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Abstract. In this paper, we introduce the first fault attack on SQIsign.
By injecting a fault into the ideal generator during the commitment
phase, we demonstrate a meaningful probability of inducing the gener-
ation of order O0. The probability is bounded by one parameter, the
degree of commitment isogeny. We also show that the probability can
be reasonably estimated by assuming uniform randomness of a random
variable, and provide empirical evidence supporting the validity of this
approximation. In addition, we identify a loop-abort vulnerability due to
the iterative structure of the isogeny operation. Exploiting these vulner-
abilities, we present key recovery fault attack scenarios for two versions
of SQIsign—one deterministic and the other randomized. We then an-
alyze the time complexity and the number of queries required for each
attack. Finally, we discuss straightforward countermeasures that can be
implemented against the attack.
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phy · Fault Attack.

1 Introduction

National Institute of Standards and Technology (NIST) initiated the Post Quan-
tum Cryptography (PQC) standardization process in 2016, responding to the
significant threat to widely used public-key encryption systems due to quan-
tum computers. After several rounds of evaluation, CRYSTALS-Kyber in Key
Encapsulation Mechanism (KEM) category, and CRYSTALS-Dilithium, FAL-
CON, and SPHINCS+ in digital signature category were selected as schemes
for standardization on July 5th, 2022. Subsequently, in August 2023, NIST
announced the first drafts for CRYSTALS-Kyber, CRYSTALS-Dilithium, and
SPHINCS+ as FIPS 203, 204, and 205, respectively (standardization for Falcon
is still in progress). However, because three of the four standardization schemes
⋆ Corresponding author.
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were lattice-based, NIST began an additional standardization process for digital
signatures based on various mathematical problems. As of June 2023, 40 addi-
tional submissions have been published, and security analyses are ongoing for
each algorithm.

SQIsign1 is the only isogeny-based digital signature among the candidates
in the additional round 1. In particular, it is currently recognized as the most
compact post-quantum signature scheme with efficient verification. SQIsign ef-
fectively exploits the Deuring correspondence, which establishes a mathematical
equivalence between the domain of supersingular elliptic curves and that of maxi-
mal orders in a quaternion algebra. Unlike many isogeny-based schemes similar to
SIDH that are vulnerable to Castryck-Decru-Maino-Martindale-Robert attacks
[7,17,18], SQIsign remains secure, as its public information does not disclose
torsion point information.

In addition to ensuring the mathematical security of cryptographic algo-
rithms, it is necessary to consider aspects such as memory usage, key size, ci-
phertext or signature size, and optimized implementation to meet the needs of
various cryptographic infrastructures. Equally important is the need to address
the resilience of these schemes against physical attacks, namely, side-channel
and fault attacks. Substantial research has been done on physical attacks on
isogeny-based cryptography, especially fault attacks. Notable examples include
the introduction of loop-abort faults during isogeny computation in the SIDH
cryptosystem [15], resulting in the exposure of secret keys. A similar vulner-
ability for CSIDH is presented in a related paper [5]. Safe-error key recovery
attacks on both SIKE and CSIDH have been demonstrated by [6], which per-
turbs memory locations on the computation of isogeny. Furthermore, the fault
attack introduced by [2] manipulates the computation related to the orientation
of a point in CSIDH, causing the secret-dependent faulty curve from which the
attack can recover the secret key. Vulnerabilities have also been discovered out-
side of isogeny computation. The authors of [20] and [19] have shown that they
can inject faults into torsion points in SIDH and exchange them for vulnerable
torsion points, enabling an attacker to retrieve a secret key. Injecting faults into
intermediate curves in SIDH [1] have been introduced, which can leak informa-
tion about certain aspects of secret isogeny over the Fp curve.

However, to the best of our knowledge, there have been no reported fault
attacks on SQIsign, especially in the context of quaternion algebra operations.
In this paper, we present the first fault attack on SQIsign. First, we prove that
by injecting a fault into the ideal generator, we can, with a significant probabil-
ity, generate the order O0 instead of the expected commitment ideal during the
commitment phase. The probability is bounded by a single factor: the degree of
a commitment isogeny. We show that the probability can be roughly estimated
by assuming the uniform randomness of a random variable. The validity of this
approximation is further supported by empirical estimation. We also reveal the
existence of a loop-abort vulnerability caused by the iterative structure of the

1 Throughout the paper, the term "SQIsign" and its implementation refer to version
1.0 released as a NIST Round 1 addition signature candidate on June 1, 2023.
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isogeny operation, as similarly described in [15]. Using the identified vulnerabil-
ities, we present key recovery attack scenarios for two versions of SQIsign2, one
deterministic, and the other randomized. Then, we analyze the time complexity
and the number of queries required for each attack. Finally, we discuss simple
countermeasures that can be taken against the attack.

The rest sections of the paper are structured as follows: Section 2 provides
the mathematical background necessary for understanding the SQIsign signing
process, along with an introduction to fault injection. In Section 3, the paper
analyzes two vulnerabilities induced by fault injection in the commitment phase.
Section 4 presents key recovery attack scenarios for deterministic and randomized
SQIsign based on the earlier vulnerability analyses. Finally, Section 5 discusses
countermeasures and concludes the paper.

2 Preliminaries

In this paper, we consider a prime number p that satisfies p ≡ 3 (mod 4), and
Fp2 denotes a finite field of size p2. The mathematical aspects of SQIsign are
outlined in Section 2.1. The signing process of SQIsign, which is the focus of the
attack, is explained in Section 2.2. And Section 2.3 introduces two types of fault
vulnerabilities in SQIsign. More details can be found in [8,10,11].

2.1 Mathematical background

Elliptic curves and isogenies. SQIsign makes use of supersingular elliptic
curves over Fp2 with an endomorphism ring defined over the same field. It uses
a separable isogeny, completely described by its kernel. Using formulas such as
Vélu[21] or √elu[4], the separable isogeny ϕ can be computed from its kernel G,
denoted as ϕ : E −→ E/G. The degree of the composite isogeny ϕ ◦ ψ is equal to
deg(ϕ) · deg(ψ). It can be factored into the composition of ei isogenies of degree
pi for i = 1 to n for any separable isogeny ϕ of degree d =

∏n
i=1 p

ei
i , satisfying

ϕ ◦ ϕ̂ = [deg(ϕ)], the multiplication-by-[deg(ϕ)] map on E1, vice versa.
All operations in SQIsign are conducted in Montgomery form using only the

x-coordinate for efficiency, and higher extension fields than Fp2 are not used.
However, computing isogenies with large degrees using (p2 − 1)-torsion points is
infeasible over Fp2 . To address this, SQIsign utilizes two curves: an elliptic curve
E with (p+1)-torsion and its twist Et with (p−1)-torsion. Isogenies are computed
by forming two kernels from these curves. Despite the use of two kernels, the
computations in E and Et are the same in Montgomery form. Therefore, in
this paper, we express them under a single elliptic curve E. For instance, when

2 While SQIsign [8] does not explicitly mention deterministic and randomized versions,
it is noted that Fiat-Shamir heuristic-based digital signatures such as CRYSTALS-
Dilithium [12] and HAETAE [9] (one of the candidates on NIST round 1 additional
signatures) included or now include deterministic algorithms. Thus, it is reasonable
to consider the attack on the two versions of SQIsign.
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representing the set of torsion points, the set of (p + 1)-torsion points on E is
denoted as E[p + 1], and the set of (p − 1)-torsion set on Et is also denoted as
E[p− 1].

Quaternion algebras. SQIsign uses the quaternion algebra over Q, denoted as
Bp,∞. This algebra is based on 1, i, j, k, where i2 = −1, j2 = −p, and k = ij =
−ji. A canonical involution in Bp,∞ maps an element α = a1 + a2i+ a3j + a4k
to its conjugate α = a1 − a2i− a3j − a4k. The reduced trace and reduced norm
are defined as tr(α) = α + α and nrd(α) = αα, respectively. An element α in
Bp,∞ is called integral if both its reduced trace and reduced norm belong to Z.

A full-rank Z-lattice in Bp,∞ is termed a fractional ideal I, and can be ex-
pressed as I = α1Z + α2Z + α3Z + α4Z. An order O is a subring of Bp,∞ that
also qualifies as a fractional ideal. Elements of order O are integral as they have
reduced trace and reduced norm in Z. An element α ∈ O can be denoted as [α]B ,
which is a 4-dimensional coordinate of g with respect to the basis B of O. A
maximal order is not encompassed by any larger order. The left order of a frac-
tional ideal I is denoted as OL(I) = {α ∈ Bp,∞ | αI ⊂ I}, and the right order is
represented as OR(I). An order O can define a left fractional O-ideal if the set I
is closed under left-multiplication by elements of O, which implies O ⊆ OL(I).
A right fractional O′-ideal is formed when I is closed under right-multiplication
by elements of O′. An I that qualifies as both a left fractional O-ideal and a
right fractional O′-ideal is called a connecting (O,O′)-ideal.

A fractional ideal that is contained in both its left and right orders is called
an integral ideal, or simply an ideal. The norm of an ideal I, represented as
nrd(I), is defined as gcd({nrd(α) | α ∈ I}). A left O-ideal I can be generated
as I = O · α + O · nrd(I), provided α ∈ O and gcd(nrd(α), nrd(I)2) = nrd(I),
and similarly for a right O′-ideal. In short, this notation can be written as
O · α+O ·N = O⟨α,N⟩, applicable to any order O and integer N , simplifying
the expression. The product IJ of ideals, where OR(I) = OL(J), is the ideal
generated by the products of pairs in I×J . This product is also an integral ideal,
and its left order is OL(IJ) = OL(I), while its right order is OR(IJ) = OR(J).
The conjugate of an ideal I is the set of conjugates of elements of I, which is an
ideal satisfying II = nrd(I)OL(I) and II = nrd(I)OR(I) when I is invertible.
SQIsign uses only locally principal ideals, which are always invertible.

The Deuring correspondence. In the domain of quaternion algebra and
elliptic curves, a bijective correspondence is established. An isogeny, denoted as
ϕ : E −→ E

′
, is linked with an ideal Iϕ. This ideal has a left order O, which is

isomorphic to the endomorphism ring of E, denoted as End(E), and a right order
O′, which is isomorphic to the endomorphism ring of E′, denoted as End(E′).
Moreover, the degree of the isogeny ϕ is the same as the norm of the ideal Iϕ.
The dual isogeny, denoted as ϕ̂, corresponds to the conjugate of the ideal Iϕ,
denoted as Iϕ, which is equal to the ideal of the dual isogeny, denoted as Iϕ̂. The
composition of two isogenies, denoted as ϕ◦ψ, corresponds to the multiplication
of two ideals Iψ · Iϕ. Lastly, when two ideals, I and J , are equivalent, their right
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orders are isomorphic. Therefore, the isogenies associated with these ideals, ϕI
and ϕJ , have isomorphic codomains.

The KLPT algorithm. The KLPT algorithm [16] is a method that can be
used to find an equivalent ideal J with a prescribed norm, given an initial ideal I.
This algorithm can be used to efficiently determine the isogeny between elliptic
curves with known endomorphism rings. However, the original formulation of
the KLPT algorithm is only applicable to O0-ideals, where O0 represents a
conditioned maximal order. The authors of [10] later generalized the algorithm
to accommodate arbitrary order O. This generalization expands the applicability
of the KLPT algorithm, but requires a connecting (O0,O)-ideal and a 1.5 times
larger norm bound for the output than the previous one.

Computational probelms. The foundation of SQIsign is based on two compu-
tational problems: the isogeny path problem and the endomorphism ring problem.
The isogeny path problem is about finding an isogeny E1 −→ E2 given two elliptic
curves E1 and E2. The endomorphism ring problem is about computing End(E)
given an elliptic curve E. For supersingular case, these problems are equal under
polynomial time reductions [13,22].

Table 1. SQIsign parameters

NIST-I
p = 0x34e29e286b95d98c33a6a86587407437252c9e49355147ffffffffffffffffff
f = 75
T = 336 · 74 · 11 · 13 · 232 · 37 · 592 · 89 · 97 · 1012 · 107 · 1092 · 131 · 137 · 1972 · 223 · 239

·383 · 389 · 4912 · 499 · 607 · 7432 · 1033 · 1049 · 1193 · 19132 · 1973
NIST-III

p = 0x3df6eeeab0871a2c6ae604a45d10ad665bc2e0a90aeb751c722f669356ea4684c6174
c1ffffffffffffffffffffffff

f = 97
T = 368 · 5 · 712 · 114 · 13 · 474 · 89 · 113 · 1574 · 173 · 233 · 239 · 241 · 443 · 5094 · 569

·7614 · 1229 · 2393 · 3371 · 4517 · 5147 · 5693 · 5813 · 9397 · 26777 · 39679 · 47441
NIST-V

p = 0x255946a8869bc68c15b0036936e79202bdbe6326507d01fe3ac5904a0dea65faf0a29
a781974ce994c68ada6e1ffffffffffffffffffffffffffffffffffff

f = 145
T = 372 · 5 · 7 · 136 · 17 · 37 · 416 · 53 · 676 · 73 · 1036 · 127 · 151 · 4616 · 643 · 733 · 739

·8276 · 1009 · 2539 · 4153 · 5059 · 7127 · 10597 · 13591 · 14923 · 15541 · 15991 · 18583
·23227 · 48187 · 63247 · 65521 · 318233

2.2 SQIsign

We now describe the parameters of SQIsign, and then explain SQIsign signing
process, the targeted algorithm in the paper.
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Parameters of SQIsign. In SQIsign, a value denoted as T is carefully cho-
sen to balance security and computational efficiency. This value determines the
available torsion and subsequently influences the degree of the isogenies used
in the scheme. Specifically, T is an odd, smooth integer larger than p5/4 and
satisfies T |(p2−1). Let g be the largest integer that is a power of 3 and a divisor
of T . The degree of the commitment isogeny, denoted as Dcom, is then given
by T/3g, and the degree of the challenge isogeny, denoted as Dchall, is given by
2f3g. The parameter values corresponding to NIST levels are outlined in Table
1.

Algorithm 1 SQISign signing protocol(simplified)
Input: A Message M
Input: A secret key sk
Output: A signature σ

Commitment process
1: Sample a0, b0 randomly from interval [1, Dcom] until gcd(a0, b0, Dcom) = 1.
2: Icom := O0⟨γ · (a0 + b0θ̄), Dcom⟩
3: Kcom := a0P0 + b0θ(P0), where P0 ∈ B0,Dcom

4: Compute an isogeny ϕcom : E0 −→ E1 with the kernel ⟨Kcom⟩.
5: P1,chall := ϕcom(P0,chall), Q1,chall := ϕcom(P0,chall)

Challenge process
6: a1, b1 := H(M,E1)
7: Find a Dchall-torsion basis (PE1 , QE1) on E1 deterministically.
8: Kchall := a1PE1 + b1QE1

9: Compute an isogeny ϕchall : E1 −→ E2 with the kernel ⟨Kchall⟩.
10: Find integers α, β such that [α]P1,chall + [β]Q1,chall = Kchall.
11: Compute a left O0-ideal I ′chall corresponding to the isogeny with the kernel

⟨[α]P0,chall + [β]Q0,chall⟩.
12: Ichall := [Icom]∗I

′
chall

13: Given Kchall, deterministically find another Dchall-torsion point Lchall such that
a pair (Kchall, Lchall) is the basis of E1[Dchall].

14: L′
chall := ϕchall(Lchall)

15: Find a Dchall-torsion basis (PE2 , QE2) on E2 deterministically.
16: Find integers s1, s2 such that [s1]PE2 + [s2]QE2 = L′

chall.
17: Given (L′

chall, s1, s2), deterministically find another Dchall-torsion point M ′
chall

such that a pair (L′
chall,M

′
chall) is the basis of E2[Dchall].

18: Compute an isogeny ϕ̂chall : E2 −→ E1 with the kernel ⟨L′
chall⟩.

19: Mchall := ϕ̂chall(M
′
chall)

20: Find r such that Kchall = [r]Mchall.
Response process

21: Jres := Isecret · Icom · Ichall
22: Find an ideal J ′

res of norm 2e which is equivalent to Jres such that JIchall is cyclic
using SigningKLPT.

23: Convert the ideal J ′
res into the isogeny σ of degree 2e using sk.

24: return σ, r, s1, s2
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The SQIsign signing process. The SQIsign signing process consists of three
stages: the commitment phase, the challenge phase, and the response phase.
Details that are not crucial to the overall understanding of the attack, such as the
Montgomery normalized process, are omitted. For a more in-depth algorithmic
explanation, refer to [8].

In the commitment phase of SQIsign, the signing oracle initiates by choosing
a0 and b0 at random such that gcd(a0, b0, Dcom) = 1. This selection is used to
form a commitment ideal Icom with a norm of Dcom. Subsequently, the isogeny
ϕcom : E0 → E1, which corresponds to Icom, is computed. The phase concludes
with the evaluation of P0,chall and Q0,chall, the basis of E0[Dchall], through ϕcom
to yield P1,chall and Q1,chall. Moving to the challenge phase, the oracle computes
the challenge isogeny ϕchall : E1 → E2, with a kernel ⟨Kchall⟩ that is derived by
hashing the message M and the elliptic curve E1. The Kchall is then decomposed
along the basis P1 and Q1, which was obtained during the commitment phase.
SQIsign then computes (s1, s2), compression of the dual of the challenge isogeny,
by computing the kernel generator L′

chall of ϕ̂chall and decomposing it along a
deterministically computed Dchall-torsion basis on the curve E2. At the end
of the challenge phase, computations are carried out to determine a generator
Mchall of ϕchall, which is obtained by evaluatingM ′

chall through the dual of ϕchall.
Subsequently, a scalar r is computed, which fulfills the condition Kchall = [r]Q.
In the response phase, the oracle computes Isecret · Icom · Ichall and identifies
an equivalent ideal J with a norm of 2e using SigningKLPT . This process
of finding J is repeated until JIsecret becomes cyclic. SQIsign finally returns
(σ, r, s1, s2) as the completed signature.

Throughout the paper, SQIsign is referred to as deterministic when the initial
step of selecting a0, b0 is performed deterministically. As a result, the protocol
will always yield the same output for the same message and key. Conversely, when
we mention randomized SQIsign, it implies that these values are determined
based on a random number generator, leading to different outputs for each query,
even when the same message and key are used.

2.3 Fault attacks

Fault attacks are a category of side-channel attacks in which an attacker gains ac-
cess to a cryptographic device and injects faults, such as power, electromagnetic
waves, or laser-induced faults, at specific points. The attacker then analyzes the
output to extract sensitive information. Several types of vulnerabilities can be
induced by fault attacks, including variable randomization and loop-abort, which
we will use in this paper. Variable randomization is random changes induced by
faults in the values of variables used in cryptographic computations, resulting
in faulty output values. The attacker can extract confidential information by
analyzing the values themselves or by comparing them to normal output values
[20,2,19]. When it comes to loop abort, it can be done in one of two ways. The
first is through variable randomization, as explained earlier. In this approach,
the attacker uses fault injection to randomize the loop index, causing the loop
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to abort at the desired point. The second is instruction skipping. With this, the
attacker injects a fault during the execution of a jump instruction that causes the
loop to abort. In the field of isogeny-based cryptography, the occurrence of loops
as a result of isogeny operations has led to studies of loop-abort fault attacks
[15,3]. A similar vulnerability can also be found in SQIsign. We will discuss it in
Section 3.

Consider a scenario where the attacker can introduce n number of faults into
a cryptographic system while it is in operation. This scenario is known as an
n-th order fault attack. In Section 4, we will examine a first-order fault attack
on the deterministic SQIsign algorithm and a second-order fault attack on the
randomized SQIsign algorithm.

3 Fault vulnerabilities in SQIsign

In this section, we examine the implementation of SQIsign and analyze its vulner-
abilities. First, we look at the vulnerabilities that arise during an ideal generation
and the associated operations. After that, we will discuss the characteristics of
the isogeny operations and the vulnerabilities that arise from them.

3.1 Randomization while generating commitment ideal

Algorithm 2 Making primitive then generating an ideal Icom
Input: A special p-extremal maximal order O0

Input: A generator coordinates [g]B w.r.t. the standard basis
Input: The norm Dcom

Output: A commitment ideal Icom
1: Let B := {1, i, j, ij} be a set of the standard basis in quaternion algebra.
2: Let BO0 := {β1, β2, β3, β4} be a set of the basis of order O0

3: Convert [g]B into [g]BO0
using gaussian ellimination.

4: content := gcd([g]BO0
)

5: [g′]BO0
:= [g]BO0

/content

6: [g′]B := [g′]BO0
∗BO0

7: D′
com := Dcom/gcd(content,Dcom)

8: Icom := O0⟨g′, D′
com⟩

9: return Icom

In the SQIsign protocol, the generation of the commitment ideal involves first
sampling a0 and b0 in a way that satisfies gcd(a0, b0, Dcom) = 1, as shown in line
1 of Algorithm 1. These values are then used to generate the ideal Icom. During
this process, the generator γ of an ideal of norm Dcom is multiplied by a0 + b0θ
to produce the kernel generator g = γ(a0 + b0θ). However, since g may not be
primitive, it is essential to convert the input generator to a primitive element
before generating the ideal. This conversion is described in Algorithm 2, lines 1 to
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1 i n t quat_latt ice_contains_without_alg ( quat_alg_coord_t ∗ coord ,
const quat_latt ice_t ∗ l a t , const quat_alg_elem_t ∗x ) {

2 // Test i f rank 4 l a t t i c e under HNF . . .
3 // Convert the ba s i s by us ing gauss ian e l im ina t i on
4 // Fina l t e s t
5 // Copy r e s u l t
6 i f ( r e s && ( coord != NULL) ) {
7 f o r ( i n t i = 0 ; i < 4 ; i++){
8 ibz_copy (&((∗ coord ) [ i ] ) ,&(work_coord [ i ] ) ) ;
9 }

10 }
11 // F i n a l i z e
12 }

Fig. 1. Reference C source code for line 3 in Algorithm 2

8. First, the input generator, represented on the standard basis B = {1, i, j, k}, is
transformed by Gaussian elimination into the basis BO0

= {1, i, i+j2 , 1+k2 } of O0,
resulting in [g]BO0

. Then, the gcd of each coordinate of [g]BO0
, called content,

is computed. This content is then used to compute the primitive generator g′
by dividing [g]BO0

. D′
com is computed as Dcom divided by gcd(content,Dcom).

Finally, Icom is generated by the generator g′ and D′
com.

It is important to note that in the C implementation corresponding to line
3 of Algorithm 2, a copy function is used during the return of the transformed
coordinates [g]BO0

. Injecting a fault into the copy process could cause one of
the four returned coordinates to be randomized. Assume that a fault is injected
during the first iteration of the for-loop, and let us denote the faulty copy as
gf . Since the fault only causes the coordinates to be randomized with respect
to the basis of order O0, gf is still an element of O0. According to Algorithm 2,
gf is then transformed into a primitive element, which leads to the generation
of the fault-induced ideal Ifcom. This process can lead to a vulnerability that can
be exploited in a key-recovery-attack scenario in Section 4.

To elaborate further, as described in Section 2, for a O0-ideal, the generator
α ∈ O0 must meet the condition gcd(nrd(α), nrd(I)2) = nrd(I). However, by
Theorem 1, the result of the ideal generation process will be O0 if α is subjected
to fault injection to satisfy a certain condition.

Theorem 1. Let O0 be a maximal order given the basis (1, i, i+j2 , 1+k2 ). For
N ∈ Z+, α ∈ O0, if gcd(nrd(α), N) = 1, then O0 · α+O0 ·N = O0

Proof. The element O0 represents an order, and therefore, a ring. Additionally,
both O0 · α and O0·N are principal ideals on the ring O0. For any arbitrary
α ∈ O0 expressed as α = α1 + α2 · i+ α3 · i+j2 + α4 · 1+k

2 , the conjugate is given
by α = α1 − α2 · i− α3 · i+j2 + α4 · 1−k

2 .
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Now, consider α
′
= α1 − α2 · i − α3 · i+j2 − α4 · 1+k

2 ∈ O0. Since α4 ∈ Z, it
follows that α = α

′
+ α4 ∈ O0. Consequently, the conjugate α of any element α

in O0 is also an element of O0.
This implies that nrd(α) = α · α ∈ (O0 · α + O0 · N). Meanwhile, as

gcd(nrd(α), N) = 1, there exist integers a and b such that a ·nrd(α)+ b ·N = 1.
Hence, O0 · α and O0 ·N are relatively prime ideals, and their sum is the entire
ring O0, that is, O0 · α+O0 ·N = O0.

□

In addition, using Lemma 1, Lemma 2, and Theorem 2, we can compute
upper and lower bounds, as well as an approximation, for the probability that
the result of the ideal generation process becomes O0 due to fault injection,
based solely on the parameter Dcom. In the following Lemmas and Theorem, φ
denotes Euler’s totient function.

Lemma 1 (Upper Bound). Consider an input g for Algorithm 2, and let gf
be the version of g after fault injection. Suppose that the fault is injected during
the first iteration of for-loop, the parameter Dcom is not divided by 2, and the
amount of change ∆ due to fault injection is uniformly random in Z. Then, the
probability that nrd(gf ) and Dcom are coprime has an upper bound:

P (gcd((nrd(gf ), Dcom)) = 1) <
φ(Dcom)

Dcom

Proof. According to line 2 of Algorithm 1, g is computed as γ · (a0 + b0θ) where
a0 and b0 are sampled integers, and γ and θ are fixed parameters. Here, when
expressing the parameters γ and θ in terms of the standard basis of quaternion
algebra, each coordinate is represented by an integer value. To be more specific,
γ = 1+γ2 · i+γ3 ·j+γ4 ·k, where γ2, γ3, γ4 ∈ Z, and θ = θ1+θ2 · i+θ3 ·j+θ4 ·k,
where θ1, θ2, θ3, θ4 ∈ Z. Hence, g is represented as g = g1 + g2 · i+ g3 · j + g4 · k
where g1, g2, g3, g4 ∈ Z. Then, the fault-injected version gf can be represented
as (g1 +∆) + g2 · i + g3 · j + g4 · k. According to the properties of the greatest
common divisor, we can express gcd(nrd(gf ), Dcom) as:

gcd(nrd(gf )−Dcom · h,Dcom) = gcd(nrd(gf )− nrd(g), Dcom)

where nrd(g) = Dcom · h for some integer h. By calculating this in terms of ∆,
we get:

gcd(nrd(gf )− nrd(g), Dcom)

= gcd
(
((g1 +∆)2 + g22 + g23 · p+ g24 · p)− (g21 + g22 + g23 · p+ g24 · p), Dcom

)
= gcd (∆ · (∆+ 2 · g1), Dcom)

If gcd (∆ · (∆+ 2 · g1), Dcom) = 1, then it implies gcd(∆,Dcom) = 1. There-
fore, we can conclude that

P (gcd (∆ · (∆+ 2 · g1), Dcom) = 1) < P (gcd(∆,Dcom) = 1) =
φ(Dcom)

Dcom

□
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Lemma 2 (Lower Bound). Under the same conditions as in Lemma 1, the
probability that nrd(gf ) and Dcom are coprime has a lower bound:

(
φ(Dcom)

Dcom
)3 < P (gcd((nrd(gf ), Dcom)) = 1)

Proof. Let us maintain the notations as defined in Lemma 1. To prove the lower
bound, we first decompose P (gcd(∆ · (∆+ 2 · g1), Dcom) = 1) as follows:

P (gcd(∆ · (∆+ 2 · g1), Dcom) = 1)

= P (gcd(∆,Dcom) = 1 ∧ gcd(∆+ 2 · g1, Dcom) = 1)

=
∑

∆≡k (mod Dcom)
k∈Z∗

Dcom

P (∆ ≡ k (mod Dcom)) · P (gcd(k + 2 · g1, Dcom) = 1)

=
1

Dcom
·

∑
∆≡k (mod Dcom)

k∈Z∗
Dcom

P (gcd(k + 2 · g1, Dcom) = 1)

In this context, the probability P (gcd(k + 2 · g1, Dcom) = 1) is equivalent to
the probability that k + 2 · g1 (mod Dcom) ∈ Z∗

Dcom for the random variables
g1. Note that since g is determined by the product of γ and a0 + b0θ, g1 is not
uniformly random. Consequently, the distribution of k + 2 · g1 on ZDcom is not
uniformly random.

In order to examine this distribution, we express g1 in terms of a0 and b0 as
a0 +m · b0 for some m ∈ Z. By Algorithm 1, a0 and b0 are randomly selected
with uniform probability within the specified range: 1 ≤ a0 ≤ Dcom and 1 ≤
b0 ≤ Dcom. Subsequently, they are verified if the selected a0 and b0 satisfy the
condition gcd(a0, b0, Dcom) = 1. Only pairs that meet this condition are retained
and considered sample values.

Let S denote the set of valid pairs (a0, b0) defined as follows.

S = {(a0, b0)|1 ≤ a0 ≤ Dcom, 1 ≤ b0 ≤ Dcom, gcd(a0, b0, Dcom) = 1}

Then, the probability P (gcd(k + 2 · g1, Dcom) = 1) can be expressed as:

P (gcd(k + 2 · g1, Dcom) = 1)

=
|{(a0, b0)|k + 2 · (a0 +mb0) (mod Dcom) ∈ Z∗

Dcom
}|

|S|
The set {(a0, b0)|k+2 · (a0 +mb0) (mod Dcom) ∈ Z∗

Dcom
} can be partitioned

into subsets {(a0, b0)|k+2·(a0+mb0) = t (mod Dcom)} for t ∈ Z∗
Dcom

. Moreover,
each subset can be further divided into two partitions:

Sk,t,1 = {(a0, b0)|1 ≤ a0, b0 ≤ Dcom, gcd(b0, Dcom) = 1,

k + 2 · (a0 +mb0) = t (mod Dcom)},
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Sk,t,2 = {(a0, b0)|1 ≤ a0, b0 ≤ Dcom, gcd(b0, Dcom) ̸= 1,

gcd(a0, b0, Dcom) = 1, k + 2 · (a0 +mb0) = t (mod Dcom)}

For every b0 satisfies 1 ≤ b0 ≤ Dcom and gcd(b0, Dcom) = 1, there is a unique
value for a0 since 1 ≤ a0 ≤ Dcom and Dcom is coprime to 2. We can deduce that
Sk,t,1 = φ(Dcom). Thus,

|{(a0, b0)|k + 2 · (a0 +mb0) (mod Dcom) ∈ Z∗
Dcom

}|

=
∑

t∈Z∗
Dcom

|{(a0, b0)|k + 2 · (a0 +mb0) = t (mod Dcom)}|

=
∑

t∈Z∗
Dcom

(Sk,t,1 + Sk,t,2) >
∑

t∈Z∗
Dcom

Sk,t,1

=
∑

t∈Z∗
Dcom

φ(Dcom) = (φ(Dcom))2

Since D2
com > |S|,

P (gcd(∆ · (∆+ 2 · g1), Dcom) = 1)

=
1

Dcom
·

∑
∆≡k (mod Dcom)

k∈Z∗
Dcom

P (gcd(k + 2 · g1, Dcom) = 1)

=
1

Dcom
·

∑
∆≡k (mod Dcom)

k∈Z∗
Dcom

|{(a0, b0)|k + 2 · (a0 +mb0) (mod Dcom) ∈ Z∗
Dcom

}|
|S|

>
1

Dcom
·

∑
∆≡k (mod Dcom)

k∈Z∗
Dcom

φ(Dcom)2

D2
com

= (
φ(Dcom)

Dcom
)3

Therefore, the following inequality holds:

(
φ(Dcom)

Dcom
)3 < P (gcd((nrd(gf ), Dcom)) = 1)

□

Theorem 2 (Estimation). With the same notations in Lemma 1 and Lemma
2, if we assume g1 is uniformly random in ZDcom, an estimate for the probability
that nrd(gf ) and Dcom are coprime can be expressed as:

P (gcd(nrd(gf ), Dcom) = 1) ≈ (
φ(Dcom)

Dcom
)2

.
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Proof. Since g1 is uniformly random in ZDcom, we can approximate as follows:

P (gcd(k + 2g1, Dcom) = 1) ≈ φ(Dcom)

Dcom
,

where ∆ ≡ k (mod Dcom). As a result,

P (gcd(∆ · (∆+ 2g1), Dcom) = 1)

=
1

Dcom
·

∑
∆≡k (mod Dcom)

k∈Z∗
Dcom

P (gcd(k + 2g1, Dcom) = 1) ≈ (
φ(Dcom)

Dcom
)2

□

Table 2. The probability of generating order O0 through fault injection.

NIST Upper bound Lower bound Approximation Simulation
level φ(Dcom)

Dcom
(φ(Dcom)

Dcom
)3 (φ(Dcom)

Dcom
)2 (×100,000)

NIST-I 0.59843 0.21430 0.35811 0.35782
NIST-III 0.53314 0.15154 0.28424 0.27910
NIST-V 0.52081 0.14126 0.27124 0.26797

Table 2 shows the theoretical upper bound, lower bound, approximation of
the probability that the faulty ideal Ifcom generated by the above fault injection
becomes O0 for each NIST security level parameter of SQIsign, and the statistical
probability values when simulated 100,000 times with the actual reference code.
We can see that the probabilities are all significant for NIST-I,III,V.

3.2 Loop-aborts while computing isogeny

As mentioned in Section 2.1, SQIsign uses the Montgomery curve, and conse-
quently, during the computation of the commitment isogeny ϕ, it separates the
operations into two kernels: E[p+1]∩ker(ϕ) and E[p−1]∩ker(ϕ). Thus, in the
implementation of the commitment isogeny, the process is divided into two parts,
one for computing the isogeny with a kernel corresponding to E[p+ 1] ∩ ker(ϕ)
(refer to lines 4 to 5 of Algorithm 2), and the other for computing the isogeny
with a kernel corresponding to E[p − 1] ∩ ker(ϕ) (refer to lines 13 to 20 of
Algorithm 2).

The operations for each kernel involve two nested for-loops. The outer loop
sequentially selects distinct prime factors from a table, and the inner loop com-
putes the isogeny for each prime factor’s power. The factors and their powers
are pre-stored in a table. (Therefore we assume the attacker knows the table’s
order.)

However, a notable issue arises in the outer for-loop concerning the index
value i used for the E[p + 1] ∩ ker(ϕ) kernel. The index i is not reset after the
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Algorithm 3 Odd-degree isogeny computation and the basis evaluation in lines
4 to 5 of Algorithm 1
Input: A domain curve E
Input: A generator K± of E[p± 1] ∩ ker(ϕ), respectively
Input: A basis (P,Q) of E[D] such that gcd(D, deg(ϕ)) = 1
Output: An image curve Ec

Output: An evaluated basis (ϕ(P ), ϕ(Q))

1: Let deg(ϕ) = pe11 · pe22 · · · penn for n ∈ Z+ such that pi|(p + 1) for 1 ≤ i ≤ h and
pi|(p− 1) for h < i ≤ n.

2: E1,0 := E
3: P1,0, Q1,0 := P,Q

Evaluate isogenies with kernel in E[p+ 1]
4: for i ∈ {1, ..., h} do
5: K+

i := [p
ei+1

i+1 · pei+2

i+2 · · · pehh ]K+

6: for j ∈ {1, ..., ei} do
7: K+

i,j := [pei−j
i ]K+

i

8: Compute isogeny ϕi,j of deg(ϕi,j) = pi corresponding to the kernel K+
i,j

9: Ei,j := ϕi,j(Ei,j−1), K+ := ϕi,j(K
+), K− := ϕi,j(K

−)
10: Pi,j , Qi,j := ϕi,j(Pi,j−1), ϕi,j(Qi,j−1)
11: end for
12: end for

Evaluate isogenies with kernel in E[p− 1]
13: for i ∈ {h+ 1, ..., n} do
14: K−

i := [p
ei+1

i+1 · pei+2

i+2 · · · penn ]K−

15: for j ∈ {1, ..., ei} do
16: K−

i,j := [pei−j
i ]K−

i

17: Compute isogeny ϕi,j of deg(ϕi,j) = pi corresponding to the kernel K−
i,j

18: Ei,j := ϕi,j(Ei,j−1), K− := ϕi,j(K
−)

19: Pi,j , Qi,j := ϕi,j(Pi,j−1), ϕi,j(Qi,j−1)
20: end for
21: end for
22: Ec := En,en

23: ϕ(P ), ϕ(Q) := Pn,en , Qn,en

24: return Ec, (ϕ(P ), ϕ(Q))
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first for-loop; instead, it continues to be used in the second for-loop. In other
words, if the first for-loop concludes with i = h, the second for-loop begins
with i = h+ 1. From an attacker’s perspective, this operation can be seen as a
single for-loop, exhibiting a loop-aborts vulnerability in the isogeny computation
process proposed in [15].

An attacker can inject faults at the point where index i is computed, random-
izing i and inducing loop-aborts at the desired moment. For example, injecting a
fault immediately after the computation of i = h′ would prevent i = h′ +1 from
proceeding, leading to termination of the for-loop and outputting an isogeny of
degree pe11 · pe22 · ··· · peh′

h′ .

4 Fault attack on SQIsign

The vulnerabilities discussed in the previous section can be exploited to inject
faults into the commitment phase of SQIsign to reduce the degree of commitment
isogeny or to make the commitment ideal O0, i.e., the norm is 1. If the attacker
can recover the isogeny between the starting curve E0 and the public key curve
EA from the faulty signature and public information, the attacker can use the
isogeny as a secret key. In this section, we introduce the attacker model for
deterministic SQIsign and randomized SQIsign, and present a scenario of key
recovery fault attack in each situation, i.e., recovering the isogeny between EA
and E0, and analyze the time complexity and number of queries required for the
attack.

4.1 Key recovery fault attack for deterministic SQIsign

The key recovery fault attack on deterministic SQIsign is performed under the
following assumptions. First, the attacker is allowed to make multiple queries
to SQIsign signing oracle using the same key and messages. Second, the oracle
generates a signature for each query and the attacker receives these signatures.
Third, the attack assumes a first-order fault situation, which allows the attacker
to inject a fault once during the oracle’s operation.

To illustrate the attack scenario, we explore the data flow of the SQIsign
signing protocol when a first-order fault is injected as described in Section 3.2.
Initially, a faulty commitment isogeny ϕfcom is generated due to the fault injec-
tion in the commitment phase. This affects the computation of the basis points
P0,chall and Q0,chall for E0[Dchall], yieding P f1,chall and Qf1,chall. Consequently, a
faulty curve Ef1 and a faulty kernel Kf

chall are generated, leading to the compu-
tation of the faulty challenge isogeny ϕfchall. The faulty challenge isogeny leads
to the generation of Ifchall after decomposing Kchall along the basis P f1,chall and
Qf1,chall. The oracle continues to generate rf , sf1 , s

f
2 , components of the signature,

using Ef1 and Ef2 . Detailed steps are omitted as rf , sf1 , s
f
2 are not utilized in the

attack. Refer to Algorithm 4 for detailed steps. In the response phase, the oracle
computes Isecret · Icom · Ifchall to obtain Jfres and uses signingKLPT to generate
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Algorithm 4 First-order fault injected SQISign signing protocol (simplified)
Input: A Message M
Input: A secret key sk
Output: A faulty signature (σf , rf , sf1 , s

f
2 )

Commitment process
1: Sample a0, b0 randomly from interval [1, Dcom] until gcd(a0, b0, Dcom) = 1.
2: Icom := O0⟨γ · (a0 + b0θ̄), Dcom⟩
3: Kcom := a0P0 + b0θ(P0), where P0 ∈ B0,Dcom

4: Compute a faulty isogeny ϕf
com : E0 −→ Ef

1 .
5: P f

1,chall := ϕf
com(P0,chall), Q

f
1,chall := ϕf

com(P0,chall)
Challenge process

6: af1 , b
f
1 := H(M,Ef

1 )
7: Find a Dchall-torsion basis (P f

E1
, Qf

E1
) on Ef

1 deterministically.
8: Kf

chall := af1P
f
E1

+ bf1Q
f
E1

9: Compute a faulty isogeny ϕf
chall : E

f
1 −→ Ef

2 with the kernel ⟨Kf
chall⟩.

10: Find integers αf , βf such that [αf ]P f
1,chall + [βf ]Qf

1,chall = Kf
chall.

11: Compute a left O0-ideal (I ′chall)
f corresponding to the isogeny with the kernel

⟨[αf ]P0,chall + [βf ]Q0,chall⟩.
12: Ifchall := [Icom]∗(I

′
chall)

f

13: Given Kf
chall, deterministically find another Dchall-torsion point Lf

chall such that
a pair (Kf

chall, L
f
chall) is the basis of Ef

1 [Dchall].
14: (L′

chall)
f := ϕf

chall(L
f
chall)

15: Find a Dchall-torsion basis (P f
E2
, Qf

E2
) on Ef

2 deterministically.
16: Find integers sf1 , s

f
2 such that [sf1 ]P

f
E2

+ [sf2 ]Q
f
E2

= (L′
chall)

f .
17: Given ((L′

chall)
f , sf1 , s

f
2 ), deterministically find another Dchall-torsion point

(M ′
chall)

f such that a pair ((L′
chall)

f , (M ′
chall)

f ) is the basis of Ef
2 [Dchall].

18: Compute an isogeny ϕ̂f
chall : E

f
2 −→ Ef

1 with the kernel ⟨(L′
chall)

f ⟩.
19: Mf

chall := ϕ̂f
chall((M

′
chall)

f )

20: Find rf such that Kf
chall = [rf ]Mf

chall.
Response process

21: Jf
res := Isecret · Icom · Ifchall

22: Find an ideal (J ′
res)

f of norm 2e which is equivalent to Jf
res such that (J ′

res)
f ·Ifchall

is cyclic using SigningKLPT.
23: Convert the ideal (J ′

res)
f into the isogeny σf of degree 2e using sk.

24: return (σf , rf , sf1 , s
f
2 )
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an equivalent ideal (J ′
res)

f with a norm of 2e. Finally, the oracle converts the
isogeny σf corresponding to (J ′

res)
f and yields (σf , rf , sf1 , s

f
2 ) as the signature.

Note that the codomain of σf is not Ef2 . Since the domain of ϕfchall is Ef1 , and
the left order of Ifchall is O1 instead of Of

1 , the curve corresponding to the right
order of Ifchall is not Ef2 . For the attacker, this implies that Ef2 can be obtained
from the signature of the fault-injected SQIsign, but neither E1f nor E1 can be
recovered through this.

The key recovery scenario of the first-order fault attack is as follows. The at-
tacker first interacts with the SQIsign signing oracle, querying the same message
n + 1 times. The final query is processed normally to obtain a valid signature,
while the preceding n queries are faulted during the oracle’s operation, leading
to loop aborts as described in Section 3.2 and resulting in faulty signatures. If
we denote the loop index in Algorithm 3 corresponding to the fault injection
point of the j-th query as ij , the faults are injected such that i1 > i2 > ... > in.

The attacker can exploit these faulty signatures to reconstruct the isogeny
between E0 and E1. Consider a scenario in which the attacker tries to recover a
component of the commitment isogeny from the j-th faulty signature. Now we
denote by ψ : (E1)j−1 −→ E1 the isogeny that the attacker has recovered using
j− 1 faulty signatures, and by ψj : (E1)j −→ (E1)j−1 the isogeny to be recovered
at the j-th stage. If the degree of the commitment isogeny ϕcom is pe11 ·pe22 ·· · ··penn ,
then the degree of ψj is given by

∏ij−1
k=ij

pekk , denoted as p̃ij . We also denote the
faulty commitment isogeny ϕfcom from the j-th fault-injected SQIsign signing or-
acle operation as (ϕcom)j (refer to line 4 of Algorithm 4). Similarly, (I ′chall)

f and
its corresponding isogeny are represented as (I ′chall)j and (ϕ′chall)j(refer to line
12 of Algorithm 4), respectively. The outcome of [Icom]∗(I

′
com)j is represented

as (Ichall)j , and its corresponding isogeny is denoted as (ϕchall)j .
In this context, the commitment isogeny ϕcom can be expressed as ψ ◦ ψj ◦

(ϕcom)j . Given that Dcom and Dchall are coprime, the following holds:

[ϕcom]∗(ϕ
′
chall)j = [ψ ◦ ψj ◦ (ϕcom)j ]∗(ϕ

′
chall)j = [ψ]∗[ψj ]∗[(ϕcom)j ]∗(ϕ

′
chall)j .

The attacker can brute force all isogenies of degree p̃ij whose codomain is the
domain of ψ, denoted as ψj,k : (E1)j,k −→ (E1)j−1 for k ∈ {1, . . . , p̃ij + 1}
and operate on [ψ]∗[ψj,k]∗[(ϕcom)j ]∗(ϕ

′
chall)j for each ψj,k. If ψj,k is indeed a

component of the commitment isogeny, then the j-invariant of the codomain
of [ψ]∗[ψj,k]∗[(ϕcom)j ]∗(ϕ

′
chall)j should coincide with the j-invariant of the j-

th faulty signature σj . Otherwise, it should differ. Repeating this procedure n
times allows the isogeny between E0 and E1 to be recovered using a divide-and-
conquer strategy, as described in Algorithm 5. The attacker can then compute
the isogeny between E0 and EA and use it as a secret key.

Analysis of the attack The number of queries required for the attack, as-
suming that fault injection always succeeds, is n + 1. However, in a real fault
injection environment, not all fault injections are always successful. Therefore,
the success probability of fault injection must be considered. If we denote the
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Algorithm 5 Recovery of (E0, E1)-isogeny by divide-and-conquer
Input: A public key EA

Input: A message M
Input: A valid signature σ, faulty signatures (σ1, ..., σn)
Input: deg(ϕcom) = pe11 · pe22 · · · penn
Input: Fault-injected indices i1, i2, ..., in
Output: A recovered commitment isogeny ψ : E0 −→ E1

Output: success
1: i0 := n
2: (E1)0 := E1

3: for j ∈ {1, ..., n} do
4: Compute the codomain of σj , denoted as (E2)j .

5: p̃ij :=

ij−1∏
k=ij

p
ek
k

6: for k ∈ {1, ..., p̃ij + 1} do
7: Compute a candidate isogeny ψj,k : (E1)j,k −→ (E1)j−1

8: (a1)j,k, (b1)j,k := H(M, (E1)j,k)
9: Find a Dchall-torsion basis (P(E1)j,k , Q(E1)j,k ) on (E1)j,k deterministically.

10: (Kchall)j,k := (a1)j,k · P(E1)j,k + (b1)j,k ·Q(E1)j,k

11: Compute an isogeny (ϕ_)j,k : (E1)j,k −→ (E_)j,k with the kernel (Kchall)j,k.
12: ψk := ψ ◦ ψj,k

13: (ϕchall)j,k := [ψk]∗ϕ_,j,k

14: Compute the codomain of (ϕchall)j,k, denoted as (E2)j,k.
15: if j((E2)j) = j((E2)j,k) then
16: ψj := ψj,k

17: ψ := ψ ◦ ψj

18: else
19: ψj := ⊥
20: end if
21: end for
22: if ψj = ⊥ then
23: ψ := ⊥
24: sccess := False
25: return ψ, sccess
26: end if
27: end for
28: sccess := True
29: return ψ, sccess
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probability as µ, the number of queries required for the attack scenario by the
attacker can be seen to be O(nµ ).

The time complexity of the attack needs to consider two factors. First, the
time complexity of recovering the isogeny through brute force. In the proposed
attack scenario, a meet-in-the-middle attack cannot be performed during isogeny
recovery, so the brute-force time complexity of each isogeny can be seen to be
O(p̃ij ). Second, the number of isogenies that need to be recovered by brute force.
This is the same as the number of queries, n, by the attacker. If we denote the
largest value among p̃ij where j ∈ {1, · · · , n} as p̃max, then considering both
time complexities together, the overall time complexity of the proposed attack
can be seen to be O(p̃max · n).

4.2 Key recovery fault attack for randomized SQIsign

The fault attack on the randomized SQIsign for key recovery is performed under
different assumptions than those of the deterministic one. Firstly, the attacker is
allowed to query the SQIsign signing oracle multiple times using their messages.
Note that this attack does not require the oracle to operate with the same key,
as the attacker can recover the secret key with just one successful fault injection.
Secondly, the oracle generates a signature for each query, which are received by
the attacker. Lastly, the attack assumes a second-order fault scenario, allowing
the attacker to inject a fault twice during the oracle’s operation.

We now examine the data flow of the SQIsign signing protocol when two faults
are injected as detailed in Sections 3.1 and 3.2. The primary difference from the
first-order fault-injected SQIsign signing protocol is that in the commitment
phase, an additional fault injection creates a faulty commitment ideal Ifcom, in
addition to ϕfcom. This influences the computation of [Ifcom]∗(I

′
chall)

f , yielding
a different Ifchall from the first-order scenario in line 12 of Algorithm 6. In the
response phase, the ideal operation Isecret · Ifcom · Ifchall computes Jfres, which
affects σf . However, as mentioned in Section 3.1, we only consider when Ifcom =

O0, so Ifchall becomes (I ′chall)
f and Jfres becomes Isecret ·O0 ·Ifchall = Isecret ·Ifchall.

The key recovery scenario of the second-order fault attack is as follows. The
attacker first interacts with the SQIsign signing oracle, querying one time. The
oracle are faulted during operation, leading to randomization as described in
Section 3.1 and loop abort as described in Section 3.2, resulting in a faulty sig-
nature. The attacker can exploit the faulty signature to reconstruct the isogeny
between E0 and Eσf , the codomain of σf .

We now denote the loop index in Algorithm 3 corresponding to the fault
injection point as i, and the isogeny that the attacker aims to recover using the
faulty signature as ψ : (E0) −→ Eσf . If the degree of the commitment isogeny
ϕcom is pe11 · pe22 · · · · · penn , then the degree of ψ is given by

∏i
k=1 p

ek
k , denoted as

p̃. The isogeny corresponding to (I ′chall)
f is represented as (ϕ′chall)

f .
Referring to line 11 of Algorithm 6, the kernel generator of (ϕ′chall)

f is
[αf ]P0,chall+[βf ]P0,chall, hence (ϕ′chall)

f = [ϕfcom]∗ϕfchall. Since Ifchall = (I ′chall)
f ,

the isogeny corresponding to Ifchall is [ϕfcom]∗ϕfchall. Meanwhile, the codomain
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Algorithm 6 Second-order fault injected SQISign signing protocol (simplified)
Input: A Message M
Input: A secret key sk
Output: A faulty signature (σf , rf , sf1 , s

f
2 )

Commitment process
1: Sample a0, b0 randomly from interval [1, Dcom] until gcd(a0, b0, Dcom) = 1.
2: Ifcom := O0⟨(γ · (a0 + b0θ̄))

f , Dcom⟩
3: Kcom := a0P0 + b0θ(P0), where P0 ∈ B0,Dcom

4: Compute a faulty isogeny ϕf
com : E0 −→ Ef

1 .
5: P f

1,chall := ϕf
com(P0,chall), Q

f
1,chall := ϕf

com(P0,chall)
Challenge process

6: af1 , b
f
1 := H(M,Ef

1 )
7: Find a Dchall-torsion basis (P f

E1
, Qf

E1
) on Ef

1 deterministically.
8: Kf

chall := af1P
f
E1

+ bf1Q
f
E1

9: Compute a faulty isogeny ϕchall : E
f
1 −→ Ef

2 with the kernel ⟨Kf
chall⟩.

10: Find integers αf , βf such that [αf ]P f
1,chall + [βf ]Qf

1,chall = Kf
chall.

11: Compute a left O0-ideal (I ′chall)
f corresponding to the isogeny with the kernel

⟨[αf ]P0,chall + [βf ]Q0,chall⟩.
12: Ifchall := [Ifcom]∗(I

′
chall)

f

13: Given Kf
chall, deterministically find another Dchall-torsion point Lf

chall such that
a pair (Kf

chall, L
f
chall) is the basis of Ef

1 [Dchall].
14: (L′

chall)
f := ϕf

chall(L
f
chall)

15: Find a Dchall-torsion basis (P f
E2
, Qf

E2
) on Ef

2 deterministically.
16: Find integers sf1 , s

f
2 such that [sf1 ]P

f
E2

+ [sf2 ]Q
f
E2

= (L′
chall)

f .
17: Given ((L′

chall)
f , sf1 , s

f
2 ), deterministically find another Dchall-torsion point

(M ′
chall)

f such that a pair ((L′
chall)

f , (M ′
chall)

f ) is the basis of Ef
2 [Dchall].

18: Compute an isogeny ϕ̂f
chall : E

f
2 −→ Ef

1 with the kernel ⟨(L′
chall)

f ⟩.
19: Mf

chall := ϕ̂f
chall((M

′
chall)

f )

20: Find rf such that Kf
chall = [rf ]Mf

chall.
Response process

21: Jf
res := Isecret · Ifcom · Ifchall

22: Find an ideal (J ′
res)

f of norm 2e which is equivalent to Jf
res such that (J ′

res)
f ·Ifchall

is cyclic using SigningKLPT.
23: Convert the ideal (J ′

res)
f into the isogeny σf of degree 2e using sk.

24: return (σf , rf , sf1 , s
f
2 )
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Algorithm 7 Recovery of (E0, Eσf )-isogeny
Input: A message M
Input: A faulty signature σf

Input: deg(ϕcom) = pe11 · pe22 · · · penn
Input: A fault-injected index i
Output: A recovered isogeny ψ : E0 −→ Eσf

Output: success
1: Compute the codomain of σf , denoted as Eσf .

2: p̃ :=

i∏
k=1

p
ek
k

3: for j ∈ {1, ..., p̃+ 1} do
4: Compute a candidate isogeny ψj : E0 −→ (E1)j
5: (a1)j , (b1)j := H(M, (E1)j)
6: Find a Dchall-torsion basis (P(E1)j , Q(E1)j ) on (E1)j deterministically.
7: (Kchall)j := (a1)j · P(E1)j + (b1)j ·Q(E1)j

8: Compute an isogeny (ϕ_)j : (E1)j −→ (E_)j with the kernel ⟨(Kchall)j⟩.
9: (ϕchall)j := [ψj ]

∗ϕ_,j

10: Compute the codomain of (ϕchall)j , denoted as (E2)j .
11: if j(Eσf ) = j((E2)j) then
12: ψ := ψj

13: sccess := True
14: return ψ, sccess
15: end if
16: end for
17: ψ := ⊥
18: sccess := False
19: return ψ, sccess
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of σf corresponds to the right order of Jfres, which is also the right order of
Ifchall. Furthermore, the right order of Ifchall corresponds to the codomain of
[ϕfcom]∗ϕfchall, hence the j-invariant of the codomain of σf and [ϕfcom]∗ϕfchall
must be identical.

In this context, the attacker can brute force all isogenies of degree p̃ that
have E0 as their domain. These isogenies are denoted as ψj : E0 −→ (E1)j . If the
isogeny ψj , which is guessed by the attacker, matches the actual computed faulty
commitment isogeny ϕfcom, then the j-invariant of the codomain of [ψj ]∗(ϕ_)j
will be the same as the j-invariant of Eσf . If it does not match, then it will be
different. Here, (ϕ_)j is an isogeny of the kernel ⟨(Kchall)j⟩, which is computed by
the codomain (E1)j of the guessed isogeny ψj(refer to lines 4 to 10 of Algorithm
7). Using this, the attacker can recover the isogeny between E0 and Eσf from
the given faulty curve. By composing this with σf , they can compute the isogeny
between E0 and EA. This computed isogeny can then be used as a secret key.

Analysis of the attack Assuming that every attempt at fault injection is
successful, the only factor we need to consider is the probability that a successful
fault injection leads to the generation of O0 as Ifcom. This probability, denoted
as λ, is discussed in Table 2 of Section 3.1. In addition to this, we also need to
consider the success rate of fault injection, which we denote as µ. Therefore, the
number of queries required for the attack can be approximated as O( 1

λ·µ ).
When considering the time complexity of the attack, the only factor we need

to consider is the recovery of the isogeny through brute-force. Therefore, the
time complexity is solely determined by the brute-force recovery of the isogeny,
which can be approximated as O(p̃).

5 Conclusion and countermeasures

In this paper, we identify and discuss two vulnerabilities in SQIsign that can be
exploited by fault attacks. The first vulnerability relates to the computational
process of generating an ideal during the commitment phase of SQIsign. If an
fault is injected into the generator during the process, it can cause the ideal to
be of order O0, which acts as a multiplication-by-[1] map on E0 by the Deur-
ing correspondence. We have performed an analysis to determine the range and
estimation of the probability of this vulnerability occurring. The second vulner-
ability lies in the isogeny computation in SQIsign, where the entire operation
is performed using a single counter during the commitment phase, making it
vulnerable to loop abort. Exploiting these vulnerabilities, we outline attack sce-
narios for cryptographic key recovery in both deterministic and randomized ver-
sions of SQIsign. The former scenario assumes a first-order fault attack scenario,
while the latter considers a second-order fault attack environment. In addition,
we provide analyses of the number of queries and time complexity associated
with each attack strategy.

Both vulnerabilities can be countered using intuitive methods. First, for the
loop-abort vulnerability related to isogeny operations, it is possible to address
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it by checking whether the counter of the for-loop has been filled with the cor-
rect number of iterations when the for-loop is functioning normally. This was
discussed similarly in [14,15]. If the environment allows for high-order fault at-
tacks, checking the counter in parallel using multiple checkers can increase the
security against fault attacks. Likewise, a countermeasure against the fault at-
tack on the computation while generating an ideal can be realized by checking
the norm of a commitment ideal. In the high-order fault attack situation, it can
also be countered by adding additional checkers and ensuring that all checkers
have the expected norm of the commitment ideal.
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