
Large-Scale Private Set Intersection in the Client-Server Setting

Yunqing Sun∗ Jonathan Katz† Mariana Raykova‡ Phillipp Schoppmann§

Xiao Wang¶

Abstract

Private set intersection (PSI) allows two parties to compute the intersection of their sets
without revealing anything else. In some applications of PSI, a server holds a large set and
needs to run PSI with many clients, each with its own small set. In this setting, however, all
existing protocols fall short: they either incur too much cost to compute the intersections for
many clients or cannot achieve the desired security requirements.

We design a protocol that particularly suits this setting with simulation-based security
against malicious adversaries. In our protocol, the server publishes a one-time, linear-size en-
coding of its set. Then, multiple clients can each perform a cheap interaction with the server of
complexity linear in the size of each client’s set. A key ingredient of our protocol is an efficient
instantiation of an oblivious verifiable unpredictable function, which could be of independent
interest. To obtain the intersection, the client can download the encodings directly, which can
be accelerated via content distribution networks or peer-to-peer networks since the same encod-
ing is used by all clients; alternatively, clients can fetch only the relevant ones using verifiable
private information retrieval.

Our implementation shows very high efficiency. For a server holding 108 elements and each
client holding 103 elements, the size of the server’s encoding is 800 MB; interacting with each
client uses 60 MB of communication and runs in under 5 s in a WAN network with 120 Mbps
bandwidth. Compared with the state-of-the-art PSI protocol, our scheme requires only 0.017
USD per client on an AWS server, which is 5x lower.

1 Introduction

Private set intersection (PSI) allows two parties to compute the intersection of their private sets
without revealing anything else. It has found many applications, including genome testing [6],
botnet detection [44], online advertising [31], compromised credential checking [47], contact discov-
ery [36], etc. In many applications, each client holds a small set and wants to know the intersection
with a large set from the server. E.g., this is the case for “password checkup” service, where the
server holds a large set of compromised credentials while each client has its own credentials and
wants to know if any has been compromised. Another application is contact discovery, where the
server holds a large set of phone information of all users while each client has its own list of contacts
and wants to know among them who are also using the app.

Theoretically, any secure PSI protocol could be used in the above setting. From a practical
point of view, however, using existing protocols may be prohibitive since they are not tailored to
the specific constraints encountered here. For example, Signal adopted an SGX-based solution;

∗Northwestern University, yunqing.sun@northwestern.edu
†Google, jkatz2@gmail.com, portions of this work done while at the University of Maryland
‡Google, marianar@google.com
§Google, schoppmann@google.com
¶Northwestern University, wangxiao@northwestern.edu

1

Google adopted a solution with k-anonymity and other trade-offs for better efficiency. Existing PSI
protocols can be categorized into the following classes.

1. Most PSI protocols [46, 52, 48, 19] require communication linear in the size of both parties’ sets.
If a server needs to run PSI with two different clients, two independent executions are needed,
doubling the total cost. Furthermore, there exists a security risk regarding consistency in that,
even with a full malicious secure protocol, a server might use different sets for different clients. In
practical terms, even state-of-the-art malicious PSI protocols [51, 49] based on vector oblivious
linear evaluation still require more than 16 bytes of communication per element in the parties’
sets; for a server holding 108 elements, this translates to around 1.6 GB of communication when
interacting with each client.

2. Several PSI protocols have been designed such that the communication is sublinear to one of
the set [38, 15, 14, 16]. However, these protocols are not maliciously secure against a corrupted
server and do not ensure that a single consistent set is used across all clients either. What’s
more, these protocols are often heavy in computation and will be increased proportionally when
interacting with many clients.

3. Other works like Laconic PSI [5, 1, 4] also achieve small communication; however, they require
clients performing heavy computation liner to the server’s set size. [20] also allows cheaper clients
but requires two non-colluding servers, and the servers need to perform computation linear to
the servers’ set for every service request.

To summarize, full maliciously secure protocols all require communication or computation linear to
the larger set, which is costly as it needs to be repeated for all users. Alternatively, some protocols
(OPRF-based or applying OPRF to FHE-based solutions) allow reusing the server-dependent com-
munication and computation, but none of these protocols can protect against a malicious server
without using heavy zero-knowledge proof techniques [34]. Security against a malicious server is
particularly useful in reducing the liability of the server because the protocol ensures that the clients’
privacy is protected regardless of the server’s action. It also prevents the server from segregating
clients, e.g., by using different subsets for PSI with different clients.

1.1 Our Contribution

In this paper, we design a PSI protocol with malicious security that is particularly suitable in the
multi-client setting.

Reusable and asynchronous server encodings. Our protocol has a feature tailored towards
the multi-client setting. The protocol consists of two stages. First, the server with set X = {xi}
computes encodings of each elements, namely EX = {En(sk;xi)}, where sk is a trapdoor used to
encode any elements. Our protocol is maliciously secure, meaning that given the encodings, the
set is unique and consistent across all clients. Then, when a client with set Y = {yi} comes in, the
server runs an interactive protocol with this client with complexity linear to |Y |, which allows the
clients to learn EY = {En(sk; yi)}, verifiable using pk. The client with EX can compute EX ∩EY
to obtain the intersection between X and Y .

The protocol is highly flexible because the client could download the encoding anytime, even
after the interaction, or could fetch only a subset of them using verifiable private information
retrieval (PIR) [8, 18]. Security-wise, our protocol ensures that the server’s set is fully extractable
(by a simulator) given the encoding and that the interaction has to be consistent with the encoding.
This prevents the server from launching any attacks mentioned in prior works with ad-hoc security
against a corrupted server.

2

Our main observation is that PRF-based encodings and oblivious PRF are inherently not the
tool for fully malicious PSI protocols: even using a malicious OPRF protocol, the underlying PSI
cannot be made malicious with it because there is no way to ensure the same key is used over
different OPRF calls. The main idea of our protocol is to design an encoding based on verifiable
functions that ensure consistency and validity by verifying the consistency between the encodings
and the public key. Utilizing the inherent verifiable property of the function, we avoid using
generic zero-knowledge proofs to achieve fully malicious security, unlike prior works that construct
committed OPRF [34].

Efficient oblivious verifiable unpredictable function. Although a verifiable random function
could work, we further observe that verifiable unpredictable function (VUF), which is often simpler
and easier to compute, is already sufficient to obtain a fully secure PSI. In particular, we adopt the
verifiable unpredictable function proposed by Dodis and Yampolskiy [21] for encoding elements. We
also designed an efficient oblivious VUF (OVUF) for obliviously encoding the elements, based on a
common building block, namely multiplicative sharing to additive sharing conversion (MtA). This
component has been designed in many prior works [22, 57, 13]. To further improve the efficiency,
we also designed an “imperfect” MtA protocol that does not always return the correct relationship.
However, we show that when ordering the protocol messages in a special way, we can still show that
such an imperfect protocol is sufficient when computing OVUF. This is applicable in our setting
because: 1) the output is only given to the client; and 2) the client can check the validity of the
OVUF output, which is directly connected to the validity of the MtA outputs.

Practical Efficiency. We implemented our protocol incorporating state-of-the-art building blocks.
The results show that our protocol is highly efficient. For example, performing a 108 v.s. 103

elements PSI requires downloading an 800 MB encoding asynchronously and online interaction
of 0.5 second in the LAN setting (or 5 seconds in the WAN setting). The distribution of the
encoding can be done via a content distribution network, and thus with significantly cheaper cost
than a computational node sending the encoding. We discuss in Section 6 in how to distribute the
encodings efficiently.

2 Overview

In this section, we briefly discuss our main technical contributions, leaving more details in the
following sections.

2.1 Malicious Client-Server PSI from (O)VUF

Recall that a VUF is associated with a private key sk and a public key pk. It includes a keyed
function F·(·) and a verification algorithm Verify(pk, x, x′) that outputs 1 if and only if x′ = Fsk(x).
An oblivious VUF (OVUF) allows a party with x to learn Fsk(x) from another party holding sk
without any party learning anything else.

We first describe our PSI protocol from any OVUF. The server with a set X obtains a key pair
(sk, pk) and can locally apply the VUF function on all elements: x′i = Fsk(xi). The final encoding is
computed as EX = {H(xi, x

′
i)} using a random oracle H. A simulator can extract elements from

valid encodings with the help of a random oracle: given an encoding, the simulator can lookup
the RO query list to find the tuple (x, x′) corresponding to the output hash (the chance that there
are more than one is negligible); then the server can use pk to validate if this tuple is a correct
evaluation of the VUF function. The best that a server can do is to put in a ⊥ element that (with
overwhelming probability) will not match any item from the client.

To compute the intersection with a client with set Y , two parties use OVUF to let the client
learn y′i = Fsk(yi) for each yi ∈ Y . Then the client computes EY = {H(yi, y

′
i)} and then computes

3

EX ∩EY , which can be used to obtain X ∩Y . To ensure that the encodings of EX and EY use a
consistent key pair, the client needs to use the pk it fetched from PKI to check Verify(pk, yi, y

′
i) for

every element. A malicious server could use a different sk, which will lead to an abort during the
verification. We provide detailed protocol and proof in Section 4.

This protocol provides a lot of practical benefits. The server’s set encoding is reusable across
many clients. This means that such encoding can be distributed publicly using content distribution
networks or peer-to-peer networks for improved accessibility. Furthermore, the interactive phase
of OVUF only require the client to have the public key but not the server’s encodings. Thus it
provides huge flexibility in how a client access the encodings. It can download it at any point
of time or can even access it in a streaming fashion. A client who does not want to read in the
whole encoding can also use a verifiable PIR scheme to fetch the only the ones that can possibly
in the intersection or use bucketization for a trade-off between efficiency and privacy. We discuss
in Section 6 with more details.

A related but different concept is verifiable OPRF (VOPRF) [32, 2, 7, 55, 53, 33, 30, 17, 24,
39, 54, 10]. More specifically, there are two types of definitions for VOPRF. The original definition
of VOPRF functionality by Jarecki, Kiayias, and Krawczyk [32] maintains the random function as
part of the functionality and thus does not send the PRF key to any party. This also means that
the simulator does not need to extract inputs from the client. Although schemes in this category
are usually very efficient (e.g., many based on 2HashDH [17, 24, 33, 39, 54, 55] and some for
post-quantum security [7, 10]), they cannot be directly used here because the server cannot locally
encode the element for PSI in our case and that there is no way to extract client’s set to PSI in
the proof. The second type of VOPRF definition [2, 53] relies on standard MPC-like functionalities
where all parties’ input needs to be extractable in the proof by the simulator. While the second
one can be securely composed to build a PSI protocol, all existing studies of concrete efficiency are
restricted to the first category. Below, we show that OVUFs can instead be instantiated securely
and efficiently.

2.2 Instantiating OVUF

In this work, we build an OVUF based on the VUF function by Dodis and Yampolskiy [21]. This
construction works as Fsk(x) = g1/(sk+x) ∈ G, where sk is a secret key in Zq held by the server.
The public key pk = gsk and the verification can be done by checking if e(Fsk(x), pk · gx) = e(g, g).
The predictability can be reduced to the hardness of Diffie-Hellman Inversion. Note that the PRF
version of this construction has been used for PSI [42] but without verifiability. One alternative
is to use the Naor-Reingold PRF [45] also based on DDH and can be made oblivious. However,
each invocation of NR-PRF requires O(κ) public-key operations, not considering the cost to make
it verifiable.

When running an OVUF protocol, the server has the secret key sk; the client has an element y
and a public key pk. An OVUF protocol involves two parties running an interactive OVUF protocol
such that the server learns nothing and the client learns Fsk(y) = g1/(sk+y); then the client can use
the pk to verify the correctness of the VUF output using Verify(·).

The high-level idea of the protocol works as follows:

1. Two parties sample additive secret sharing of a random value such that the server has φ and
the client has ζ.

2. Two parties run an interactive multiplicative-to-additive conversion protocol, where the server
uses sk and the client uses ζ; as the output two parties obtain c1 and d1 respectively such that
d1 − c1 = sk · ζ.

4

3. Similarly, two parties use the same protocol to obtain c2 and d2 respectively such that d2− c2 =
φ · y.

4. Server computes m = φ · sk − c1 − c2 and the client computes u = y · ζ − d1 − d2. Two parties
exchange these values and computes v = m+ u = (sk + y)(φ+ ζ).

5. The server sends gφ/v to the client, who computes gφ/v · gζ/v = g1/(sk+y).

Following this blueprint, the key step is efficiently computing multiplication to addition triples
(MtA). Fully malicious MtA has been a key building block in threshold ECDSA constructions,
and there have been different ways to compute it using oblivious transfer [23, 28], Paillier encryp-
tion [12, 25, 41], and Castagnos-Laguillaumie encryption [13]. See Xue et al. [57] for a more detailed
summary. In this paper, we focus on the oblivious transfer based construction as it is the most
computationally efficient.

The solution by Doerner et al. [23] can be viewed as the malicious version of the Gilboa pro-
tocol [26]. For two parties each with a and b as input, the high-level idea is to let them obtain
additive secret sharing of a · bi, where bi is the i-th bit of b. This step is done using OT. Then, two
parties can obtain additive secret sharing of a · b by a linear combination of the shares obtained
from OT. To make this protocol malicious, Doerner et al. made two changes: 1) each OT will select
two sets of values, where the second set of values will be used solely for checking the correctness of
the output; this way, any inconsistency can be caught by the checking. 2) instead of using bi as an
OT choice bit, they use encoded values that add extra randomness. This ensures that even if the
adversary cheats and aborts with some probability during the checking, this probability does not
depend on the secret bi values. These changes lead to an overhead of 4× to 5× compared to the
semi-honest counterpart in communication.

Our main idea is that since the outer protocol of OVUF checks the correctness of the output
as part of Verify(), one can save half of the communication by not sending the OT messages for
checking. However, it is unclear in this case how to extract the adversary’s cheating strategy, which
is needed to show that it cannot learn anything from the randomized encoding of the bits. The
randomized encoding works in the following way. First, two parties agree on a uniform and public
value gR ∈ Z`q. Then, to encode a value β, the client samples a random bit value γ ∈ {0, 1}` and

outputs (β − 〈gR, γ〉)‖γ. Doerner et al. designed a check such that every selective failure can be
extracted; this encoding ensures that even if the adversary guessed s bits of information on the
encoded value (i.e., the above output), where s is statistical security parameter, β is still hidden.
Without a bit-by-bit check, it is hard to pin down the selective failure attack; thus, the proof cannot
go through. In particular, the greatest challenge is to simulate the abort event when the attacker
performs some selective failure attacks leading to abort with an observable probability.

We observed that by picking fresh vector gR for every execution of the MtA protocol and sending
it only after the corrupted server commits to its way of cheating, we can directly argue that any
deviation will lead to an observable abort with all but negligible probability. This way, we avoid the
above issue because now the adversary cannot cause abort with non-negligible probability and thus
easy to simulate. Although this trick allows for the maximum efficiency, we sacrifice modularity.
In particular, this weak MtA can no longer be modeled as an ideal functionality in a simple way
since the attacker’s cheating behavior becomes complicated. Therefore in Section 5, we describe
the protocol in a modular way but prove them as a whole.

So far, it is still possible that a server use a wrong sk values during an OVUF execution. This
could lead to an attack: if a sk∗ is used, and v = 0, then the server knows that the element y = −sk∗.
To ensure that this does not happen, we add an extra check right after the second step. Essentially,
we want to check that the server has c1 such that d1 − c1 = sk · ζ, where sk is the discrete log of

5

pk that the client knows. This is equivalent to checking gd1 · g−c1 = gsk·ζ = pkζ . Therefore, we
let the server send gc1 and the client check if it equals to gd1 · pk−ζ . This check does not let client
learn anything new as the value that an honest server sends is already known to the client. On the
other hand, since ζ is uniform, a cheating server would be caught with overwhelming probability.
When executing multiple OVUFs, one can further hash gc1 in all executions to further reduce the
communication. Thus, this check incurs almost no communication and only a few exponentiations.

3 Preliminaries

3.1 Notation

We use κ as the computational security parameter and s as the statistical security parameter. Let
G1, G2, and GT be cyclic groups defined under a pairing-friendly elliptic curve with prime order
q. Define e : G1 × G2 as an efficiently computable bilinear map over pairing groups. This paper
uses Type III pairing for implementation, where G1 6= G2. For field element a ∈ Fq, let 1

a denote
the inverse of a in the field Fq under the multiplication operation. We use H∞(γ) to denote the
information entropy of γ. For consistency of notations, we use log to denote logarithm based on 2.
We write [n] = {1, · · · , n}. Bold lowercase letters like a represent row vectors, where ai denotes
the ith component of a. We also write a ◦ b as Hadamard product. For b ∈ Zq, we use Bits(b)
to denote the bit decomposition of value b. Consider a is sampled uniformly from Zq, denoted as
a ← Zq. For a set X, we use letter xi to denote its set element, where 0 < i ≤ |X|. We define a

coefficient vector g as g = gG||gR, where gG ∈ Zlog q
q is a gadget vector whose element gGi = 2i−1,

and gR is a uniformly sampled random vector that gR ← Zlog q+2s
q .

3.2 Verifiable Unpredictable Function

3.2.1 Definition of VUF

The notion of verifiable unpredictable function (VUF) and verifiable random function (VRF) was
first proposed in [43]. VRF is defined as a pseudo-random function that provides non-interactively
verifiable proof for the correctness of its output. VUF is a weaker definition in which output is not
necessarily pseudo-random but unpredictable. It contains three algorithms (Gen,F,Verify). Define
sets K1,K2, X, Y .

1. Gen : 1κ → K1 ×K2. It generates a secret-public key pair (sk, pk) that sk ∈ K1, pk ∈ K2.

2. F : K1×X → {Y,⊥}. It takes the secret key sk and an element x ∈ X as input and outputs an
element y ∈ Y or ⊥.

3. Verify : K2 ×X × Y → {1, 0}. It takes the public key pk and elements x ∈ X, y ∈ Y as input
and outputs 1 or 0.

A VUF shall satisfy the following properties:

Definition 1. A function family F(·)(·) : {0, 1}a(κ) 7→ {0, 1}b(κ) is a family of VUFs, if there exists
algorithms (Gen,F,Verify) which satisfy the following properties:

1. Uniqueness: no values (pk, x, y1, y2) can satisfy Verify(pk, x, y1) = Verify(pk, x, y2), where pk ∈
K2, x ∈ X, y1, y2 ∈ Y .

2. Provability: if y = Fsk(x) where x ∈ X, y ∈ Y , then Verify(pk, x, y) = 1.

3. Unpredictability: for any PPT algorithm A, which runs for a total of s(κ) steps and does not
query the oracle on x, the following is negligible:

Pr
[
y = Fsk(x)

∣∣∣(pk, sk)← Gen(1κ); (x, y)← AFsk(·)(pk)
]

(1)

6

Functionality FPSI

There are a server S and multiple clients R1, · · · , Rn.

1. Initialize: Upon receiving (server, sid, X) from server S, where each element x in set X satisfies
x ∈ U ∪ {⊥}, the functionality stores X and ignores subsequent request.

2. Compute Intersection: Upon receiving (server, sid, compute) from server S and (client, sid, Y) from
any client Rj , j ∈ [n], where element y in set Y satisfies y ∈ U , the functionality sends X ∩ Y to the
client Rj .

Figure 1: Functionality for private set intersection.

3.2.2 DY-VUF Construction

Here, we introduce the efficient construction of VUF with short proofs and keys proposed by Dodis
and Yampolskiy [21]. This construction is turned from a signature scheme proposed by Boneh and
Boyen [9].

Algorithm 1. (Gen(·), F(·)(·), Verify(·))

1. Gen(1κ): pk = gsk

2. Fsk(x): Fsk(x) = g
1

x+sk . If x+ sk = 0, Fsk(x) = ⊥.

3. Verify(pk, x, y) : If e(gx · pk, y) = e(g, g), output 1; Otherwise, output 0.

The security of this construction relies on two assumptions: q-Diffie-Hellman inversion assump-
tion (q-DHI) and q-decisional bilinear Diffie-Hellman inversion assumption (q-DBDHI).

Assumption 1. (q-DHI assumption) Given the (q+ 1)-tuple : (g, gx, · · · , gxq) ∈ (G∗)q+1 as input,

to computes g
1
x . No t-time algorithm A has advantage at least ε in solving q-DHI in G.

Assumption 2. (q-DBDHI assumption) Given the (q + 1)-tuple : (g, gx, · · · , gxq) ∈ (G∗)q+1 as

input, to distinguish e(g, g)
1
x from random. No t-time algorithm A has an advantage at least ε in

solving q-DBDHI in G.

3.3 Ideal Functionalities

We use the UC framework [11, 27] to prove security in the presence of a malicious, static adversary.

Private Set Intersection. Private set intersection (PSI) allows two distrusted parties to jointly
compute the intersection of their private input without revealing any additional information about
their input except their set size. In Figure 1, we describe the ideal functionality of our private set
intersection (PSI), which allows a server to compute intersections with multiple clients. Note that
this ideal functionality allows the malicious server to input invalid value ⊥ to its set X.

Oblivious Verifiable Unpredictable Function. The functionality for oblivious verifiable un-
predictable function (OVUF) is shown in Figure 2. Fsk(x) is a VUF function that outputs verifiable
and unpredictable results. OVUF involves two parties: a server and a client. The server holds a
secret key sk that can compute Fsk(x) for any input value x; the client inputs a set of private ele-
ments y ∈ Znq to this functionality. The functionality computes Fsk(yi) for all inputs and lets both

7

Functionality FOVUF

Parameters: A public VUF function F. A public parameter n.

Setup:

1. If FOVUF hasn’t been set up by server S, upon receiving (init) from S, the functionality runs Gen() of
F, obtains pair (sk, pk), and sends (sk, pk) to S. Otherwise, it ignores the (init) request.

2. Upon receiving (fetch) from any client R, if FOVUF has been set up by server S, the functionality
sends (sid, pk) to R.

Compute:

1. Upon receiving (compute) from server S and (compute,y ∈ Znq) from client R, the functionality
computes Fsk(yi). For each Fsk(yi) = ⊥, insert i to a set O. The functionality sends O to both
parties.

2. The functionality waits for (continue/abort) from server S. Then, it sends all the Fsk(yi), i /∈ O to
R.

Figure 2: Functionality of OVUF.

Functionality FCOT

Upon receiving (server, sid, τ ∈ Gn, n) from server S and (client, sid,w ∈ {0, 1}n, n) from client R. For
each i ∈ [n], the functionality samples random pads pi ← G and sends it to the server. It then computes
qi = wi · τi + pi ∈ G and sends it to the client R.

Figure 3: Functionality of correlated OT.

Functionality FPKI

1. Init: Upon receiving (init) from server, samples sk and computes pk = gsk. The functionality returns
(sk, pk) to server and maintains pk. The functionality ignores subsequent (init) request.

2. Fetch: Upon receiving (fetch) from any party, if the functionality has been initialized, it sends back
the maintained pk; Otherwise, it does nothing.

Figure 4: Functionality of public-key infrastructure.

parties know the indices where the evaluation is ⊥. Then, the functionality sends the remaining
evaluations to the client.

Correlated Oblivious Transfer. Correlated oblivious transfer (COT) is an important variant of
oblivious transfer. Our protocol adopts COT to achieve multiplicative to additive share operation.
The functionality is shown in Figure 3.

Public-key Infrastructure. The public-key infrastructure (PKI) is shown in Figure 4 to help
with maintaining one valid pair of (sk, pk) in system. Once it receives (init) from server, it generates
a public key pair (sk, pk), returns it to server, and ignores subsequent (init) requests. Once it is
initialized by server, for any (fetch) request, it sends the maintained public key pk.

8

Protocol ΠPSI

Input and parameters: The server S holds private set X and a client Rj holds private set Y , where
|X| > |Y |. A cryptographic hash function H : Zq × G → {0, 1}σ modeled as a random oracle. Define
Fsk(x), where x ∈ Zq, sk ∈ Zq, Fsk(x) ∈ G. Define a key pair (sk, pk), where pk ∈ G.

Initialize:

1. Server S sends (init) to FOVUF, and receives (sk, pk) if FOVUF hasn’t been set up.

2. For each xi ∈ X, S computes exi = H(xi, Fsk(xi)) and inserts exi to set EX; S publishes EX to
public.

Compute Intersection:

1. Client Rj sends (fetch) to FOVUF and receives pk if FOVUF has been set up by S.

2. S sends (compute) to FOVUF; Rj sends (compute,y), where y is a vector constructed by the set Y , to
FOVUF. FOVUF sends back O to two parties. S sends (continue) to FOVUF, which sends Rj Fsk(yi) for
all yi ∈ Y , i /∈ O.

3. For each i /∈ O, the client Rj computes eyi = H(yi, Fsk(yi)) and inserts eyi to EY , outputs {yi | yi ∈
Y, eyi ∈ EX ∩ EY }.

Figure 5: PSI protocol in the FOVUF-hybrid model.

4 OVUF-based PSI

Given the functionality of FOVUF introduced in Section 3.3, we are able to build a fully malicious
PSI. Recall from Section 2.1, our protocol starts by a server locally encoding all its private elements.
Any client can interact with the server via FOVUF and obtain the VUF-evaluation of its input. Since
OVUF functionality ensures correctness and consistency of the evaluation across all the inputs, the
client can further compute the encodings of its own set and compute intersection accordingly. The
detailed scheme is shown in Figure 5.

Given a maliciously secure FOVUF, there is not much that a malicious sever can cheat. It could
use wrong encodings EX for intersection but that would be equivalent to applying inconsistent x
and Fsk(x) to the random oracle, which essentially means that the server uses ⊥ as this element.
We prove that the OVUF-based PSI protocol is malicious secure in FOVUF-hybrid model. The
theorem is stated below with a full proof.

Theorem 1. Protocol ΠPSI shown in Figure 5 UC-realizes FPSI in Figure 1 in the FOVUF-hybrid
model.

Proof. Let A be a PPT adversary that can corrupt the server or the client. We construct a PPT
simulator S with access to functionality FPSI, which simulates the adversary’s view. We consider the
following two cases: malicious client and malicious server. We will prove that the joint distribution
over the output of A and the honest party in the real world is indistinguishable from the joint
distribution over the outputs of S and the honest party in the ideal world execution.

Corrupted server. Let S access the FPSI as an honest server and interact with A as an honest
client. S passes all communication between A and environment Z.

(1) S emulates FOVUF. Once it receives init from A for the first time, it sends back (sk∗, pk∗), that
sk∗ ← Zq, pk∗ ← G. For subsequent init request from A, S ignores them.

9

(2) S emulates random oracle H. Whenever A computes EX, it queries H(xi, qi). S checks whether
qi = Fsk∗(xi). If it is, S records (xi, H(xi, qi)). S receives EX from A. For each exi ∈ EX,
S checks whether exi equals to a specific H(xi, qi) recorded. If it is, S inserts xi to set X.
Otherwise, S inserts ⊥. S sends (server, sid, X) to FPSI.

S simulates Compute Intersection as follows:

(2) S emulates FOVUF and receives (compute) and (continue) fromA. Then, S sends (server, sid, compute)
to FPSI.

Notice that given yi, Fsk(yi) = ⊥ with negligible probability in real-world, the simulator didn’t
send O in simulation. Notice that given yi, Fsk(yi) = ⊥ with negligible probability in real-world, the
simulator didn’t send O in simulation Notice that given yi, Fsk(yi) = ⊥ with negligible probability
in real-world, the simulator didn’t send O in simulation

Corrupted client. Let S access to the FPSI as an honest client and interact with A as an honest
server. S passes all communication between A and environment Z.

(1) S samples EX∗ which contains |X| uniform values from {0, 1}σ and sends EX∗ to A.

S simulates Compute Intersection as follows:

(1) S emulates FOVUF. Once it receives fetch from A, it sends back pk∗ ← G.

1. S emulates FOVUF and records Y that A sends to FOVUF. S sends (client, sid, Y) to FPSI and
receives Z = X ∩ Y in response. S maintains a global record table of pairs (yi, Fsk(yi)

∗). For
each yi ∈ Y , S first checks whether yi exists in table. If it is, S picks corresponding Fsk(yi)

∗ to
A. Otherwise, S randomly samples Fsk(yi)

∗ ← G, sends it to A in response to yi, and records
the new pair of (yi, Fsk(yi)

∗). Note that Fsk(yi) = ⊥ with negligible probability in real-world,
we didn’t simulate sending O.

2. S emulates random oracle H. S records a global query-value table which contains each query
(ai, bi) and corresponding value ci. All the cis in the table are inserted into a set C. Once S
receives query (ai, bi), it first checks the query-value table and responds if this query exists in
the table. Otherwise, it programs the random oracle as follows:

(a) If (ai, bi) equals to a recorded (yi, Fsk(yi)
∗) pair and ai ∈ Z. S chooses a random ci ∈

EX∗/C and sends it to A. S inserts ci to set C and inserts this query-value pair to the
query-value table.

(b) Otherwise, S samples random ci /∈ EX∗ ∪C and send it to A. S inserts ci to C and inserts
this query-value pair to the query-value table.

In real-world execution, exi and eyi are uniform, Fsk(yi) is unpredictable. S also uniformly samples
EX∗, ci, and Fsk(yi)

∗. Fsk(yi)
∗ satisfied the unpredictable property. By programming the random

oracle in step 4, the output of A is same as interacting with an honest server.

5 Making DY-VUF Oblivious

In this section, we present an OVUF protocol secure against malicious adversaries, based on the
DY-VUF construction described in Section 3.2.2. Our protocol works in the (FPKI, FCOT)-hybrid
model with a sub-protocol named imperfect multiplicative to additive shares ΠMtA. In Section 5.1,
we review a randomized encoding scheme. Then, in Section 5.2, we introduce the sub-protocol

10

ΠMtA, which leverages the encoding scheme. The OVUF protocol, described in Section 5.3, is
constructed based on ΠMtA. Then, we give a complexity analysis of the proposed OVUF protocol
in Section 5.4. We leave the discussion of further optimization in Section A.

5.1 Encoding for Coalesced Multiplication

We provide a brief recap of the randomized encoding scheme described by Doerner et al. [23]. How-
ever, we prove some slightly different properties of the encoding where we also take the randomness
of the encoding vector gR. This is valid in our protocol because, as shown in Figure 6, we sample
gR only after the adversary chooses where to cheat.

Single encoding. Define coefficient vector g = gG||gR, where gG ∈ Zlog q
q , gGi = 2i−1, and

gR ← Zlog q+2s
q .

Algorithm 2. Encode(gR ∈ Zlog q+2s
q , β ∈ Zq)

1. Sample γ ← {0, 1}log q+2s

2. Output Bits(β − 〈gR, γ〉)||γ

Lemma 1. Given uniform γ ← {0, 1}log q+2s and gR ← Zlog q+2s
q , hgR(γ) := 〈gR, γ〉 is statistically

close to uniform distribution with a statistical distance of at most 2−s.

Proof. Let ε = 2−s, then we have log q = log q + 2s − 2 log(1ε). We can define a set of functions

H, such that for each h ∈ H, it is the form of Zlog q+2s
q × {0, 1}log q+2s → Zq. Each function,

parameterized by gR as hgR(γ) := 〈gR, γ〉 is a 2-universal hash function [22] with output bit length

log q. For input γ ← {0, 1}log q+2s, its entropy is H∞(γ) = log q + 2s. Thus, we have

log q = H∞(γ)− 2 log(
1

ε
) (2)

Equation 2 satisfies the Leftover Hash Lemma, that the output bit length of the 2-universal hash
function equals the entropy of input minus 2 log(1ε). Thus, for any gR uniformly distributed over

Zlog q+2s
q and independent of γ, we have

σ[(hgR(γ), γ), (U, γ)] ≤ ε

where U is uniform distributed over {0, 1}log q and independent of gR. Thus, the statistical distance
of hgR(γ) and U is at most 2−s.

Batch encoding. When encoding more than one element, it is possible to perform better than
encoding each element independently.

Algorithm 3. BatchEncode(gR ∈ Zlog q+2s
q , {β1, · · · , βn} ∈ Znq)

1. Sample γ1 ← {0, 1}log q, · · · , γn ← {0, 1}log q, γn+1 ← {0, 1}2s

2. Output
Bits(β1 − 〈gR, γ1||γn+1〉)||γ1|| · · · ||
Bits(βn − 〈gR, γn||γn+1〉)||γn||γn+1

Lemma 2. Given uniform γ = γ1|| · · · ||γn+1 ← {0, 1}n log q+2s and gR ← Zlog q+2s
q , hgR(γ) :=

〈gR, γ1||γn+1〉|| · · · ||〈gR, γn||γn+1〉 is statistically close to uniform with a statistical distance of at
most 2−s.

11

Proof. Let ε = 2−s, then we have n log q = n log q + 2s− 2 log(1ε). We can define a set of functions

H, such that for each h ∈ H, it is the form of Zlog q+2s
q × {0, 1}n log q+2s → {0, 1}log q. Each

function, parameterized by gR as hgR(γ) := 〈gR, γ1||γn+1〉|| · · · ||〈gR, γn||γn+1〉 is a 2-universal hash

function [22] with output bit length n log q. For input γ ← {0, 1}n log q+2s, it has information
entropy H∞(γ) = n log q + 2s. Thus,

n log q = H∞(γ)− 2 log(
1

ε
) (3)

Equation 3 satisfies the Leftover Hash Lemma, that the output bit length of the 2-universal hash
function equals the entropy of input minus 2 log(1ε). Thus, for any gR uniformly distributed over

Zlog q+2s
q and independent of γ, we have

σ[(hgR(γ),γ), (U,γ)] ≤ ε

where U is uniform distributed over {0, 1}n log q and independent of gR. Thus, the statistical distance
of hgR(γ) and U is at most ε, which equals to 2−s.

5.2 Imperfect Multiplicative to Additive Shares

The imperfect multiplicative to additive (MtA) shares protocol transforms multiplicative shares to
additive shares. It is imperfect because a malicious sender can execute attacks that lead to incorrect
additive secret shares, depending on the receiver’s input.

We use oblivious transfer based constructions to achieve this MtA. For the semi-honest version,
given value a ∈ Zq on the sender side and b ∈ Zq on the receiver side, the sender execute log q
iterations of FCOT with a as input in each ith iteration, while the receiver inputs bi, representing
the ith bit of the binary representation of b. The procedure and its correctness are detailed below:

1. For i ∈ [log q], the receiver inputs bi to FCOT, while the sender inputs a. FCOT sends qi to
receiver and pi to sender, such that qi = a · bi + pi.

2. Define d =
∑

i∈[log q] 2
i−1qi, c =

∑
i∈[log q] 2

i−1pi. Then, we have

d− c =
∑

i∈[log q]

2i−1qi −
∑

i∈[log q]

2i−1pi

= a
∑

i∈[log q]

2i−1bi

= a · b

However, a malicious sender could potentially execute attacks to the semi-honest protocol above.
Specifically, it samples an error vector e ∈ Znq and inputs a + ei to FCOT in its ith iteration. It
results d− c = a · b+

∑
i∈[log q] 2

i−1eibi. Given ei, the correctness of MtA transformation depends

on the receiver’s input b. Specifically, the transformation is correct when
∑

i∈[log q] 2
i−1eibi = 0.

Prior works incorporate consistency checks and encoding to resist such malicious behaviors [23].
The consistency check, for input a in different iterations, leaks information. Encoding is involved
to further protect privacy. In our construction, MtA is used in OVUF protocol in Section 5.3.
Since the verifiability of OVUF implicitly gives the same property as a consistency check, we only
incorporate the encoding algorithm in [23] to give an imperfect MtA protocol. To enhance efficiency,
we give a batch version in Figure 6. In this scenario, two parties hold collections of n elements,
denoted as a ∈ Znq and b ∈ Znq , respectively. There is a receiver that employs BatchEncode(gR, b)

12

algorithm to encode each element of its input into a batched binary representation. gR ∈ Zlog q+2s
q

is randomly chosen by the receiver and sent to the sender after executing FCOT. To run FCOT

s correctly in each iteration, the sender inputs ai and the receiver inputs corresponding bi in its
batch encoded bit representation form.

We show correctness of Figure 6 in its single encoded version below:

1. Definew = Encode(gR, b) ∈ {0, 1}2 log q+2s, which is the encoding of b. For i ∈ [t+2s], t = 2 log q,
the receiver inputs wi to FCOT, while the sender inputs a. FCOT sends qi to receiver and pi to
sender, such that qi = wi · a+ pi.

2. For g = gG||gR, define d =
∑

i∈[t] giqi +
∑

i∈[2s] gt+iqt+i and c =
∑

i∈[t] gipi +
∑

i∈[2s] gt+ipt+i.
We have

d− c =
∑
i∈[t]

giqi +
∑
i∈[2s]

gt+iqt+i −
∑
i∈[t]

gipi −
∑
i∈[2s]

gt+ipt+i

=
∑
i∈[t]

gi(qi − pi) +
∑
i∈[2s]

gt+i(qt+i − pt+i)

= a(
∑
i∈[t]

giwi +
∑
i∈[2s]

gt+iwt+i)

= a · b

For a malicious sender executing the attacks described above, the relation will be resulted as
d− c = a · b+

∑
i∈[t] gieiwi+

∑
i∈[2s] gt+iet+iwt+i with respect to the value of w = Encode(gR, b) ∈

Zt+2s
q . For w = BatchEncode(gR, b) ∈ Znt+2s

q , malicious behavior of sender will result in di − ci =
ai · bi + fi, where

fi :=
∑
j∈[t]

gjw(i−1)t+je(i−1)t+j +
∑
k∈[2s]

gt+kwnt+kent+(k−1)n+i (4)

We will show how to catch this incorrectness in Section 5.3 below with respect to the detailed
OVUF protocol.

5.3 Oblivious VUF from Imperfect MtA

Given the imperfect balanced multiplicative to additive shares protocol in Section 5.2, we instantiate
a fully malicious secure OVUF as follows.

1. Given input value sk on the server side and input vector y ∈ Znq on the client side, both parties
uniformly choose random vectors φ ∈ Znq and ζ ∈ Znq respectively.

2. The inputs and random vectors are specifically ordered as (φi, sk) ∈ Z2
q , i ∈ [n] and (yi, ζi) ∈

Z2
q , i ∈ [n], which serves as input vector for ΠMtA in its ith iteration. By running ΠMtA on both

sides for n times, both parties obtain additive secret shares of φi · yi and sk · ζi.

3. Then, the server raise g to its secret share of sk · ζi for i ∈ [n] and apply hash function on them.
Server sends the hash result to the client to let it check whether the server used correct sk for
each iteration.

4. Then, both parties are able to locally add φi ·sk or ζi ·yi with the secret shares of φi ·yi+sk ·ζi,
respectively. The results are regarded as secret shares of vi = (φi + ζi)(sk + yi). Both parties
exchanges the results to recover vi.

13

Protocol ΠMtA

Inputs: P0 holds a ∈ Znq . P1 holds b ∈ Znq .
Protocol:

1. P1 samples gR ← Zlog q+2s
q . P1 encodes b by computing w := BatchEncode(gR, b) ∈ {0, 1}nt+2s,

where t = 2 log q.

2. For i ∈ [n], j ∈ [t], P1 inputs w(i−1)t+j to FCOT. P0 inputs ai ∈ Fq to FCOT. P0 receives pi,j ∈ Fq
from FCOT. P1 receives qi,j ∈ Fq from FCOT.

3. For k ∈ [2s], P1 inputs wnt+k to FCOT. P0 inputs a ∈ Fnq to FCOT. P0 receives {p′1,k, · · · ,p′n,k} ∈ Fnq
from FCOT. P1 receives {q′1,k, · · · , q′n,k} ∈ Fnq from FCOT.

4. P1 sends gR to P0.

5. For j ∈ [t], k ∈ [2s], i ∈ [n], P0 computes

ci =
∑
j∈[t]

gj · pi,j +
∑
k∈[2s]

gt+k · p′i,k

P1 computes

di =
∑
j∈[t]

gj · qi,j +
∑
k∈[2s]

gt+k · q′i,k

such that di − ci = ai · bi.

Figure 6: The MtA protocol in FCOT-hybrid.

5. Both parties are able to compute gφi/vi and gζi/vi , respectively. Given gφi/vi , the client can
computes Fsk(yi) = gφi/vi · gζi/vi and verify correctness of the protocol using the fetched pk
from the setup phase.

The detailed scheme is shown in Figure 7. Its correctness can be directly verified. For security,
we assume the client acts as a receiver in the execution of FCOT in sub-protocol ΠMtA, while the
server acts as a sender. A malicious client might send the wrong yi or ui to the server. Incorrect yi
can be extracted by S given gR from the client. Incorrect ui leads to abort with all but negligible
probability, which can be simulated by S constructing message hi to manipulate abort probability.
A malicious server could execute selective failure attack in ΠOVUF and bias the secret shares of
vi to be ui + mi = diffi + (φi + ζi)(sk + yi) = diffi + vi. diffi resulted from the incorrectness
stated in Section 5.2 that diffi = f i1 + f i2. f

i
1 resulted from incorrect φi · yi and f i2 resulted from

incorrect sk · ζi. In the server’s perspective, gR is received after the selective failure attack has
been executed. For any element gRi uniformly distributed over Zq, diffi is uniformly distributed
over Zq. If the sender sends mi and hi honestly, the verification of Fsk(yi) passes if and only if
diffi = 0, which is with negligible probability. If not, the verification of Fsk(yi) passes if and only
if diff equals a specific number that results in correct Fsk(yi), which is negligible either. Thus, the
server’s malicious behavior can be simulated by S with all but negligible abort probability. The
detailed proof of the security of the proposed ΠOVUF with sub-protocol ΠMtA in the hybrid of (FPKI,
FCOT) is shown in Theorem 2.

Theorem 2. Protocol ΠOVUF with sub-protocol ΠMtA shown in Figure 7 UC-realizes FOVUF in
(FPKI,FCOT)-hybrid model.

14

Protocol ΠOVUF

Inputs: Client R holds vector y ∈ Znq .
Setup:

1. If FPKI is not initialized, server S sends (init) to FPKI, and obtains pair (sk, pk) that pk = gsk.

2. Client R sends (fetch) to FPKI. If FPKI is initialized, it sends pk to R; Otherwise, it does nothing.

Protocol:

1. Server S chooses φ← Znq ; client R chooses ζ ← Znq .

2. For i ∈ [n], S holds vector ai = (φi, sk) ∈ Z2
q, R holds vector bi = (yi, ζi) ∈ Z2

q. Both parties run

ΠMtA with the stated input vector above. Then, S receives ci ∈ Z2
q, R receives di ∈ Z2

q, such that

di1 − ci1 = φi · yi, di2 − ci2 = sk · ζi

3. S computes VS = H(gc
1
2 , · · · , gcn2), and sends VS to R. R computes VR = H(gd

1
2/pkζ1 , · · · , gdn

2 /pkζn).
R checks whether VR = VS and aborts if they are not equal.

4. S sends m to R, where mi = φi · sk − ci1 − ci2. R sends u to S, where ui = yi · ζi + di1 + di2. Both
S and R computes vi = ui +mi.

5. For each i ∈ [n], if vi = 0, S samples hi ← G. If vi 6= 0, S computes hi = gφi/vi . Then S
sends h to R. For each vi = 0, i ∈ [n], R sets Fsk(yi) = ⊥. Otherwise, R computes gζi/vi and
Fsk(yi) = hi · gζi/vi .

6. R checks e(gyi · pk, Fsk(yi)) = e(g, g) for each i ∈ [n]. Otherwise it aborts.

Figure 7: OVUF protocol in (FCOT, FPKI)-hybrid model with sub-protocol ΠMtA.

Proof. Let A be a PPT adversary that allows to corrupt the server or the client. We construct a
PPT simulator S with access to functionality FOVUF, which simulates the adversary’s view. We
consider the following two cases: malicious client and malicious server. The client acts as the
receiver of FCOT in sub-protocol ΠMtA, while the server acts as the sender. We will prove that the
joint distribution over the output of A and the honest party in the real world is indistinguishable
from the joint distribution over the outputs of S and the honest party in the ideal world execution.

Corrupted client. Let S access to FOVUF as an honest client and interact with A as an honest
server. S passes all communication between A and environment Z.

0. S emulates FPKI, once it receives fetch from A. S samples pk∗ ← G and sends it to A.

1-2. For i ∈ [n], S simulates the ith iteration of sub-protocol ΠMtA below.

(1)-(3) S emulates FCOT and receives w ∈ Z2t+2s
q from A. S samples q ← Z2t

q , q′ ← Z4s
q and sends

them to A.

(4) S receives gR from A. S computes yi and ζi as follows:

yi = bi1 =
∑
j∈[t]

gjwj +
∑

j∈[t+1,t+2s]

gjwt+j

ζi = bi2 =
∑
j∈[t]

gjwt+j +
∑

j∈[t+1,t+2s]

gjwt+j

(5) S computes di as an honest P1 does in step 5 in ΠMtA.

15

3. S samples V ∗S and sends it to A. S emulates H and receives query q from A. If q =

(gd
1
2/pkζ1 , · · · , gdn2 /pkζn), S sends V ∗S to A. Otherwise, S sends a random value to A. S

aborts if A aborts.

4. S sends (compute,y) to FOVUF and receives set O from FOVUF. For all the index i ∈ O, S sends
m∗i = −(yi · ζi +di1 +di2) to A. Otherwise, S sends m∗i ← Zq to A. S receives ui and computes
vi = m∗i + ui for each i ∈ [n].

5. S waits to receive Fsk(yi) for each i /∈ O. For each i ∈ [n], S checks whether ui = yi ·ζi+di1+di2.

If it is and vi 6= 0, S simulates h∗i = Fsk(yi)

g

ζi
m∗

i
+ui

, and sends it to A. Otherwise, S simulates hi ← G

and sends it to A.

6. S aborts if A aborts and outputs what A outputs.

We are going to show the simulated execution is indistinguishable from the real protocol execution.
Hybrid H0. Same as real-world execution in (FCOT, FPKI)-hybrid.
Hybrid H1. This hybrid is identical to H0 except S emulates FPKI, FCOT, and simulates the

messages to A as follows:
For step 0, S emulates FPKI, samples pk∗ ← G and sends it to A. In hybrid H0, FPKI samples

sk ← Zq and computes pk = gsk, which is uniformly distributed in G. Thus, the pk generated by
S is indistinguishable from the one in hybrid H0.

For step 1-2, S emulates FCOT, receives w ∈ Z2t+2s
q from A. S samples q ← Z2t

q , q′ ← Z4s
q to

A, and receives gR ∈ Zlog q+2s
q from A. In Hybrid H0, q and q′ are uniformly distributed according

to FCOT. Thus, the q, q′ sampled by S is indistinguishable from the one in Hybrid H0.
For step 3, S samples V ∗S to A. Then, S emulates random oracle and returns V ∗S to A for

query q = (gd
1
2/pkζ1 , · · · , gdn2 /pkζn). In hybrid H0, an honest server uses correct sk in ΠMtA and

computes VS = H(gc
1
2 , · · · , gcn2). Since ci2 = di2 − sk · ζi holds for an honest server, where di2 and

ζi can be recovered by S, the simulated V ∗S is indistinguishable from the honest VS in Hybrid H0.
For step 4, S sends (compute,y) to FOVUF and waits for set O. For each i ∈ O, S sends

m∗i = −(yi · ζi + di1 + di2) to A. Otherwise, S sends random m∗i ← Zq to A. In hybrid H0, an
honest server computes mi = φi · sk + c1 + c2 and sends it to A. If sk + yi = 0, mi satisfies
the distribution that mi + yi · ζi + di1 + di2 = vi = (φi + ζi)(sk + yi) = 0. The simulated m∗i for
i ∈ O satisfies this distribution as well, which is indistinguishable from hybrid H0. If sk + yi 6= 0,
mi + yi · ζi + di1 + di2 = vi = (φi + ζi)(sk + yi). Because φi, is randomly sampled, A has no
idea about the distribution of mi. Also, ci is randomly uniform in Z2

q to A, we have mi randomly
uniform in Zq to A. The simulated m∗i is randomly uniform in Zq as well, which is indistinguishable
from hybrid H0. Thus, the view simulated by S is identical to hybrid H0.

For step 5, S waits to receive Fsk(yi). S checks whether the received ui is correct. If it is and

vi 6= 0, S sends h∗i = Fsk(yi)

g

ζi
m∗

i
+ui

to A, where m∗i is the value sampled in step 3. Otherwise, S samples

h∗i ← G and sends it toA instead. In hybridH0, an honest server sends hi = g
φi

mi+ui toA, wheremi

and hi are computed honestly. If ui is correct, then hi ·g
ζi

mi+ui = Fsk(yi). In Hybrid H1, S receives

Fsk(yi) from FOVUF and simulates h∗i = Fsk(yi)

g

ζi
m∗

i
+ui

, such that h∗i · g
ζi

m∗
i
+ui = Fsk(yi). The view of h∗i

is identical to hi in Hybrid H0.If ui is not correct in hybrid H0, then mi +ui 6= (φi + ζi)(sk+ yi)

and hi · g
ζi

mi+ui 6= Fsk(yi). In Hybrid H1, S simulates h∗i ← G, we have h∗i · g
ζi

m∗
i
+ui = Fsk(yi)

16

w.p. 2− log q, which is indistinguishable from hybrid H0. If ui is correct but vi = 0 in hybrid H0,
S samples h∗i ← G. In hybrid H0, hi is sampled from G as well. Thus, the view simulated by S is
identical to hybrid H0.

Corrupted server. Let S access to the FOVUF as an honest server and interact with A as an
honest client. S passes all communication between A and environment Z.

0. S emulates FPKI, once it receives the first init request from A, S samples (sk, pk), where pk = gsk

to A. For subsequent init request, S ignores them.

1-2. For each i ∈ [n], S simulates ith iteration of ΠMtA as follows:

(1)-(3) S emulates FCOT and receives a vector τ ∈ Z2(t+2s)
q from A. S samples p← Z2t

q , p′ ← Z4s
q

and sends them to A. S checks whether the received τ ∈ Z2(t+2s)
q satisfies a pattern that

for k ∈ [2], all the bits τj , j ∈ [(k− 1)t+ 1, kt]∪ j = 2t+ k+ (l− 1)2, l ∈ [2s] are the same.
For k = 1, if τj are the same, S extracts φi = τj . For k = 2, if τj are the same, S extracts
sk′ = τj .

(4) S samples gR ← Zlog q+2s
q and sends gR to A.

(5) S computes ci as an honest P0 does in step 5 in ΠMtA.

3. S emulates random oracle H and receives query q from A. S samples VS to A and records
(q, VS). Once S receives VS from A, S first checks whether sk′s have been extracted in last step
and each sk′ = sk. Then, S checks whether the corresponded q = (gc

1
2 , · · · , gci2). If it is, S

continue, Otherwise, S aborts. For other cases that any sk′ 6= sk or sk′ can not be extracted, S
aborts directly.

4. S receives m from A. S sends (compute) to FOVUF and receives set O from FOVUF. For each

i ∈ [n], if the received τ ∈ Z2(t+2s)
q satisfies the pattern in step 1-2 and i ∈ O, S sends value

u∗i = −φi · sk + ci1 + ci2 to A. Otherwise, S sends u∗i ← Zq to A.

5. S waits to receive h.

6. For the ith iteration, if τ satisfies the pattern stated above and i /∈ O, S checks whether

hi = g
φi

mi+u
∗
i , mi = φi · sk − ci1 − ci2 and sends continue to FOVUF. If τ satisfies the pattern

stated above and i ∈ O, S checks whether mi = φi · sk − ci1 − ci2 and sends continue to FOVUF.
Otherwise, S sends abort to FOVUF.

We are going to show the simulated execution is indistinguishable from the real protocol exe-
cution.

Hybrid H0. Same as real-world execution in (FPKI,FCOT)-hybrid model.
Hybrid H1. This hybrid is identical to H0 except S emulates FPKI, FCOT and generates the

messages to A as follows:
For Step 0, S emulates FPKI and samples (sk, pk) to A once it receives the first init request from

A, which is indistinguishable from Hybrid H0.
For Step 1-2, S emulates FCOT and waits to receive τ . Then, S sends p ← Z2t

q and p′ ← Z4s
q

to A. S samples gR ← Zlog q+2s
q and sends it to A. For an honest client in hybrid H0, it samples

p← Z2t
q , p′ ← Z4s

q , gR ← Zlog q+2s
q as well, which is indistinguishable from this hybrid.

For Step 4, S receives m. S sends (compute) to FOVUF and waits for O. For each iteration
i ∈ [n], if the received τ satisfies the pattern stated above and i ∈ O, S sends u∗i = −φi ·sk+ci1+ci2

17

to A. Otherwise, S sends u∗i ← Zq to A. In the real-world execution, for ith iteration, if A sends τ
correctly and i ∈ O, an honest client computes ui such that ui+φi · sk−ci1−ci2 = 0. The sampled
u∗i satisfy this distribution as well. If i /∈ O, ui +φi · sk− ci1 − ci2 = vi = (φi + ζi)(sk+ yi), which
is uniformly distributed over Zq. Thus, ui is uniformly distributed, same as the sampled one.

If there exists an error e sampled by a malicious server, an honest client computes ui such that
ui+φi ·sk−ci1−ci2 = vi = (φi+ζi)(sk+yi)+diffi. diffi = f i1+f i2, where f i1 resulted from incorrect
φi ·yi and f i2 resulted from incorrect sk · ζi as stated in Equation 4. Since e is defined by A before

knowing gR, we have gR is randomly uniform over Zlog q+2s
q to A at this time. Thus, for any given w

and e, fi is uniformly distributed over Zq. Thus, diffi is uniform distributed over Zq. If sk+yi = 0,
an honest client computes ui such that ui + φi · sk − ci1 − ci2 = 0 + diffi. Since diffi is uniform
distributed over Zq, for any i ∈ O but τ not satisfy the stated pattern, the simulated u∗i ← Zq is
identical to the distribution of ui in Hybrid H0. If sk + yi 6= 0,an honest client computes ui such
that ui + φi · sk − ci1 − ci2 = (φi + ζi)(sk + yi) + diffi in Hybrid H0. Since bi2 ← Zq is randomly
uniform to A, we have ui is uniformly distributed over Zq, which is identically distributed as the
simulated u∗i .

Hybrid H2. This hybrid is identical toH1 except S aborts at Step 3 in the following conditions:
1) the extracted sk′ = sk, the q corresponding to the received VS not equal to (gc1 , · · · , gcn); 2)
the extracted sk′ 6= sk 3) there is an error e added to τ on the bits corresponding to sk, S couldn’t
extract sk′ from τ . S also aborts at Step 6 in the following conditions: 1) τ does not satisfy the
specific pattern; 2) i ∈ O, τ satisfy the specific pattern, mi 6= φi · sk − ci1 − ci2; 3) i /∈ O, τ satisfy

the specific pattern, h∗i 6= g
φi

mi+u
∗
i or mi 6= φi · sk − ci1 − ci2.

For Step 3 in hybrid H1, an honest client aborts if the received VS 6= VR. The client computes
VR = H(gd

1
2/pkζ1 , · · · , gdn2 /pkζn). For each gd

i
2/pkζi , it equals to gd

i
2−sk·ζi . When adversary use

correct sk but manipulate VS from inconsistent zi, an honest client aborts in hybrid H1 (condition
(1)). Adversary A might use inconsistent sk to ΠMtA and manipulate VS to A. If A use sk′ 6= sk
in ΠMtA, both parties holds equation ci2 = di2− sk′ · ζi. Thus, with VS computed from ci2, VS 6= VR.
Moreover, because of the uniformity of di2 and ζi, A is not able to construct ci

′
2 that ci

′
2 = di2−sk ·ζi

either. Thus, the client aborts with all but negligible probability with condition (2) in hybrid H1.
Adversary A might add error e to τ on bits related to sk in ΠMtA and manipulate VS to A. In
this case, both parties holds equation ci2 = di2 − sk′ · ζi + f2, where f2 is computed according to
Equation. 4. As we analyzed above, f2 is uniformly distributed over Zq for any given w and e.
Thus, with VS computed from ci2, VS 6= VR. Similarly, A is unable to construct ci

′
2 = di2 − sk · ζi

either. Thus, the client aborts with all but negligible probability with condition (2) in hybrid H1.
For Step 6 in hybridH1, an honest client aborts when Fsk(yi) does not satisfy e(gyi ·pk, Fsk(yi)) =

e(g, g), where Fsk(yi) = hi · g
ζi

mi+ui . For the ith iteration, if τ doesn’t satisfy the specific pattern,
diffi 6= 0 with all but negligible probability. Thus, mi+ui 6= (sk+yi)(φi+ζi) with all but negligible

probability. hi · g
ζi

mi+ui 6= Fsk(yi) with all but negligible probability. When τ satisfies the specific
pattern and i ∈ O, an honest client aborts if mi +ui 6= 0 and results in a Fsk(yi). When τ satisfy
the specific pattern and i /∈ O, an honest client aborts if the computed Fsk(yi) does not satisfy
the verification procedure. Given either wrong mi or wrong hi, it will result in wrong Fsk(yi).
Therefore, this hybrid is identically distributed as the previous one.

The above hybrid argument completes this proof.

5.4 Complexity Analysis

For each input element yi ∈ Y , ΠOVUF requires 4 log q + 4s COT and one gR. Thus, this protocol
requires (4 log q+ 4s)n COT and n gR in total. To improve its complexity, we propose an improved

18

102 103 104 105 106 107 108

Server set size n

101

102

103

104

105

106

107
W

al
lc

lo
ck

tim
e

(m
s)

32 threads
4 threads
1 thread

(a) Local encoding

101 102 103 104 105

Client set size n

102

103

104

105

W
al

lc
lo

ck
tim

e
(m

s)

KOS + 32 threads
KOS + 4 threads
KOS + 1 thread
FERRET + 32 threads
FERRET + 4 threads
FERRET + 1 thread

(b) Interaction phase (LAN)

101 102 103 104 105

Client set size n

102

103

104

105

106

W
al

lc
lo

ck
tim

e
(m

s)

KOS + 32 threads
KOS + 4 threads
KOS + 1 thread
FERRET + 32 threads
FERRET + 4 threads
FERRET + 1 thread

(c) Interaction phase (WAN)

Figure 8: Performance of our protocol. We show the performance of both phases. The one-time offline
local encoding time for the server set is depicted in (a). The interactive online encoding time for the client
set is shown in (b) under LAN network and (c) under WAN network. Both (b) and (c) utilize different OT
methods (KOS/FERRET) and number of threads (1/4/32) for comparison.

OVUF in Section A that reduces the number of gRs to two and achieves better RAM usage. The
key idea is to batch operations with correlated randomness together but refer to Section A for
complete description of the protocol and the proof.

6 Distributing Server Encodings

Distributing the server-set encodings is the main cost of the protocol, but also the most flexible
part of the protocol. Here we discuss several solutions that could be used in practice.

Network caching. Network caching technologies like content distribution network (CDN) are
good at distributing content cheaply and quickly. This is the standard technique to distribute
common website and streaming services. Our service encoding can take advantage of CDN networks
since the server encoding is identical for all clients. Note that prior works on malicious PSI cannot
take advantage of CDN since the communication with each client is different.

Verifiable private information retrieval. One can also use verifiable PIR [29, 18] to allow the
clients getting only a subset of encodings relevant to their own PSI. Unlike normal PIR, verifiable
PIR publishes a digest of the data, which ensures that anyone with the digest can verify that the
PIR results are consistent with a global database, something needed to prevent attacks from a
corrupted server. However, state-of-the-art verifiable PIR has a digest size of around 600MB for
a database of 800MB [18] and thus the current savings are small. With more advances in their
efficiency, we believe this solution could be highly valuable.

Other solutions. There are other potential solutions with some trade offs between security and
efficiency. First of all, one could directly fetch the needed encodings through a TOR network to hide
their identity, which requires assumptions of trusting TOR. Bucketization is another solution that
provides better efficiency with reduced privacy. In detail, one can use a hash function to partition
all encodings into buckets and reveal which buckets the clients are looking. Indeed, this solution
has been used by Google and Cloudflare for credential checking, but there are also demonstration
of attacks for various bucketization techniques [40].

7 Performance Evaluation

We implement our protocols using EMP [56] for COT and RELIC [3] for pairings. We benchmark
the performance of our protocol when FCOT is instantiated using KOS [37] and Ferret [58].

19

0 1000 2000 3000 4000
Bandwidth Mbps

2000

4000

6000

8000
W

al
lc

lo
ck

tim
e

(m
s)

KOS + 32 thread
KOS + 4 thread
KOS + 1 thread

Ferret + 32 thread
Ferret + 4 thread
Ferret + 1 thread

(a) Bandwidth vs. time

0 25 50 75 100 125 150 175 200 225 250 275 300
Latency (ms)

103

104

105

106

W
al

lc
lo

ck
tim

e
(m

s)

set size 101

set size 102
set size 103

set size 104
set size 105

(b) Latency vs. time

101 102 103 104 105

Set size n

0

100

101

102

103

104

B
an

dw
id

th
(M

B
)

FERRET KOS

(c) Bandwidth consumption

Figure 9: Our performance under different network settings. We show our performance of time
consumption as bandwidth varies in (a) and as latency varies in (b). (a) uses client set size 103 to compare
performance under different OT methods (KOS/FERRET) and different thread numbers (1/4/32). (b)
takes OT method KOS to compare performance as set sizes vary. Figure (c) shows our protocol’s bandwidth
consumption as the set size varies.

7.1 Benchmark Setup

We instantiate everything ensuring a computational security parameter κ = 128 and a statistical
security parameter s = 40. To this end, we use BLS12-381 for all type-III pairing operations. We
show the performance in two different network settings: a LAN network with 5Gbps bandwidth
and a WAN network with 120 Mbps bandwidth. All experiments are performed on AWS EC2
instances of 6a.8xlarge type with 32vCPU and 128 GB memory.

7.2 Efficiency of Server Local Encoding

First, we benchmark the performance of the server encoding process. Note that this computation
only needs to be executed once given a set of elements. Recall that this step mainly computes the
VUF on the input elements. Following conventions from prior works, we hash the output to 64-bit
strings, which helps in reducing the encoding size. For example, the encoding file for a set of 108

elements is of size 800 MB.
We prepare a list of 256-bit values in a file as the server’s set. The benchmark results include

the time to: 1) read all elements from the file (w/ disk access), 2) compute the VUF value of each
element and then hash it into a 64-bit string, and 3) write the resulting hashes into another file
(w/disk access). In Figure 8a, we show the performance of our server computation with different set
sizes and threads. From the figure, we can see that the performance of the server’s local encoding
is linear to the set size. We observe a 3.8× improvement when increasing the threads from 1 to 4
and 15× from 1 to 32 threads. We didn’t make the file I/O multi-threaded which we believe could
be the bottleneck when we use 32 threads.

7.3 Efficiency of Online Computation

Now we show the performance of the interactive process between a server with a VUF secret key,
and a client with a private set. As the output, the client will get VUF evaluation on its own set,
which can be further used to lookup the server encoding.

Wallclock time. In Figure 8b and Figure 8c, we show the wallclock of the protocol for different
client set sizes. Similarly, the time reported includes the client: 1) reading its own elements from
a file, 2) running OVUF with a server to compute Fsk(xi); 3) computing the hash to derive 64-bit
strings that can be used for local matching.

With 1 thread, the average cost for the client to process each element is 8.29ms in the WAN
setting and 4.17ms in the LAN setting. With 32 threads, the average cost is 4.53ms in the WAN

20

100 1000 10000
Set size of each client

0.00

0.02

0.04

0.06

0.08

0.10

Se
rv

er
co

st
(U

SD
pe

rc
lie

nt
)

Ours Ours

Ours

Blazing-PSI Blazing-PSI Blazing-PSI

CDN cost Comm. cost Comp. cost

Figure 10: Server cost comparison with Blazing-PSI [49]. All experiments are run on AWS instance.
Costs are estimated based on AWS instance pricing and network pricing.

Protocol Security Server Offline Online Online
comp. (s) comm. (MB) time (s) comm. (MB)

[38] (w/ LowMC) Semi-honest 1869 2144 0.93 24.01
[38] (w/ ECC-NR-PSI) Semi-honest 52332 2144 1.34 6.06

[14] (T=32) Semi-honest 4628 0 12.1 18.57
[16] (T=24) Semi-honest 3680 0 7.80 6.08
[50] (T=32) Semi-honest 182 2415 0.16 0.07

Ours (w/ KOS) (T=32) Malicious 1556.7 2147 0.44 63.23

Table 1: Performance of unbalanced PSI with server set |X| = 228 and client set |Y | = 210. T
represents the number of threads. For the rows in context does not specify T, T equals to 1 by default.

setting and 0.43ms in the LAN setting. Noted that Ferret computes COT in large batches, it is
not competitive when the set is small, where the protocol cannot consume all COTs. When the set
size is large, our protocol in the LAN setting using KOS or Ferret does not show much difference as
they have similar computational costs. In the WAN setting, we can observe a slight improvement
with Ferret because it consumes less bandwidth. However, the improvement is not huge because
the communication caused by our protocol, not counting the cost of COT, is already significant.

Performance dependency on network. We show the efficiency of our protocol under different
network condition in Figure 9a and Figure 9b. According to Figure 9a, the efficiency of a client
with a set size of 103 in a WAN environment increases as the bandwidth increases. However, once
the bandwidth reaches 1Gbps, the efficiency does not improve significantly with further increases
in bandwidth. This indicates that our protocol performs best with bandwidth larger than 1Gbps.
In TCP networks, there is a dependency between latency and bandwidth limitations, wherein an
increase in latency leads to a decrease in available bandwidth. Figure 9b illustrates that the total
protocol wallclock time increases as bandwidth decreases due to added latency. For larger sets
that use up more bandwidth, the rise in wallclock time is more significant than for smaller sets
experiencing the same increase in latency.

Bandwidth consumption. Regarding bandwidth consumption in Figure 9c, we observed that if
the set size is less than 102, the protocol using KOS OT performs better in terms of bandwidth usage
compared to that using FERRET OT. However, this situation changes once the set size exceeds
102. For a set size of 105, the KOS OT protocol requires 61.7KB to process one element, while the
FERRET OT protocol needs 43.0KB to encode one element. This is the same reason as we stated

21

in Wallclock time, that Ferret computes COT in large batches but consumes less bandwidth
for each COT compared with KOS. For small set size, Ferret is more bandwidth-intensive as it
generates more COT than necessary. However, for large set size, Ferret is more efficient as the
generated COTs can be utilized and each one consumes less bandwidth than KOS.

7.4 Comparison with Other Protocols

Our protocol works in a special setting where a server with one set repeatedly runs PSI with many
clients with small sets. We noticed that existing prior works do not perform well if used in our
setting directly; this is not surprising as they are not designed for this setting. Below, we show
some comparisons to state-of-the-art protocols in classical PSI settings.

Comparing with state-of-the-art PSI. The first possible solution is to use the best fully ma-
licious secure PSI protocol [49], and have the server run this protocol with each client. However,
there exists a security issue that the server might differentiate its set among different clients. Ad-
ditionally, the performance is poor: each execution of PSI with a different client requires the server
to transmit a different encoding of its set over the internet, which incurs great costs. In Figure 10,
we compare the cost by the server per client between our protocol and the Blazing-fast [49], which
is so far the fastest and improved upon VOLE-based PSI [51]. We assume the server set has 108

elements, and the client set ranges from 102 to 104 elements. We use the real execution time and
the instance’s unit price (0.1728USD/Hour for 6a.xlarge) to compute computational cost. We
also estimate the communication cost by multiplying the data size that the server transfers out
by the communication unit price (0.05USD/GB). Notice that for our scheme, since the server’s
encoding is reusable, we use AWS CloudFront (CDN) to manage it, thereby reducing this part of
the communication cost to a lower unit price (0.02USD/GB). The computation of this reusable
server set encoding is a one-time and offline process, making the cost per client negligible when
amortized. For our scheme, the total cost is 3x lower for a client set 10000 and 5x lower for client
sets 100 and 1000. With smaller set sizes, the cost is primarily dominated by the CDN cost, which
is a fixed value of 0.016 USD per client. If we switch to managing the server’s encoding through
a peer-to-peer network to eliminate the CDN cost, our scheme achieves an 8x reduction in com-
munication cost and a 2x reduction in computation cost compared to Blazing-PSI for a client size
of 10000. In this case, the cost of our scheme scales linearly with the client set size and performs
better with smaller client sizes.

Comparing with PSI featuring reusable server encoding. Some unbalanced PSI could be
better suited to our setting which allows pushing some work to the offline stage as well. In Table 1,
we show how our protocol performs with related protocols:

• OPRF-based solutions by [38] allows the server to reuse its computation and encoding that is
linear to X across multiple clients. We include two solutions, one based on LowMC PRF and
one based on Naor–Reingold PRF. We also update their hash output to achieve a similar level
of false positive rate. Our protocol runs at a similar time to OPRF-based protocols with about
three times more communication; however, that allows us to achieve full malicious security.

• FHE-based solution [14, 16] does not require sending large encoding but requires more compu-
tation. The computation could be made reusable across multiple clients by performing OPRF
on top of the value, but existing FHE-PSI implementations or benchmarks do not include these
extra steps. We can see that our solution is much faster in terms of online time with higher com-
munication cost. All FHE-based solutions only implement their semi-honest version and could
not be made fully malicious secure; however, we do believe that by incorporating our OVUF-
based solution, it is possible to achieve full malicious security as well, which we leave as future
work.

22

• Finally, we also compare with a DH-based solution by Resende and Aranha [50]. The solution
is semi-honest, but the original proposal by Jarecki and Liu [35] also includes malicious coun-
terparts, which require further use of zero-knowledge proofs to show correct encoding. This
approach essentially follows the VOPRF method, where all efficient solutions do not allow ex-
tracting client’s input in the proof. As such, their solution requires much less communication.

References

[1] Navid Alamati, Pedro Branco, Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Si-
hang Pu. Laconic private set intersection and applications. In Kobbi Nissim and Brent Waters,
editors, TCC 2021, Part III, volume 13044 of LNCS, pages 94–125, Raleigh, NC, USA, Novem-
ber 8–11, 2021. Springer, Heidelberg, Germany.

[2] Martin R. Albrecht, Alex Davidson, Amit Deo, and Nigel P. Smart. Round-optimal verifiable
oblivious pseudorandom functions from ideal lattices. In Juan Garay, editor, PKC 2021,
Part II, volume 12711 of LNCS, pages 261–289, Virtual Event, May 10–13, 2021. Springer,
Heidelberg, Germany.

[3] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao. RELIC is an
Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic.

[4] Diego F. Aranha, Chuanwei Lin, Claudio Orlandi, and Mark Simkin. Laconic private set-
intersection from pairings. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi,
editors, ACM CCS 2022, pages 111–124, Los Angeles, CA, USA, November 7–11, 2022. ACM
Press.

[5] Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (If) size matters: Size-hiding
private set intersection. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Ni-
colosi, editors, PKC 2011, volume 6571 of LNCS, pages 156–173, Taormina, Italy, March 6–9,
2011. Springer, Heidelberg, Germany.

[6] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Coun-
tering GATTACA: efficient and secure testing of fully-sequenced human genomes. In Yan Chen,
George Danezis, and Vitaly Shmatikov, editors, ACM CCS 2011, pages 691–702, Chicago, Illi-
nois, USA, October 17–21, 2011. ACM Press.

[7] Andrea Basso. A post-quantum round-optimal oblivious PRF from isogenies. Cryptology
ePrint Archive, Report 2023/225, 2023. https://eprint.iacr.org/2023/225.

[8] Shany Ben-David, Yael Tauman Kalai, and Omer Paneth. Verifiable private information
retrieval. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part III, volume
13749 of LNCS, pages 3–32, Chicago, IL, USA, November 7–10, 2022. Springer, Heidelberg,
Germany.

[9] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin
and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 56–73, Inter-
laken, Switzerland, May 2–6, 2004. Springer, Heidelberg, Germany.

[10] Dan Boneh, Dmitry Kogan, and Katharine Woo. Oblivious pseudorandom functions from
isogenies. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, vol-
ume 12492 of LNCS, pages 520–550, Daejeon, South Korea, December 7–11, 2020. Springer,
Heidelberg, Germany.

23

https://github.com/relic-toolkit/relic
https://eprint.iacr.org/2023/225

[11] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd FOCS, pages 136–145, Las Vegas, NV, USA, October 14–17, 2001. IEEE Computer
Society Press.

[12] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled. UC
non-interactive, proactive, threshold ECDSA with identifiable aborts. In Jay Ligatti, Xinming
Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1769–1787, Virtual
Event, USA, November 9–13, 2020. ACM Press.

[13] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.
Two-party ECDSA from hash proof systems and efficient instantiations. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 191–221, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

[14] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully homomor-
phic encryption with malicious security. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 1223–1237, Toronto, ON, Canada, Octo-
ber 15–19, 2018. ACM Press.

[15] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homomorphic
encryption. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,
ACM CCS 2017, pages 1243–1255, Dallas, TX, USA, October 31 – November 2, 2017. ACM
Press.

[16] Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia Iliashenko,
Kim Laine, and Michael Rosenberg. Labeled PSI from homomorphic encryption with reduced
computation and communication. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021,
pages 1135–1150, Virtual Event, Republic of Korea, November 15–19, 2021. ACM Press.

[17] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo Valsorda. Privacy
pass: Bypassing internet challenges anonymously. PoPETs, 2018(3):164–180, July 2018.

[18] Leo de Castro and Keewoo Lee. Verisimplepir: Verifiability in simplepir at no online cost for
honest servers. Cryptology ePrint Archive, Paper 2024/341, 2024. https://eprint.iacr.

org/2024/341.

[19] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-complexity private set inter-
section protocols secure in malicious model. In Masayuki Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 213–231, Singapore, December 5–9, 2010. Springer, Heidelberg,
Germany.

[20] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. PIR-PSI: Scaling private contact
discovery. PoPETs, 2018(4):159–178, October 2018.

[21] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs
and keys. In Serge Vaudenay, editor, PKC 2005, volume 3386 of LNCS, pages 416–431, Les
Diablerets, Switzerland, January 23–26, 2005. Springer, Heidelberg, Germany.

[22] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Secure two-party threshold ECDSA
from ECDSA assumptions. In 2018 IEEE Symposium on Security and Privacy, pages 980–997,
San Francisco, CA, USA, May 21–23, 2018. IEEE Computer Society Press.

24

https://eprint.iacr.org/2024/341
https://eprint.iacr.org/2024/341

[23] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Threshold ECDSA from ECDSA
assumptions: The multiparty case. In 2019 IEEE Symposium on Security and Privacy, pages
1051–1066, San Francisco, CA, USA, May 19–23, 2019. IEEE Computer Society Press.

[24] Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari Juels, and Thomas Ristenpart. The
pythia PRF service. In Jaeyeon Jung and Thorsten Holz, editors, USENIX Security 2015,
pages 547–562, Washington, DC, USA, August 12–14, 2015. USENIX Association.

[25] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless
setup. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM
CCS 2018, pages 1179–1194, Toronto, ON, Canada, October 15–19, 2018. ACM Press.

[26] Niv Gilboa. Two party RSA key generation. In Michael J. Wiener, editor, CRYPTO’99,
volume 1666 of LNCS, pages 116–129, Santa Barbara, CA, USA, August 15–19, 1999. Springer,
Heidelberg, Germany.

[27] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge
University Press, Cambridge, UK, 2004.

[28] Iftach Haitner, Nikolaos Makriyannis, Samuel Ranellucci, and Eliad Tsfadia. Highly effi-
cient OT-based multiplication protocols. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages 180–209, Trondheim, Norway,
May 30 – June 3, 2022. Springer, Heidelberg, Germany.

[29] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah Meiklejohn, and
Vinod Vaikuntanathan. One server for the price of two: Simple and fast single-server pri-
vate information retrieval. Cryptology ePrint Archive, Report 2022/949, 2022. https:

//eprint.iacr.org/2022/949.

[30] Sharon Huang, Subodh Iyengar, Sundar Jeyaraman, Shiv Kushwah, Chen-Kuei Lee, Zu-
tian Luo, Payman Mohassel, Ananth Raghunathan, Shaahid Shaikh, Yen-Chieh Sung,
and Albert Zhang. DIT: De-identified Authenticated Telemetry at Scale. Technical re-
port, Facebook Inc., 2021. https://research.fb.com/wp-content/uploads/2021/04/

DIT-De-Identified-Authenticated-Telemetry-at-Scale_final.pdf.

[31] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Mariana Raykova, Shobhit
Saxena, Karn Seth, David Shanahan, and Moti Yung. On deploying secure computing com-
mercially: Private intersection-sum protocols and their business applications. Cryptology
ePrint Archive, Report 2019/723, 2019. https://eprint.iacr.org/2019/723.

[32] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal password-protected
secret sharing and T-PAKE in the password-only model. In Palash Sarkar and Tetsu Iwata,
editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 233–253, Kaoshiung, Taiwan,
R.O.C., December 7–11, 2014. Springer, Heidelberg, Germany.

[33] Stanislaw Jarecki, Hugo Krawczyk, and Jason K. Resch. Updatable oblivious key management
for storage systems. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 379–393, London, UK, November 11–15, 2019. ACM
Press.

[34] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with applica-
tions to adaptive OT and secure computation of set intersection. In Omer Reingold, editor,

25

https://eprint.iacr.org/2022/949
https://eprint.iacr.org/2022/949
https://research.fb.com/wp-content/uploads/2021/ 04/DIT-De-Identified-Authenticated-Telemetry-at-Scale_final.pdf
https://research.fb.com/wp-content/uploads/2021/ 04/DIT-De-Identified-Authenticated-Telemetry-at-Scale_final.pdf
https://eprint.iacr.org/2019/723

TCC 2009, volume 5444 of LNCS, pages 577–594. Springer, Heidelberg, Germany, March 15–
17, 2009.

[35] Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection. In Juan A.
Garay and Roberto De Prisco, editors, SCN 10, volume 6280 of LNCS, pages 418–435, Amalfi,
Italy, September 13–15, 2010. Springer, Heidelberg, Germany.

[36] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and Christian Wein-
ert. Mobile private contact discovery at scale. In Nadia Heninger and Patrick Traynor, edi-
tors, USENIX Security 2019, pages 1447–1464, Santa Clara, CA, USA, August 14–16, 2019.
USENIX Association.

[37] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal
overhead. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I,
volume 9215 of LNCS, pages 724–741, Santa Barbara, CA, USA, August 16–20, 2015. Springer,
Heidelberg, Germany.

[38] Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas. Private set intersection
for unequal set sizes with mobile applications. PoPETs, 2017(4):177–197, October 2017.

[39] Ben Kreuter, Tancrède Lepoint, Michele Orrù, and Mariana Raykova. Anonymous tokens with
private metadata bit. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part I, volume 12170 of LNCS, pages 308–336, Santa Barbara, CA, USA, August 17–21, 2020.
Springer, Heidelberg, Germany.

[40] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul Chatterjee, and Thomas Ristenpart.
Protocols for checking compromised credentials. In Lorenzo Cavallaro, Johannes Kinder, Xi-
aoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 1387–1403, London, UK,
November 11–15, 2019. ACM Press.

[41] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 1837–1854, Toronto,
ON, Canada, October 15–19, 2018. ACM Press.

[42] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung. Two-sided malicious
security for private intersection-sum with cardinality. In Daniele Micciancio and Thomas Ris-
tenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 3–33, Santa Barbara,
CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany.

[43] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In 40th
FOCS, pages 120–130, New York, NY, USA, October 17–19, 1999. IEEE Computer Society
Press.

[44] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita Borisov. Bot-
Grep: Finding P2P bots with structured graph analysis. In USENIX Security 2010, pages
95–110, Washington, DC, USA, August 11–13, 2010. USENIX Association.

[45] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. Journal of the ACM, 51(2):231–262, March 2004.

26

[46] Ofri Nevo, Ni Trieu, and Avishay Yanai. Simple, fast malicious multiparty private set inter-
section. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 1151–1165, Virtual
Event, Republic of Korea, November 15–19, 2021. ACM Press.

[47] Bijeeta Pal, Mazharul Islam, Marina Sanusi Bohuk, Nick Sullivan, Luke Valenta, Tara Whalen,
Christopher A. Wood, Thomas Ristenpart, and Rahul Chatterjee. Might I get pwned: A second
generation compromised credential checking service. In Kevin R. B. Butler and Kurt Thomas,
editors, USENIX Security 2022, pages 1831–1848, Boston, MA, USA, August 10–12, 2022.
USENIX Association.

[48] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS: Fast, malicious
private set intersection. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part II, volume 12106 of LNCS, pages 739–767, Zagreb, Croatia, May 10–14, 2020. Springer,
Heidelberg, Germany.

[49] Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved OKVS and subfield
VOLE. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022,
pages 2505–2517, Los Angeles, CA, USA, November 7–11, 2022. ACM Press.

[50] Amanda C. Davi Resende and Diego F. Aranha. Faster unbalanced private set intersection. In
Sarah Meiklejohn and Kazue Sako, editors, FC 2018, volume 10957 of LNCS, pages 203–221,
Nieuwpoort, Curaçao, February 26 – March 2, 2018. Springer, Heidelberg, Germany.

[51] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and circuit-PSI from vector-
OLE. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part II,
volume 12697 of LNCS, pages 901–930, Zagreb, Croatia, October 17–21, 2021. Springer, Hei-
delberg, Germany.

[52] Mike Rosulek and Ni Trieu. Compact and malicious private set intersection for small sets.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 1166–1181, Virtual Event,
Republic of Korea, November 15–19, 2021. ACM Press.

[53] István András Seres, Máté Horváth, and Péter Burcsi. The legendre pseudorandom function as
a multivariate quadratic cryptosystem: Security and applications. Cryptology ePrint Archive,
Report 2021/182, 2021. https://eprint.iacr.org/2021/182.

[54] Tjerand Silde and Martin Strand. Anonymous tokens with public metadata and applications
to private contact tracing. In Ittay Eyal and Juan A. Garay, editors, FC 2022, volume 13411
of LNCS, pages 179–199, Grenada, May 2–6, 2022. Springer, Heidelberg, Germany.

[55] Nirvan Tyagi, Sof́ıa Celi, Thomas Ristenpart, Nick Sullivan, Stefano Tessaro, and Christo-
pher A. Wood. A fast and simple partially oblivious PRF, with applications. In Orr Dunkel-
man and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS,
pages 674–705, Trondheim, Norway, May 30 – June 3, 2022. Springer, Heidelberg, Germany.

[56] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient MultiParty
computation toolkit. https://github.com/emp-toolkit, 2016.

[57] Haiyang Xue, Man Ho Au, Xiang Xie, Tsz Hon Yuen, and Handong Cui. Efficient online-
friendly two-party ECDSA signature. In Giovanni Vigna and Elaine Shi, editors, ACM CCS
2021, pages 558–573, Virtual Event, Republic of Korea, November 15–19, 2021. ACM Press.

27

https://eprint.iacr.org/2021/182
https://github.com/emp-toolkit

[58] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast extension
for correlated OT with small communication. In Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna, editors, ACM CCS 2020, pages 1607–1626, Virtual Event, USA, November 9–
13, 2020. ACM Press.

A Batched OVUF with Improved Efficiency

In this section, we give an optimized maliciously secure oblivious verifiable unpredictable protocol
ΠOVUF2 in terms of efficiency. This protocol combines a new sub-protocol ΠU−MtA called unbalanced
imperfect multiplicative to additive shares transformation, introduced in Appendix A.1. The details
and proof of ΠOVUF2 are depicted in Appendix A.2 and Appendix A.3.

A.1 Unbalanced Imperfect MtA

This transformation computes the additive secret shares of scaler-vector multiplication, where the
scaler and vector held by different parties are regarded as unbalanced input. Its imperfection follows
the same idea as Section 5.2 that a malicious sender can execute attacks and result in incorrect
additive secret shares depending on the receiver’s input.

The most straightforward way to achieve imperfect scaler-vector multiplicative to additive shares
is as follows: Given the input vector a ∈ Znq on party P0 and scaler b ∈ Zq on party P1, let P1

create a new vector b with each element bi = b. Then, both parties execute ΠMtA, using a and
b as inputs. However, in our construction in Figure. 11, we designate P1 as receiver of FCOT and
have P1 employ Encode(gR, b). Sender P0 inputs vector element ai and the receiver P1 inputs
encoded bit element of b to run FCOT to compute the additive secret share of ai · b. This approach
consumes n(2 log q+2s) iterations of FCOT, the same as the straightforward approach stated above.
However, it saves eliminate pseudorandom vector γ of length (n− 1) log q and repetitive encoding
of b of length (n− 1) log q when implementing the encoding algorithm.

For the incorrectness caused by the sender P0’s malicious behavior as stated in Section 5.2, it
follows the same error representation as the single encoded version in Section 5.2, that di − ci =
ai · b+ fi. fi is denote as follows with respect to w = Encode(gR, b) ∈ Zt+2s

q .

fi =
∑
i∈[t]

gieiwi +
∑
i∈[2s]

gt+iet+iwt+i (5)

Given e, the correctness of MtA transformation depends on w and gR. Specifically, the transfor-
mation is correct when fi = 0. Still, this incorrectness will be caught by ΠU−MtA in Appendix A.2
with a detailed proof in Appendix A.3.

A.2 OVUF with Improved Efficiency

In Section 5, we introduced the basic version of oblivious verifiable unpredictable protocol. In the
context of ΠOVUF, when each client holds a set of n elements yi, i ∈ [n] and collaborates with a
server to compute OVUF, the ΠOVUF processes each input element yi one by one. This sequential
processing involves n iterations of ΠMtA. For each iteration of ΠMtA, it runs with input vector
(φi, sk) ∈ Z2

q and (yi, ζi) ∈ Z2
q to compute additive share of sk · ζi and yi · φi. In this section, we

maximize the batch feature of MTA protocols and execute sk · ζi and yi · φi for each i ∈ [n] as
follows:

1. Execute ΠMtA to compute additive shares of yi · φi, i ∈ [n] in one iteration.

2. Execute ΠU−MtA to efficiently compute additive shares of ζi · sk, i ∈ [n] in one iteration.

28

Protocol ΠU−MtA

Inputs: P0 holds a ∈ Znq . P1 holds b ∈ Zq.
Protocol:

1. P1 samples gR ← Zlog q+2s
q , and encodes b by computing w := Encode(gR, b) ∈ {0, 1}t+2s.

2. P1 inputs wj , j ∈ [t+ 2s] to FCOT. P0 inputs a ∈ Fnq to FCOT. P0 receives {p1,j , · · · ,pn,j} ∈ Fnq from
FCOT. P1 receives {q1,j , · · · , qn,j} ∈ Fnq from FCOT.

3. P1 sends gR to P0.

4. For j ∈ [t+ 2s], i ∈ [n], P0 computes

ci =
∑

j∈[t+2s]

gj · pi,j

P1 computes

di =
∑

j∈[t+2s]

gj · qi,j

such that di − ci = ai · b.

Figure 11: The U-MtA protocol in FCOT-hybrid.

Protocol ΠOVUF2

Inputs: Client R holds vector y ∈ Znq .
Setup:

1. If FPKI is not initialized, server S sends (init) to FPKI, and obtains pair (sk, pk) that pk = gsk.

2. Client R sends (fetch) to FPKI. If FPKI is initialized, it sends pk to R; Otherwise, it does nothing.

Protocol:

1. Server S chooses φ← Znq ; client R chooses ζ ← Znq .

2. S and R inputs φ ∈ Znq and y ∈ Znq to ΠMtA, receives c ∈ Znq and d ∈ Znq respectively, such that
d− c = φ ◦ y.

3. S and R inputs sk and ζ ∈ Znq to ΠU−MtA, receives z ∈ Znq and o ∈ Znq respectively, such that
z − o = sk · ζ.

4. S samples i ∈ [n], computes VS = H(gzi), and sends (i, VS) to R. R computes VR = H(pkζigoi). R
checks whether VR = VS and aborts if they are not equal.

5. S sends m = sk ·φ−c+z to R. R sends u = y ◦ζ+d−o to S. Both S and R computes v = u+m.

6. For each i ∈ [n], if vi 6= 0, S computes φi

vi
and sends hi = g

φi
vi to R. R computes g

ζi
vi and

Fsk(yi) = hi · g
ζi
vi . Otherwise, S samples hi ← G and sends hi to R. R sets Fsk(yi) = ⊥.

7. R checks e(gyi · pk, Fsk(yi)) = e(g, g) for each i ∈ [n]. Otherwise it aborts.

Figure 12: The OVUF2 protocol in (FCOT, FPKI)-hybrid model with sub-protocol ΠMtA and ΠU−MtA.

29

The other parts of this optimized-oblivious verifiable unpredictable protocol ΠOVUF2 follow the
same idea as ΠOVUF. The detailed scheme is shown in Figure. 12. Its correctness can be verified
directly. Security-wise, this protocol involves two different MtA transformations. For ΠU−MtA, the
client R is regarded as the sender of FCOT and the one who executes a selective failure attack to
ΠOVUF2. For ΠMtA, we assume server S as the sender of FCOT and the one who executes selective
failure attacks to ΠOVUF2 without loss of generality. We prove that ΠOVUF2 is malicious secure in
(FCOT, FPKI)-hybrid model with sub-protocol ΠMtA and ΠU−MtA. The theorem is stated below with
a full proof in Appendix A.3.

Theorem 3. Protocol ΠOVUF2 shown in Figure 12 UC-realizes FOVUF in the (FCOT, FPKI)-hybrid
model with sub-protocol ΠMtA and ΠU−MtA.

A.3 Proof of Theorem 3

Proof. Let A be a PPT adversary that allows to corrupt the server or the client. We construct a
PPT simulator S with access to functionality FOVUF, which simulates the adversary’s view. We
consider the following two cases: malicious client and malicious server. We will prove that the joint
distribution over the output of A and the honest party in the real world is indistinguishable from
the joint distribution over the outputs of S and the honest party in the ideal world execution.

Corrupted Client. Let S access to the FOVUF as an honest client and interact with A as an
honest server. S passes all communication between A and environment Z.

0. S emulates FPKI. Once it receives fetch from A, it samples pk∗ ← G to A.

1-2. S simulates the sub-protocol ΠMtA and acts as an honest sender of FCOT below.

(1)-(3) S emulates FCOT and receives w ∈ Znt+2s
q . S samples q ← Zntq , q′ ← Z2ns

q and sends them
to A.

(4) S receives gR from A. S computes yi for each i ∈ [n] as follows:

yi =
∑
j∈[t]

gjw(i−1)t+j +
∑

j∈[t+1,t+2s]

gjwnt+j

(5) S computes di as an honest P1 does in step 5 in ΠMtA.

3. S simulates the sub-protocol ΠU−MtA and acts as an honest receiver of FCOT below.

(1)-(2) S emulates FCOT. S receives τ ∈ Znt+2ns
q and sends p ← Znt+2ns

q to A. S checks whether
the received τ satisfy the pattern that for i ∈ [n], all the bits τj , j = (k−1)t+ i, k ∈ [t+2s]
are the same. Then, S extracts ζi = τj .

(3) S sends gR ← Zlog q+2s
q to A.

(4) S computes o as an honest P0 does in step 4 in ΠU−MtA.

4. S samples i ∈ [n], V ∗S ← G to A. S emulates H. Once ζi is extracted in step 3 and the received
query q = (pkζigoi), S sends V ∗S to A. Otherwise, S sends a random value to A.

5. S sends (compute,y) to FOVUF and receives set O from FOVUF. For each i ∈ [n], if the received
τ satisfy the pattern stated above and i ∈ O, S sends m∗i = −yi · ζi − di + oi to A. Otherwise,
S sends m∗i ← Zq to A. S receives u from A.

30

6. S waits to receive Fsk(yi) for each i /∈ O. For each i ∈ [n], S checks whether ui = yi·ζi+di−oi, τ
satisfies the specific pattern and vi 6= 0, S simulates h∗i = Fsk(yi)

g

ζi
m∗

i
+ui

and sends it to A. Otherwise,

S simulates hi ← G and sends h to A.

7. S aborts if A aborts and outputs what A outputs.

We are going to show the simulated execution is indistinguishable from the real protocol execution.
Hybrid H0. Same as real-world execution in (FPKI, FCOT)-hybrid.
Hybrid H1. This hybrid is identical to H0 except S emulates FPKI, FCOT, and simulates the

messages to A as follows:
For step 0, S emulates FPKI, samples pk∗ ← G and sends pk∗ to A. In hybrid H0, FPKI samples

sk ← Zq and computes pk = gsk, which is uniformly distributed over G. Thus, the pk∗ sampled by
S is indistinguishable from the one generated in hybrid H0.

For step 1-2, S simulates sub-protocol ΠMtA. S emulates FCOT, sends q ← Zntq , q′ ← Z2ns
q to A.

In Hybrid H0, q and q′ are uniformly distributed according to FCOT. Thus, the q and q′ sampled
by S are indistinguishable from the those in Hybrid H0.

For step 3, S simulates sub-protocol ΠU−MtA. S emulates FCOT, sends p ← Znt+2ns
q to A. S

also sends gR ← Zlog q+2s
q to A. In Hybrid H0, p is uniformly distributed over Znt+2ns

q according

to FCOT. gR is sampled by the client and uniformly distributed to A. Thus, the sampled p and gR

are indistinguishable from Hybrid H0.
For step 4, S samples (i, V ∗S) to A. S also programs random oracle H and sends V ∗S to A if it

receives query q = pkζigoi with ζi extracted. Otherwise, S samples a random value to A.
In hybrid H0, an honest server uses correct sk in ΠU−MtA and computes VS = H(gzi) for any

i ∈ [n]. Since zi = oi+sk ·ζi holds for an honest server and honest client in ΠU−MtA, the simulated
V ∗S is indistinguishable from the real VS in Hybrid H0. If A adds error e ∈ Znt+2ns

q in the execution
of ΠU−MtA, zi = oi + sk · ζi + fi holds for honest server and the adversary. fi is computed from
Equation 5. Since e is defined by A before knowing gR, gR is uniformly distributed over Zlog q+2s

q

to A. For any given w and e, fi is uniformly distributed over Zq to A. Thus, zi is uniformly
distributed over Zq to A and the sampled V ∗S is indistinguishable from VS in hybrid H0.

For step 5, S sends (compute,y) to FOVUF and waits for set O from FOVUF. If i ∈ O, the received
vector τ satisfy a specified pattern stated in simulation, S sends m∗i = −(yi · ζi + di − oi) to A.
Otherwise, S sends m∗i ← Zq to A.

In hybrid H0, an honest server computes mi = sk · φi − ci + zi and sends it to A. If there
exists an error e sampled by a malicious client in sub-protocol ΠU−MtA, an honest server computes
mi such that mi + yi · ζi + di − oi = vi = (sk + yi)(φi + ζi) + diffi. diffi resulted from incorrect
sk · ζi, computed by fi in Equation 5. As analyzed above, fi/diffi are uniformly distributed over
Zq to A. Thus, mi is uniformly distributed over Zq to A, which is indistinguishable from the
simulated m∗i . If τ satisfies the specific pattern and sk + yi = 0, mi satisfy distribution that
mi + yi · ζi + di − oi = vi = (sk + yi)(φi + ζi) = 0. The simulated m∗i under the constraint
of i ∈ O(sk + yi = 0) satisfies this distribution as well. If τ satisfies the specific pattern and
sk + yi 6= 0, mi + yi · bi + di + zi = vi = (sk + yi)(φi + ζi), because of the randomness of φi,
A has no idea about the distribution of mi. Also, because ci is randomly uniform in Zq to A, we
have mi randomly uniform in Zq to A, which is indistinguishable from the simulated m∗i . Thus,
the view simulated by S is identical to hybrid H0.

For step 6, S checks for each i ∈ [n], whether the received ui is correct, τ satisfy the specific

pattern, and vi 6= 0. If it is, S sends h∗i = Fsk(yi)

g

ζi
m∗

i
+ui

to A, where Fsk(yi) is the value received from

31

FOVUF and m∗i is the value sampled in step 4. Otherwise, S sends h∗i ← G to A instead. In hybrid

H0, an honest server sends hi = g
φi

mi+ui to A, where mi and hi are computed honestly. If ui is

correct, τ satisfies the specific pattern, and vi 6= 0, then hi · g
ζi

mi+ui = Fsk(yi). The view of h∗i
is identical to hi in Hybrid H0. If ui is not correct, or τ doesn’t satisfy the specific pattern in
hybrid H0, mi + ui = (sk + yi)(φi + ζi) if and only if diffi = yi · ζi + di − oi − ui. In this way,

hi · g
bi

mi+ui = Fsk(yi). However, the probability that diffi equals a specific value is negligible. In

Hybrid H1, S simulates h∗i ← G. h∗i · g
ζi

m∗
i
+ui = Fsk(yi) is negligible and indistinguishable from

hybrid H0. If vi = 0, an honest server samples hi ← G in hybrid H0, which is indistinguishable
from the one simulated by S. Thus, the view simulated by S is identical to hybrid H0.

Corrupted Server. Let S access to the FOVUF as an honest server and interact with A as an
honest client. S passes all communication between A and environment Z.

0. S emulates FPKI. Once it receives first init request from A, it samples (sk, pk), where pk = gsk

to A. S ignores subsequent init request from A.

1-2. S simulates sub-protocol ΠMtA and acts as an honest receiver below.

(1)-(3) S emulates FCOT and receives a vector τ ∈ Zn(t+2s)
q . S samples p ← Zntq , p′ ← Z2ns

q and

sends them to A. S checks whether the received τ ∈ Zn(t+2s)
q satisfies a pattern that for

i ∈ [n], all the bits τj , j ∈ [(i− 1)t+ 1, it] ∪ j = nt+ i+ (l − 1)n, l ∈ [2s] are the same.

(4) S samples gR ← Zlog q+2s
q and sends it to A.

(5) S computes ci as an honest P0 does in step 5 in ΠMtA.

3. S simulates the sub-protocol ΠU−MtA and acts as an honest sender below.

(1)-(2) S emulates FCOT. S receives w ∈ Zt+2s
q and sends q ← Znt+2ns

q to A.

(3) S receives gR ∈ Zlog q+2s
q from A. S recover sk′ as follows:

sk′ =
∑

i∈[2 log q+2s]

giwi

(4) S computes z as an honest P1 does in step 4 in ΠU−MtA.

4. S emulates random oracle H and receives query q from A. S samples VS to A and records
(q, VS). Once S receives (i, VS) from A, S first checks whether sk′ = sk and aborts if not. Then,
S checks whether the corresponded q = (gzi). If it is, S continue; Otherwise, S aborts.

5. S receivesm from A. S sends (compute, n) to FOVUF and receives set O from FOVUF. If sk = sk′,
for each i ∈ [n], if the received τ satisfies the pattern and i ∈ O, S sends u∗i = −φi · sk+ ci− zi
to A. Otherwise, S sends u∗i ← Zq to A. If sk 6= sk′, S sends u∗i ← Zq to A for each i ∈ [n].

6. S waits to receive h.

7. For each i ∈ [n], if sk = sk′, τ satisfies the pattern stated above and i /∈ O, S checks whether

hi = g
φi

mi+u
∗
i , mi = φi · sk − ci + zi and sends continue to FOVUF. If sk = sk′, τ satisfies the

pattern stated above and i ∈ O, S checks whether mi = φi · sk − ci + zi and sends continue to
FOVUF. Otherwise, S sends abort to FOVUF.

32

We are going to show the simulated execution is indistinguishable from the real protocol execution.
Hybrid H0. Same as real-world execution in (FPKI,FCOT)-hybrid model.
Hybrid H1. This hybrid is identical to H0 except S emulates FPKI, FCOT, and generates the

messages to A as follows:
For Step 0, S emulates FPKI and samples (sk, pk) to A once it receives the first init request from

A, which is indistinguishable from Hybrid H0.
For Step 1-2, S simulates sub-protocol ΠMtA. S emulates FCOT, sends p ← Zntq ,p′ ← Z2ns

q to

A. S also samples gR ← Zlog q+2s
q and sends it to A. In Hybrid H0, p,p

′ are uniformly distributed

according to FCOT. gR is sampled by client and uniformly distributed over Zlog q+2s
q to A. Thus,

the simulated p,p′, gR are indistinguishable from Hybrid H0.

For step 3, S simulates sub-protocol ΠU−MtA. S emulates FCOT, sends q ← Zn(t+2s)
q to A. In

Hybrid H0, q is uniformly distributed over Zn(t+2s)
q according to FCOT. Thus, the sampled q is

indistinguishable from Hybrid H0.
For Step 5, S receives m from A, S sends (compute, n) to FOVUF and waits for set O. If

sk = sk′, for each i ∈ [n], if the received vector τ in step 1-2 satisfies the stated pattern above
and i ∈ O, S sends u∗i = −φi · sk + ci − zi to A. Otherwise, S sends random u∗i ← Zq to A. In
Hybrid H0, under the constraint of sk = sk′, if there exist error e in step 1-2, an honest client
computes ui such that ui + ai · sk − ci + zi = vi = (sk + yi)(ai + bi) + diffi. Since diffi is uniform
distributed over Zq, ui is uniform distributed over Zq to A as well. If there does not exist e and
sk + yi 6= 0, we have ui + ai · sk − ci − oi = vi = (sk + yi)(ai + bi). Since bi ← Zq to A, we
have ui is uniform distributed over Zq to A. If there does not exist e and sk + yi = 0, we have
ui + ai · sk − ci − oi = vi = (sk + yi)(ai + bi) = 0. Under the constraint of sk 6= sk′, there exists
an y′ that satisfy sk′ + y′ = 0 with negligible probability. ui is uniformly distributed. Thus, the
simulated u∗i is indistinguishable from the distribution of ui in Hybrid H0.

Hybrid H2. This hybrid is identical to H1 except S aborts at step 4 in the following conditions:
1) sk′ = sk, the q corresponding to the received VS not equal to gzi 2) sk′ 6= sk. S also aborts at
Step 7 in the following conditions: 1) sk 6= sk′; 2) vector τ received in step 1-2 does not satisfy the
specific pattern; 3) i ∈ O, τ satisfy the specific pattern, mi 6= φi · sk − ci + zi; 4) i /∈ O, τ satisfy

the specific pattern, mi 6= φi · sk − ci + zi or h∗i 6= g
φi

mi+u
∗
i .

For step 4 in hybrid H1, an honest client aborts if the received VS 6= VR. The client computes
VR = H(pkζigoi). For each pkζigoi , it equals to gsk·ζi+oi . When adversary use correct sk but
manipulate VS from inconsistent zi, an honest client aborts in hybrid H1 (condition (1)). Adversary
A might use inconsistent sk′ to ΠMtA and manipulate VS to A. If A use sk′ 6= sk in ΠMtA, both
parties holds equation ci2 = di2 − sk′ · ζi. Thus, with VS computed from ci2, VS 6= VR. Moreover,
because of the uniformity of di2 and ζi, A is not able to construct ci

′
2 that ci

′
2 = di2 − sk · ζi either.

Thus, the client aborts with all but negligible probability with condition (2) in hybrid H1.
For step 7 in hybridH1, an honest client aborts when Fsk(yi) does not satisfy e(gyi ·pk, Fsk(yi)) =

e(g, g), where Fsk(yi) = hi ·g
ζi

mi+ui . When sk 6= sk′, the probability thatmi+ui = (sk+yi)(φi+ζi)
with negligible probability. Thus, the protocol aborts with all but negligible probability. For the
ith iteration, if τ doesn’t satisfy the specific pattern, diffi 6= 0 with all but negligible probability.

Thus, mi + ui 6= (sk + yi)(φi + ζi) with all but negligible probability. hi · g
ζi

mi+ui 6= Fsk(yi) with
all but negligible probability. The honest client aborts with all but negligible probability. When τ
satisfy the specific pattern and i ∈ O, an honest client aborts if mi + ui 6= 0, which results in a
Fsk(yi) rather than ⊥. When τ satisfy the specific pattern and i /∈ O, given either wrong mi or
wrong hi, it will result in wrong Fsk(yi). The honest client aborts as the computed Fsk(yi) can
not satisfy the verification procedure.

33

Therefore, this hybrid is identically distributed as the previous one.
The above hybrid argument completes this proof.

34

	Introduction
	Our Contribution

	Overview
	Malicious Client-Server PSI from (O)VUF
	Instantiating OVUF

	Preliminaries
	Notation
	Verifiable Unpredictable Function
	Definition of VUF
	DY-VUF Construction

	Ideal Functionalities

	OVUF-based PSI
	Making DY-VUF Oblivious
	Encoding for Coalesced Multiplication
	Imperfect Multiplicative to Additive Shares
	Oblivious VUF from Imperfect MtA
	Complexity Analysis

	Distributing Server Encodings
	Performance Evaluation
	Benchmark Setup
	Efficiency of Server Local Encoding
	Efficiency of Online Computation
	Comparison with Other Protocols

	Batched OVUF with Improved Efficiency
	Unbalanced Imperfect MtA
	OVUF with Improved Efficiency
	Proof of Theorem 3

