = 0, i.e. the function ∆(·) applied
twice. In order to match this to the functionality, the functionality draws ∆F
from fâ where â is in [2, λ2] as opposed to a which is in [2, λ].

4.4 Parameter Selection and Performance

An appropriate selection of λ depends on the concrete security margin one is able
to accept for the event of an adversary managing to obtain the output before a
deadline and the honest party obtaining it after the deadline. An appropriate
probability might be 2−10, setting λ = 211. Inherently, when the protocol chooses
the adversary to go first, there is a message where aborting allows the adversary
to obtain the output before the deadline and the honest party getting it after.
Therefore the security is limited by the number of exchanged protocol messages.
Being only a single symmetric decryption and encryption, the calculation of
acknowledgements is very fast (on our test system, AES-128-GCM in SGX on
an Intel Xeon D-1718T, this operation takes 0.3ms), so the limiting factor for
releasing the output is network delay. The remote attestation is done with the
EPID mechanism provided by the SGX SDK to establish an ecdh-256-bit key
between the enclaves. For the chosen security parameter, this means that in this
setting releasing the output over a good internet connection with 10ms latency

4 In practice this can be implemented via trusted clocks [15] or by relying on digital
signatures of an external time stamping server.
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Algorithm 1 Enclave part progπh∆
[f, p0, p1, i] of πh∆, based on original protocol

π∆ by [17]. fa := {∆(r) : r 7→ a · r}a∈[2,λ] is a family of functions.

1: On initialize
2: r := 1
3: x

$← [λ/2, λ]
4: δ[0] := 2x

5: ∆(·) $← fa

6: bi
$← {0, 1}

7: Y = (δ[0],∆(·), bi)
8: δ[1] = δ[0]·r

∆(r)

9:
On input (keyex)
10: α

$← Z∗
p

11: return gα

On input (keygen,gβ)
12: assert keyex has been called
13: sk := (gβ)α

14: ct := Encsk(Y )
15: return ct
On input (send,inpi, ct

′)
16: assert keygen has been called
17: Y ′ := Decsk(ct

′)
18: parse (δ′[0],∆′(·), b1−i) := Y ′

19: c := bi ⊕ b1−i

20: if c = 1− i then
21: ∆(·) := ∆′(·)
22: δ[1] := δ′[0]
23: end if
24: ct := Encsk(inpi, c)
25: return ct
On input (receive,ct′)

26: assert keyex, keygen and send have
been called, ct′ not seen

27: (inp1−i, c
′) := Decsk(ct

′)
28: store (outp0, outp1) = f(inp0, inp1)
29: assert c′ = c
30: ct := Encsk(δ[1])
31: return ct
On input (ack,ct′)
32: assert receive has been called, ct′ not

seen and Decsk(ct
′) ̸= ⊥

33: r := r + 1
34: if c = i then
35: calculate δ[r] := δ[r−1]·r

∆(r)

36: else
37: if Decsk(ct

′) =: δ′ < 1 then
38: δ[r] = δ′

39: else
40: calculate δ[r] := δ[r−1]·r

∆(r)

41: end if
42: end if
43: ct = Encsk(δ[r])
44: start decreasing δ∗ := δ[r] periodically
45: return (ct,⊥)
On input (output,v)
46: if v ̸= ⊥ then return v
47: end if
48: assert ack has been called
49: assert δ∗ < 1
50: return outpi

Algorithm 2 Protocol protπh∆
[sid, f, p0, p1, i] πh∆ running on party i, based on

original protocol π∆ by [17].
On input inpi from Z
1: eid := Gatt.install(sid, progπh∆

[f, p0, p1, i])
2: (ga, σ) := Gatt.resume(eid, keyex)
3: send (eid, ga, σ) to p1−i, await (eid′, gb, σ′) from p1−i

4: assert Σ.Vermpk((sid, eid
′, progπh∆

[f, p0, p1, 1− i], gb), σ′)

5: (ct, ·) := Gatt.resume(eid, (keygen, gb)), send ct to p1−i, await ct′

6: (ct, ·) := Gatt.resume(eid, (send, inpi)), send ct to p1−i, await ct′

7: (ct, ·) := Gatt.resume(eid, (receive, ct′)), send ct to p1−i, await ct′

8: repeat: (ct, ·) := Gatt.resume(eid, (ack, ct′)), send ct to p1−i, await ct′

On input output from Z
9: return Gatt.resume(eid, (output,⊥))
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takes around 10 seconds. The computation of the desired functionality beforehand
happens at near-native speed inside the enclave.

5 Security

In this section we prove the security of our protocol, i.e. we prove in Theorem 1
that πh∆ securely GUC-realizes Ff,h∆ in the Gatt-hybrid model.

For the purpose of clarity, we abbreviate
Gatt.install(sid, (progπ[sid, f, p0, p1])) with Gatt.install(progπ).

Theorem 1. Assume the DDH assumption holds, AE is an IND-CPA and INT-
CTXT secure and perfectly correct encryption scheme, and Σ is an EUF-CMA
secure and perfectly correct signature scheme. Then πh∆ GUC-realizes Ff,h∆ in
the Gatt-hybrid model.

By design, both the ideal functionality and the protocol draw the parameters
for the delay function independently and at random. Both sets of parameters are
unknown to the adversary. To ensure that the execution of the ideal protocol
is indistinguishable from the simulation of the real protocol, the simulator has
to ensure the parties receive the same output at the same time in both worlds.
The same output is guaranteed by extracting the corrupt party’s input from its
call to Gatt. The functionality, given the input from the honest party and the
extracted output from the corrupt party, can calculate the correct output using
the function f . The same output delay is achieved by “ignoring” the protocol’s
delay parameters but instead wait for the functionality to release the outputs.
Once the adversary has been instructed to abort the protocol, i.e. when it no
longer receives instructions from the environment and thus stops invoking the
protocol and sending messages, the simulator sends (abort, sid) to Ff,h∆. In this
case, Ff,h∆ stores the current round r∗ and delays D := ∆(δ[r∗]) and d := δ[r∗].
D is the delay of party pi for i ̸= c. Whenever the adversary requests the output,
the simulator calls (output, sid) on Ff,h∆. When the output is available in
Ff,h∆, it returns the output of the corrupt party to S.

Proof. We show that for the dummy adversary A there exists a PPT simulator
S such that for all PPT environments Z, it holds that πh∆ ≥ Ff,h∆. On the
ideal side, Ff,h∆ interacts with parties p0 and p1 in a session denoted with sid.
In the simulation, πh∆ interacts with parties p̃0 and p̃1. Whenever Z instructs
A to corrupt p̃i, S corrupts pi. We first consider the case where p̃0 resp. p0 are
corrupt. The case where p̃1 resp. p1 are corrupt is symmetrical. Afterwards we
consider the case where both parties are honest. S passes through information
between Z and A, and A and Gatt.

The simulator works as follows:

Definition 6 (Simulator S, p0 corrupt).

– When Z instructs S to install πh∆ in the enclave with eid e0 of p̃0, pass
through the instruction Gatt.install(progπh∆

) to install πh∆ on p̃0. Create an
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enclave with eid e1 for p̃1 and install πh∆ by calling Gatt.install(progπh∆
)

and set inp1 = 0⃗.
– When Z instructs A to call Gatt.resume(e0, (send, inp0)), extract inp0 from

this call and send inp0 to Ff,h∆.
– Whenever S receives call to Gatt from Z for p̃0, pass through the call.
– Whenever S receives message from p̃0, call Gatt to create response.
– Whenever S receives a pair (m,σ) from p̃0 with a valid signature σ for a

message m, where m has not been previously output from Gatt, output ⊥Σ

and halt simulation.
– Whenever S receives a valid ciphertext from p̃0, which has not been previously

output from Gatt, output ⊥Enc and halt simulation.
– When S receives no message (ct, ·) from p̃0 that would result in p̃1 calling
Gatt.resume(e1, (ack, ct)) for the first time, send ( abort,sid) to Ff,h∆.

– Whenever S receives no message from p̃0 in a later round, send ( abort,sid)
to Ff,h∆.

– When Z instructs S to call Gatt.resume(e0, (output, v)), send ( output,sid)
to Ff,h∆.

– When Ff,h∆ returns ⊥, return ⊥ to A.
– When Ff,h∆ returns outp0, pass through the call Gatt.resume(e0, (output, outp0)).

To see that the environment’s output in the simulated execution is indistin-
guishable from its output in the real execution, we consider the following hybrid
games:

Hybrid H0 Identical to the execution of the real protocol πh∆ and the
adversary A.

Hybrid H1 Execution of an ideal functionality F1 that reports all inputs to
the adversary and lets the adversary perform arbitrary outputs. The simulator
S1 executes the protocol on behalf of the honest parties, making outputs through
F1 and behaves like the dummy adversary for corrupted parties and handles calls
to Gatt of corrupted parties like the dummy adversary.

Hybrid H2 F2 is identical to F1. S2 is identical to S1 except that it will
abort if it receives a pair (σ,m) where σ is a correct signature for m, but m has
not previously been output by Gatt.

Hybrid H3 In H3 the UC experiment allows S3 to use G′att instead of Gatt
which allows S3 to use a random key sk′ instead of the real key sk used in Gatt.
Otherwise S3 is identical to S2. F3 is identical to F2.

Hybrid H4 F4 is identical to F3. S4 is identical to S3 except that will abort,
if it receives ciphertext that has not previously been output by G′att.

Hybrid H5 F5 is identical to F4 except that F5 can receive inputs to calculate
the function and forward the corrupt party’s output to S5 when called. S5 is
identical to S4 except that it uses input 0⃗ for the honest party. Additionally, S5
extracts the corrupt party’s input inp0 from its call to Gatt. When receiving calls
G′att.resume(e0, (output, v)) for p̃0, it calls F5 to receive the output outp0 and
lets p̃0 call G′att.resume(e0, (output, outp0)).

Hybrid H6 F6 is identical to F5 except that now the ideal functionality
draws the bit b, an initial delay δ[0] and a delta reduction function ∆(·) as defined
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in Ff,h∆ to return the output to the parties. S6 is identical to S5 except that it
lets parties call Gatt.resume(ei, (output, outpi)) when the output takes place in
F6.

Hybrid H7 In H7 the UC experiment requires the use of Gatt again. F7 is
identical to F6. S6 uses the real Gatt again, otherwise it is identical to S6.

Hybrid H8 Execution of the ideal protocol of Ff,h∆ and the simulator S.

Claim 1. out0 and out1 are identically distributed.

Proof. Since H1 only makes syntactical changes, the claim follows straight forward
from the definition of H1.

Claim 2. Assuming Σ is an EUF-CMA secure signature scheme, H2 aborts with
negligible probability and out1 is computationally indistinguishable from out2.

Proof. In H2, S2 aborts when it receives a pair (σ,m) where σ is a correct
signature m but m has not been previously output by Gatt. We use the execution
of H2 to build a reduction to the EUF-CMA security of Σ. Let EΣ be the
event where S2 outputs ⊥Σ . Assume for the sake of contradiction that EΣ takes
place with non-negligible probability, that is, Pr[EΣ ] is non-negligible. Then
there exists an adversary A′ against the EUF-CMA security of Σ that wins with
non-negligible probability. Let C be the challenger playing the EUF-CMA game
with A′. C generates a pair of keys (sk, pk) ← Σ.Gen and sends pk to A′. A′

works as follows:

– A′ internally emulates H2.
– A′ uses H2 to generate a signature σ via the signature oracle for message m∗

that triggers EΣ .
– A′ forwards (m∗, σ) to C.

The challenger outputs Σ.Vfy(m∗, σ). Here, the advantage of A′ in the EUF-CMA
game is identical to Pr[EΣ ] which is a contradiction to the EUF-CMA security
of Σ. It follows that the probability that Pr[EΣ ] is bounded by the advantage
of A′ in the EUF-CMA game which is a negligible function ηEUF-CMA, A that
Pr[EΣ ] ≤ ηEUF-CMA. With this, |Pr[out2 = 0]−Pr[out1 = 0]| is negligible, which
concludes the claim.

Claim 3. Assuming the DDH assumption holds, out2 and out3 are computation-
ally indistinguishable.

Proof. In H3, the simulator uses G′att with random key sk′. Suppose that |Pr[out2 =
0]− Pr[out3 = 0]| is non-negligible. Then there exists an adversary A′ that wins
in the DDH game with non-negligible probability. Let C be the challenger in
the DDH game. Let G be a group with generator g and order q. C randomly
draws a bit b

$← {0, 1}. C draws two elements a, b
$← Zq and an element z

$← G.
It calculates ga, gb, gab and sends ga, gb, c = b · gab + (1− b) · z to A′. Then, A′

proceeds as follows.
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– Internally emulate H2 but use the keys received by C instead of the real key
sk.

– Receive bit b′ from Z and send b′ to C.

If C’s bit is 0 then Z’s view is identically distributed to H3. If C’s bit is 1 then
Z’s view is identically distributed to H2. Therefore the advantage of A in the
DDH game is identical to Z’s advantage in distinguishing H2 and H3, namely
|Pr[out2 = 0]− Pr[out3 = 0]|. By assumption, |Pr[out2 = 0]− Pr[out3 = 0]| is
non-negligible, which leads to a contradiction. Hence, the claim follows.

Claim 4. Assuming AE is INT-CTXT secure, out3 and out4 are computationally
indistinguishable.

Proof. In H4 S aborts when receiving a ciphertext that has not been previously
output by Gatt. Similar to EΣ , assume that Pr[EEnc] is non-negligible. Then
there exist an adversary A′ against the INT-CTXT security of AE that wins with
non-negligible probability. Let C be the challenger playing the INT-CTXT game
with A′. C generates a key sk ← AE.Gen. A′ works as follows:

– A′ internally emulates H3.
– A′ uses H3 to generate ciphertext c∗ via the encryption oracle which it sends

to C.

C decrypts c∗ to obtain m∗ and returns 1 if m∗ ̸= ⊥ and c∗ not seen before. Here,
the advantage of A′ in the INT-CTXT game is identical to Pr[EEnc] which is a
contradiction to INT-CTXT security of AE. It follows that the probability that
Pr[EEnc] is bounded by the advantage of A′ in the INT-CTXT game which is
a negligible function ηINT-CTXT, i.e. that Pr[EEnc] ≤ ηINT-CTXT, which concludes
the claim.

Claim 5. Assuming AE is IND-CPA secure, out4 and out5 are computationally
indistinguishable.

Proof. In H5, S5 extracts the input of the corrupt party and sets the input of the
honest party to 0⃗. We use H5 to build a reduction to the IND-CPA security of AE.
Assume for the sake of contradiction that out4 and out5 are not indistinguishable,
that is, |Pr[out4 = 0] − Pr[out5 = 0]| is non-negligible. Then there exists an
adversary A′ against the IND-CPA security of AE that wins with non-negligible
probability.

Let C be an adversary playing the IND-CPA game with A′. C draws a random
bit b

$← {0, 1}. A′ works as follows.

– A′ internally emulates H4.
– A′ receives the input denoted as inp of the honest party from F4.
– A′ sends m0 = inp,m1 = 0⃗ to C which uses the encryption oracle to encrypts

mi according to b and sends back the resulting ciphertext c.
– In the message from G′att that would include the encryption of inp A′ uses c

instead.
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– At the end of the execution of H4 receive bit b′ from Z and send b′ to C.

If C’s bit is 0 then Z’s view is identically distributed to H4. If C’s bit is 1
then Z’s view is identically distributed to H5. As the probability |Pr[out4 =
0]−Pr[out5 = 0]| that Z can distinguish between H4 and H5 is non-negligible, we
have a contradiction to the IND-CPA security of AE. This concludes the claim.

Claim 6. Assuming the IND-CPA security of AE holds, out5 and out6 are com-
putationally indistinguishable.

Proof. In H6 F6 draws the parameters at random. The time the output is available
now is defined by the parameters drawn by F6. The proof that the exchanged
messages containing the parameters are IND-CPA secure is symmetrical to Claim 5
via the standard hybrid argument with the difference that the parameters drawn
in H5 and the dummy parameters in H6 are encrypted. Given the IND-CPA
security of exchanged messages, we are left to show that the parties receive the
output at the same time in H5 and H6. By definition the parameters (subscript
f denotes the functionality’s parameters, subscript p the protocol’s parameters)
bf and δf [0] drawn by F6 and parameters cp and δp[0] in H5 are identically
distributed. bf is identically distributed as cp, as bf is drawn uniformly random
and cp is the XOR of two uniformly random drawn bits. δf [0] δp[0] are sampled

from the same set, i.e. δf = δp = 2x where x
$← [λ/2, λ]. In H5, ∆p[·] is drawn

from fa where a ∈ [2, λ]. In H6, ∆f [·] is drawn from fa where a ∈ [2, λ2]. When
bf = 1, and p0 aborted previously in round r, F6 uses the delay for the honest
party Df = ∆f (δf [r])/r, whereas in H5 p1’s delay is Dp = ∆p(∆p(δ[r])) when
p0’s delay is δf [r] resp. δp[r]. As ∆p is drawn from the family of functions fa
where a ∈ [2, λ] and ∆f is drawn from a different family of functions fâ where
â ∈ [2, λ2], the delays are distributed identically. When b = 0, the delay for both
parties is identical, i.e. δf [r] which is identically distributed as δp[r]. In H6 this
is achieved by decrypting the other party’s delay δ′ and checking if δ′ < 1.

Let q be the maximum amount of ciphertexts sent in the keygen, send,
receive and ack steps of the protocol. Then, we define additional hybrids Gi for
0 ≤ i ≤ q. In Gi, the first i ciphertexts are identical to the ciphertexts sent, when
using the parameters matching the protocol. All later ciphertexts are identical to
the ciphertexts sent when using the parameters from the ideal functionality. It
holds that G0 = H6 and Gq = H5. Assume, for the sake of contradiction, that
an adversary can distinguish between G0 and Gq with non-negligible probability,
then we can construct an adversary that can break the IND-CPA security of AE
by randomly choosing a 1 ≤ i ≤ q, constructing the first i− 1 ciphertexts using
the parameters from the protocol, the last q− i ciphertexts using the parameters
from the ideal functionality and embedding the IND-CPA challenge in the ith
position. The challenge messages are the messages encrypted in step i if the
parameters of the protocol or the ideal functionality are used. Depending on the
challenge-bit from the IND-CPA challenger, this adversary simulates Gi− 1 or
Gi. Therefore, this adversary can then break the IND-CPA security of AE with a
tightness-loss of 1/q and therefore with non-negligible probability.
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Claim 7. Assuming the DDH assumption holds, out6 and out7 are computation-
ally indistinguishable.

Proof. As in H7 the simulator uses the real Gatt with real key sk again, the proof
is symmetrical to Claim 3 and thus omitted.

Claim 8. out7 and out8 are identically distributed.

Proof. This follows directly from the fact that H7 and H8 use the same function-
ality and simulator.

Definition 7 (Simulator S, both parties honest). When both parties are
honest, the simulator works as follows:

– For i ∈ {0, 1}, create enclaves ei on p̃i and install πh∆ by calling
Gatt.install(progπh∆

) and set inpi = 0⃗.
– Execute protocol for both parties and exchange messages. When receiving a

message from p̃i that results in p̃1−i calling Gatt.resume(e1−i, (ack, ct
′)), pass

through the call.
– Every time S is activated, call ( status,sid) on Ff,h∆. If returned i, let

p̃i, i ∈ {0, 1} make call Gatt.resume(ei, (output, v)) for arbitrary v and stop
protocol for pi. If returned finished and party j has not received output
yet, let p̃j , j ∈ {0, 1} make call Gatt.resume(ej , (output, v)) for arbitrary v.
If returned ⊥, continue exchanging ack messages.

Hybrid H0 Identical to the real protocol πh∆ and the adversary A.
Hybrid H1 Execution of an ideal functionality F1 that reports all inputs to

the adversary and lets the adversary perform arbitrary outputs. The simulator
S1 executes the protocol on behalf of the honest parties, making outputs through
F1 and behaves like the dummy adversary for corrupted parties and handles calls
to Gatt of corrupted parties like the dummy adversary.

Hybrid H2 In H2 the UC experiment allows the S3 to use G′att instead of Gatt
which uses a random key sk′ instead of the real key sk used in Gatt. Otherwise
S2 is identical to S1. F2 is identical to F1.

Hybrid H3 F3 is identical to F2 except that F3 can receive inputs to calculate
the function and forward the corrupt party’s output to §3 when called. S3 is
identical to S2 except that it uses input 0⃗ for both parties. When receiving calls
G′att.resume(ei, (output, v)) for p̃1, it instructs F3 to return the output to pi and
lets p̃i call G′att.resume(ei, (output, v)). It uses the output to the adversary from
F3 to retrieve the output for the parties in the protocol.

Hybrid H4 F4 is identical to F3 except that it randomly draws a bit b, an
initial delay δ[0] and a delta reduction function ∆(·) to determine the time the
output is returned to parties. S4 is identical to S3 except that it calls (status)
on Ff,h∆ on every activation and lets party pi call Gatt.resume(ei, (output, v))
when returned i (or finished) by F4.

Hybrid H5 In H5 the UC experiment only allows using Gatt again. F5 is
identical to F4. S5 is identical to S4 that is uses real Gatt again.

Hybrid H6 Execution of the ideal protocol of Ff,h∆ and the simulator S.
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Claim 9. out0 and out1 are identically distributed.

Proof. As changes in H1 are only syntactical, the claim follows straight forward
from the definition of H1.

Claim 10. Assuming the DDH assumption holds, out1 and out2 are computa-
tionally indistinguishable.

Proof. In H2, S2 uses G′att with random key sk. Due to symmetry to Claim 3,
the claim follows.

Claim 11. Assuming AE is IND-CPA secure, out2 and out3 are computationally
indistinguishable.

Proof. In H3, S3 sets the input values of both parties to 0⃗. Due to symmetry to
Claim 5, the claim follows.

Claim 12. Assuming AE is IND-CPA secure and δ[0], ∆(·) and b are drawn at
random, out3 and out4 are computationally indistinguishable.

Proof. In H4 F4 uses randomly drawn parameters to determine the output time.
Due to symmetry to Claim 6, the claim follows.

Claim 13. Assuming the DDH assumption holds, out4 and out5 are computa-
tionally indistinguishable.

Proof. In H5 S5 uses real Gatt again. The claim follows directly from Claim 3.

Claim 14. out5 and out6 are identically distributed.

Proof. As F5 is identical to Ff,h∆, the claim follows straight forward from the
definition of H5.

6 Conclusion

In this work we proposed the new fairness notion hidden ∆-fairness for two-party
computation based on Pass et al.’s work on the formal abstraction for trusted
computing via the globally shared functionality Gatt and the accompanied ∆-fair
ideal functionality for 2PC. We presented the new fairness notion via an ideal
functionality Ff,h∆ and defined an efficient 2PC protocol πh∆ based on Pass et
al.’s 2PC protocol π∆ and showed that πh∆ ≤ Ff,h∆ in the GUC framework.
Our functionality and protocol hides the current delay, allows for a variable
output order and prevents the adversary from receiving the output immediately,
which opens up new use cases for two-party computation. Future work includes
investigating fairness in 2PC with transparent enclaves or other enclave models.
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