
Dynamic Decentralized Functional Encryptions from Pairings

in the Standard Model

Duy Nguyen[0009−0002−7892−9146]

Telecom Paris, Institut Polytechnique de Paris, France
dinh.nguyen@telecom-paris.fr

Abstract. Dynamic Decentralized Functional Encryption (DDFE), introduced by Chotard et
al. (CRYPTO'20), stands as a robust generalization of (Multi-Client) Functional Encryption. It
enables users to dynamically join and contribute private inputs to individually-controlled joint
functions, all without requiring a trusted authority. Agrawal et al. (TCC'21) further extended
this line of research by presenting the �rst DDFE construction for function-hiding inner prod-
ucts (FH-IP-DDFE) in the random oracle model (ROM).
Recently, Shi et al. (PKC'23) proposed the �rst Multi-Client Functional Encryption construc-
tion for function-hiding inner products based on standard assumptions without using random
oracles. However, their construction still necessitates a trusted authority, leaving the question
of whether a fully-�edged FH-IP-DDFE can exist in the standard model as an exciting open
problem.
In this work, we provide an a�rmative answer to this question by proposing a FH-IP-DDFE con-
struction based on the Symmetric External Di�e-Hellman (SXDH) assumption in the standard
model. Our approach relies on a novel zero-sharing scheme termed as Updatable Pseudorandom
Zero Sharing, which introduces new properties related to updatability in both de�nition and se-
curity models. We further instantiate this scheme in groups where the Decisional Di�e-Hellman
(DDH) assumption holds.
Moreover, our proposed pseudorandom zero sharing scheme serves as a versatile tool to enhance
the security of pairing-based DDFE constructions for functionalities beyond inner products. As
a concrete example, we present the �rst DDFE for attribute-weighted sums in the standard
model, complementing the recent ROM-based construction by Agrawal et al. (CRYPTO'23).

Keywords: dynamic, decentralized, functional encryption, pairing, standard model

1 Introduction

1.1 Dynamic Decentralized Functional Encryption

Functional Encryption. Functional Encryption (FE) is a robust cryptographic paradigm intro-
duced by Sahai and Waters [SW05,BSW11]. It addresses the all-or-nothing limitations of standard
public-key cryptosystems by o�ering �ne-grained control over access to encrypted data through func-
tional decryption keys. More precisely, each ciphertext ctx encrypts a speci�c value x, and each
decryption key dkf encapsulates a function f . When a receiver uses dkf to decrypt ctx, what it can
learn is only the result f(x), and nothing more about x. Depending on a speci�c choice of functional-
ity class, FE encompasses various advanced encryption schemes, including Identity-Based Encryption
[Sha84,BF01], Attribute-Based Encryption [SW05,GPSW06], Predicate Encryption [BW07,KSW08],
and more.

Since its introduction, Functional Encryption (FE) has emerged as a dynamic area of research.
One direction in this �eld involves the construction of FE schemes for general functionalities and
the exploration of their relationships with other cryptographic notions. A variety of elegant works
have been published in this regard [AJ15, BV15]. However, it is worth noting that all known FE
constructions for general functionalities rely on non-standard cryptographic assumptions, such as
indistinguishability obfuscation, single-input FE for circuits, or multilinear maps. Consequently, this
reliance poses challenges in practical implementations.

On another front, Abdallah et al. [ABDP15] addressed the challenge of constructing FE based on
standard assumptions for restricted, yet expressive, classes of functions. In their work, they presented

2

FE constructions for inner products1 (IP-FE), where each private input is represented as a vector x,
each function is represented by a vector y, and decryption yields x⊤ · y.

Within the realm of practical FE based on standard assumptions for computation over encrypted
data, signi�cant improvements have been made in terms of security [BJK15,ALS16,ALMT20], func-
tionality [BCFG17, AGW20, ACGU20], e�ciency [CLT18, TT18, DP19, MKMS22] and support for
multi-user scenarios [ACF+18,CDG+18,CDSG+20,ZLZ+24].

Functional Encryption for Multiple Users. The concepts of Multi-Input Functional Encryption
(MIFE) and Multi-Client Functional Encryption (MCFE) were introduced in [GGG+14,GKL+13].
These concepts generalize FE to enable multiple clients to independently contribute their encrypted
individual inputs to the computation of joint functions. Concretely, with the help of possibly a trusted
authority, each slot owner Si receives a private encryption key ski and encrypts an input xi under
some label ℓ as ctxi,ℓ. By collecting ciphertexts of all slot owners (ctxi,ℓ)i under a same label and a
functional decryption key dkf generated from the authority's master secret key msk, a receiver can
obtain no more information than f((xi)i).

In the multi-client setting, each slot owner is assumed to be an independent client: the security
guarantees that only ciphertexts under a same label can be decrypted together, and the input privacy
of honest clients holds even when a subset of clients is corrupted. In the multi-input setting, all labels
are assumed to be the same, all slot owners are originally assumed to be the same user (yet each input
can be sent independently instead of simultaneously as in single-input FE), and then no corruption
is considered.

Therefore, any MCFE designed for a speci�c functionality automatically implies a MIFE for
the same functionality by using a �xed label for all encryptions. Conversely, an MIFE designed for
general functions directly implies an MCFE for general functions, as the label can be contained in
every plaintext, and the function can verify that every slot uses the same label. Considering practical
FE schemes in the literature, this equivalence doesn't hold for restricted classes of functions such as
inner-products.

Since their introduction, the research line on practical MIFE/MCFE constructions has witnessed a
dynamic array of works seeking developments in the aspects of security [CDG+18,LT19,AGT22,SV23],
functionality [CDSG+20, ACGU20, AGT21a, NPP22, ATY23], and in the relation with single-input
FE [ABG19].

Decentralized Multi-Client Functional Encryption. Standard MCFE models often encounter
the key escrow problem, stemming from the reliance on a trusted authority. To address this challenge,
Chotard et al. [CDG+18] introduced the concept of decentralized MCFE (DMCFE). In DMCFE, the
need for a trusted authority is entirely removed, granting each client complete control over their
encrypted data and the generation of functional decryption keys.

In this paradigm, each client is require to join together a one-time interactive setup to acquire
their individual secret key ski. With this key, each client can generate ciphertexts similar to those
in standard MCFE and decryption key shares dkf,i for a function f agreed upon by all clients. To
decrypt, a receiver must collect decryption key shares from all clients; otherwise, decryption yields
no information. This decentralized approach to key generation eliminates the necessity for a central
authority, thereby enhancing the security model of MCFE.

The development of DMCFE since the introduction of the �rst scheme for inner products [CDG+18]
has seen signi�cant progress on various aspects. These advancements include expanding functionality,
as seen in constructions for attribute-weighted sums [ATY23]. E�orts to enhance security have led
to DMCFE constructions for function-hiding inner products [AGT21b], for lattice-based assumptions
in the standard model [LT19], and for optimal security notions [NPP23b]. The relations between
DMCFE and other FE notions have been established in these works [ABG19,ABKW19]. Practical
features like veri�ability [NPP23a] and robustness [LWG+23] have also been integrated, enhancing
the applicability of DMCFE in various real-world scenarios.

Dynamic Decentralized Functional Encryption. Dynamic Decentralized Functional Encryption
(DDFE), as introduced by Chotard et al. [CDSG+20], extends the concept of DMCFE by preserving
all decentralized features while enabling the join of new clients at various stages during the lifetime
of the system through a non-interactive setup.

1 In the literature, there are other synonyms for inner products such as linear functions or weighted sums.

3

In DDFE, each client in a universe PK can independently generate a pair of public key pk and
private key skpk. The public key pk will be published on the cloud and updated by other clients in
the system. Compared to DMCFE, the decryption algorithm in DDFE is additionally more �exible,
as it allows a combination between ciphertexts (ctmpk

)pk∈UM
of clients in any list UM ⊂ PK, and

decryption keys (dkkpk
)pk∈UK

of clients in any list UK ⊂ PK.
The �rst DDFE schemes [CDSG+20] were constructed to support functionalities such as sums,

inner products, and all-or-nothing message encapsulations. As subsequent works, DDFE constructions
for larger classes of functions such as function-hiding inner products and attributed-weighted sums
have been introduced in [AGT21b,ATY23] respectively.

Multi-Party Functional Encryption. In addition to the above notions of functional encryption, there
are other concepts designed for various multi-user settings. These include those supporting dis-
tributed keys, such as Decentralized Attribute Based Encryption with Policy Hiding [MJ18] and
Multi-Authority Functional Encryption [Cha07, LW11, BCFG17], as well as those supporting both
distributed ciphertexts and keys, such as Ad Hoc MIFE [ACF+20]. All these notions fall under the
umbrella of Multi-Party Functional Encryption [AGT21b].

However, in this paper, our focus will be exclusively on DDFE, which stands out as the most gener-
alized notion within Multi-Party Functional Encryption and can support both distributed ciphertexts
and keys.

An Open Problem in DDFE. To the best of our knowledge, practical constructions for DDFE
based on standard assumptions remain limited to the classes of function-hiding inner products (FH-IP)
and function-revealing attribute-weighted sums (AWS), which strictly capture the class of function-
revealing inner products (IP). These functionalities can be described more precisely as follows:

� In DDFE for FH-IP: each client, identi�ed by a public key pk ∈ PK, uses its own correspond-
ing secret key skpk to encrypt its private input xpk as ctxpk,ℓM ,UM

under a public message label
ℓM and for a public user list UM . Similarly, each client uses skpk to generate a decryption key
for its private vector ypk as dkypk,ℓK ,UK

under a public key label ℓK and for a public user list
UK . The labels ℓM and ℓK impose constraints on which messages and functions can be ag-
gregated together, respectively, while the lists UM and UK speci�es the sets of parties whose
ciphertexts and decryption keys can be combined, respectively. During decryption, the FH-IP
functionality veri�es the conditions [UM = UK], [(ℓM ,UM) is consistent across all ciphertexts]
and [(ℓK ,UK) is consistent across all decryption keys]. If these conditions are met, the FH-IP
functionality outputs ∑

pk∈UK

x⊤
pk · ypk;

otherwise, it outputs nothing. The function-hiding security ensures that no additional information
on individual xpk and ypk is revealed.

� In DDFE for AWS: each client pk chooses a user list UM , a label ℓ to encrypt its AWS in-
puts {zpk,j}j∈[Npk] which are private and {xpk,j}j∈[Npk] which are public. For key generation,
each client pk chooses a set of users UK and a list of arithmetic branching programs (ABPs)
f = {fpk}pk∈UK

. During decryption, the AWS functionality veri�es the conditions [UM = UK],
[(ℓ,UM) is consistent across all ciphertexts] and [f is consistent across all decryption keys]. If these
conditions are met, the AWS functionality outputs∑

pk∈UK

∑
j∈[Npk]

fpk(xpk,j)
⊤ · zpk,j ;

otherwise, it outputs nothing. The function-revealing security ensures that no additional infor-
mation on individual {zpk,j}j∈[Npk] is revealed.

The constructions for function-revealing inner products, function-hiding inner products, and attribute-
weighted sums are provided in [CDSG+20, AGT21b, ATY23] respectively, representing the current
state of the art in their respective areas2. However, it's important to highlight that these construc-
tions rely on random oracles for their security proofs.

2 An advantage of the construction for function-revealing inner products is that it can be instantiated in a
pairing-free group, while all FE constructions for function-hiding inner products relies on pairing groups.

4

On the other hand, in the realm of (Decentralized) MCFE for (function-hiding) inner products,
there exists a series of elegant works [LT19,ABG19,SV23] aimed at enhancing security by eliminating
the use of random oracles and ensuring the security of the respective (Decentralized) MCFE in the
standard model. Therefore, our objective is to contribute to this line of research by addressing the
following question:

Do there exist any DDFE constructions for function-hiding inner products and for attribute-
weighted sums that are secure under standard assumptions in the standard model?

This work provides an a�rmative answer to this question for both function classes.

1.2 Our Contributions

The contributions can be listed as follows:

� Novel Pseudorandom Zero Sharing: We introduce a new concept called Updatable Pseudo-
random Zero Sharing. Compared to standard pseudorandom zero sharing, this notion additionally
o�ers the following key properties:

1. it enables the local update from a zero share into a new one;
2. its security guarantees the pseudorandomness for the updated shares even if their corre-

sponding non-updated shares are revealed; this security holds against an unbounded subset
of corrupted parties;

3. its updating algorithm can support the bilinear update property, which makes the scheme
friendly with pairing-based constructions;

In addition to the de�nition and security models, we also provide a concrete instantiation of this
notion in Decisional Di�e-Hellman Assumption (DDH) groups.

� Dynamic Decentralized Functional Encryptions Without RO: Using the Updatable Pseu-
dorandom Zero Sharing scheme in DDH groups as a building block, we provide the �rst DDFE
constructions for function-hiding inner products and attribute-weighted sums that are secure in
the standard model. The security of these constructions relies on the SXDH assumption in the
selective-symmetric setting. For function-hiding inner products, an incidental trade-o�3 is that
the ciphertext size per client increases to O(d+n) from O(d), where d is an inner-product dimen-
sion, and n is the size of a user list U whose ciphertexts and decryption keys can be combined.
Further comparative details are provided in Figure 1.

1.3 Technical Overview

Random Oracles in Prior Schemes. In the function-hiding (decentralized) multi-client setting,
one of the fundamental security requirements is that only inputs encrypted under a same message label
and only keys generated under a same key label can be decrypted together, otherwise the decryption
should output nothing.

Thus, a common strategy in constructing (decentralized) MCFE schemes, including those for
(function-hiding) inner products and attribute-weighted sums, is to rely on a (correlated) one-time-
pad technique: the one-time pads should be freshly generated by each pair of message and key labels,
as well as by each client, to independently randomize the information corresponding to each client's
private pair of input and key object. This strategy is also employed in the constructions of DDFE, as
we will describe below.

Without obscuring the reliance on random oracles for its security, we can simplify the DDFE
scheme for FH-IP in [AGT21b] as follows: leveraging a private use of function-hiding IPFE, each
client pk ∈ U encrypts a private xpk as

ctpk = IPE.Enc(skpk, [xpk,0, hℓM ,U , 0]1)

3 This trade-o� and the selective-symmetric security does not compromise the solution's completeness regard-
ing the open question posed in [SV23], which queries whether a DDFE for function-hiding inner products
can exist from standard assumptions without relying on random oracles.

5

Scheme Function
Class

Function
Hiding

(Dynamic)
Decentralized

Without
ROM

Assumptions Per-client
CT size

[CDG+18] IP ✗ ✓ ✗ SXDH Oλ(d)

[ABG19] IP ✗ ✓ ✓ IPFE Oλ(d · n)

[LT19] IP ✗ ✓ ✓ LWE Oλ(d)

[CDSG+20] IP ✗ ✓ ✗ IPFE + DDH Oλ(d)

[ABM+20] IP ✗ ✓ ✗ DCR Oλ(d)

[AGT21b] IP ✓ ✓ ✗ SXDH +FH-IPFE Oλ(d)

[SV23] IP ✓ ✗ ✓ DLin + FH-IPFE Oλ(d)

Our FH-IP DDFE IP ✓ ✓ ✓ SXDH +FH-IPFE Oλ(d+ n)

[ATY23] AWS ✗ ✓ ✗ SXDH

+AWSw/IP-FE
Oλ(N + k)

Our AWS DDFE AWS ✗ ✓ ✓ SXDH

+AWSw/IP-FE
Oλ(N + n)

Fig. 1. Comparison with prior (Decentralized) MCFE schemes. The notation Oλ(·) indicates that terms
related to the security parameter λ are hidden. We let d be an inner-product dimension, N be an poly(λ)-
unbounded number of AWS inputs, n be an number of clients whose ciphertexts and decryption keys can be
combined, and k be the parameter of the MDDH assumption. For DDFE, all constructions achieve sel-sym-
IND security.

where [hℓM ,U]1 = H(ℓM ,U) and H is a hash function onto the group modeled as a random oracle.
The decryption key for a private ypk is generated as

dkpk = IPE.DKGen(skpk, [ypk,0, zpk,ℓK , 0]2)

where zpk,ℓK is generated on label ℓK by a pseudorandom zero-sharing (PZS) scheme between parties
in U so that

∑
pk∈U zpk,ℓK = 0. On one hand, the correctness holds as

∑
pk∈U zpk,ℓK · hℓM ,U = 0 in the

sum of all FH-IPFE decryptions.
On the other hand, via zero slots, and by using hybrids relying on the function-hiding security

of each client's FH-IPFE in the non-corrupted set H and each key label ℓK , one can move the term
[zpk,ℓK]2 from dkpk to the term [zpk,ℓK · hℓM ,U]1 in ctpk. At this step, one will have

[zpk,ℓK · hℓM ,U]1
PZS,SXDH
≈ Rpk,U,ℓM ,ℓK

whereRpk,U,ℓM ,ℓK are generated uniformly random for the relation
∑

pk∈H Rpk,U,ℓM ,ℓK = −
∑

pk∈U\H zpk,ℓK ·
hℓM ,U . By the admissibility condition, each Rpk,U,ℓM ,ℓK serves as a correlated one-time pad that ran-

domizes each term xb⊤
pk · yb

pk in the same way it randomizes x0⊤
pk · y0

pk, where b is the challenge bit
of the security game. It is important to note that for the SXDH assumption to hold, [hℓM ,U]1 must
be a uniformly random group element to all clients, which requires the use of a random oracle.

A more recent FH-IP construction in [SV23] provides another helpful one-time-pad technique to
avoid the reliance on random oracles for the non-decentralized multi-client setting. The construction
can be brie�y described as follows: leveraging a private use of function-hiding IPFE, each client i ∈ [n]
encrypts a private xi as

cti = IPE.Enc(ski, [xi,0, zi,ℓM + ai · µi,ℓM , µi,ℓM , 0])

where zi,ℓM is generated on label ℓM by a pseudorandom zero-sharing, the value ai is a random key
shared between client i and the trusted authority, and µi,ℓM is a fresh randomness. The decryption
key for a private yi is generated as

dki = IPE.DKGen(ski, [yi,0, ρℓK ,−ρℓKai, 0])

where ρℓK is the same random value in dki for all i ∈ [n]. The correctness holds as
∑

i∈[n] zi,ℓM ·ρℓK = 0
in the sum of all FH-IPFE decryptions, and the MCFE security holds under the Decisional Linear

6

assumption in the standard model. Unfortunately, extending this construction to the decentralized
setting appears challenging, as it crucially requires a trusted authority to generate the same random
ρℓK for all FH-IPFE decryption keys.

It is also important to note that the generic transformation from single-input FE to decentralized
MCFE for function-revealing inner products in [ABG19] cannot be extended to the function-hiding
setting, as the transformation necessitates each client to know the entire joint inner-product function.

Updatable Pseudorandom Zero-Sharing. In Section 3, we provide a de�nition and security
models for the new notion of Updatable Pseudorandom Zero-Sharing (UZS). The formalization will
be useful for the black-box use in DDFE schemes and any potential improvements.

We provide a brief overview of our DDH-based construction in Figure 2, which will serve as a
new one-time-pad technique leading to the security in the standard model for pairing-based DDFE
constructions. When compared to the pseudorandom zero-sharing schemes in earlier works [BIK+17,
ABG19], it's notable that zero shares in our scheme are DDH group elements that sum up to the
group identity, instead of scalars.

Algorithm Return

SetUp(λ) a group G and pseudorandom functions (PRF,PRF′).
KeyGen() ski = (ki,j = kj,i)j∈[n]\[i] for each party Pi.
SeedGen(ski, ℓM) seedi,ℓM = ([(−1)i<jPRFki,j (ℓM)])j∈[n].
TokGen(ski, ℓK) tokeni,ℓK = (PRF′

ki,j
(ℓK))j∈[n].

SeedUpt(seedi,ℓM , tokeni,ℓK) seedi,ℓM ||ℓK = ([(−1)i<jPRFki,j (ℓM) · PRF′
ki,j

(ℓK)])j∈[n].

ShareEval(seedi,ℓ) sharei,ℓ =
∑

j∈[n]\i[ci,j,ℓ] where seedi,ℓ = ([ci,j,ℓ])j∈[n]\i.

Fig. 2. Construction for UZS in DDH groups between n parties

We demonstrate how the scheme achieves correctness and security using matrix representation:

� The matrix [AℓM] (see Figure 3) serves as a seeding matrix, with each i-th row representing
seedi,ℓM . This seeding matrix adopts an anti-symmetric form: AℓM ,(i,i) = 0 for all i ∈ [n] and
AℓM ,(i,j) = −AℓM ,(j,i) for all (i, j ∈ [n], i ̸= j).

0 −PRFk1,2(ℓM) · · · −PRFk1,n(ℓM)

PRFk2,1(ℓM) 0 · · · −PRFk2,n(ℓM)

...
...

. . .
...

PRFkn,1(ℓM) PRFkn,2(ℓM) · · · 0

seed1,ℓM = ([AℓM ,(1,j)])j∈[n]\{1}

seed2,ℓM = ([AℓM ,(2,j)])j∈[n]\{2}

seedn,ℓM = ([AℓM ,(n,j)])j∈[n]\{n}

[AℓM] =

Fig. 3. Seeding matrix [AℓM] ∈ Gn×n.

� The matrix BℓK (see Figure 4) serves as an updating matrix, with each i-th row represent-
ing tokeni,ℓK . This updating matrix adopts a symmetric form: BℓK ,(i,i) = 0 for all i ∈ [n] and
BℓK ,(i,j) = BℓK ,(j,i) for all (i, j ∈ [n], i ̸= j).

� The matrix [CℓM ||ℓK] (see Figure 5) serves as an updated seeding matrix, with each i-th row
representing seedi,ℓM ||ℓK . This updated matrix results from a Hadamard product between [AℓM]
and BℓK , which preserves the anti-symmetric form from [AℓM].

In both cases, when ℓ = ℓM or ℓ = ℓM ||ℓK , each sharei,ℓ computes the sum of all entries on the
i-th row of an antisymmetric matrix. Therefore,

∑
i∈[n] sharei,ℓ computes the sum of all entries in the

matrix, resulting in the group identity [0]. This implies the correctness of the scheme.
At a high level, the standard security of a pseudorandom zero-sharing scheme guarantees that

when the adversary corrupts a subset of parties (up to n − 2 out of n) and computes their shares

7

0 PRF′
k1,2

(ℓK) · · · PRF′
k1,n

(ℓK)

PRF′
k2,1

(ℓK) 0 · · · PRF′
k2,n

(ℓK)

...
...

. . .
...

PRF′
kn,1

(ℓK) PRF′
kn,2

(ℓK) · · · 0

token1,ℓK = (BℓK ,(1,j))j∈[n]

token2,ℓK = (BℓK ,(2,j))j∈[n]

tokenn,ℓK = (BℓK ,(n,j))j∈[n]

BℓK =

Fig. 4. Updating matrix BℓM ∈ Zn×n
p .

on its own, the shares of the remaining honest users are computationally indistinguishable from
the (correlated) random distribution. Our scheme satis�es this standard security while additionally
providing indistinguishability from a random distributtion for the updated shares: for a �xed set of
corrupted users, even when the adversary has access to the seeding matrix [AℓM] and thereby has
access to all the shares of the honest users on ℓM , indistinguishability still holds for the updated
honest users' shares in [CℓM ||ℓK]. Notably, the Hadamard product maintains the integrity of the
honest entries from [AℓM] and BℓK to [CℓM ||ℓK].

By the DDH assumption, we have [PRFki,j
(ℓM)PRF′

ki,j
(ℓK)]

DDH

≈ RF(i,j)(ℓM ||ℓK) for each honest
pair (i, j) (see Figure 5), which implies that the honest shares in [CℓM ||ℓK] are indepedently random
from those in [AℓM]. Moreover, by using the Multi-DDH assumption, which tightly reduces to the
DDH assumption using the random-self reducibility, the indistinguisability of the honest updated
shares on (ℓM ||ℓK) holds for a polynomial number of labels ℓM given a label ℓK .

0 −[PRFk1,2(ℓM)PRF′
k1,2

(ℓK)] · · · [−RF(1,n)(ℓM ||ℓK)]

[PRFk2,1(ℓM)PRF′
k2,1

(ℓK)] 0 · · · −[PRFk2,n(ℓM)PRF′
k2,n

(ℓK)]

...
...

. . .
...

[RF(1,n)(ℓM ||ℓK)] [PRFkn,2(ℓM)PRF′
kn,2

(ℓK)] · · · 0

PRF keys {ki,2}i∈[n],i ̸=2

are corrupted

DDH holds for
non-corrupted

pair {(i, j)}i ̸=2,j ̸=2

PRF keys
{k2,i}i∈[n],i ̸=2

are corrupted

[CℓM ||ℓK] = [AℓM ⊙BℓK]

DDH

≈

Fig. 5. Indistinguishabilities for entries in the updated seeding matrix [CℓM ||ℓK], where RF denotes a random
function. For simplicity, we assume that only user P2 is corrupted by the adversary.

A concrete construction for the dynamic setting is provided in Section 3.3, which relies on a non-
interactive key exchange protocol NIKE, a pseudorandom function PRF and the DDH assumption. Its
security for a restricted setting of one-time-update and static corruption is provided in Theorem 1.

From UZS to FH-IP-DDFE Without RO. For each client pk ∈ U , the encryption of xpk under
(U , ℓM) and the generation of decryption key for ypk under (U , ℓK) can be brie�y described as follows:

ctpk = IPE.Enc(12d+|U|,skpk)([xpk,0
d,apk,U,ℓM , 0]1);

dkpk = IPE.DKGen(12d+|U|,skpk)([ypk,0
d, bpk,U,ℓK , 0]2)

Here, d is an inner-product dimension, [apk,U,ℓM]1 = seedpk,U,ℓ and bpk,U,ℓK = tokenpk,U,ℓK are gen-
erated using the UZS scheme. We note that for each user list U , every client pk ∈ U uses skpk to
pseudorandomly initialize a function-hiding IPE for inner products of length (2d + |U|). This is de-
termined by the size (|U| − 1) of the UZS seeds and tokens. The correctness of the scheme holds

8

since

IPE.Dec(12d+|U|,skpk)(ctpk, dkpk) = x⊤
pk · ypk + a⊤

pk,U,ℓM · bpk,U,ℓK

= x⊤
pk · ypk + sharepk,U,ℓM ||ℓK

by the bilinear-update property of the UZS scheme.
The security of the scheme holds in the symmetric and selective setting, under the one-key-per-

label restriction. To obtain this indistinguishability, we use a sequence of hybrid games (see Figure 6):
by each key label ℓK , we replace yb with y0 in every honest decryption key under ℓK . Eventually,
we change xb to x0 in every honest encryption under all message labels to completely eliminate the
challenge bit b. This strategy is closely similar to those used in the earlier works [AGT21b, SV23],
with the exception of where the security of UZS applies in G⋆

ℓK .2 and G⋆
ℓK .4 in Figure 7.

During these steps, we rely on update indistinguishability to replace each honest updated share
[apk,U,ℓM]1 with a correlated random valueRpk,U,ℓM ,ℓK and vice versa. The simulation succeeds because
a UZS adversary can ask the oracle for an honest seed seedpk,ℓM ,U = [apk,U,ℓM]1, and does not need
the updating tokenpk,ℓK ,U = bpk,U,ℓK as bpk,U,ℓK is removed from the decryption key under ℓK in this
game. A more formal reduction for this transition is provided in Lemma 8.

Game iEnc iKeyGen Assumption

G2 (xb
pk,0

d,apk,U,ℓM , 0) (yb
pk,0

d, bpk,U,ℓK , 0)

G2.1 (xb
pk,x

0
pk,apk,U,ℓM , 0) (yb

pk,0
d, bpk,U,ℓK , 0) IND of IPE

ℓ′K < ℓK :

G2.1.ℓK same as in (0d,y0
pk, bpk,U,ℓ′

K
, 0) explained

ℓK ∈ QK G2.1 ℓ′K ≥ ℓK : in Figure 7

(yb
pk,0

d, bpk,U,ℓK , 0)

G3 (0d,x0
pk,apk,U,ℓM , 0) (0d,y0

pk, bpk,U,ℓK , 0) IND of IPE

Fig. 6. Sequence of hybrids for transition from G2 to G3 in Theorem 2. All changes are made within iEnc and
iDKGen algorithms for the replies of complete encryption and decryption key generation oracles respectively.
The set of queried key labels in QK is assumed to be ordered.

From UZS to AWS-DDFE Without RO. To construct DDFE for attribute-weighted sums,
we follow the framework that leverages the use of single-input FE for attribute-weighted sums with
function-hiding inner products, denote by AWIPE, in [ATY23]. For each client pk ∈ U , the encryption
of an AWS input (xpk,j , zpk,j)j∈[Npk] under (U , ℓM) and the generation of decryption key for a list of
arithmetic branching programs (fpk)pk∈U can be brie�y described as follows:

ctpk = AWIPE.Enc
(1

|U|
ip ,skpk)

((xpk,j , zpk,j)j∈[Npk], [bpk,U,ℓM , 0]1);

dkpk = AWIPE.DKGen
(1

|U|
ip ,skpk)

(fpk, [apk,U,ℓf , 0]2)

where ℓf is a label describing (fpk)pk∈U and 1
|U|
ip indicates that the inner-product dimension is set up

to be |U|. The correctness of the scheme holds since

AWIPE.Dec
(1

|U|
ip ,skpk)

(ctpk, dkpk) =
∑

j∈[Npk]

fpk(xpk,j)
⊤
zpk,j + a⊤

pk,U,ℓf
· bpk,U,ℓM

=
∑

j∈[Npk]

fpk(xpk,j)
⊤
zpk,j + sharepk,U,ℓf ||ℓM

by the bilinear-update property of the UZS scheme.
In contrast to FH-IP-DDFE, we use UZS seeds [apk,U,ℓf]2 in decryption-key generation and use

UZS tokens bpk,U,ℓK in encryption. The reason is that in the security proof, we replace the challenge

9

Game Adjustment Assumption

G⋆
ℓK

:= G2.1.ℓK see Figure 6

iEnc:

(xb
pk,x

0
pk,apk,U,ℓM ,a⊤

pk,U,ℓM
· bpk,U,ℓK + xb⊤

pk · yb
pk)

G⋆
ℓK .1 iKeyGen: IND of IPE

ℓ′K < ℓK : (0
d,y0

pk, bpk,U,ℓ′
K
, 0)

ℓ′K = ℓK : (0
d,0d,0|U|, 1)

ℓ′K > ℓK : (y
b
pk,0

d, bpk,U,ℓ′
K
, 0)

iEnc:

(xb
pk,x

0
pk,apk,U,ℓM , Rpk,U,ℓM ,ℓK + xb⊤

pk · yb
pk)

G⋆
ℓK .2 where IND of UZS∑

pk∈H∩U Rpk,U,ℓM ,ℓK = −
∑

pk∈C∩U a⊤
pk,U,ℓM

· bpk,U,ℓK

iKeyGen: same as in G⋆
ℓK .1

iEnc:

(xb
pk,x

0
pk,apk,U,ℓM , Rpk,U,ℓM ,ℓK + x0⊤

pk · y0
pk)

G⋆
ℓK .3 where Statistics∑

pk∈H∩U Rpk,U,ℓM ,ℓK = −
∑

pk∈C∩U a⊤
pk,U,ℓM

·bpk,U,ℓK

iKeyGen: same as in G⋆
ℓK .1

iEnc:

G⋆
ℓK .4 (xb

pk,x
0
pk,apk,U,ℓM ,a⊤

pk,U,ℓM
· bpk,U,ℓK + x0⊤

pk · y0
pk) IND of UZS

iKeyGen: same as in G⋆
ℓK .1

G⋆
ℓK+1 := G2.1.ℓK+1 see Figure 6 IND of IPE

Fig. 7. Sequence of hybrids for each transition from G2.1.ℓK to G2.1.ℓK+1 in Figure 6. We denote by (ℓK +1)
the subsequent key label of ℓK in the set QK of decryption key queries.

10

bit on messages by each pair of user set and label (U , ℓM), therefore message labels ℓM are treated
as updating labels, while key labels ℓf are treated as seeding labels. Further details can be found in
Section 5.

2 Preliminaries

2.1 Notations

Given any n ∈ N, we denote by [n] the set of integers {1, ..., n}. Given any set A, L(A) will denote the
set of �nite lists of elements of A, and S(A) will denote the set of �nite subsets of A. While both lists
and sets are ordered by default, lists may contain repeated elements. We denote by |A| the cardinal
of any �nite set A. For any vector a ∈ An, we denote by ai the i-th component of a. Similarly, for
any matrix A ∈ Am×n, we denote by Ai,j the component at the position (i, j) of A.

We also use the following notation for condition-based function-selecting functions

[f0/f1]
con(inp) =

{
out← f0(inp) if con = 0;

out← f1(inp) if con = 1.

2.2 Prime Order Group.

Let GGen be a prime-order group generator, a probabilistic polynomial time (PPT) algorithm that
on input the security parameter 1λ returns a description G = (G, p, P) of an additive cyclic group G
of order p for a 2λ-bit prime p, whose generator is P . For a ∈ Zp, de�ne [a] = aP ∈ G as the implicit
representation of a in G.

From a random element [a] ∈ G, it is computationally hard to compute the value a (the discrete
logarithm problem). Given [a], [b] ∈ G and a scalar x ∈ Zp, one can e�ciently compute [ax] ∈ G and
[a+ b] = [a] + [b] ∈ G.

De�nition 1 (Decisional Di�e-Hellman Assumption). The Decisional Di�e-Hellman As-
sumption states that, for every PPT adversary A, there exists a negligible function negl(·) such that
for all λ ∈ N,

AdvDDH(A) :=

∣∣∣∣∣∣∣∣P
A(G,Db) = b

∣∣∣∣∣∣∣∣
b

$←− {0, 1},G $←− GGen(1λ)

a, r, s
$←− Zp, d0 = ar, d1 = s

Db = ([a], [r], [db])

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(λ).

De�nition 2 (m-Multi DDH Assumption [CDG+18]). For all λ ∈ N and for every PPT
adversary A running within time t, then

Advm-DDH(A, t) :=

∣∣∣∣∣∣∣∣∣∣∣
P

A(G,Db) = b

∣∣∣∣∣∣∣∣∣∣∣

b
$←− {0, 1},G $←− GGen(1λ)

X,Yj , Zj
$←− G ∀j ∈ [m]

D0 = (X, (Yj ,CDH(X,Yj))
m
j=1)

D1 = (X, (Yj , Zj)
m
j=1)

−
1

2

∣∣∣∣∣∣∣∣∣∣∣
is bounded by AdvDDH(A, t+ 4m× tG), where tG is the time for an exponentiation in G.

2.3 Pairing Group.

Let PGGen be a pairing group generator, a PPT algorithm that on input the security parameter 1λ

returns a description PG = (G1,G2,GT , p, P1, P2, e) of asymmetric pairing groups where G1, G2, GT

are additive cyclic groups of order p for a 2λ-bit prime p, P1 and P2 are generators of G1 and G2,
respectively, and e : G1 × G2 −→ GT is an e�ciently computable (non-degenerate) bilinear group
elements. For s ∈ {1, 2, T} and a ∈ Zp, we de�ne [a]s = aPs ∈ Gs as the implicit representation of a

in Gs, and then for any 0 < B < p
2 , we de�ne G[−B,B]

s = {[a] ∈ Gs : a ∈ [−B,B]}. Given [a]1, [b]2,
one can e�ciently compute [ab]T using the pairing e.

De�nition 3 (Symmetric eXternal Di�e-Hellman Assumption). The Symmetric eXternal

Di�e-Hellman (SXDH) Assumption states that, in a pairing group PG $←− PGen(1λ), the DDH as-
sumption holds in both G1 and G2.

11

2.4 Arithmetic Branching Programs

De�nition 4 (Arithmetic Branching Programs (ABPs) [IW14,AGW20,ATY23]). An arith-
metic branching program f : Zn0

p → Zp is de�ned by a prime p, a directed acyclic graph (V,E), two

special vertices v0, v1 ∈ V , and a labeling function σ : E → FAffine, where FAffine consists of all a�ne
functions g : Zn0

p → Zp. The size of f is the number of vertices |V |. Given an input x ∈ Zn0
p to the

ABP, we can assign a Zp element to edge e ∈ E by σ(e)(x). Let P be the set of all paths from v0
to v1. Each element in P can be represented by a subset of E. The output of the ABP on input x is
de�ned as

∑
E′∈P

∏
e∈E′ σ(e)(x). We can extend the de�nition of ABPs for functions f : Zn0

p → Zn1
p

by evaluating each output in a coordinate-wise manner and denote such a function class by FABP
n0,n1

.

There exists a linear-time algorithm that converts any boolean formula, boolean branching pro-
gram or arithmetic formula to an arithmetic branching program with a constant blow-up in the
representation size, so ABPs can be considered as a stronger computational model than the others.

2.5 Dynamic Decentralized Functional Encryption

De�nition 5 (Dynamic Decentralized Functional Encryption). A dynamic decentralized
functional encryption scheme over a set of public keys PK for functionality F : L(PK×K)×L(PK×
M)→ {0, 1}∗ consists of �ve algorithms:

� SetUp(1λ): On input a parameter 1λ, it generates and outputs public parameters pp. Those pa-
rameters are implicit arguments to all the other algorithms.

� KeyGen(): It generates and outputs a party's public key pk ∈ PK and the corresponding secret key
skpk.

� Enc(skpk,m): On input a party's secret key skpk, a value m ∈M to encrypt, it outputs a ciphertext
ctpk,m.

� DKGen(skpk, k): On input a party's secret key skpk, a key space object k, it outputs a functional
decryption key dkpk,k.

� Dec((dkpk,kpk
)pk∈UK

, (ctpk,mpk
)pk∈UM

): On input a �nite list of functional decryption keys (dkpk,kpk
)pk∈UK

,
a �nite list of ciphertexts (ctpk,mpk

)pk∈UM , where UM,UK ∈ L(PK) are the lists of senders and
receivers respectively, it outputs a value y ∈ {0, 1}∗.

Correctness. For all parameters λ ∈ N, all polynomial size lists UM ,UK ∈ L(PK) of public keys
issued by KeyGen(), (pk, kpk)pk∈UK

∈ L(PK ×K) and (pk,mpk)pk∈UM
∈ L(PK ×M), it holds that

Pr
[
Dec((dkpk,kpk

)pk∈UK
, (ctpk,mpk

)pk∈UM
) = F ((pk, kpk)pk∈UK

, (pk,mpk)pk∈UM
)
]
= 1,

where the probability is taken over pp← SetUp(λ), dkpk,kpk
← DKGen(skpk, kpk), for all pk ∈ UK , and

ctpk,mpk
← Enc(skpk,mpk) for all pk ∈ UM .

In this work, we assume that each user is identi�ed by a public key pk, which it can generate on
its own with the (unique) associated secret key, using KeyGen. Anyone can thus dynamically join the
system, by publishing its public key.

Remark 1 (Empty lists). As in [CDSG+20], we denote by ϵK the empty list in L(PK×K), indicating
that there is no key required. Furthermore, ϵM denotes the empty list in L(PK×M), indicating that
there is no message required.

De�nition 6 (Security for DDFE). For xx ∈ {sel, adt}, yy ∈ {sym, asym}, zz ∈ {fh,nfh}, a
xx-yy-zz-IND security game of DDFE for every PPT adversary A is de�ned with access to the oracles
QNewHon, QEnc, QDKGen and QCor described below:

� Initialize: the challenger runs the setup algorithm pp ← SetUp(λ) and chooses a random bit

b
$←− {0, 1}. It provides pp to the adversary A;

� Participation creation queries QNewHon(): it generates (pk, skpk) ← KeyGen(), stores the associ-
ation (pk, skpk) and returns pk to the adversary;

� Challenge message queries QEnc(pk,m0,m1): it outputs the ciphertext ctm ← (sk,mb) where sk
is associated with pk. If pk is not associated with any secret key, nothing is returned;

12

� Challenge key queries QDKGen(pk, k0, k1): it outputs the decryption key dkk ← DKGen(sk, kb)
where sk is associated with pk. If pk is not associated with any secret key, nothing is returned;

� Corruption queries QCor(pk): it outputs the secret key sk associated to pk. If pk is not associated
with any secret key, nothing is returned;

� Finalize: A provides its guess b′ on the bit b, and this procedure outputs the result β according to
the analysis given below.

Let PK be the set of parties on which QNewHon() is queried, C ⊂ PK be the set of corrupted parties,
H = PK\C be the set of honest (non-corrupted) participants at the end of the game. Finalize outputs

the bit β = (b′ = b) if the Condition (∗) is satis�ed, otherwise Finalize outputs β $←− {0, 1}. Condition
(∗) holds if all the following conditions hold:

� there do not exist two lists of messages (m0 = (pk,m0
pk)pk∈UM

,m1 = (pk,m1
pk)pk∈UM

), including

(ϵM , ϵM)4, and two lists of keys (k0 = (pk, k0pk)pk∈UK
,k1 = (pk, k1pk)pk∈UK

), including (ϵK , ϵK),
such that

• F (k0,m0) ̸= F (k1,m1);
• ∀pk ∈ UM , [QEnc(pk,m0

pk,m
1
pk) was made and pk ∈ H] or [m0

pk = m1
pk ∈M and pk ∈ C];

• ∀pk ∈ UK , [QDKGen(pk, k0pk, k
1
pk) was made and pk ∈ H] or [k0pk = k1pk ∈ K and pk ∈ C].

� when xx = sel: the adversary sends all its QNewHon() queries in one shot. After that it sends in
one shot all QEnc(pk,m0,m1), QDKGen(pk, k0, k1) and QCor(pk) queries;

� when yy = sym: for pk ∈ C, the queries QDKGen(pk, k0pk, k
1
pk) and QEnc(pk,m0

pk,m
1
pk) queries

must satisfy k0pk = k1pk and m0
pk = m1

pk, respectively.

� when zz = nfh: all the queries QDKGen(pk, k0pk, k
1
pk) must satisfy k0pk = k1pk.

We say DDFE is xx-yy-zz-IND-secure if given any parameter λ ∈ N, for every PPT adversary A, the
following holds

Advxx-yy-zzDDFE (A) :=
∣∣∣∣Pr[β = 1]− 1

2

∣∣∣∣ ≤ negl(λ).

De�nition 7 (Function-Hiding Inner-Product DDFE over Pairing Groups). Let PG =
(G1,G2,GT , p) be a pairing group, a function-hiding IP-DDFE scheme over PG is de�ned for a di-
mension d ∈ N, a message bound X < p

2 , a function bound Y < p
2 , and label spaces (LM ,LK) as

follows:

K =
(
G[−Y,Y]

2

)d

× S(PK)× LK ;

M =
(
G[−X,X]

1

)d

× S(PK)× LM .

Then, one has

F (ϵK , (pk, [xpk]1,Upk, ℓpk)pk∈U) = (Upk, ℓpk)pk∈U ;

F ((pk, ([ypk]2,Upk, ℓpk))pk∈U , ϵM) = (Upk, ℓpk)pk∈U ;

for any U ∈ L(PK) and

F ((pk, kpk)pk∈UK
, (pk,mpk)pk∈UM

) =

∑

pk∈UK

x⊤
pk · ypk if condition (∗)

⊥ otherwise.

FH-IP-DDFE condition (∗) is:

� UK = UM = U ;
� ∃ℓK ∈ LK , ∀pk ∈ U , kpk = ([ypk]2,U , ℓK);
� ∃ℓM ∈ LM , ∀pk ∈ U , mpk = ([xpk]1,U , ℓM).

4 We uni�ed the function-revealing de�nition of DDFE in [CDSG+20] and the function-hiding de�nition of
DDFE in [AGT21b]. Furthermore, allowing empty lists in this condition prevents trivial wins from public
information in ciphertexts and decryption keys.

13

We have a remark from the admissibility for FH-IP-DDFE, which will be later useful for its security
proof.

Remark 2 (Admissibility for FH-IP-DDFE). The �rst condition of Condition (∗) in De�nition 6 when
applied to FH-IP-DDFE in De�nition 7 implies that∑

pk∈H∩U\pk⋆
xb
pk · yb

pk + xτ,b
pk⋆ · y

b
pk⋆ =

∑
pk∈H∩U\pk⋆

x0
pk · y0

pk + xτ,0
pk⋆ · y

0
pk⋆

for each client pk⋆ ∈ H∩U and each index τ of the encryption query QEnc(pk⋆, (xτ,0
pk ,U , ℓM), (xτ,1

pk ,U , ℓM)).
Then one has the value

∆b
pk⋆ := x1,0

pk⋆ · y
0
pk⋆ − x1,b

pk⋆ · y
b
pk⋆ = xτ,0

pk⋆ · y
0
pk⋆ − xτ,b

pk⋆ · y
b
pk⋆

independent of τ for each client pk⋆. Furthermore,
∑

pk∈H∩U ∆b
pk = 0.

Remark 3 (Single-Input Inner-Product). We denote by IPE a single-input FE for function-hiding inner
products, that was de�ned as in De�nition 7 for the case |PK| = 1.

De�nition 8 (One key-label restriction for FH-IP-DDFE [AGT21b]). An FH-IP-DDFE scheme
is xx-yy-IND secure as in De�nition 6 under the one key-label restriction if all the adversary's queries
additionally satisfy the following condition:

� QDKGen(pk, ([y0
pk]2,UK , ℓK), ([y1

pk]2,UK , ℓK)) query can be sent only once for each pair (pk, ℓK) ∈
H × LK .

De�nition 9 (Attribute-Weighted-Sum DDFE over Pairing Groups). Let PG = (G1,G2,GT , p)
be a pairing group, a function-revealing AWS-DDFE scheme over PG is de�ned for the class of arith-
metic branching programs FABP

n0,n1
and a label space LM as follows:

K =
{
f := (pk, fpk)pk∈UK

where fpk ∈ FABP
n0,n1

and UK ∈ S(PK)
}

M =
⋃
i∈N

(Zn0
p × Zn1

p)i × S(PK)× LM .

Then, one has F (ϵK , (pk, (xpk,j , zpk,j)j∈[Npk],Upk, ℓpk)pk∈U) = ((xpk,j)j∈[Npk],Upk, ℓpk)pk∈U for any U ∈
L(PK) and

F ((pk, kpk)pk∈UK
, (pk,mpk)pk∈UM

) =

[
∑

pk∈UK

∑
j∈[Npk]

fpk(xpk,j)
⊤
zpk,j]T if condition (∗)

⊥ otherwise.

AWS-DDFE condition (∗) is:

� UK = UM = U ;
� ∃f ∈ (FABP

n0,n1
, pk)pk∈U , ∀pk′ ∈ U , kpk′ = (f ,U);

� ∃ℓM ∈ LM , ∀pk ∈ U , mpk = ((xpk,j , zpk,j)j∈[Npk],U , ℓM).

Like FH-IP-DDFE, we have a remark from the admissibility for AWS-DDFE.

Remark 4 (Admissibility for AWS-DDFE). The �rst condition of Condition (∗) in De�nition 5 when
applied to AWS-DDFE in De�nition 9 implies that∑

pk∈H∩U\pk⋆
fpk(xpk,j)

⊤
zb
pk,j + fpk⋆(x

τ
pk,j)

⊤
zτ,b
pk⋆,j =

∑
pk∈H∩U\pk⋆

fpk(xpk,j)
⊤
z0
pk,j + fpk⋆(x

τ
pk,j)

⊤
zτ,0
pk⋆,j

for each client pk⋆ ∈ H ∩ U , each τ -indexed encryption query QEnc(pk⋆, (x̂τ,0
pk ,U , ℓM), (x̂τ,1

pk ,U , ℓM))

where x̂τ,γ
pk := (xτ

pk, z
τ,γ
pk) for γ ∈ {0, 1}. Then one has the value

∆b
pk⋆ := fpk⋆(x

τ
pk⋆,j)

⊤
zτ,0
pk⋆,j − fpk⋆(x

τ
pk⋆,j)

⊤
zτ,b
pk⋆,j = fpk⋆(x

1
pk⋆,j)

⊤
z1,0
pk⋆,j − fpk⋆(x

1
pk⋆,j)

⊤
z1,b
pk⋆,j

independent of τ for each client pk⋆. Furthermore,
∑

pk∈H∩U ∆b
pk = 0.

14

De�nition 10 (Single-Input FE for AWSw/IP over Pairing Groups). Consider the case
|PK| = 1 in De�nition 5 for the single-input setting, and let PG = (G1,G2,GT , p) be a pairing group,
an FE for attribute-weighted sums with function-hiding inner product scheme over PG is de�ned for
the class of arithmetic branching programs FABP

n0,n1
as follows:

K = FABP
n0,n1

×Gd
2

M =
⋃
i∈N

(Zn0
p × Zn1

p)i ×Gd
1.

Then, one has

F (ϵK , ((xj , zj)j∈[N], [s]1)) = ((xj)j∈[N]);

F ((f, [t]2), ϵM) = f ;

and
F ((f, [t]2), ((xj , zj)j∈[N], [s]1)) = [

∑
j∈[N]

f(xj)
⊤
zj + s⊤t]T .

We note that a concrete construction of FE for AWSw/IP that obtained a function-hiding security
in the standard model is provided in [ATY23].

De�nition 11 (All-or-Nothing Encapsulation [CDSG+20]). AoNE is de�ned on messages of
length L and label space L as follows:

K = ∅ M = {0, 1}L × S(PK)× L

Then, F (ϵK , (pk, (xpk,Upk, ℓpk))pk∈U) = (Upk, ℓpk)pk∈U for any U ∈ L(PK) and

F (ϵK , (pk,mpk)pk∈UM
) =

{
(pk, xpk)pk∈UM

if condition (∗)
⊥ otherwise.

and AoNE condition (∗) is: ∃ℓ ∈ L,∀pk ∈ UM ,mpk = (xpk,UM , ℓ).

We note that a concrete AoNE construction that is secure in the standard model is provided
in [CDSG+20].

2.6 Pseudorandom Functions (PRF)

De�nition 12 (PRF). A PRF from input space X to output space Y is secure if for any security
parameter λ ∈ N, and for every PPT adversary A, there exists a negligible function negl(·) such that

AdvPRF,A(λ) :=

∣∣∣∣∣∣∣∣∣∣
P

AOb
PRF(·)(1λ) = b

∣∣∣∣∣∣∣∣∣∣
K

$←− {0, 1}λ, b $←− {0, 1}
∀ℓ ∈ X :

O0
PRF(ℓ) := PRFK(ℓ)

O1
PRF(ℓ) := RF(ℓ)

− 1

2

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

where Ob
PRF(·) is an oracle depending on the challenge bit b and RF is a random function computed

on the �y.

2.7 Non-Interactive Key Exchange (NIKE)

De�nition 13 (Non-Interactive Key Exchange). A NIKE scheme consists of three PPT algo-
rithms:

� SetUp(λ) : On input a security parameter λ, it outputs public parameters pp. Those parameters
are implicit arguments to all the other algorithms;

� KeyGen(): It generates and outputs a party's public key pk ∈ PK and the corresponding secret key
skpk;

� SharedKey(pk, skpk′): On input a public key and a secret key corresponding to a di�erent public
key, it deterministically outputs a shared key K.

15

Correctness. For all security parameters λ ∈ N, it holds that

Pr[SharedKey(pk, skpk′) = SharedKey(pk′, skpk)] = 1,

where the probability is taken over pp← SetUp(λ), (pk, skpk)← KeyGen(), (pk′, sk′pk)← KeyGen().

De�nition 14 (Security for NIKE). No adversary A should be able to win the following security
game against a challenger C, with unlimited and adaptive access to the oracles QNewHon, QRev,
QTest, and QCor described below:

� Initialize: the challenger runs the setup algorithm pp ← SetUp(λ) and chooses a random bit

b
$←− {0, 1}. It initializes the set H of honest participants to ∅. It provides pp to the adversary A;

� Participant creation queries QNewHon(): it generates (pk, skpk)← KeyGen(), stores the association
(pk, skpk) in the set H of honest keys, and returns pk to the adversary;

� Reveal queries QRev(pk, pk′) : it requires at least one of pk and pk′ be in H. Assume pk ∈ H, then
it returns SharedKey(pk′, skpk);

� Test queries QTest(pk, pk′): it requires that both pk and pk′ were generated via QNewHon.

• if b = 0, it returns SharedKey(pk′, skpk);
• if b = 1, it returns a (uniformly) random value and stores the value so it can consistently
answer further queries to QTest(pk, pk′) or QTest(pk′, pk).

� Corruption queries QCor(pk): it recovers the secret key sk associated to pk from H and returns
it, then removes (pk, sk) from H. If pk is not associated with any secret key (i.e. it is not in H),
then nothing is returned;

� Finalize: A provides its guess b′ on the bit b, and this procedure outputs the result β according to
the analysis given below.

Finalize outputs the bit β = (b′ = b) unless a QCor query was made for any public key which was
involved in a query to QTest, or a QRev query was made for a pair of public keys which was also
involved in a QTest query, in which case a random bit β is returned. We say NIKE is secure if given
any parameter λ ∈ N, for every PPT adversary A, the following holds:

AdvNIKE(A) = |Pr[β = 1]− 1/2| ≤ negl(λ).

3 Updatable Pseudorandom Zero Sharing

In this section, we provide a de�nition and a security model for Updatable Pseudorandom Zero-
Sharing. A construction in DDH groups will be provided and supports the bilinear update property,
which serves as a core building blocks for later pairing-based DDFE constructions.

3.1 De�nition

De�nition 15 (Updatable Pseudorandom Zero Sharing). Given a set of users PK, a seeding
label space LS and an updating label space LU , an updatable pseudorandom zero sharing scheme UZS
over a group (A,+) consists of six algorithms:

� SetUp(λ): On input a security parameter λ, it outputs public parameters pp. Those parameters
are implicit arguments to all the other algorithms.

� KeyGen(): It outputs a party's public key pk ∈ PK and the corresponding secret key skpk.
� SeedGen(skpk,U , ℓs): On input a secret key skpk, a user set U ∈ S(PK), and a seeding label ℓs ∈ LS,
it outputs a seed seedpk,U,ℓs if pk ∈ U . Otherwise, it outputs ⊥.

� TokGen(skpk,U , ℓu): On input a secret key skpk, a user set U ∈ S(PK), and an updating label
ℓu ∈ LU , it outputs a token tokenpk,U,ℓu if pk ∈ U . Otherwise, it outputs ⊥.

� SeedUpt(seedpk,U,ℓs , tokenpk,U,ℓu): On input a seed seedpk,U,ℓs and a token tokenpk,U,ℓu , it deter-
ministically outputs a seed seedpk,U,ℓs||ℓu .

� ShareEval(seedpk,ℓ): On input a seed seedpk,U,ℓ for ℓ ∈ LS ∪ (LS×LU), it deterministically outputs
a share sharepk,U,ℓ.

16

Correctness. For any security parameter λ ∈ N, any ℓs ∈ LS, any ℓu ∈ LU , any U ∈ S(PK), then
it holds that

Pr

∑
pk∈U

sharepk,U,ℓs =
∑
pk∈U

sharepk,U,ℓs||ℓu = 0A

 = 1

where the probability is taken over pp ← SetUp(λ) and over the following algorithms: ∀pk ∈ U ,
(skpk, pk)← KeyGen(), seedpk,U,ℓs ← SeedGen(skpk,U , ℓs), tokenpk,U,ℓu ← TokGen(skpk,U , ℓu), seedpk,U,ℓs||ℓu ←
SeedUpt(seedpk,U,ℓs , tokenpk,U,ℓu), sharepk,U,ℓs ← ShareEval(seedpk,U,ℓs), sharepk,U,ℓs||ℓu ← ShareEval(seedpk,U,ℓs||ℓu).

De�nition 16 (Correlated Pseudorandomness for UZS). For xx ∈ {otu, any}, yy ∈ {sta, adt},
a xx-yy-IND security game of UZS for every PPT adversary A is de�ned with access to the oracles
QNewHon,QCor,QTokGen,QSeedGen, and QShare described below:

� Initialize: the challenger runs the setup algorithm pp ← SetUp(λ) and chooses a random bit

b
$←− {0, 1}. It initializes the sets H and C of honest participants and corrupted participants

respectively to ∅, and provides pp to the adversary A;
� Participant creation queries QNewHon(): it generates (pk, skpk) ← KeyGen() to simulate a new
participant, stores the association (pk, skpk) in the set H, and returns pk to the adversary;

� Corruption queries QCor(pk): it moves the association (pk, skpk) from H to C and returns the
secret key sk. If pk is not associated with any secret key in H, then nothing is returned;

� Seed generation queries QSeedGen(pk,U , ℓs): it returns seedpk,U,ℓs ← SeedGen(sk,U , ℓs) to the
adversary. If [pk is not associated with any secret key in either H or C] or [pk /∈ U] or [ℓs /∈ LS],
nothing is returned;

� Token generation queries QTokGen(pk,U , ℓu): it returns tokenpk,U,ℓu ← TokGen(sk,U , ℓu) to the
adversary. If [pk is not associated with any secret key in either H or C] or [pk /∈ U] or [ℓu /∈ LU],
nothing is returned;

� Challenge share queries QShare(U , ℓ): if [ℓ /∈ LS ∪ (LS × LU)] and [|H ∩ U| < 2], nothing is
returned. We de�ne the following share distributions:
• A pseudorandom share generation algorithm PShareGen(S,U , ℓ): it outputs ⊥ if S ̸⊂ U , the
challenger generates seedpk,U,ℓ as follows:
* if ℓ = ℓs ∈ LS: seedpk,U,ℓs = QSeedGen(pk,U , ℓs);
* if ℓ = ℓs||ℓu ∈ LS × LU : seedpk,U,ℓs||ℓu = SeedUpt(seedpk,U,ℓs , tokenpk,U,ℓu)
where seedpk,U,ℓs = QSeedGen(pk,U , ℓs) and tokenpk,U,ℓu = QTokGen(pk,U , ℓu).

and outputs
sharepk,U,ℓ ← ShareEval(seedpk,U,ℓ)

for all pk ∈ S.
• A uniformly correlated random distribution for any (S,U , ℓ) where S ⊂ U

RS,U,ℓ :=

(spk)pk∈S
$←− A|S| |

∑
pk∈S

spk = −
∑

pk∈U\S

tpk

where (tpk)pk∈U\S = PShareGen(U \ S,U , ℓ).

Then,
• if b = 0, the challenger returns (sharepk,U,ℓ)pk∈H∩U ← PShareGen(H∩U ,U , ℓ) to the adversary;
• if b = 1, the challenger returns (sharepk,U,ℓ)pk∈H∩U ← RH∩U,U,ℓ to the adversary;

� Finalize: A provides its guess b′ on the bit b, and this procedure outputs the result β of the game,
according to the analysis given below which aims at preventing trivial wins.

Let H and C be the sets of honest users and corrupted users at the end of the game respectively.
Finalize outputs the bit β = (b′ = b) if the Condition (∗) is satis�ed, otherwise Finalize outputs

β
$←− {0, 1}. Condition (∗) holds if all the following conditions hold:

� there are no QCor(pk) queries after a QShare(U , ℓ) query was made;
� there does not exist ℓs ∈ LS such that a QShare(U , ℓs) query and a QSeedGen(pk, ℓs) query are
sent;

� there does not exist (ℓs, ℓu) ∈ LS×LU such that a QShare(U , ℓs||ℓu) query and a QTokGen(pk, ℓu)
query are sent;

17

� when xx = otu: for any U , the queries of the form QShare(U , ℓs||·) can be sent for only one
ℓu ∈ LU .

� when yy = sta: the adversary sends all its QNewHon() queries in one shot. After that it sends in
one shot all QCor(pk) queries.

We say UZS is xx-yy-IND-secure if given any parameter λ ∈ N, for every PPT adversary A, the
following holds

Advxx-yyUZS (A) =
∣∣∣∣Pr[β = 1]− 1

2

∣∣∣∣ ≤ negl(λ).

The security model described above captures the security for a standard pseudorandom zero-
sharing scheme: the adversary has full access to the oracles and can win the game by only distin-
guishing the pseudorandom non-updated shares from the correlated random ones. Additionally, the
last condition in (∗) does not prevent the adversary from querying the non-updated challenge shares
that result in the updated challenge ones. This intuitively means that even when the adversary has
access to the non-updated shares, the updated shares remain indistinguishable from a correlated
random distribution.

On the other hand, extending a standard pseudorandom zero-sharing scheme over L = LS × LU

to an updatable one can be achieved by using its share generation algorithm to create new shares
on concatenated labels of the form (ℓs||ℓu). However, this straightforward approach may require
operations that are more complex than those allowed in pairing groups. Therefore, we specify a more
pairing-friendly property for the updating algorithm of an UZS scheme.

De�nition 17 (Bilinear Update). An updatable pseudorandom zero sharing scheme UZS =
(SetUp,KeyGen,SeedGen,TokGen,SeedUpt,ShareEval) of security parameter λ is said to satisfy the
bilinear update property if each seed is of the form [a] ∈ Aρ(λ), each token is of the form b ∈ Zρ(λ)

where ρ is a λ-dependent parameter, and for any pk ∈ PK, any ℓs ∈ LS, and any ℓu ∈ LU , it holds
that

[apk,U,ℓs]⊙λ bpk,U,ℓu = SeedUpt([apk,U,ℓs], bpk,U,ℓu),

where ⊙ρ : Aρ × Zρ → Aρ is an entry-wise bilinear map.

3.2 Construction in DDH Groups

Let PRF : {0, 1}∗ → Zp be a pseudorandom function, NIKE = (SetUp,KeyGen,SharedKey) be a non-
interactive key exchange protocol, LS be a seeding label space, and LU be an updating label space.
A construction of UZS is described in Figure 8.

Correctness. Given λ ∈ N, pp ← SetUp(1λ), (pk, skpk) ← KeyGen() ∀pk ∈ PK, U ∈ S(PK), any
labels ℓs ∈ LS and ℓu ∈ LU , from the above scheme, one has∑

pk∈U

sharepk,U,ℓs =
∑
pk∈U

∑
pk′∈U\{pk}

[apk,U,ℓs,pk′]

=
∑
pk∈U

∑
pk′∈U\{pk}

[(−1)pk<pk′cpk,pk′]

=
∑

(pk,pk′)∈U2

pk ̸=pk′

[(−1)pk<pk′cpk,pk′ + (−1)pk
′<pkcpk′,pk]

=
∑

(pk,pk′)∈U2

pk ̸=pk′

[0]

= [0].

18

where cpk,pk′ := PRFkpk,pk′ (”s”||U||ℓs) and cpk′,pk = cpk,pk′ . Similarly, one has

∑
pk∈U

sharepk,U,ℓs||ℓu =
∑
pk∈U

∑
pk′∈U\{pk}

[apk,U,ℓs,pk′bpk,U,ℓu,pk′]

=
∑
pk∈U

∑
pk′∈U\{pk}

[(−1)pk<pk′c′pk,pk′]

=
∑

(pk,pk′)∈U2

pk ̸=pk′

[(−1)pk<pk′c′pk,pk′ + (−1)pk
′<pkc′pk′,pk]

=
∑

(pk,pk′)∈U2

pk ̸=pk′

[0]

= [0].

where c′pk,pk′ := PRFkpk,pk′ (”s”||U||ℓs)PRFkpk,pk′ (”u”||U||ℓu) and c′pk′,pk = c′pk,pk′ . ⊓⊔

Construction:

� SetUp(1λ): It generates G ← GGen(1λ) and NIKE.pp← NIKE.SetUp(1λ) and returns

pp = (G,NIKE.pp,PRF,LS ,LU).

The parameters pp are implicit to other algorithms.
� KeyGen(): Each user samples
• NIKE keys (pk,NIKE.skpk)← NIKE.KeyGen();
• a shared key kpk,pk′ ← NIKE.SharedKey(pk′,NIKE.skpk) for each published pk′ ∈ PK\{pk}.

It returns
(pk, skpk) =

(
pk, (NIKE.skpk, (kpk,pk′)pk′∈PK\pk)

)
.

� SeedGen(skpk, (U , ℓs)): It computes

apk,U,ℓs =
(
(−1)pk<pk′PRFkpk,pk′ (”s”||U||ℓs)

)
pk′∈U\{pk}

,

and returns seedpk,U,ℓs = [apk,U,ℓs]. If pk /∈ U , it returns ⊥.
� TokGen(skpk, (U , ℓu)): It computes

bpk,U,ℓu =
(
PRFkpk,pk′ (”u”||U||ℓu)

)
pk′∈U\{pk}

,

and returns tokenpk,U,ℓu = bpk,U,ℓu . If pk /∈ U , it returns ⊥.
� SeedUpt(seedpk,U,ℓs , tokenpk,U,ℓu): It parses
• seedpk,U,ℓs = [apk,U,ℓs],
• tokenpk,U,ℓu = bpk,U,ℓu ,
• ρ = |U| − 1;

and returns
seedpk,U,ℓs||ℓu = [apk,U,ℓs]⊙ρ bpk,U,ℓu .

� ShareEval(seedpk,U,ℓ): It parses ρ = |U| − 1, seedpk,U,ℓ = [apk,U,ℓs] ∈ Gρ, and returns

sharepk,U,ℓ =
∑

pk′∈U\{pk}

[apk,U,ℓs,pk′].

Fig. 8. Updatable Pseudorandom Zero-Sharing in DDH groups

Remark 5 (Bilinear Update). The UZS scheme in the above construction satis�es the bilinear update
property in De�nition 17.

19

3.3 Security Analysis

Theorem 1 (Indistinguishability for UZS). If NIKE is a IND-secure non-interactive key exchange
protocol, and the DDH assumption holds in G, then the UZS scheme constructed in Section 3.2 is otu-
sta-IND secure (as de�ned in De�nition 16) in the standard model.

Proof. In the static corruption game, we can �x a PK to be the set of parties generated by QNewHon(),
C to be the set of corrupted parties and H = PK \ C to be the set of honest parties. Let qQNewHon

and qQShare be the number of QNewHon and QShare queries respectively. We proceed via a hybrid
argument by using the games described in Figure 9. In this argument, the game G0 corresponds to
the otu-sta-IND security game as de�ned in De�nition 16, and the game G3 corresponds to the case
where the adversary's advantage is 0 since there is no challenge bit b. Given λ ∈ N, we denote by
Advi the advantage of a PPT adversary A running in time t in each game Gi, and Advxx be the best
advantage of any PPT adversary running in time t against the primitive xx that is setup with λ.

Game G1: The change is that for each (pk, pk′) ∈ H2, the challenger uses (uniformly) random

shared keys kpk,pk′
$←− Zp instead of kpk,pk′ ← NIKE.SharedKey(pk′, skpk) in generating answers

to QSeedGen(pk⋆,U , ℓu), QTokGen(pk⋆,U , ℓs) for pk⋆ ∈ {pk, pk′}, and QShare(U , ℓ) queries. The
indistinguishability is implied by the security of the non-interactive key exchange protocol, given
in Lemma 1.

Game G2: The change is that for each (pk, pk′) ∈ H2, the challenger uses a random function
RFpk,pk′ = RFpk′,pk instead of PRFkpk,pk′ in generating answers to QSeedGen(pk

⋆,U , ℓu), QTokGen(pk⋆,U , ℓs)
for pk⋆ ∈ {pk, pk′}, and QShare(U , ℓ) queries. The indistinguishability is implied by the security
of the pseudorandom functions, given in Lemma 2.

Game G3: The change is that for each QShare(U , ℓ) query, the challenger answers independently

from the bit b by sampling (sharepk,ℓ)pk∈H∩U
$←− RH∩U,U,ℓ, where the distribution RH∩U,U,ℓ is

de�ned in the QShare oracle in De�nition 16. The indistinguishability is implied by the multi-
DDH assumption, given in Lemma 3.

From the transitions above, one completes the theorem by having

Advotu-staUZS ≤AdvNIKE + qQNewHon(qQNewHon − 1) · AdvPRF

+
1

2
qQNewHon(qQNewHon − 1)qQShare · AdvDDH(t+ 4qQShare × tG).

where tG is the time for an exponentiation in G. ⊓⊔

Lemma 1 (UZS: Transition from G0 to G1). For any PPT adversary A, the advantage in
distinguishing two games is

|Adv0 − Adv1| ≤ AdvNIKE.

Proof. We build an adversary B against the IND security of NIKE from an adversary A that distin-
guishes between G0 and G1. To simulate a UZS challenger, B uses the NIKE oracles as follows:

� For every QNewHon() query, the adversary B returns pk from the NIKE.QNewHon() query to A.
� For every QCor(pk) query, B obtains NIKE.skpk from the NIKE.QCor(pk) query, and computes

kpk,pk′ ← NIKE.SharedKey(pk′,NIKE.skpk) for all pk
′ ∈ PK to complete the reply to A.

� Instead of generating by itself the keys (kpk,pk′)(pk,pk′)∈H2,pk ̸=pk′ , the adversary B uses the challenge
shared keys kpk,pk′ from the NIKE.QTest(pk, pk′) queries.

� B outputs A's guess for the challenge bit NIKE.b.

The admissibility condition (∗) of NIKE holds since the set of corrupted users in UZS is sent in one
shot. Therefore, when NIKE.b = 0, B is playing G0; when NIKE.b = 1, B is playing G1. ⊓⊔

Lemma 2 (UZS: Transition from G1 to G2). For any PPT adversary A, the advantage in
distinguishing two games is

|Adv1 − Adv2| ≤ qQNewHon(qQNewHon − 1) · AdvPRF.

20

G0, G1, G2, G3 :

pp← SetUp(1λ), b
$←− {0, 1}

(PK, st1)← A(pp)
(pk)pk∈PK ← QNewHon([PK])
(C, st2)← A((pk)pk∈PK, st1)
(pk, skpk)pk∈C ← QCor([C])

For (pk1, pk2) ∈ H2 and pk1 ̸= pk2 : kpk1,pk2
$←− Zp

b′ ← AQSeedGen(·,·,·),QTokGen(·,·,·),QShare(·,·)((pk, skpk)pk∈C , st2)

Output: b′ if Condition (∗) is satis�ed, or b′ $←− {0, 1} otherwise.

QNewHon():

(pk,NIKE.skpk)← NIKE.KeyGen()
∀pk′ ∈ PK : kpk,pk′ ← NIKE.SharedKey(pk′, skpk)
Store (pk, skpk) = (pk,NIKE.skpk, (kpk,pk′)pk′∈U\{pk})
Return pk

QCor(pk):

If pk /∈ PK, return ⊥.
Return skpk = (NIKE.skpk, (kpk,pk′)pk′∈U\{pk}).

QSeedGen(pk,U , ℓs):
apk,U,ℓs =

(
(−1)pk<pk′PRFkpk,pk′ (”s”||U||ℓs)

)
pk′∈U\{pk}

apk,U,ℓs =
(
(−1)pk<pk′ [PRFkpk,pk′ /RFpk,pk′]

(pk,pk′)∈H2

(”s”||U||ℓs)
)
pk′∈U\{pk}

Return seedpk,U,ℓs = [apk,U,ℓs].

QTokGen(pk,U , ℓu):
bpk,ℓb =

(
PRFkpk,pk′ (”u”||U||ℓu)

)
pk′∈U\{pk}

bpk,U,ℓu =
(
[PRFkpk,pk′ /RFpk,pk′]

(pk,pk′)∈H2

(”u”||U||ℓu)
)
pk′∈U\{pk}

Return tokenpk,U,ℓu = bpk,U,ℓu .

QShare(U , ℓ):
Return (sharepk,U,ℓ)pk∈H∩U ← [PShareGen/R]b(H ∩ U ,U , ℓ)
(sharepk,U,ℓ)pk∈H∩U ← RH∩U,U,ℓ

Fig. 9. Games for the otu-sta-IND proof of UZS in Theorem 1

21

Proof. We proceed by using multiple hybrid games over each pair of di�erent honest parties (pk, pk′) ∈
H2. For each transition, we build an adversary B against the IND security of PRF from an adversary A
that distinguishes two games in the transition. To simulate a UZS challenger, B uses the PRF oracle,
instead of generating by itself the PRF key kpk,pk′ to handle all PRFkpk,pk′ related operations, and
�nally outputs A's guess for the challenge bit PRF.b. Since the number of honest parties is bounded
by qQNewHon(qQNewHon − 1), one completes the proof. ⊓⊔

Lemma 3 (UZS: Transition from G2 to G3). For any PPT adversary A, the advantage in
distinguishing two games is

|Adv2 − Adv3| ≤
1

2
qQNewHon(qQNewHon − 1)qQShare · AdvDDH(t+ 4qQShare × tG).

Proof. For every U queried in the form of QShare(U , ·), we use multiple hybrid games that go all over
the pairs in HPU = {(pk, pk′) ∈ (H ∩ U)2, pk ̸= pk′}. Without loss of generality, we assume that all
pairs in HPU are bijectively mapped by κ to [qU] for some integer qU ≥ 1. For i ∈ [qU], we de�ne the
following sequence of games as follows:

Game G2.U.i: In this game, for any QShare(U , ℓs||ℓ⋆u) query5, when b = 0, for all pk ∈ H ∩ U , the
challenger computes

[apk,U,ℓs] = QSeedGen(pk,U , ℓs),
bpk,U,ℓ⋆u

= QTokGen(pk,U , ℓ⋆u),
seedpk,U,ℓs = [apk,U,ℓs||ℓ⋆u]

where

apk,U,ℓs||ℓ⋆u,pk′
$←− Zp if (pk, pk′) ∈ HPU and κ(pk, pk′) < i

apk,U,ℓs||ℓ⋆u,pk′
$←− Zp if (pk, pk′) ∈ HPU and κ(pk, pk′) = i

apk,U,ℓs||ℓ⋆u,pk′ = [apk,U,ℓs,pk′] · bpk,U,ℓu,pk′ if (pk, pk′) ∈ HPU and κ(pk, pk′) > i

apk,U,ℓs||ℓ⋆u,pk′ = [apk,U,ℓs,pk′] · bpk,U,ℓu,pk′ otherwise

and outputs sharepk,U,ℓs||ℓ⋆u = ShareEval(seedpk,U,ℓs||ℓ⋆u). The change between G2.i−1 and G2.i is
in the PShareGen algorithm (de�ned by the QShare oracle in De�nition 16) and is highlighted in
gray.

For every U , we assume that G2.U.0 is the game where QShare(U , ·) is the same as in G2. To transition
from G2.U.i−1 to G2.U.i for i ∈ [qU], we build an adversary B against the multi-DDH assumption,
which can be described as follows:

� To answer QSeedGen(pk,U , ℓs) and QSeedGen(pk′,U , ℓs) queries, the adversary B implicitly uses

[cpk,U,ℓs,pk′] := Yℓs
$←− G from the multi-DDH when κ(pk, pk′) = i to compute [apk,U,ℓs,pk′] =

[(−1)pk<pk′cpk,U,ℓs,pk′] and [apk′,ℓs,pk] = [(−1)pk′<pkcpk,U,ℓs,pk′] respectively.
� To answer QShare(U , ℓs||ℓ⋆u) queries, if b = 0, the adversary B implicitly uses [cpk,U,ℓs||ℓ⋆u,pk′] := Zℓs

from the multi-DDH when κ(pk, pk′) = i to compute [apk,U,ℓs||ℓ⋆u,pk′] = [(−1)pk<pk′cpk,U,ℓs||ℓ⋆u,pk′]

and [apk′,ℓs||ℓ⋆u,pk] = [(−1)pk′<pkcpk,U,ℓs||ℓ⋆u,pk′] respectively.

� B outputs A's guess for the challenge bit DDHmulti.b.

The adversary B has a complete multi-DDH challenge D = (X, (Yℓs)ℓs , (Zℓs)ℓs) where X can be

(implicitly) considered as [bpk,ℓ⋆u,pk′]
$←− G.

� When DDH
multi.b = 0, one has [cpk,U,ℓs||ℓ⋆u,pk′] = Zℓs = CDH(X,Yℓs) = [cpk,U,ℓs,pk′] · bpk,U,ℓu,pk′ ,

which corresponds to G2.U.i−1.

� When DDHmulti.b = 1, one has [cpk,U,ℓs||ℓ⋆u,pk′] = ZU||ℓs||ℓ⋆u
$←− Zp, which corresponds to G2.U.i.

5 In the one-time-update setting, for each U , ℓs can change while ℓ⋆u is �xed.

22

Therefore, the computational gap between each G2.U.i−1 and G2.U.i happens only when b = 0 and is
bounded by 1

2 · AdvDDH(λ, t+ 4qQShare · tG).
The last step is to show that for the last U⋆ queried to QShare(·, ·), one has G2.U⋆.qU⋆ = G3.

It su�ces to describe the case b = 0. We note that for all (U , ℓ) queried to QShare(·, ·), one has
QShare(U , ℓ) = (sharepk,U,ℓ)pk∈H∩U where sharepk,U,ℓ =

∑
pk′∈U\{pk}[apk,U,ℓ,pk′]. By all transitions until

G2.U⋆.qh , we have apk,U,ℓ,pk′
$←− Zp for any pair of honest users (pk, pk′), any set U , any label ℓ. As

apk′,ℓ,pk = −apk,U,ℓ,pk′ , thenshare0pk,U∩H,ℓ :=
∑

pk′∈H∩U\{pk}

apk,U,ℓ,pk′

pk∈H∩U

are uniformly random shares of zero among users in H ∩ U . Therefore, one hassharepk,U,ℓ :=
∑

pk′∈C∩U\{pk}

apk,U,ℓ,pk′ + share0pk,H∩U,ℓ

pk∈H∩U

are uniformly random shares of -
∑

pk∈C∩U sharepk,U,ℓ, which is identical to the distribution RH∩U,ℓ.
Since the number of sets U queried to QShare(·, ℓ) for ℓ ∈ LS ×LU is bounded qQShare, and each qU is
bounded by

(
qQNewHon

2

)
, one obtains

|Adv2 − Adv3| ≤
1

2
qQNewHon(qQNewHon − 1)qQShare · AdvDDH(λ, t+ 4qQShare × tG).

⊓⊔

4 Function-Hiding Inner-Product DDFE

In this section, we construct a DDFE scheme for function-hiding inner products from a UZS scheme,
a single-input function-hiding IPFE scheme, and an all-or-nothing encapsulation AoNE scheme. The
FH-IP-DDFE scheme is proved to be sel-sym-IND secure in the standard model.

4.1 Construction

For every client, let d be an inner-product dimension, let X and Y be a message bound and a
function bound of size poly(λ) respectively, let LM and LK be a message-label space and key-label
space respectively. The scheme is described in Figure 10 with the following primitives:

� IPE = (iSetup, iKeyGen, iEnc, iDKGen, iDec) be a single-input function-hiding IPFE;

� UZS = (SetUp,KeyGen,SeedGen,TokGen,SeedUpt,ShareEval) be a bilinear-updatable pseudoran-
dom zero-sharing scheme over G1 for a seeding label space LM and an updating label space
LK .

� AoNE = (aSetup, aKeyGen, aEnc, aDKGen, aDec) be an all-or-nothing encapsulation scheme.

Correctness. Given λ ∈ N, pp← SetUp(1λ), (pk, skpk)← KeyGen() ∀pk ∈ PK, ℓM ∈ LM , ℓK ∈ LK ,
UM ,UK ∈ S(PK) such that UM = UK = U , xpk ∈ [−X,X]d, ypk ∈ [−Y, Y]d ∀pk ∈ U , from the above
scheme, one can parse dkpk = (actpk,U , ℓK) and ctpk = (act′pk,U , ℓM) for pk ∈ U . By the correctness
of the AoNE scheme, one can always recover

ictpk = iEnc(iskpk, [xpk,0
m,apk,UM ,ℓM , 0]1);

idkpk = iKeyGen(iskpk, [ypk,0
m, bpk,UK ,ℓK , 0]2).

23

Construction:

� SetUp(1λ): It generates PG ← PGGen(1λ) and sets up parameters for the underlying schemes:

ipp← iSetup(1λ) upp← SetUp(1λ) app← aSetup(1λ).

It returns
pp = (PG, ipp, upp, app).

The parameters pp are implicit to other algorithms.
� KeyGen(): Each client samples

• a PRF key kpk
$←− KPRF;

• UZS keys (upk, uskpk)← KeyGen();
• AoNE keys (apk, askpk)← aKeyGen().

It returns pk = (upk, apk) and skpk = (kpk, uskpk, askpk).
� Enc(skpk,m): It parses m = (x,UM , ℓM) and computes

1. a UZS seed: [apk,UM ,ℓM]1 ← SeedGen(uskpk, (UM , ℓM));
2. a random coin for IPE key generation: coinpk ← PRFkpk(UM);

3. a 2d+ |UM |-length IPE secret key: iskpk = iKeyGen(12d+|UM |; coinpk);
4. an IPE encryption:

ictpk ← iEnc(iskpk, [x,0
d,apk,UM ,ℓM , 0]1);

5. an AoNE layer on ictpk:

actpk ← aEnc(askpk, (ictpk,UM , ℓM , ”dk”))a.

It returns the ciphertext
ctpk = (actpk,UM , ℓM).

If pk /∈ UM , it returns ⊥.
� DKGen(skpk, k): It parses k = (y,UK , ℓK)b and computes

1. a UZS token: bpk,UK ,ℓK ← TokGen(uskpk,UK , ℓK);
2. a random coin for IPE key generation: coinpk ← PRFkpk(UK);

3. a 2d+ |UK |-length IPE secret key: iskpk = iKeyGen(12d+|UK |; coinpk);
4. an IPE decryption key:

idkpk ← iDKGen(iskpk, [y,0
d, bpk,UK ,ℓK , 0]2);

5. an AoNE layer on idkpk:

actpk ← aEnc(askpk, (idkpk,UK , ℓK , ”dk”)).

It returns the decryption key
dkpk = (actpk,UK , ℓK).

If pk ∈ UK , it returns ⊥.
� Dec ((dkpk)pk∈UK , (ctpk)pk∈UM , (UM , ℓM), (UK , ℓK)): If UM = UK = U is not true, it returns ⊥.

Otherwise,
1. it parses dkpk = (actpk,U , ℓK) and recovers the IPE decryption keys

(idkpk)pk∈U = aDec((actpk)pk∈U ,U , ℓK);

2. it parses ctpk = (act′pk,U , ℓM) and recovers the IPE ciphertexts

(ictpk)pk∈U = aDec((act′pk)pk∈U ,U , ℓM);

3. it computes

[α]T =
∑
pk∈U

iDec(ictpk, idkpk).

It returns α from [α]T .

a AoNE encryptions are additionally randomized by pre�xes ”ct” and ”dk”.
b Key labels ℓK are synchronized for all clients and fresh for each time of decryption key generation.

Fig. 10. DDFE for Function-Hiding Inner Products

24

The correctness is then implied by the correctness of the IPE scheme and the UZS scheme over G1:∑
pk∈U

iDec(ictpk, idkpk) =
∑
pk∈U

[x⊤
pk · ypk + a⊤

pk,U,ℓM · bpk,U,ℓK]T

= [
∑
pk∈U

x⊤
pk · ypk]T + e

∑
pk∈U

ShareEval(SeedUpt(seedpk,U,ℓM , tokenpk,U,ℓK)), [1]2

= [

∑
pk∈U

x⊤
pk · ypk]T + e

∑
pk∈U

sharepk,U,ℓM ||ℓK , [1]2

= [

∑
pk∈U

x⊤
pk · ypk]T + e ([0]1, [1]2)

= [
∑
pk∈U

x⊤
pk · ypk]T .

As the inner product
∑

pk∈U x⊤
pk · ypk is of size poly(λ), it can always be recovered. ⊓⊔

Remark 6 (Size of Ciphertext/Decryption Key). In the above FH-IP-DDFE construction, if one uses
the sel-sym-IND-secure AoNE that is constructed from a rate-1 identity-based encryption and em-
ployed in the hybrid-encryption mode with a symmetric encryption as described in [CDSG+20], then
the complexity for the size each DDFE ciphertext/decryption key will be Oλ(d+ |U|).

4.2 Security Analysis

Theorem 2 (Indistinguishability for FH-IP-DDFE). If IPE is a single-input sel-sym-fh-IND-
secure FE for function-hiding inner products, AoNE is a sel-sym-nfh-IND-secure all-or-nothing en-
capsulation, and UZS is an otu-sta-IND-secure updatable pseudorandom zero sharing, then the FH-
IP-DDFE scheme constructed in Figure 10 is sel-sym-fh-IND secure (as de�ned in De�nition 6) under
the one key-label restriction (as de�ned in De�nition 8) in the standard model.

Proof. In the selective game, we can �x PK to be the set of parties generated by QNewHon() queries,
C to be the set of corrupted parties in PK and H = PK \ C to be the set of honest parties. Let qxx
be the number of xx-oracle queries where xx ∈ {QNewHon,QEnc,QDKGen,QCor}. Given λ ∈ N, we
denote by AdvGi the advantage of an PPT adversary A in each game Gi, and Advxx be the best
advantage of any PPT adversary against the primitive xx that is setup with λ. Since the UZS security
applies only when there are more than one honest client, we consider two cases: only one honest client
and more than one honest client.

The case of one honest client H = {pk⋆}. By facts in Remark 2, given any U ∈ S(PK), for
any QEnc(pk⋆,x0,x1,U , ℓM)6 query and for any QDKGen(pk⋆,y0,y1,U , ℓK), then it must hold that

x0⊤y0 − x1⊤y1 = 0.

Let κ be a bijective map from the set

{U ∈ S(PK) : QEnc(pk⋆, ·, ·,U , ·) or QDKGen(pk⋆, ·, ·,U , ·) was sent}

to [qu] for some integer qu. With j ∈ [qu], we proceed by the following sequence of hybrid games:

Gpk⋆

0 : This is the real game with one honest client pk⋆.

Gpk⋆

1 : The change is that the pseudorandom function PRFkpk⋆
is replaced by a random function RF.

The indistinguishability is implied by the security of the PRF:∣∣∣AdvGpk⋆

0
− Adv

Gpk⋆

1

∣∣∣ ≤ AdvPRF.

6 Without losing the formality, we omit subscript indexes in clear contexts and use the format (·, ·, ·,U , ℓ)
instead of (·, (·,U , ℓ), (·,U , ℓ)) for encryption/decryption-key queries.

25

Gpk⋆

1.j : The change is that instead of depending on the bit b, for every QEnc(pk,x0,x1,U , ℓM) query

and for every QDKGen(pk,y0,y1,U , ℓK) query where κ(U) = j, the challenger chooses x0 and y0

to generate the answers respectively.

We note that in the symmetric-key variant of the security game, there is no information on the
challenge bit b from the QEnc and QDKGen queries on corrupted clients. Then we can assume that

Gpk⋆

1.0 corresponds to Gpk⋆

1 and Gpk⋆

1.qu
corresponds to the game where the adversarial advantage is

0. To transition between Gpk⋆

1.j−1 and Gpk⋆

1.j , we construct an adversary B against the IPE security as
follows:

� For every QEnc(pk⋆,x0,x1,U , ℓM) query and every QDKGen(pk⋆,y0,y1,U , ℓK) query where κ(U) =
j from A, then B queries the IPE challenge oracles with the following messages and functions re-
spectively

[mγ]1 = [xγ ,0d,apk⋆,U,ℓM , 0]1,

[kγ]2 = [yγ ,0d, bpk⋆,U,ℓK , 0]2

where γ ∈ {0, 1} and apk⋆,U,ℓM , bpk⋆,U,ℓK are generated from the UZS scheme. Then B receives
the answers from IPE oracles to complete the reply to A.

� B outputs A's guess for the challenge bit IPE.b.

The admissibility condition holds for IPE as x0⊤y0 − x1⊤y1 = 0 and (apk⋆,U,ℓM , bpk⋆,U,ℓK) are inde-

pendent of IPE.b. Therefore, we have
∣∣∣AdvGpk⋆

1.j−1
− Adv

Gpk⋆

1.j

∣∣∣ ≤ AdvIPE and then

Adv
Gpk⋆

0
≤ (qQEnc + qQDKGen) · AdvIPE + AdvPRF.

The case of more than one honest client. Let QM and QK
7 be the set of encryption queries

and decryption key queries sent in one shot by A respectively. We proceed via a hybrid argument: for
readability, we describe the global changes in the IND game by using the games G0, G1, G2 and G3

(see Figure 11); the transition between G2 and G3 requires intermediate games G2.1 and G2.1.ℓK for
each queried key label ℓK ∈ QK (see Figure 6), and the transition between {G2.1.ℓK}ℓK∈QK

requires
intermediate (G⋆

ℓK .i)i∈[4] (see Figure 7) for each ℓK . Notably, the game G0 corresponds to sel-sym-
fh-IND security game as de�ned in De�nition 6, and the game G3 corresponds to the case where
adversary's advantage is 0 since there is no challenge bit b.

Game G1: The change is that the challenger uses a random function RFpk instead of PRFkpk
. The

indistinguishability is implied by the security of the pseudorandom function, given in Lemma 4.
Game G2: When pk ∈ H, a decryption key query (pk,y0,y1,UK , ℓK) ∈ QK is said to be incomplete

if there exists pk′ ∈ H ∩ UK and the decryption key query (pk′,y′0,y′1,UK , ℓK) /∈ QK . For
that query, actpk is changed to the encapsulation of (0,UK , ℓK , ”dk”). Similarly, when pk ∈ H,
an encryption query (pk,x0,x1,UM , ℓM) ∈ QM is said to be incomplete if there exists pk′pk′ ∈
H ∩ UM and the encryption query (pk′,x′0,x′1,UM , ℓM) /∈ QM . For that query, actpk is changed
to the encapsulation of (0,UM , ℓM , ”ct”). The indistinguishability is implied by the security of the
AoNE scheme, given in Lemma 5.

Game G2.1: The change is that for every complete encryption query on (pk,x0,x1,UM , ℓM), the
challenger sets the IPE message as (xb,x0,apk,U,ℓM , 0). The indistinguishability is implied by the
security of the IPE scheme, given in Lemma 6.

Assume that the set of queried key labels is ordered, for every ℓK ∈ QK , one has the following
intermediate games:

Game G⋆
ℓK .1: The change is that for every complete decryption key query on (pk,y0,y1,U , ℓ′K) for

ℓ′K = ℓK , the challenger sets the IPE key as (0d,0d,0|U|−1, 1), and for every complete encryption
query on (pk,x0,x1,U , ℓM), the challenger sets the IPE message as (xb,x0,apk,U,ℓM ,a⊤

pk,U,ℓM
·

bpk,U,ℓK + xb⊤ · yb). The indistinguishability is implied by the security of the IPE scheme, given
in Lemma 7.

7 QM and QK contain elements of the form (pk, ·, ·,U , ℓ). For a string xx ∈ {0, 1}∗, we denote by xx ∈ QM

or xx ∈ QK if there exists a query containing xx.

26

Game G⋆
ℓK .2: The change is that for every complete encryption query on (pk,x0,x1,U , ℓM), the chal-

lenger sets the IPE message as (xb,x0,apk,U,ℓM , Rpk,U,ℓM ,ℓK +xb⊤ ·yb) where (Rpk,U,ℓM ,ℓK)pk∈H∩U
are sampled uniformly such that∑

pk∈H∩U

Rpk,U,ℓM ,ℓK =
∑

pk∈C∩U

a⊤
pk,U,ℓM · bpk,U,ℓK .

The indistinguishability is implied by the security of the UZS scheme, given in Lemma 8.
Game G⋆

ℓK .3: The change is that for every complete encryption query on (pk,x0,x1,U , ℓM), the

challenger sets the IPEmessage as (xb,x0,apk,U,ℓM , Rpk,U,ℓM ,ℓK+x0⊤·y0). The indistinguishability
is perfect, given in Lemma 9.

Game G⋆
ℓK .4: The change is that for every complete encryption query on (pk,x0,x1,U , ℓM), the

challenger sets the IPE message as (xb,x0,apk,U,ℓM ,a⊤
pk,U,ℓM

· bpk,U,ℓK +x0⊤ · y0). This change is
symmetric to the change in G⋆

ℓK .2 and then the indistinguishability is implied by the security of
the UZS scheme.

Game G2.1.(ℓK+1): For the subsequent label (ℓK + 1) of ℓK in QK , the change is that for ev-
ery complete decryption key query on (pk,y0,y1,U , ℓK), the challenger sets the IPE key as
(0d,y0

pk, bpk,U,ℓK , 0), and for every complete encryption query on (pk,x0,x1,U , ℓM), the chal-

lenger sets the IPE message as (xb,x0,apk,U,ℓM , 0). This change is symmetric to the change in
G⋆

ℓK .1 and then the indistinguishability is implied by the security of the IPE scheme.

By using a recursive transition through all ℓK ∈ QK , one comes to the �nal game:

Game G3: In this game, to answer any complete encryption query and any complete decryption
key generation query, the challenger sets the IPE key as (0d,y0, b, 0) and the IPE message as
(0d,x0,a, 0) respectively. There is thus no dependence on the challenge bit b in this game, so
AdvG3 = 0.

From the transitions above, one completes the theorem by having

Advsel-sym-fh
FH-IP-DDFE ≤ [2qQDKGen(qQEnc + qQDKGen) + qQEnc] · Advsel-sym-fh

IPE + 2qQDKGen · Advotu-staUZS

+ Advsel-sym-nfh
AoNE + (qQNewHon − qQCor) · AdvPRF.

⊓⊔

Lemma 4 (FH-IP-DDFE: Transition from G0 to G1). For any PPT adversary A, the advantage
in distinguishing two games is

|AdvG0
− AdvG1

| ≤ (qQNewHon − qQCor) · AdvPRF.

Proof. We proceed by using multiple hybrid games for each pk ∈ H. For each transition, we build an
adversary B against the IND security of PRF from an adversary A that distinguishes two games in
the transition. To simulate a FH-IP-DDFE challenger, B uses the PRF oracle, instead of generating
by itself the PRF key kpk to handle all PRFkpk

related operations, and �nally outputs A's guess for
the challenge bit PRF.b. Since the number of honest parties is bounded by (qQNewHon − qQCor), one
completes the proof. ⊓⊔

Lemma 5 (FH-IP-DDFE: Transition from G1 to G2). For any PPT adversary A, the advantage
in distinguishing two games is

|AdvG1
− AdvG2

| ≤ Advsel-sym-nfh
AoNE .

Proof. We build an adversary B against the sel-sym-nfh-IND security game of AoNE from an adversary
A that distinguishes between G1 and G2. To simulate a FH-IP-DDFE challenger, B uses the oracles
of the AoNE challenger to handle all AoNE related operations.

� For each QDKGen(pk,y0,y1,UK , ℓK) query from A, the adversary B prepares the IPE key idkpk.
If the query is complete, B sends (pk, idkpk, idkpk,UK , ℓK , ”dk”) to the AoNE encryption oracle.
Otherwise, it sends (pk, idkpk, 0,UK , ℓK , ”dk”). Upon receiving the oracle's reply actpk, B uses this
ciphertext to complete the reply to QDKGen query from A.

27

G0, G1, G2, G3 :

pp← SetUp(1λ), b
$←− {0, 1}

(PK, st1)← A(pp)
(pk)pk∈PK ← QNewHon([PK])
(QM ,QK , C, st2)← A((pk)pk∈PK, st1)
stQM ← QEnc([QM]), stQK ← QDKGen([QK]), stC ← QCor([C])
b′ ← A(stQM , stQK , stC , st2)
Output: b′ if Condition (∗) is satis�ed, or b′ ← {0, 1} otherwise.

QNewHon():

kpk ← KPRF; (upk, uskpk)← KeyGen(); (apk, askpk)← aKeyGen()
pk = (upk, apk); skpk = (kpk, uskpk, askpk)
Store (pk, skpk) and return pk.

QDKGen(pk,y0,y1, (U , ℓ)):
b← TokGen(uskpk, (U , ℓ))
coin← PRFkpk(U) coin← RFpk(U) ∀pk ∈ H
isk← iKeyGen(12d+U ; coin)

k = (yb,0d, b, 0) k = (0d,y0, b, 0) ∀pk ∈ H
idk← iDKGen(isk, [k]2)

If ∃pk′ ∈ H such that (pk′,y′0,y′1,U , ℓ) /∈ QK :

act← aEnc(askpk, (0,U , ℓ))
act← aEnc(askpk, (idk,U , ℓ, ”dk”))
Return (act,U , ℓ).

QEnc(pk,x0,x1, (U , ℓ)):
[a]1 ← SeedGen(uskpk, (U , ℓ))
coin← PRFkpk(U) coin← RFpk(U) ∀pk ∈ H
isk← iKeyGen(12d+U ; coin)

m = (xb,0d,a, 0) m = (0d,x0,a, 0) ∀pk ∈ H
ict← iEnc(isk, [m]1)

If ∃pk′ ∈ H such that (pk′,x′0,x′1,U , ℓ) /∈ QM :

act← aEnc(askpk, (0,U , ℓ))
act← aEnc(askpk, (ictpk,U , ℓ, ”ct”))
Return (act,U , ℓ).

QCor(pk):

If pk /∈ PK, return ⊥.
Return skpk = (kpk, uskpk, askpk).

Fig. 11. Games for the sel-sym-fh-IND proof of FH-IP-DDFE in Theorem 2

28

� For each QEnc(pk,x0,x1,UM , ℓM) query from A, the adversary B prepares the IPE ciphertext
ictpk. If the query is complete, B sends (pk, ictpk, ictpk,UM , ℓM , ”ct”) to the AoNE encryption
oracle. Otherwise, it sends (pk, ictpk, 0,UM , ℓM , ”ct”). Upon receiving the oracle's reply actpk, B
uses this ciphertext to complete the reply to QEnc query from A.

� B outputs A's guess for the challenge bit AoNE.b.
The admissibility condition (∗) of AoNE holds since each pair of challenge messages di�er only when
an incomplete query was made. We also use pre�x "ct" and "dk" to prevent possible combinations
between key queries and ciphertext queries in decryption. Therefore, when AoNE.b = 0, B is playing
G1; when AoNE.b = 1, B is playing G2. ⊓⊔
Lemma 6 (FH-IP-DDFE: Transition from G2 to G2.1). For any PPT adversary A, the advantage
in distinguishing two games is

|AdvG2
− AdvG2.1

| ≤ qQEnc · Advsel-sym-fh
IPE .

Proof. We proceed by using multiple hybrid games for each pair of honest (pk,U) ∈ QM . For each
transition, we build an adversary B against the sel-sym-fh-IND security of IPE from an adversary A
that distinguishes between two games in the transition. To simulate a FH-IP-DDFE challenger, B uses
the IPE oracles to handle all IPE related operations for the reply of each (pk,U)-involved query from
A.
� For each complete QDKGen(pk,y0,y1,U , ℓK) query, B prepares the IPE key as

k0 = k1 = (yb,0d, bpk,U,ℓK , 0)

and sends (pk, [k0]2, [k
1]2) to the IPE decryption key oracle. It uses the returned decryption key

idkpk to complete the reply to A.
� For each complete QEnc(pk,x0,x1,U , ℓM) query, B prepares the IPE message as

m0 = (xb,0d,apk,U,ℓM , 0);

m1 = (xb,x0,apk,U,ℓM , 0);

and sends (pk, [m0]1, [m
1]1) to the IPE encryption oracle. It uses the returned ciphertext ictpk to

complete the reply to A.
� B outputs A's guess for the challenge bit IPE.b.

The admissibility condition (∗) of IPE in each transition holds since one always has k0⊤·m0 = k1⊤·m0.
Therefore, in each transition of the multiple hybrid games for each (pk,U), when IPE.b = 0, A is
playing the previous game; when IPE.b = 1, A is playing the subsequent game. As the number of
pairs (pk,U) ∈ QM is bounded by qQEnc, one completes the proof by having

|AdvG2 − AdvG2.1 | ≤ qQEnc · Advsel-sym-fh
IPE .

Lemma 7 (FH-IP-DDFE: Transition from G2.1.ℓK to G∗
ℓK .1). For any PPT adversary A, the

advantage in distinguishing two games is∣∣∣AdvG2.1.ℓK
− AdvG∗

ℓK.1

∣∣∣ ≤ (qQEnc + qQDKGen) · Advsel-sym-fh
IPE .

Proof. We proceed by using multiple hybrid games for each pair of honest (pk,U) ∈ QM ∪ QK . We
build an adversary B against the sel-sym-fh-IND security of IPE from an adversaryA that distinguishes
between two games in the transition. To simulate a FH-IP-DDFE challenger, B uses the IPE oracles
to handle all IPE related operations for the reply of each (pk,U)-involved query from A.
� For each complete QDKGen(pk,y0

pk,ℓ′K
,y1

pk,ℓ′K
,U , ℓ′K)8 query, B prepares the IPE key as

If ℓ′K < ℓK : k0 = k1 = (0d,y0
pk,ℓ′K

, bpk,U,ℓ′K
, 0)

If ℓ′K = ℓK :

k0 = (yb
pk,ℓK ,0d, bpk,U,ℓK , 0)

k1 = (0d,0d,0|U|−1, 1)

If ℓ′K > ℓK : k0 = k1 = (yb
pk,ℓ′K

,0d, bpk,U,ℓ′K
, 0)

8 We additionally use subscripts ℓ′K and ℓK for yb
pk to di�erentiate the vector y

b
pk that generates the decryption

key under ℓK from those of other key labels.

29

and sends (pk, [k0]2, [k
1]2) to the IPE decryption key generation oracle. It uses the returned

decryption key idkpk to complete the reply to A.
� For each complete QEnc(pk,x0

pk,x
1
pk,U , ℓM) query, B prepares the IPE message as

m0 = (xb
pk,x

0
pk,apk,U,ℓM , 0);

m1 = (xb
pk,x

0
pk,apk,U,ℓM ,a⊤

pk,U,ℓM · bpk,U,ℓK + xb
pk

⊤ · yb
pk,ℓK);

and sends (pk, [m0]1, [m
1]1) to the IPE encryption oracle. It uses the returned decryption key

ictpk to complete the reply to A.
� B outputs A's guess for the challenge bit IPE.b.

The admissibility condition (∗) of IPE in each transition holds since one always has k0⊤·m0 = k1⊤·m0.
Therefore, in each transition of the multiple hybrid games for each (pk,U), when IPE.b = 0, A is
playing the previous game; when IPE.b = 1, A is playing the subsequent game. Since the number of
pairs (pk,U) ∈ QM ∪QK is bounded by (qQEnc + qDKGen), one has∣∣∣AdvG2.1.ℓK

− AdvG∗
ℓK.1

∣∣∣ ≤ (qQEnc + qQDKGen) · Advsel-sym-fh
IPE .

⊓⊔

Lemma 8 (FH-IP-DDFE: Transition from G∗
ℓK .1 to G∗

ℓK .2). For any PPT adversary A, the
advantage in distinguishing two games is∣∣∣AdvG∗

ℓK.1
− AdvG∗

ℓK.2

∣∣∣ ≤ Advotu-staUZS .

Proof. We build an adversary B against the otu-sta-IND security of UZS from an adversary A that
distinguishes between two games in the transition. To simulate a FH-IP-DDFE challenger, B uses the
UZS oracles to handle all UZS related operations.

� For each complete QDKGen(pk,y0
pk,y

1
pk,U , ℓ′K) query, the adversary B prepares the IPE key as

• If ℓ′K ̸= ℓK : it obtains bpk,U,ℓ′K
← QTokGen(pk,U , ℓ′K) to complete the key k.

• If ℓ′K = ℓK : it does not have to obtain bpk,U,ℓK as k = (0d,0d,0|U|−1, 1) in this case.
� For each complete QEnc(pk,x0

pk,x
1
pk,U , ℓM) query,

• B obtains [apk,U,ℓM]1 ← QSeedGen(pk,U , ℓM);
• B obtains (sharepk,U,ℓM ||ℓK)pk∈U∩H ← QShare(U , ℓM ||ℓK);

and implicitly complete the message in G1 as

[m]1 = [xb
pk,x

0
pk,apk,U,ℓM , sharepk,U,ℓM ||ℓK + xb⊤

pk · yb
pk]

The admissibility condition (∗) of UZS holds since

� all the corruption queries in FH-IP-DDFE are sent in one shot;
� QShare(U , ℓM ||ℓK) queries are made for the same ℓK on every U while there are no QTokGen(pk,U , ℓK)
queries required.

When UZS.b = 0, one has sharepk,U,ℓM ||ℓK = [a⊤
pk,U,ℓM

·bpk,U,ℓK]1 which corresponds toG
∗
ℓK .1; and when

UZS.b = 1, one has (sharepk,U,ℓM ||ℓK)pk∈H∩U
$←− RH∩U,ℓM ||ℓK (as in De�nition 16), which corresponds

to G∗
ℓK .2. Therefore, one has ∣∣∣AdvG∗

ℓK.1
− AdvG∗

ℓK.2

∣∣∣ ≤ Advotu-staUZS .

⊓⊔

Lemma 9 (FH-IP-DDFE: Transition from G∗
ℓK .2 to G∗

ℓK .3). The two games G∗
ℓK .2 to G∗

ℓK .3 are
identical.

Proof. Given any set of complete encryption queries on {(pk,xτ,0
pk ,x

τ,1
pk ,U , ℓM)}τ∈[qpk,U,ℓM

] and any

complete decryption-key query on (pk,y0
pk,y

1
pk,U , ℓK), by the Remark 2, one has the following facts:

30

1. ∆b
pk,U,ℓM ,ℓK

= xτ,0⊤
pk · y0

pk − xτ,b⊤
pk · yb

pk ∀τ ∈ [qpk,U,ℓM];

2.
∑

pk∈H∩U ∆b
pk,U,ℓM ,ℓK

= 0.

For any random shares (Rpk,U,ℓM ,ℓK)pk∈H∩U of the relation

∑
pk∈H∩U

Rpk,U,ℓM ,ℓK = −
∑

pk∈C∩U

a⊤
pk,U,ℓM · bpk,U,ℓK ,

one has
(
R′

pk,U,ℓM ,ℓK

)
pk∈H∩U

:=
(
Rpk,U,ℓM ,ℓK +∆b

pk,U,ℓM ,ℓK

)
pk∈H∩U

are shares of the same distribu-

tion by the fact 2. Moreover, one has the following by the fact 1,

(xτ,b
pk ,x

τ,0
pk ,apk,U,ℓM , Rpk,U,ℓM ,ℓK + xτ,b⊤

pk · yb
pk)

d
= (xτ,b

pk ,x
τ,0
pk ,apk,U,ℓM , R′

pk,U,ℓM ,ℓK + xτ,b⊤
pk · yb

pk)

d
= (xτ,b

pk ,x
τ,0
pk ,apk,U,ℓM , Rpk,U,ℓM ,ℓK +∆b

ℓM ,pk + xτ,b⊤
pk · yb

pk)

d
= (xτ,b

pk ,x
τ,0
pk ,apk,U,ℓM , Rpk,U,ℓM ,ℓK + xτ,0⊤

pk · y0
pk).

Therefore, two games G∗
ℓK .2 and G∗

ℓK .3 identical. ⊓⊔

5 Attribute-Weighted-Sum DDFE

In this section, we construct a DDFE scheme for attribute-weighted sums from a UZS scheme, a
single-input FE scheme for attribute-weighted sums with function-hiding inner products, and an all-
or-nothing encapsulation AoNE scheme. The AWS-DDFE scheme is proved to be sel-sym-IND secure
in the standard model.

5.1 Construction

Let d be an inner-product dimension, let LM and LK be a message-label space and a key-label space
respectively. The AWS-DDFE scheme is described in Figure 12 with the following primitives:

� AWIPE = (aiSetup, aiKeyGen, aiEnc, aiDKGen, aiDec) be a FE for attribute-weighted sums with
function-hiding inner products;

� UZS = (SetUp,KeyGen,SeedGen,TokGen,SeedUpt,ShareEval) be a bilinear-updatable pseudoran-
dom zero-sharing scheme over G2 for a seeding-label space LK and an updating-label space LM .

� AoNE = (aSetup, aKeyGen, aEnc, aDKGen, aDec) be an all-or-nothing encapsulation scheme.

Correctness. Given λ ∈ N, pp ← SetUp(1λ), (pk, skpk) ← KeyGen() ∀pk ∈ PK, ℓM ∈ LM , ℓf ∈ LK

where f = (fpk)pk∈U , UM ,UK ∈ S(PK) such that UM = UK = U , from the above scheme, one can
parse dkpk = (actpk,U , ℓf) and ctpk = (act′pk,U , ℓM) for pk ∈ U . By the correctness of the AoNE
scheme, one can always recover

aictpk = aiEnc(aiskpk, (xpk,j , zpk,j)j∈[Npk], [apk,U,ℓM , 0]1);

aidkpk = aiKeyGen(aiskpk, fpk, [bpk,U,ℓf , 0]2).

31

The correctness is then implied by the correctness of the AWIPE scheme and the UZS scheme over
G2: ∑

pk∈U

aiDec(aictpk, aidkpk) =
∑
pk∈U

[
∑

j∈[Npk]

fpk(xpk,j)
⊤ · zpk,j + a⊤

pk,U,ℓM · bpk,U,ℓf]T

= [
∑
pk∈U

∑
j∈[Npk]

fpk(xpk,j)
⊤ · zpk,j]T

+ e

[1]1,
∑
pk∈U

ShareEval(SeedUpt(seedpk,U,ℓf , tokenpk,U,ℓM))

= [

∑
pk∈U

∑
j∈[Npk]

fpk(xpk,j)
⊤ · zpk,j]T + e

[1]1,
∑
pk∈U

sharepk,U,ℓf ||ℓM

= [

∑
pk∈U

∑
j∈[Npk]

fpk(xpk,j)
⊤ · zpk,j]T + e ([1]2, [0]1)

= [
∑
pk∈U

∑
j∈[Npk]

fpk(xpk,j)
⊤ · zpk,j]T .

⊓⊔

Remark 7 (Size of Ciphertext/Decryption Key). In the above AWS-DDFE construction, if one uses the
sel-sym-IND-secure AoNE that is constructed from a rate-1 identity-based encryption and employed
in the hybrid-encryption mode with a symmetric encryption as described in [CDSG+20], then the
complexity for the size each DDFE ciphertext/decryption key will be Oλ(N + |U|). Notably, N is the
number of AWS inputs, which is polynomially unbounded.

5.2 Security Analysis

Theorem 3 (Indistinguishability for AWS-DDFE). If AWIPE is a single-input sel-sym-fh-IND-
secure FE for attribute-weighted sums with function-hiding inner products, AoNE is a sel-sym-nfh-
IND-secure all-or-nothing encapsulation, and UZS is an otu-sta-IND-secure updatable pseudorandom
zero sharing, then the AWS-DDFE scheme constructed in Figure 12 is sel-sym-nfh-IND secure (as
de�ned in De�nition 6) in the standard model.

Proof. In the selective game, we can �x PK to be the set of parties generated by QNewHon() queries,
C to be the set of corrupted parties in PK and H = PK\C to be the set of honest parties. Let qxx be
the number of xx-oracle queries where xx ∈ {QNewHon,QEnc,QDKGen,QCor}. For brevity, we use

the notations x̂ := (xj , zj)j∈[N] and f̂ for each ABP function f such that f̂(x̂) :=
∑

j∈[N] f(xj)
⊤
zj .

Given λ ∈ N, we denote by AdvGi
the advantage of an PPT adversary A in each game Gi, and Advxx

be the best advantage of any PPT adversary against the primitive xx that is setup with λ.
Since the UZS security applies only when there are more than one honest client, we consider two

cases: only one honest client and more than one honest client.
The case of one honest client H = {pk⋆}. From the facts in Remark 4, any U ∈ S(PK), any

QEnc(pk⋆, x̂0
pk⋆ , x̂

1
pk⋆ ,U , ℓM) query and any QDKGen(pk⋆, (f̂pk)pk∈U ,U), then it must hold that

f̂pk⋆(x̂
0
pk⋆)− f̂pk⋆(x̂

1
pk⋆) = 0

This is also the admissibility condition of AWIPE. Following a strategy similar to the case of one
honest client in Theorem 2, we construct a sequence of hybrid games:

Gpk⋆

0 : This is the real game with one honest client pk⋆.

Gpk⋆

1 : The change is that the pseudorandom function PRFkpk⋆
is replaced by a random function RF.

The indistinguishability is implied by the security of the PRF.

Gpk⋆

1.U : For each U , the change is that instead of depending on the bit b, for every QEnc(pk, x̂0, x̂1,U , ℓM)
query, the challenger chooses x̂0 to generate the answer.

32

Construction:

� SetUp(1λ): Generates PG ← PGGen(1λ) and sets up parameters:

aipp← aiSetup(1λ) upp← SetUp(1λ) app← aSetup(1λ).

It returns
pp = (PG, aipp, upp, app).

The parameters pp are implicit to other algorithms.
� KeyGen(): Each client samples

• a PRF key kpk
$←− KPRF;

• UZS keys (upk, uskpk)← KeyGen();
• AoNE keys (apk, askpk)← aKeyGen().

It returns pk = (upk, apk) and skpk = (kpk, uskpk, askpk).
� Enc(skpk,m): Parses m = ((xj ,zj)j∈[N],UM , ℓM)a and computes

1. a UZS token: bpk,UM ,ℓM ← TokGen(uskpk,UM , ℓM);
2. a random coin for AWIPE key generation: coinpk ← PRFkpk(UM);

3. a AWIPE secret key: aiskpk = aiKeyGen(1
|UM |
ip ; coinpk);

4. an AWIPE encryption:

aictpk ← aiEnc(aiskpk, (xj ,zj)j∈[N], [bpk,UM ,ℓM , 0]1);

5. an AoNE layer on ictpk:

actpk ← aEnc(askpk, (aictpk,UM , ℓM , ”ct”)).

It returns the ciphertext
ctpk = (actpk,UM , ℓM).

If pk /∈ UM , it returns ⊥.
� DKGen(skpk, k): Parses k = (f := (fpk, pk)pk∈UK ,UK) and computes

1. a UZS seed: [apk,UKℓf]2 ← SeedGen(uskpk,UK , ℓf);
b

2. a random coin for AWIPE key generation: coinpk ← PRFkpk(UK);

3. a AWIPE secret key: aiskpk = aiKeyGen(1
|UK |
ip ; coinpk);

4. an AWIPE decryption key:

aidkpk ← aiDKGen(aiskpk, fpk, [apk,ℓf , 0]2);

5. an AoNE layer on aidkpk:

actpk ← aEnc(askpk, (aidkpk,UK , ℓf , ”dk”)).

It returns the decryption key
dkpk = (actpk,UK , ℓf).

If pk ∈ UK , it returns ⊥.
� Dec ((dkpk)pk∈UK , (ctpk)pk∈UM , (UM , ℓM), (UK , ℓf)): If UM = UK = U is not true, it returns ⊥.

Otherwise,
1. it parses dkpk = (actpk,U , ℓf) and recovers the AWIPE decryption keys

(aidkpk)pk∈U = aDec((actpk)pk∈U ,U , ℓf);

2. it parses ctpk = (act′pk,U , ℓM) and recovers the AWIPE ciphertexts

(aictpk)pk∈U = aDec((act′pk)pk∈U ,U , ℓM);

It returns [α]T =
∑

pk∈U aiDec(aictpk, aidkpk).

a Each client can choose an arbitrary polynomial number N of AWS inputs.
b ℓf ∈ LK contains a description of f .

Fig. 12. DDFE for Attribute-Weighted Sums

33

The advantage of A is then upper bounded by qQEnc · AdvAWIPE + AdvPRF.
The case of more than one honest client. Let QM and QK be the set of encryption queries

and decryption key queries sent in one shot by A respectively. We proceed via a hybrid argument:
we describe the global changes in the IND game by using the games G0, G1, G2 and G3; the
transition between G2 and G3 requires intermediate games (G2.(U,ℓM).i)i∈[5] (see Figure 13) for each
pair (U , ℓM) ∈ QM . Notably, the game G0 corresponds to sel-sym-nfh-IND security game as de�ned
in De�nition 6, and the game G3 corresponds to the case where adversary's advantage is 0 since there
is no challenge bit b.

Game G1: The change is that the challenger uses a random function RFpk instead of PRFkpk
for

pk ∈ H. The indistinguishability is implied by the security of the pseudorandom functions.
Game G2: When pk ∈ H, a decryption key query (pk, (f̂pk)pk∈UK

,UK) ∈ QK is said to be incomplete

if there exists pk′ ∈ H ∩ UK and the key query (pk′, (f̂pk)pk∈UK
,UK) /∈ QK . For that query, actpk

is changed to the encapsulation of (0,UK , ℓf , ”dk”). Similarly, when pk ∈ H, an encryption query
(pk, x̂0

pk, x̂
1
pk,UM , ℓM) ∈ QM is said to be incomplete if there exists pk′ ∈ H∩UM and the encryp-

tion query (pk′, x̂′0
pk, x̂

′1
pk,UM , ℓM) /∈ QM . For that query, actpk is changed to the encapsulation of

(0,UM , ℓM , ”ct”). The indistinguishability is implied by the security of the AoNE scheme.
Game G3: In this game, for every complete encryption query on (pk, x̂0

pk, x̂
1
pk,UM , ℓM), the challenger

sets the AWIPE message as (x̂0
pk, [bpk,UM ,ℓM , 0]1). There is thus no dependence on the challenge

bit b in this game, so AdvG3 = 0.

To avoid duplicate arguments, we omit lemmas for the transitions from G0 to G2. The transitions in
this stage are well-established and can be referenced in the proof for FH-IP-DDFE (see in Theorem 2
and Figure 11). Instead, we focus on the transition from G2 to G3, which is done by using the
following intermediate games for each (U , ℓM) ∈ QM :

Game G2.(U,ℓM).1: The change is that for every complete decryption key query on (pk, (f̂pk)pk∈U ,U),
the challenger sets the AWIPE key as (f̂pk, [apk,U,ℓf ,a

⊤
pk,U,ℓf

bpk,U,ℓM]2), and for every complete en-

cryption query on (pk, x̂0
pk, x̂

1
pk,U , ℓM), the challenger sets the AWIPEmessage as (x̂b

pk, [0
|U|−1, 1]1).

The indistinguishability is implied by the security of the AWIPE scheme, given in Lemma 10.
Game G2.(U,ℓM).2: The change is that for every complete decryption key query on (pk, (f̂pk)pk∈U ,U),

the challenger sets the AWIPE key as (f̂pk, [apk,U,ℓf , Rpk,U,ℓM ,ℓf]2) where (Rpk,U,ℓM ,ℓf)pk∈H∩U are
sampled uniformly such that∑

pk∈H∩U

Rpk,U,ℓM ,ℓf =
∑

pk∈C∩U

a⊤
pk,U,ℓf

bpk,U,ℓM .

The indistinguishability is implied by the security of the UZS scheme, given in Lemma 11.
Game G2.(U,ℓM).3: The change is that given a set of (U , ℓM)-involved complete encryption queries on

{(pk, x̂τ,0
pk , x̂

τ,1
pk ,U , ℓM)}τ∈[qpk,U,ℓM

], to answer any complete decryption-key query on (pk, (f̂pk)pk∈U ,U),
the challenger sets the AWIPE key as (f̂pk, [apk,U,ℓf , Rpk,U,ℓM ,ℓf +∆b

pk,U,ℓM ,ℓf
]2) where

∆b
pk,U,ℓM ,ℓf

= f̂pk(x̂
0,τ
pk)− f̂pk(x̂

b,τ
pk) ∀τ ∈ [qpk,U,ℓM],∑

pk∈H∩U

∆b
pk,U,ℓM ,ℓf

= 0

as indicated in Remark 4. The indistinguishability is perfect, given in Lemma 12.
Game G2.(U,ℓM).4: The change is that for every complete decryption-key query on (pk, (f̂pk)pk∈U ,U),

the challenger sets the AWIPE key as (f̂pk, [apk,U,ℓf ,a
⊤
pk,U,ℓf

bpk,U,ℓM]2). This change is symmetric
to the change in G2.(U,ℓM).2, and then the indistinguishability is implied by the security of the
UZS scheme.

Game G2.(U,ℓM)+1.0 := G2.(U,ℓM).5: For the subsequent pair ((U , ℓM) + 1) of (U , ℓM) in QM , the

change is that for every complete decryption key query on (pk, (f̂pk)pk∈U ,U), the challenger sets the
AWIPE key as (f̂pk, [apk,U,ℓf , 0]2), and for every complete encryption query on (pk, x̂0

pk, x̂
1
pk,U , ℓM),

the challenger sets the AWIPE message as (x̂b
pk, [bpk,U,ℓM , 0]1). The indistinguishability is implied

by the security of the AWIPE scheme, given in Lemma 13.

34

By using a recursive transition through all (U , ℓM) ∈ QM , one comes to the �nal game G3. One
completes the theorem by having

Advsel-sym-nfh
AWS-DDFE ≤ 2qQEnc(qQNewHon − qQCor) · Advsel-sym-fh

AWIPE + 2qQEnc · Advotu-staUZS

+ Advsel-sym-nfh
AoNE + (qQNewHon − qQCor) · AdvPRF.

⊓⊔

Game Adjustment Assumption

aiEnc:

G2.(U,ℓM).0 (U ′, ℓ′M) < (U , ℓM): (x̂0
pk, bpk,U′,ℓ′

M
, 0) Hybrids on

(U ′, ℓ′M) ≥ (U , ℓM): (x̂b
pk, bpk,U′,ℓ′

M
, 0) (U ′, ℓ′M) < (U , ℓM)

aiDKGen: same as in G2

aiEnc:

G2.(U,ℓM).1 (U ′, ℓ′M) = (U , ℓM) : (x̂b
pk,0

|U|−1, 1) IND of AWIPE

aiKeyGen:

U ′ = U : (f̂pk,apk,U,ℓf ,a
⊤
pk,U,ℓf

· bpk,U,ℓM)

aiEnc: same as in G2.(U,ℓM).1

G2.(U,ℓM).2 aiDKGen: IND of UZS

U ′ = U : (f̂pk,apk,U,ℓf , Rpk,U,ℓM ,ℓf) where∑
pk∈H∩U Rpk,U,ℓM ,ℓf = −

∑
pk∈C∩U a⊤

pk,U,ℓf
· bpk,U,ℓM

aiEnc: same as in G2.(U,ℓM).1

aiDKGen:

G2.(U,ℓM).3 U ′ = U : (f̂pk,apk,U,ℓf , Rpk,U,ℓM ,ℓf +∆b
pk,U,ℓM ,ℓf

) Statistics

where∑
pk∈H∩U Rpk,U,ℓM ,ℓf = −

∑
pk∈C∩U a⊤

pk,U,ℓf
· bpk,U,ℓM

∆b
pk,U,ℓM ,ℓf

= f̂pk(x̂
0
pk)− f̂pk(x̂

b
pk)

aiEnc: same as in G2.(U,ℓM).1

aiDKGen:

G2.(U,ℓM).4 U ′ = U : (f̂pk,apk,U,ℓf ,a
⊤
pk,U,ℓf

· bpk,U,ℓM +∆b
pk,U,ℓM ,ℓf

) IND of UZS

where

∆b
pk,U,ℓM ,ℓf

= f̂pk(x̂
0
pk)− f̂pk(x̂

b
pk)

aiEnc:

G2.(U,ℓM)+1.0 := (U ′, ℓ′M) = (U , ℓM) : (x̂0
pk, bpk,U,ℓM , 0) IND of AWIPE

G2.(U,ℓM).5 aiKeyGen:

U ′ = U : (f̂pk,apk,U,ℓf , 0)

Fig. 13. Intermediate hybrids for the transition fromG2 toG3 in Theorem 3. We denote by (U ′, ℓ′M) < (U , ℓM)
when (U ′, ℓ′M) is a previous pair of (U , ℓM) in the encryption-query set QM .

Lemma 10 (AWS-DDFE: Transition from G2.(U,ℓM).0 to G2.(U,ℓM).1). For any PPT adversary
A, the advantage in distinguishing two games is∣∣∣AdvG2.(U,ℓM).0

− AdvG2.(U,ℓM).1

∣∣∣ ≤ (qQNewHon − qQCor) · Advsel-sym-fh
AWIPE .

35

Proof. On a �xed user set U , we proceed by using multiple hybrid games for each pk ∈ H. We build
an adversary B against the sel-sym-fh security of AWIPE from an adversary A that distinguishes
between two games in the transition. To simulate a AWS-DDFE challenger, B uses the AWIPE oracles
to handle all AWIPE related operations for the reply of each (pk,U)-involved query from A.

� For each complete QDKGen(pk, (f̂pk)pk∈U ,U) query, B prepares the AWIPE key as

k0 = (f̂pk, [apk,U,ℓf , 0]2),

k1 = (f̂pk, [apk,U,ℓf ,a
⊤
pk,U,ℓf

· bpk,U,ℓM]2)

where f = (f̂pk)pk∈U and sends (pk, k0, k1) to the AWIPE decryption-key oracle. It uses the
returned decryption key aidkpk to complete the reply to A.

� For each complete QEnc(pk, x̂0
pk, x̂

1
pk,U , ℓM) query, B prepares the AWIPE message as

m0 = (x̂b
pk, [bpk,U,ℓM , 0]1),

m1 = (x̂b
pk, [0

|U|−1, 1]1);

and sends (pk,m0,m1) to the AWIPE encryption oracle. It uses the returned ciphertext aictpk to
complete the reply to A.

� B outputs A's guess for the challenge bit AWIPE.b.

Let FAWIPE be the functionality de�ned in De�nition 10 for AWIPE. The admissibility condition (∗)
of AWIPE in each transition holds since one always has

FAWIPE(k
0,m0) = [f̂pk(x̂

b
pk) + apk,U,ℓf

⊤ · bpk,U,ℓM]T = FAWIPE(k
1,m1).

Therefore, in each transition of the multiple hybrid games for each pk ∈ H, when AWIPE.b = 0, A is
playing the previous game; when AWIPE.b = 1, A is playing the subsequent game. Since the number
of pk ∈ H queried to either QEnc or QDKGen is bounded by (qQNewHon − qQCor), one has∣∣∣AdvG2.(U,ℓM).0

− AdvG2.(U,ℓM).1

∣∣∣ ≤ (qQNewHon − qQCor) · Advsel-sym-fh
AWIPE .

⊓⊔

Lemma 11 (AWS-DDFE: Transition from G2.(U,ℓM).1 to G2.(U,ℓM).2). For any PPT adversary
A, the advantage in distinguishing two games is∣∣∣AdvG2.(U,ℓM).1

− AdvG2.(U,ℓM).2

∣∣∣ ≤ Advotu-staUZS .

Proof. We build an adversary B against the otu-sta-IND security of UZS from an adversary A that
distinguishes between two games in the transition. To simulate a AWS-DDFE challenger, B uses the
UZS oracles to handle all UZS related operations.

� For each complete QEnc(pk, x̂0
pk, x̂

1
pk,U ′, ℓ′M) query, B prepares the AWIPE message as

• If (U ′, ℓ′M) ̸= (U , ℓM): it obtains bpk,U ′,ℓ′M
← QTokGen(pk,U ′, ℓ′M) to complete m.

• If (U ′, ℓ′M) = (U , ℓM): it does not have to obtain bpk,U,ℓM as m = (x̂b, [0|U|−1, 1]1) in this case.

� For each complete QDKGen(pk, (f̂pk)pk∈U ,U) query, B prepares the AWIPE key as
• B obtains [apk,U,ℓf]2 ← QSeedGen(pk,U , ℓf);
• B obtains (sharepk,U,ℓf ||ℓM)pk∈U∩H ← QShare(U , ℓf ||ℓM);

where f = (fpk)pk∈U and implicitly completes the key with the inner-product input in G2 as

k = (f̂pk, [apk,U,ℓf , sharepk,U,ℓf ||ℓM]2).

The admissibility condition (∗) of UZS holds since

� all the corruption queries in AWS-DDFE are sent in one shot;
� QShare(U , ℓf ||ℓM) queries are made for the same ℓM on every U while there are no QTokGen(pk,U , ℓM)
queries required.

36

When UZS.b = 0, one has sharepk,U,ℓf ||ℓM = [a⊤
pk,U,ℓf

· bpk,U,ℓM]2 which corresponds to G2.(U,ℓM).1;

and when UZS.b = 1, one has (sharepk,U,ℓf ||ℓM)pk∈H∩U
$←− RH∩U,ℓf ||ℓM (as de�ned in De�nition 16),

which corresponds to G2.(U,ℓM).2. Therefore, one has∣∣∣AdvG2.(U,ℓM).1
− AdvG2.(U,ℓM).2

∣∣∣ ≤ Advotu-staUZS .

⊓⊔

Lemma 12 (AWS-DDFE: Transition from G2.(U,ℓM).2 to G2.(U,ℓM).3). The two games G2.(U,ℓM).2

to G2.(U,ℓM).3 are identical.

Proof. From the fact that
∑

pk∈H∩U ∆b
pk,U,ℓM ,ℓf

= 0, for any random shares
(
Rpk,U,ℓM ,ℓf

)
pk∈H∩U of

the relation ∑
pk∈H∩U

Rpk,U,ℓM ,ℓf = −
∑

pk∈C∩U

a⊤
pk,U,ℓf

· bpk,U,ℓM ,

one has
(
Rpk,U,ℓM ,ℓf +∆b

pk,U,ℓM ,ℓf

)
pk∈H∩U

are also random shares of the same relation. ⊓⊔

Lemma 13 (AWS-DDFE: Transition from G2.(U,ℓM).4 to G2.(U,ℓM).5). For any PPT adversary
A, the advantage in distinguishing two games is∣∣∣AdvG2.(U,ℓM).4

− AdvG2.(U,ℓM).5

∣∣∣ ≤ (qQNewHon − qQCor) · Advsel-sym-fh
AWIPE .

Proof. For any pk ∈ H, given a set of complete encryption queries on {(pk, x̂τ,0
pk , x̂

τ,1
pk ,U , ℓM)}τ∈[qpk,U,ℓM

]

that share the same (U , ℓM) and any complete decryption-key query on (pk, (f̂pk)pk∈U ,U), one has
the following facts by the Remark 4:

1. ∆b
pk,U,ℓM ,ℓf

= f̂pk(x̂
0,τ
pk)− f̂pk(x̂

b,τ
pk) ∀τ ∈ [qpk,U,ℓM],

2.
∑

pk∈H∩U ∆b
pk,U,ℓM ,ℓf

= 0.

We proceed by using multiple hybrid games for each pk ∈ H. We build an adversary B against
the sel-sym-fh security of AWIPE from an adversary A that distinguishes between two games in the
transition. To simulate a AWS-DDFE challenger, B uses the AWIPE oracles to handle all AWIPE related
operations for the reply of each (pk,U)-involved query from A.

� For each complete QDKGen(pk, (f̂pk)pk∈U ,U) query, B prepares the AWIPE key as

k0 = (f̂pk, [apk,U,ℓf ,a
⊤
pk,U,ℓf

· bpk,U,ℓM +∆b
pk,U,ℓM ,ℓf

]2)

k1 = (f̂pk, [apk,U,ℓf ,a
⊤
pk,U,ℓf

· bpk,U,ℓM]2)

where f = (fpk)pk∈U and sends (pk, k0, k1) to the AWIPE decryption key generation oracle. It uses
the returned decryption key aidkpk to complete the reply to A.

� For each complete QEnc(pk, x̂0
pk, x̂

1
pk,U , ℓM) query, B prepares the AWIPE message as

m0 = (x̂b
pk, [0

|U|−1, 1]1);

m1 = (x̂0
pk, [bpk,U,ℓM , 0]1);

and sends (pk, m̂0, m̂1) to the AWIPE encryption oracle. It uses the returned ciphertext aictpk to
complete the reply to A.

� B outputs A's guess for the challenge bit AWIPE.b.

Let FAWIPE be the functionality de�ned in De�nition 10 for AWIPE. The admissibility condition (∗)
of AWIPE in each transition holds since one always has

FAWIPE(k
0,m0) = [(f̂pk(x̂

b
pk) +∆b

pk,U,ℓM ,ℓf
) + a⊤

pk,U,ℓf
· bpk,U,ℓM]T

= [f̂pk(x̂
0
pk) + a⊤

pk,U,ℓf
· bpk,U,ℓM]T (by the above fact 1)

= FAWIPE(k
1,m1)

37

The index τ is omitted in the above equalities as ∆b
pk,U,ℓM ,ℓf

applies to all pairs of τ ∈ [qpk,U,ℓM]

and f = (f̂pk)pk∈U . Therefore, in each transition of the multiple hybrid games for each pk ∈ H, when
AWIPE.b = 0, A is playing the previous game; when AWIPE.b = 1, A is playing the subsequent game.
Since the number of pairs pk ∈ H queried to either QEnc or QDKGen is bounded by (qQNewHon−qQCor),
one has ∣∣∣AdvG2.(U,ℓM).4

− AdvG2.(U,ℓM).5

∣∣∣ ≤ (qQNewHon − qQCor) · Advsel-sym-fh
AWIPE .

⊓⊔

Acknowledgements. We would like to thank Ky Nguyen, Duong Hieu Phan and David Pointcheval
for fruitful discussions that motivated this work. The project was supported by the PhD funding from
�Institut Polytechnique de Paris�.

References

ABDP15. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional encryption schemes for
inner products. In PKC 2015: 18th International Conference on Theory and Practice of Public

Key Cryptography, Lecture Notes in Computer Science 9020, pages 733�751, Gaithersburg, MD,
USA, March 30 � April 1, 2015. Springer, Heidelberg, Germany.

ABG19. M. Abdalla, F. Benhamouda, and R. Gay. From single-input to multi-client inner-product func-
tional encryption. In Advances in Cryptology � ASIACRYPT 2019, Part III, Lecture Notes in

Computer Science 11923, pages 552�582, Kobe, Japan, December 8�12, 2019. Springer, Heidel-
berg, Germany.

ABKW19. M. Abdalla, F. Benhamouda, M. Kohlweiss, and H. Waldner. Decentralizing inner-product func-
tional encryption. In PKC 2019: 22nd International Conference on Theory and Practice of Public

Key Cryptography, Part II, Lecture Notes in Computer Science 11443, pages 128�157, Beijing,
China, April 14�17, 2019. Springer, Heidelberg, Germany.

ABM+20. M. Abdalla, F. Bourse, H. Marival, D. Pointcheval, A. Soleimanian, and H. Waldner. Multi-client
inner-product functional encryption in the random-oracle model. In SCN 20: 12th International

Conference on Security in Communication Networks, Lecture Notes in Computer Science 12238,
pages 525�545, Amal�, Italy, September 14�16, 2020. Springer, Heidelberg, Germany.

ACF+18. M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu. Multi-input functional encryption for
inner products: Function-hiding realizations and constructions without pairings. In Advances in

Cryptology � CRYPTO 2018, Part I, Lecture Notes in Computer Science 10991, pages 597�627,
Santa Barbara, CA, USA, August 19�23, 2018. Springer, Heidelberg, Germany.

ACF+20. S. Agrawal, M. Clear, O. Frieder, S. Garg, A. O'Neill, and J. Thaler. Ad hoc multi-input functional
encryption. In ITCS 2020: 11th Innovations in Theoretical Computer Science Conference, pages
40:1�40:41, Seattle, WA, USA, January 12�14, 2020. LIPIcs.

ACGU20. M. Abdalla, D. Catalano, R. Gay, and B. Ursu. Inner-product functional encryption with �ne-
grained access control. In Advances in Cryptology � ASIACRYPT 2020, Part III, Lecture Notes in
Computer Science 12493, pages 467�497, Daejeon, South Korea, December 7�11, 2020. Springer,
Heidelberg, Germany.

AGT21a. S. Agrawal, R. Goyal, and J. Tomida. Multi-input quadratic functional encryption from pairings.
In Advances in Cryptology � CRYPTO 2021, Part IV, Lecture Notes in Computer Science 12828,
pages 208�238, Virtual Event, August 16�20, 2021. Springer, Heidelberg, Germany.

AGT21b. S. Agrawal, R. Goyal, and J. Tomida. Multi-party functional encryption. In TCC 2021: 19th

Theory of Cryptography Conference, Part II, Lecture Notes in Computer Science 13043, pages
224�255, Raleigh, NC, USA, November 8�11, 2021. Springer, Heidelberg, Germany.

AGT22. S. Agrawal, R. Goyal, and J. Tomida. Multi-input quadratic functional encryption: Stronger
security, broader functionality. In TCC 2022: 20th Theory of Cryptography Conference, Part I,
Lecture Notes in Computer Science 13747, pages 711�740, Chicago, IL, USA, November 7�10,
2022. Springer, Heidelberg, Germany.

AGW20. M. Abdalla, J. Gong, and H. Wee. Functional encryption for attribute-weighted sums from k-Lin.
In Advances in Cryptology � CRYPTO 2020, Part I, Lecture Notes in Computer Science 12170,
pages 685�716, Santa Barbara, CA, USA, August 17�21, 2020. Springer, Heidelberg, Germany.

AJ15. P. Ananth and A. Jain. Indistinguishability obfuscation from compact functional encryption. In
Advances in Cryptology � CRYPTO 2015, Part I, Lecture Notes in Computer Science 9215, pages
308�326, Santa Barbara, CA, USA, August 16�20, 2015. Springer, Heidelberg, Germany.

38

ALMT20. S. Agrawal, B. Libert, M. Maitra, and R. Titiu. Adaptive simulation security for inner product
functional encryption. In PKC 2020: 23rd International Conference on Theory and Practice

of Public Key Cryptography, Part I, Lecture Notes in Computer Science 12110, pages 34�64,
Edinburgh, UK, May 4�7, 2020. Springer, Heidelberg, Germany.

ALS16. S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner products, from
standard assumptions. In Advances in Cryptology � CRYPTO 2016, Part III, Lecture Notes in

Computer Science 9816, pages 333�362, Santa Barbara, CA, USA, August 14�18, 2016. Springer,
Heidelberg, Germany.

ATY23. S. Agrawal, J. Tomida, and A. Yadav. Attribute-based multi-input FE (and more) for attribute-
weighted sums. In Advances in Cryptology � CRYPTO 2023, Part IV, Lecture Notes in Computer

Science 14084, pages 464�497, Santa Barbara, CA, USA, August 20�24, 2023. Springer, Heidel-
berg, Germany.

BCFG17. C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay. Practical functional encryption for quadratic
functions with applications to predicate encryption. In Advances in Cryptology � CRYPTO 2017,

Part I, Lecture Notes in Computer Science 10401, pages 67�98, Santa Barbara, CA, USA, Au-
gust 20�24, 2017. Springer, Heidelberg, Germany.

BF01. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In Advances

in Cryptology � CRYPTO 2001, Lecture Notes in Computer Science 2139, pages 213�229, Santa
Barbara, CA, USA, August 19�23, 2001. Springer, Heidelberg, Germany.

BIK+17. K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage,
A. Segal, and K. Seth. Practical secure aggregation for privacy-preserving machine learning. In
ACM CCS 2017: 24th Conference on Computer and Communications Security, pages 1175�1191,
Dallas, TX, USA, October 31 � November 2, 2017. ACM Press.

BJK15. A. Bishop, A. Jain, and L. Kowalczyk. Function-hiding inner product encryption. In Advances in

Cryptology � ASIACRYPT 2015, Part I, Lecture Notes in Computer Science 9452, pages 470�491,
Auckland, New Zealand, November 30 � December 3, 2015. Springer, Heidelberg, Germany.

BSW11. D. Boneh, A. Sahai, and B. Waters. Functional encryption: De�nitions and challenges. In
TCC 2011: 8th Theory of Cryptography Conference, Lecture Notes in Computer Science 6597,
pages 253�273, Providence, RI, USA, March 28�30, 2011. Springer, Heidelberg, Germany.

BV15. N. Bitansky and V. Vaikuntanathan. Indistinguishability obfuscation from functional encryption.
In 56th Annual Symposium on Foundations of Computer Science, pages 171�190, Berkeley, CA,
USA, October 17�20, 2015. IEEE Computer Society Press.

BW07. D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data. In TCC 2007:

4th Theory of Cryptography Conference, Lecture Notes in Computer Science 4392, pages 535�554,
Amsterdam, The Netherlands, February 21�24, 2007. Springer, Heidelberg, Germany.

CDG+18. J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval. Decentralized multi-client
functional encryption for inner product. In Advances in Cryptology � ASIACRYPT 2018, Part II,
Lecture Notes in Computer Science 11273, pages 703�732, Brisbane, Queensland, Australia, De-
cember 2�6, 2018. Springer, Heidelberg, Germany.

CDSG+20. J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval. Dynamic decentralized
functional encryption. In Advances in Cryptology � CRYPTO 2020, Part I, Lecture Notes in

Computer Science 12170, pages 747�775, Santa Barbara, CA, USA, August 17�21, 2020. Springer,
Heidelberg, Germany.

Cha07. M. Chase. Multi-authority attribute based encryption. In TCC 2007: 4th Theory of Cryptog-

raphy Conference, Lecture Notes in Computer Science 4392, pages 515�534, Amsterdam, The
Netherlands, February 21�24, 2007. Springer, Heidelberg, Germany.

CLT18. G. Castagnos, F. Laguillaumie, and I. Tucker. Practical fully secure unrestricted inner product
functional encryption modulo p. In Advances in Cryptology � ASIACRYPT 2018, Part II, Lecture
Notes in Computer Science 11273, pages 733�764, Brisbane, Queensland, Australia, December 2�
6, 2018. Springer, Heidelberg, Germany.

DP19. E. Dufour Sans and D. Pointcheval. Unbounded inner-product functional encryption with succinct
keys. In ACNS 19: 17th International Conference on Applied Cryptography and Network Security,
Lecture Notes in Computer Science 11464, pages 426�441, Bogota, Colombia, June 5�7, 2019.
Springer, Heidelberg, Germany.

GGG+14. S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi, and H.-
S. Zhou. Multi-input functional encryption. In Advances in Cryptology � EUROCRYPT 2014,
Lecture Notes in Computer Science 8441, pages 578�602, Copenhagen, Denmark, May 11�15,
2014. Springer, Heidelberg, Germany.

GKL+13. S. D. Gordon, J. Katz, F.-H. Liu, E. Shi, and H.-S. Zhou. Multi-input functional encryption.
Cryptology ePrint Archive, Report 2013/774, 2013. https://eprint.iacr.org/2013/774.

GPSW06. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for �ne-grained access
control of encrypted data. In ACM CCS 2006: 13th Conference on Computer and Communications

https://eprint.iacr.org/2013/774

39

Security, pages 89�98, Alexandria, Virginia, USA, October 30 � November 3, 2006. ACM Press.
Available as Cryptology ePrint Archive Report 2006/309.

IW14. Y. Ishai and H. Wee. Partial garbling schemes and their applications. In ICALP 2014: 41st

International Colloquium on Automata, Languages and Programming, Part I, Lecture Notes in

Computer Science 8572, pages 650�662, Copenhagen, Denmark, July 8�11, 2014. Springer, Hei-
delberg, Germany.

KSW08. J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In Advances in Cryptology � EUROCRYPT 2008, Lecture Notes in
Computer Science 4965, pages 146�162, Istanbul, Turkey, April 13�17, 2008. Springer, Heidelberg,
Germany.

LT19. B. Libert and R. Titiu. Multi-client functional encryption for linear functions in the standard
model from LWE. In Advances in Cryptology � ASIACRYPT 2019, Part III, Lecture Notes in

Computer Science 11923, pages 520�551, Kobe, Japan, December 8�12, 2019. Springer, Heidel-
berg, Germany.

LW11. A. B. Lewko and B. Waters. Decentralizing attribute-based encryption. In Advances in Cryptology

� EUROCRYPT 2011, Lecture Notes in Computer Science 6632, pages 568�588, Tallinn, Estonia,
May 15�19, 2011. Springer, Heidelberg, Germany.

LWG+23. Y. Li, J. Wei, F. Guo, W. Susilo, and X. Chen. Robust decentralized multi-client functional
encryption: Motivation, de�nition, and inner-product constructions. In Advances in Cryptol-

ogy � ASIACRYPT 2023, Part V, Lecture Notes in Computer Science 14442, pages 134�165,
Guangzhou, China, December 4�8, 2023. Springer, Heidelberg, Germany.

MJ18. Y. Michalevsky and M. Joye. Decentralized policy-hiding ABE with receiver privacy. In ES-

ORICS 2018: 23rd European Symposium on Research in Computer Security, Part II, Lecture Notes
in Computer Science 11099, pages 548�567, Barcelona, Spain, September 3�7, 2018. Springer, Hei-
delberg, Germany.

MKMS22. J. M. B. Mera, A. Karmakar, T. Marc, and A. Soleimanian. E�cient lattice-based inner-product
functional encryption. In PKC 2022: 25th International Conference on Theory and Practice of

Public Key Cryptography, Part II, Lecture Notes in Computer Science 13178, pages 163�193,
Virtual Event, March 8�11, 2022. Springer, Heidelberg, Germany.

NPP22. K. Nguyen, D. H. Phan, and D. Pointcheval. Multi-client functional encryption with �ne-grained
access control. In Advances in Cryptology � ASIACRYPT 2022, Part I, Lecture Notes in Computer

Science 13791, pages 95�125, Taipei, Taiwan, December 5�9, 2022. Springer, Heidelberg, Germany.
NPP23a. D. D. Nguyen, D. H. Phan, and D. Pointcheval. Veri�able decentralized multi-client functional

encryption for inner product. In Advances in Cryptology � ASIACRYPT 2023, Part V, Lecture
Notes in Computer Science 14442, pages 33�65, Guangzhou, China, December 4�8, 2023. Springer,
Heidelberg, Germany.

NPP23b. K. Nguyen, D. H. Phan, and D. Pointcheval. Optimal security notion for decentralized multi-
client functional encryption. In ACNS 23: 21st International Conference on Applied Cryptography

and Network Security, Part II, Lecture Notes in Computer Science 13906, pages 336�365, Kyoto,
Japan, June 19�22, 2023. Springer, Heidelberg, Germany.

Sha84. A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryptology �

CRYPTO'84, Lecture Notes in Computer Science 196, pages 47�53, Santa Barbara, CA, USA,
August 19�23, 1984. Springer, Heidelberg, Germany.

SV23. E. Shi and N. Vanjani. Multi-client inner product encryption: Function-hiding instantiations
without random oracles. In PKC 2023: 26th International Conference on Theory and Practice

of Public Key Cryptography, Part I, Lecture Notes in Computer Science 13940, pages 622�651,
Atlanta, GA, USA, May 7�10, 2023. Springer, Heidelberg, Germany.

SW05. A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In Advances in Cryptology �

EUROCRYPT 2005, Lecture Notes in Computer Science 3494, pages 457�473, Aarhus, Denmark,
May 22�26, 2005. Springer, Heidelberg, Germany.

TT18. J. Tomida and K. Takashima. Unbounded inner product functional encryption from bilinear
maps. In Advances in Cryptology � ASIACRYPT 2018, Part II, Lecture Notes in Computer

Science 11273, pages 609�639, Brisbane, Queensland, Australia, December 2�6, 2018. Springer,
Heidelberg, Germany.

ZLZ+24. Z. Zhu, J. Li, K. Zhang, J. Gong, and H. Qian. Registered functional encryptions from pairings.
Cryptology ePrint Archive, Paper 2024/327, 2024. https://eprint.iacr.org/2024/327.

https://eprint.iacr.org/2024/327

	Dynamic Decentralized Functional Encryptions from Pairings in the Standard Model

