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Abstract. In this paper we address the use of Neural Networks (NN) for the

assessment of the quality and hence safety of several Random Number Generators

(RNGs), focusing both on the vulnerability of classical Pseudo Random Number

Generators (PRNGs), such as Linear Congruential Generators (LCGs) and the RC4

algorithm, and extending our analysis to non-conventional data sources, such as

Quantum Random Number Generators (QRNGs) based on Vertical-Cavity Surface-

Emitting Laser (VCSEL). Among the results found, we identified a sort of classification

of generators under different degrees of susceptibility, underlining the fundamental

role of design decisions in enhancing the safety of PRNGs. The influence of network

architecture design and associated hyper-parameters variations was also explored,

highlighting the effectiveness of longer sequence lengths and convolutional neural

networks in enhancing the discrimination of PRNGs against other RNGs. Moreover,

in the prediction domain, the proposed model is able to deftly distinguish the raw

data of our QRNG from truly random ones, exhibiting a cross-entropy error of 0.52 on

the test data-set used. All these findings reveal the potential of NNs to enhance the

security of RNGs, while highlighting the robustness of certain QRNGs, in particular

the VCSEL-based variants, for high-quality random number generation applications.

1. Introduction

Random number generators (RNGs) are widely used in many applications including

cryptographycally secured communications, industrial testing, Monte Carlo simulations,

massive data processing, lotteries, quantitative finance, fundamental physics tests, etc.

[1, 2, 3, 4]. The security analysis of RNGs is a vital issue in classical and quantum

cryptographic systems in which secure unpredictable keys are necessary. For instance,

an attack against radio-frequency identification of ID cards in Taiwan highlighted the

importance of good quality random number generation because a poorly implemented

RNG allowed the factoring of 184 RSA keys out of 2 million Taiwanese ID cards [5].
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There are two types of RNGs. The first one, called Pseudorandom Number

Generators (PRNGs), are based on algorithms that deterministically expand a small

number of bits truly randomly generated (called the random seed) to a larger sequence.

The second type, called True Random Number Generators (TRNGs), produce the

random sequences by measuring some physical phenomenon that is expected to be

random. The generated numbers are further processed for compensating for possible

biases in the measurement process.

Quantum physics can be exploited to generate true random numbers that are

completely unpredictable due to the inherent randomness to quantum mechanics. The

TRNGs that use quantum sources to produce random numbers are known as Quantum

Random Number Generators (QRNGs). Most existing QRNGs are based on quantum

optics because of the availability of high-quality optical components and the possibility

of chip-size integration [2]. One of the most successful strategies for quantum random

number generation is that based on gain-switching of semiconductor lasers [6, 7, 8, 9]. In

this technique the current applied to a semiconductor laser is modulated in a periodic

way from below to above its threshold for obtaining gain-switching operation. The

pulses emitted by the laser have random phases due to the effect of spontaneous

emission noise. Laser phase noise is a source of quantum randomness resulting from

spontaneous emission [10, 11]. These pulses are mixed with their delayed versions using

an interferometer and the obtained pulses have random amplitudes. The detection and

postprocessing of these amplitudes provide the random numbers [7, 8]. Advantages

of these QRNGs include fast operation (with a flexible speed up to tens of Gbps),

robustness and the integration in photonic integrated circuits [12]. These QRNGs

are widely used in current real-world Quantum Key Distribution (QKD) systems

[9]. QRNGs based on gain-switching of an special type of semiconductor laser, the

vertical-cavity surface-emitting laser (VCSEL), have also been recently demonstrated

[13, 14, 15]. QRNGs based on VCSELs have the extra advantages of low fabrication

cost and simplicity (coherent detection is not required since the interferometric element

is removed) [13, 14, 15]. This QRNG is the specific TRNG that will be considered in

this paper.

The standard approach to experimentally evaluate the fitness of RNGs consists

of running statistical tests of the generated numbers to detect bias, correlations or

other signs of nonrandomness. Examples of the most popular tests are NIST-STS [16]

and DIEHARD [17]. Passing these tests is a necessary but not sufficient condition

for assuring the correct operation of a RNG. For instance simple PRNGs like the linear

congruential generator (LCG) pass NIST tests [18] but are not suitable for cryptographic

purposes [19, 20]. There are also several theoretical measures of pseudorandomness [21].

However they are quite difficult to test in practice because of their high computational

complexity.

An alternative approach to evaluate the randomness of a given RNG is the use

of neural networks (NN). NN are well known machine learning (ML) tools that have

led to important advances in recent years in many fields, such as image and video
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object segmentation, medical imaging, face recognition, time series prediction, signal

identification, image classification, object detection or human action recognition (see

for instance [22, 23]). Recently, several research studies [18, 24, 25, 26, 27, 28, 29, 30]

have suggested the use of neural networks for evaluating the quality of RNGs. Machine

learning can automate the testing of RNGs to detect biases, anomalies and patterns

that might compromise the integrity of the generated random sequences in applications

like security, gaming and cryptography where randomness is essential. In this way ML-

based models can provide an efficient supplement for evaluating the quality and security

of RNGs.

Two main directions have been followed to address this problem. First, NN have

been used for predicting the output of a RNG. Simple dense feedforward NN were used to

predict the next bits in LCG [24] while they were not able to predict the next bits in the

standard Python PRNG [26]. More complicated architectures have also been used. For

instance, several types of temporal pattern attention (TPA)-based deep-learning (DL)

models were used to predict the output data of both, a LCG and a chaotic semiconductor

laser [18]. The same model was not able to predict the output of a TRNG based on the

optical heterodyning of two chaotic semiconductor lasers [18], showing in this way that

this TRNG has strong resistance against the predictive model [18].

In the second direction, the NN is not trying to predict the following bit, but to

tell the RNG apart from a given golden standard RNG (GSRNG) [25]. A GSRNG is a

RNG that generates ideal random numbers. Authenticating a RNG as a GSRNG poses

another problem that is not analyzed in this paper. However we note that some PRNGs

like the Blum-Blum-Shub generator (BBS) [31] can be considered as GSRNG because

it has been demonstrated that its security is reduced to the computational difficulty of

factoring [31]. Following these ideas a NN was trained to tell a PRNG apart from a

GSRNG [25]. The method was successfully applied for searching statistical biases in two

PRNGs using multilayer Long Short-Term Memory (LSTM) neural networks [25]. The

method automatically discovered unknown types of statistical biases using LSTMs to

detect slight differences between the target PRNG’s output and ideal random numbers.

In this paper we follow this approach in order to extend the previous evaluation to

TRNGs. The particular case of TRNGs that we consider is the VCSEL-based QRNG

[13, 14]. Similarly to [25], we consider a well-trusted PRNG, HMAC-DRBG on NIST SP

800-90A [32], as our GSRNG. We train LSTM to try to tell our QRNG apart from the

GSRNG. A similar analysis is also performed for a variety of RNGs, including LCGs,

the binary codification of a large video, and linear Congruential Generator on Elliptic

Curves (EC-LCG). We also extend our analysis for considering convolutional neural

network (CNN) models. We show that the ability to distinguish between sequences

coming from the target RNG and from the GSRNG is significantly better for CNN

than for LSTM. Sequences of numbers obtained from our QRNG and the GSRNG are

indistinguishable even with the biggest LSTM or CNN that we have considered.

The paper is organized as follows. We start with a very short outline of the random

number generators in Section 2, and neural networks in Section 3. In Section 4 we briefly
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review the topics related and present our method upon the work of [25]. In Section 5

we show the results of our tests. Finally, in Section 6 we discuss our results and present

our conclusions.

2. Random number generators

In this section we describe the different types of analysed RNGs. First and second

subsections are devoted to the TRNG and PRNGs considered in this work, respectively.

2.1. VCSEL-based Quantum Random Number Generator

A complete description of the QRNG based on gain-switching VCSELs is presented in

[13, 14]. VCSELs are characterised by the possibility of emission in two orthogonal

linearly polarised modes [33]. This means that the lasing electrical field can oscillate

along two orthogonal directions in the plane perpendicular to the laser beam. In [13, 14]

the VCSEL is gain-switched, that is the current is periodically modulated in such a way

that the linearly polarised mode that is preferably excited in each period is random.

Random excitation of the VCSEL polarisations can be considered as a quantum entropy

source because it is triggered by the spontaneous emission events that are quantum

mechanical in nature [10].

We show in Fig. 1, with blue and red lines, the temporal waveform of the signals

corresponding to both linearly polarised modes (x and y) obtained in the experiment,

Vx(t) and Vy(t). The experimental setup is shown in Fig. 1 of [14]. These signals are

proportional to the power of the x− and y−linearly polarised modes, respectively. The

VCSEL switch-off in all pulses (22 consecutive pulses are shown) in such a way that

there is a random excitation of both linearly polarised modes in each modulation period.

Random bits are obtained by comparing the x and y signals when the sum of

both signals is maximum, Vx(tmax) and Vy(tmax), respectively. If Vx(tmax) is larger than

Vy(tmax) we assign a ”0” bit, otherwise we assign a ”1” bit, as illustrated in Fig. 1. These

bits constitute the raw output of our QRNG, that as in all TRNGs, shows deviations

from the mathematical ideal of statistically independent and uniformly distributed bits

[3, 34, 35]. In fact, the raw bit sequence has not passed the NIST test suite [14]. This

problem is addressed by applying an additional post-processing step to decrease bias in

the bit stream (defined as e = p(0) − 1/2, where p(0) is the probability of obtaining

a ”0” bit) and to increase the bit entropy. We consider the post-processed bit string

based on the following result: [36] Let G be a linear corrector mapping n bits to k bits.

Then the bias of any non zero linear combination of the output bits is less or equal than

2d−1ed, where d is the minimal distance of the linear code constructed by the generator

matrix G.

We have used the efficient [n, k, d]-BCH codes defined over the finite field GF (2)

and where n+ 1 is a power of 2.
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Figure 1: Experimental time traces of the signals corresponding to the x-polarisation

(blue line), y-polarization (red line), and total power (black line). The signals at the

sampling time are also plotted with symbols.

For the raw input bits (xn−1, . . . , x0), the output (yk−1, . . . , y0) is obtained as:


gn−k . . . . . . .... g0 0... . . . 0

0 gn−k .... . . . ...g0 0 . . . . . . 0

. . . . . . . . . . . .

0 . . . . . . 0 gn−k . . . . . . g0




xn−1

xn−2

...

x0

 =


yk−1

yk−2

...

y0


where g(x) = gn−kx

k + · · ·+ g1x+ g0 is the cyclic generator polynomial of the [n, k, d]-

BCH code. Here we have considered BCH code with parameters [1023, 1003, 5] the

generator cyclic polynomial is x20 + x15 + x13 + x12 + x11 + x9 + x7 + x6 + x3 + x2 + 1.

Using this post-processing we have obtained a sequence of 3.9595 ×109 post-processed

bits that constitute the output of our QRNG [14].

2.2. Pseudorandom Number Generators

The experiment is also carried out by using two PRNG’s: the Linear Gongruential

Generator, and the linear Congruential Generator on Elliptic Curves.
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2.2.1. Linear Congruential Generator(LCG). Given positive integers a, b and m such

that gcd(a,m) = 1 the Linear Congruential Generator(LCG) is a sequence xn of

pseudorandom numbers defined by the relation

xn+1 ≡ (axn + b) mod m, n = 0, 1, . . . ,

where x0 is the seed. Unfortunately the LCG is not suitable for cryptographic

purposes, see [19, 20]. Although the author [37] claims that NIST test suites cannot

detect the linearity.

In this computational experiment we took the sequences from the rand function in the

glibc library version 2-17 without any tunning such that m = O(232) bits, and the

output of simple Python LCG code with m = O(2100).

2.2.2. Linear Congruential Generator on Elliptic Curves(EC-LCG). For a prime p, we

denote by Fp
∼= Zp the field of p elements and, we assume that it is represented by the

set {0, 1, . . . , p− 1}.
Let E be an elliptic curve defined over Fp given by an affine Weierstrass equation,

which for gcd(p, 6) = 1 takes form Y 2 = X3 + aX + b, for some a, b ∈ Fp with

4a3 + 27b2 ̸= 0.

We recall that the set E(Fp) of Fp-rational points forms an abelian group, with

the point at infinity O as the neutral element of this group (which does not have affine

coordinates).

For a given point G ∈ E(Fp) the Linear Congruential Generator on Elliptic Curves,

EC-LCG is a sequence Un of pseudorandom numbers defined by the relation

Un = Un−1 ⊕G = nG⊕ U0, n = 1, 2, . . . ,

where ⊕ denote the group operation in E(Fp) and U0 ∈ E(Fp) is the initial value or

seed. We refer to G as the composer of the EC-LCG.

The EC-LCG provides a very attractive alternative to linear and non-linear

congruential generators with many applications to cryptography and it has been

extensively studied in the literature, see [38, 39, 40, 41].

We have generated a .txt file of 220 bits running the following SageMath code:
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f = open(’/Users/PRNG/Desktop/EC_LG.txt’, ’a’)

size_prime = 512

p=next_prime(ZZ.random_element(2**size_prime))

a=ZZ.random_element(p)

b=ZZ.random_element(p)

if (4*a**3+27*b**2)%p != 0:

C =EllipticCurve(GF(p),[a,b])

G=C.random_element()

U0=C.random_element()

for i in range(500):

V=U0+i*G

f.write(bin(V[0])[2:]+bin(V[1])[2:])

f.close()

3. Neural Networks

In the current landscape of random sequence analysis, neural networks have introduced

a paradigm shift, offering new insights and approaches to improve understanding

and processing. Random sequence analysis poses a unique set of challenges, where

discerning patterns and dependencies can be much more difficult compared to classical

structured data. In this section, we briefly summarise most promising architectures

for extracting information from random sequences, CNN and LSTM, which have

brought new possibilities for predicting and categorising the seemingly random nature

of sequences generated via TRNGs and PRNGs.

3.1. LSTM networks

A long-term memory network (LSTM) [42] is a specialised recurrent neural network

designed to model sequential data [43]. Unlike standard recurrent networks, LSTMs

have a single memory cell equipped with gating mechanisms. Within this cell, the

input sequence, whether derived from external sources or the preceding layer’s output,

undergoes intricate filtering via distinct gates, which encompass the integration of the

previous cell state. This integration with the previous state imparts dynamic and

memory-retentive capabilities to this model, see Figure 2. This allows them to capture

and retain long-range dependencies and temporal context within sequences, making

them well suited for a variety of applications involving sequential data including random

sequence prediction and classification. Their ability to capture long-range dependencies

and context allows them to identify hidden patterns and temporal relationships in

seemingly chaotic data.

LSTMs are also adept at dealing with sequences of varying length, which matches

the unpredictability and variability of random sequences. Their adaptive capabilities
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Figure 2: LSTM cell: the lower row shows standard processors, whereas the upper rows

are parameter-free calculations. Note the feedback connection from third to second

layer.

allow them to process and predict sequences without prior knowledge of their specific

characteristics, making them ideal for the downstream application framework presented

in a posterior section. In scenarios where traditional models may struggle to provide

accurate predictions or classifications due to the inherent irregularities and complexities

of RNGs, LSTMs have proven to be indispensable tools showing their ability to encode

temporal dependencies and detect subtle patterns.

3.2. Convolutional networks

Convolutional networks, following diverse convolutional schemes (see Figure 3), are a

sophisticated evolution of traditional multilayer perceptrons, which are able to refine and

filter the process of information transformation within neural networks. In a standard

multilayer perceptron, neurons—essentially processing units—receive the outputs from

the preceding layer. These outputs undergo filtration through a nonlinear function,

with the adjustable parameters manifesting as the input weights assigned to individual

neurons in the layer.

When confronted with input signals representing temporal measurements of a

variable, such as a sequence of consecutive random numbers, a convolutional approach

proves advantageous. This involves a convoluted processing strategy, wherein a

nonlinear convolution of the input array with a smaller weight array is computed. In this

scenario, each neuron becomes a filter, engaging in a finite convolution of the input signal

through a nonlinear gate, ultimately producing another output sample. While various

step sizes for the convolution are theoretically plausible, the width of the convolution

kernel typically emerges as the key design parameter.

Expanding our perspective to scenarios where the input comprises multiple

sequences, the convolutional layer can be flexibly configured to amalgamate information

across these sequences. This can be achieved either through summation or by

independently processing each sequence. Such adaptability results in a spectrum of
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Figure 3: Convolutional processor configurations depicted in various schemes. The

upper row illustrates successive values of the processor, highlighted in green. The lower

row displays successive input values (single variable for simplicity), highlighted in yellow.

configurations for convolutional neural networks, empowering the creation of customised

architectures that effectively address specific contextual and structural intricacies

inherent in the input data.

4. Proposed framework implementation

In our efforts to discern patterns and vulnerabilities in random sequences, we

have embarked on two methodological avenues: classification and prediction.

These approaches are designed to elucidate the effectiveness of neural networks in

distinguishing between different types of random number generators (RNGs) and

predicting their outcomes.

Initially, we apply a classification methodology inspired by previous research

described in [25]. This method consists of training a neural network to differentiate

between a PRNG and a truly random sequence, exemplified by the sequences generated

by HMAC-DBRG. The evaluation criteria include assessing the network’s ability to

distinguish between these categories of sequences. Our implementation, based on the

architecture described in [25], features a single hidden layer of long-term memory
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(LSTM) composed of 80 cells. We maintain a consistent configuration with 215 sequences

consisting of 256 elements, each of which represents one byte of the random sequence.

The training spans 100 iterations, with a learning rate of 0.01 and a minibatch size

of 250. An essential evaluation criterion, proposed by the authors of [22], consists

in scrutinising the deviation of 0.5 in the average output for each type of sequence

(GSRNG and the tested PRNG). Furthermore, in line with our main goal of discerning

between RNGs, especially in cases of varying quality, we have focused our attention on

convolutional networks. Taking advantage of their inherent interpretability and ability

to detect sequential patterns and features, we use bits extracted from 256-byte sequences

as inputs to our neural network. Rigorous training is performed to effectively distinguish

between HMAC-DBRG sequences and other sequences, putting an special effort in

trying to distinguish between true random and raw laser sequences (Raw QRNG). Our

methodology is developed sequentially. Initially, we perform pruning and reduction

processes on the network, in order to preserve a significant part of its discriminative

capacity. Subsequently, we analyse the weights to identify the inputs that influence the

response of the network.

Although derivatives have been examined, their inherent value in identifying

relevant connections is limited. Despite the fact that the mean values are often tiny

(averaging less than 0.005 over the initial thousand sampling points), their standard

deviation exceeds the mean, with a maximum of 0.04, suggesting possible significance.

Our overall goal remains to discover the weight connections that run through the network

from the inputs to the outputs. To validate the importance of these connections, we

further debug the network and evaluate its efficiency in distinguishing between RNGs.

Furthermore, we have ventured into predictive modeling to anticipate the RNG’s

future outcomes based on its past performance. Inspired by the effective recognition

of raw laser sequences using classification networks, we’ve dedicated our attention

to predictive modelling within this specific domain. Recognising the raw QRNG’s

identification by classification networks, we narrowed our focus to it. Faced with

unsuccessful attempts at analysing individual bits, we shifted our approach to average

byte values. Our central prediction task involved determining whether the average bit

value in the next 127 bytes, given the preceding 256 bytes, would surpass or fall below

0.5. This revised goal was more feasible in our specific context, employing a type 4

convolutional network (as illustrated in Figure 4).

5. Results

5.1. Classification

Our first step was to reproduce the results in [25]. Next we have proceeded to apply the

same framework to more PRNG’s, including those coming from laser output. Finally,

we have tested the influence of some hyper-parameter variations.

Different runs may yield different results. The ones shown are representative
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samples. In some cases where we found strong deviations, we show more than one

result.

5.1.1. Reproducing [25] In [25], the proposed framework was applied successfully to

detect weaknesses in LCG and the second byte of RC4, with different training sizes.

Concerning the second byte in RC4, the pseudo-random sequence comes from

applying a key sequence to the RC4 algorithm. In [25] the key source is not specified.

We have used a random sequence of 64 bytes values coming from HMAC-DBRG.

Concerning LCG, we took sequences from the rand function in the glibc library

version 2.17, without any tuning.

We haven’t tested all training sizes appearing in [25], but only some. As can be

seen in table 1 our implementation yields comparable results. In perfect classification,

the average output (AO) should be 1 for the tested PRNG and 0 for the GSRNG.

Table 1: Comparison between some of our results and those reported in [25].Top table:

Three results trying to mimic some of those reported in [25]. We show variability by

providing the output of two different runs with the same training size for LCG. Bottom

table: Results taken from [25], compatible with ours in top table.

PRNG tested Training size AO. PRNG AO. GSRNG

RC4 2nd byte 213 0.53 0.42

LCG 218 0.63 0.19

LCG 218 0.87 0.47

PRNG tested Training size AO. PRNG AO. GSRNG

RC4 2nd byte 213 0.51 0.38

LCG 218 0.92 0.10

5.1.2. Testing other PRNG’s We then have proceeded to apply the proposed

framework to several other PRNG’s, including a elliptic curve generator, and the

proposed QRNG, raw and postprocessed. We even considered a large enough video file

as a source of random (meaning unpredictable) sequences; for this purpose we arbitrarily

chose episode 7 of the continuing education course [44]

We show the results in table 2, including confusion matrices.

We can see that the VCSEL QRNG passes the test. Not so for the raw QRNG.

The elliptic curve generator is also successful. We can also see that adding a periodic

parameter reset to the LCG is enough to make it pass the test. The video file didn’t

pass the test, but its performance wasn’t that bad; it may rank as good as a naive LCG.
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Table 2: Results applying the proposed framework to other PRNGs.

PRNG tested Training size AO. PRNG AO. GSRNG Confusion matrix

VCSEL QRNG 218 0.47 0.47

(
16324 0

16444 0

)

VCSEL QRNG 219 0.51 0.51

(
72 16255

81 16360

)

Raw QRNG 218 0.73 0.55

(
6543 9934

3235 13056

)

EC-LCG 218 0.49 0.49

(
15650 845

15428 845

)

Video 218 0.58 0.33

(
14475 1822

7831 8640

)

LCG (32 bits) 218 0.51 0.42

(
11625 4769

7910 8464

)

LCG (100 bits) 218 0.50 0.51

(
8827 7458

7729 8754

)

5.1.3. Network design and parameters influence Table 3 shows the effects of several

design decision changes, namely: number of processors, network type, layers, sequence

length, bytes per element.

LCG refers to the naive rand LCG implementation. Convolutional neural networks

are designed as depicted in figure 4.

The design decisions that turned effective were: increasing sequence length and

using convolutional networks. VCSEL QRNG was indistinguishable even with these

more capable settings.

The design decisions that turned effective were: increasing sequence length and

using convolutional networks. VCSEL QRNG was indistinguishable even with the

biggest networks that we have tried (twice the size of the biggest ones reported here). It

remains an open question whether a massively larger network would yield better results.

We also tested how far we could go in simplifying the convolutional networks capable

of detecting the raw laser sequence.

In this process, we directed our attention towards discerning chains of substantial

weights spanning from input to output nodes within the network. Our aim was to

evaluate the significance of these chains in determining network functionality. To

validate our hypothesis, we pruned redundant components of the network, subsequently

evaluating its efficacy in distinguishing between different Random Number Generators

(RNGs). The comparison between the original network (see Figure 4a) and the pruned

version is depicted in Figure 4c. The confusion matrices for the original and pruned
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Table 3: Performance evaluation of the neural network model with sequential application

of hyperparameter or architecture settings.

Design decision Tested PRNG Training size AO. PRNG AO. GSRNG Confusion matrix

Baseline [25] LCG 215 0.16 -0.11

(
16229 0

16504 35

)

Increasing processors from 80 up to 150 LCG 215 0.21 -0.06

(
16480 1

16241 46

)

Two layers with 40 and 10 processors LCG 215 0.36 0.41

(
14734 1742

12770 3522

)

Increasing sequence length from 28 to 29 LCG 215 0.61 0.23

(
13689 2832

3706 12541

)

CNN-3 (see fig. 4c) Raw QRNG 218 0.40 0.61

(
14217 2272

8107 8172

)

Increasing sequence length from 28 to 29 VCSEL QRNG 218 0.51 0.51

(
177 16146

147 16298

)

CNN-1 LCG 218 1 0

(
16492 35

0 16233

)

CNN-1 VCSEL QRNG 219 0.5 0.5

(
8218 8133

8165 8252

)

CNN-2 and sequence length=512 VCSEL QRNG 218 0.5 0.5

(
9696 6644

9853 6575

)

CNN-2 and 2-byte elements VCSEL QRNG 218 0.5 0.5

(
8275 8140

8292 8061

)

networks, generated from a test set comprising 215 instances, are presented Table 4.

Table 4: Comparison between original confusion matrix (top) and pruned network

confusion matrix (bottom).

HMAC-DRBG Raw QRNG

HMAC-DRBG 14149 2219

Raw QRNG 7699 8701

HMAC-DRBG Raw QRNG

HMAC-DRBG 14217 2272

Raw QRNG 8107 8172

In the final pruned network, an analysis was conducted to identify the primary

patterns (see Table 5) influencing network response. Notably, with the initial kernel’s

width set at 5 for input connections, specific patterns emerged as key triggers for network

discharge, indicating the raw laser’s role. Among these patterns (see Table 5), those

with lesser influence due to lower weights were identified and denoted as ” ”. Pattern

5 was recognised as encompassing pattern 3, leading to a focus on the more specific

elements, see Table 5. Further examination aimed to distinguish unique features within

these patterns across the sample data. Figure 5 illustrates distinct relative frequencies
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PRNG sequence

Conv(20,5,1,1)

Max, k=4

Conv(10,8,1,1)

Norm.

Max, k=4

Conv(6,5,1,1)

Max, k=2

Conv(3,1,1,1)

Norm.

Conv(20,5,2,1)

Max, k=2

Conv(10,5,2,1)

Max, k=2

Conv(3,5,2,1)

Norm.

Conv(20,5,1,10)

Max, k=4

Conv(10,5,1,10)

Conv(3,5,1,2)

Norm.

Conv(20,5,1,50)

Conv(10,5,1,10)

Conv(3,5,1,2)

Norm.

Concat

FF(20,7,Norm,1)

(a) Convolutional network scheme 1

PRNG sequence

Conv(20,5,1,1)

Max, k=4

Conv(10,8,1,1)

Norm.

Max, k=4

Conv(6,5,1,1)

Max, k=2

Conv(3,1,1,1)

Norm.

Conv(20,5,2,1)

Max, k=2

Conv(10,5,2,1)

Max, k=2

Conv(3,5,2,1)

Norm.

Conv(20,5,1,10)

Max, k=4

Conv(10,5,1,10)

Conv(3,5,1,2)

Norm.

Conv(20,5,1,50)

Conv(10,5,1,10)

Conv(3,5,1,2)

Norm.

Concat

FF(20,7,Norm,1)

(b) Convolutional network scheme 2

PRNG sequence

Conv(5,5)

Max, k=8

Conv(6,5)

Max, k=8

Conv(3,1)

Norm.

FF(7,1)

(c) Convolutional network scheme 3

PRNG sequence

Conv(5,7,1,1)

Conv(5,7,1,1)

Conv(5,3,1,1)

Conv(1,3,1,1)

Conv(5,3,1,5)

Conv(5,3,1,2)

Conv(1,2,1,1)

Norm.

Concat

FF(6,4,Norm,1)

(d) Convolutional network scheme 4

Figure 4: Convolutional models description: Conv stands for convolutional layer and the

four parameters are: number of processors/channels, kernel width, stride and dilation.

Max stands for reduction layers using maximum, with the given kernel width. Norm

stands for normalization layer. FF stands for group of standard feedforward layers, with

given number of processors per layer. Leaky rectified linear units are used everywhere

but in the output layer, where we have sigmoid activation.

for the pattern 01011 among various sequences, indicating notable variations. Similarly,

Figure 6 highlights significant differences in relative frequency for the 10000 pattern.

While other patterns with diverse distributions were present but not selected by

the network, this analysis underscores the identification of influential patterns that

contributed to network performance enhancements.

5.2. Prediction

Since the raw QRNG was recognized by the classification networks, we focused on it.

Since working with individual bits did not succeed, we turned to byte average values.

Our final prediction problem was, given the average value of bits in previous 256 bytes,
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Table 5: Primary Patterns Influencing Network Response in the Final Pruned Network.

Pattern No. Patterns Kernel 5 Specific Patterns

1 10000 10000

2 101 0 101 0

3 01011 01011

4 11 11

5 0 1

6 110 1 110 1

7 1 0 1 0

20 40 60 80 100

0

5000

10000

15000

20000

25000

30000

35000

HMAC

Laser

Figure 5: Comparative Analysis of the Frequency Distribution of the 01011 pattern in

HMAC-DRBG and Raw Laser Sequences. In the histogram, the abscissa is the number

of the 01011 pattern occurrences and the ordinate is the number of sequences of length

211 bits in which there have been that number of occurrences. The distribution in

HMAC-DRBG conforms to a normal distribution, while the raw laser sequence exhibits

a biased distribution

predict whether the average bit value in the following 127 bytes would be larger or

smaller than 0,5 This weaker result, was easier to achieve with the prediction network.

We used a convolutional network type 4 (see fig.4d) that was able to give a cross-entropy

error of 0.52 on a 215 test set. Other error measurements are listed here (referred to the



Assessing the quality of Random Number Generators through Neural Networks 16

(a) HMAC-DRBG (b) Raw QRNG

Figure 6: Comparative Analysis of the Frequency Distribution of the 10000 pattern

for HMAC-DRBG and Raw QRNG. In both histograms, the abscissa is the number of

10000 pattern occurrences and the ordinate is the number of sequences of length 212

bits in which there have been that number of occurrences. The evident bias in the raw

laser distribution is prominently displayed.

1 label): specificity = 0.56, precision = 0.7, sensitivity = 0.89 and predictive value =

0.61.

6. Discussion and Conclusions

The study delves into the quality assessment of RNGs using neural networks,

focusing on TRNGs and PRNGs. It explores the application of Convolutional Neural

Networks (CNN) and Long Short-Term Memory networks (LSTM) to analyse random

sequences, demonstrating their effectiveness in capturing patterns and dependencies in

RNG outputs. The research leverages a quantum entropy source based on VCSEL

polarisation excitation to generate random bits, addressing deviations from ideal

randomness through post-processing techniques. It evaluates various PRNGs, including

the Linear Congruential Generator on Elliptic Curves (EC-LCG), highlighting its

potential for cryptographic applications. Neural networks, particularly LSTM and CNN

architectures, play a pivotal role in discerning patterns within random sequences and

predicting RNG outcomes effectively. In the realm of random sequence analysis, neural

networks offer new insights and approaches to understanding and processing complex

data. LSTMs excel in modelling sequential data by capturing long-range dependencies

and temporal context, making them ideal for predicting and categorising random

sequences. On the other hand, convolutional networks refine information transformation

within neural networks, enabling effective pattern detection in random sequences. The

study’s proposed framework implements classification and prediction methodologies to

distinguish between different RNG types and predict their outcomes. By training neural
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networks to differentiate between PRNGs and truly random sequences, the research

showcases the effectiveness of LSTM and CNN in processing random data. The results

demonstrate the success of the application of neural networks to discern the quality of

RNGs and predict possible patterns in the random sequences, always having in mind the

limitations imposed by the framework and experimental setup proposed in the design

phase.

Acknowledgements

This work was supported by Ministerio de Ciencia e Innovación. PID2021-

12345OB-C22 MCIN /AEI /10.13039/ 501100011033/FEDER,UE. J. G. is par-

tially supported by grant PID2019-110633GB-I00 funded by MCIN/AEI/10.13039/

501100011033. We also acknowledge Advanced Computing and e-Science group at the

Institute of Physics of Cantabria, IFCA (CSIC-Universidad de Cantabria).

References
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