A NEAR-LINEAR QUANTUM-SAFE THIRD-PARTY PRIVATE SET INTERSECTION PROTOCOL

FOO YEE YEO AND JASON H. M. YING

Abstract. Third-party private set intersection (PSI) enables two parties, each holding a private set to compute their intersection and reveal the result only to an inputless third party. In this paper, we present efficient third-party PSI protocols, which significantly lower the computational workload compared to prior work. Our work is motivated by real-world applications such as contact tracing whereby expedition is essential while concurrently preserving privacy. Our construction attains a near-linear computational complexity of $O(n^{1+\varepsilon})$ for large dataset size n, where $\varepsilon > 0$ is any fixed constant, and achieves post-quantum security. For a quantum-safe third-party PSI protocol, this significantly improves upon the current known best of $O(n^{2.5+o(1)})$. Our improvements stem from algorithmic changes and the incorporation of new techniques along with precise parameter selections to achieve a tight asymptotic bound.

1. Introduction

Private set intersection (PSI) \cite{32,47} is a cryptographic primitive used for secure computation, which allows two or more parties to compute the intersection of their sets while keeping their inputs secret. The applications of PSI arise in numerous diverse settings ranging from botnet detection \cite{49}, private proximity testing \cite{50}, human genomes testing \cite{4}, private contact discovery \cite{36,46}, online advertising \cite{56}, privacy-preserving ride-sharing \cite{28}, as well as contact tracing \cite{6,20,22,65,66} in the event of a pandemic such as COVID-19. Due to its wide range of applications, a long series of notable works \cite{3,10–12,14,16,21,23–27,31,38,42,45,48,54–61,63,67,69,70} have been carried out to advance the development of efficient PSI protocols in both the theoretical and practical aspects.

Existing PSI solutions can be broadly classified from a variety of approaches. The initial constructions of PSI arose from Diffie-Hellman based oblivious pseudo-random functions (OPRFs) \cite{32,47}. There exist several modern protocols \cite{7,19,34} which are designed based upon DH-OPRF due to the low communication cost which it offers. Oblivious transfer (OT) extension first introduced in \cite{35}, followed by improvements due to \cite{7}, enables computation of a very large number of OTs at low cost by using just a relatively small number of base-OTs. OT extensions engendered a class of protocols \cite{42,52,54,60,62}, which provide a lower computational cost with a higher communication overhead trade-off as compared to DH-OPRF approaches. Homomorphic encryption (HE) is a core building block in several PSI protocols. The PSI protocol \cite{23} applies oblivious polynomial evaluation by utilizing an additive partially homomorphic encryption scheme, such as the Paillier cryptosystem \cite{53}. The work in \cite{14} is based on leveled HE and applies techniques such as batching to reduce the communication cost. Fully homomorphic encryption (FHE) is employed in the works of \cite{13,17} for a labeled PSI setting, where the sender holds a label associated with each item, and the functionality outputs the labels from the items in the intersection to the receiver. FHE is also applied in the
work of [31] to compute a variety of enhanced functionalities over the set intersection. General HE techniques are computationally expensive but can be useful in certain scenarios such as in unbalanced PSI where one party’s set is significantly smaller than the other. Circuit-based PSI [9, 57, 58, 63] has the added potential to compute functions over the set intersection but incurs a high communication cost. Hashing techniques have been used by some PSI protocols [23, 30, 56, 59] to reduce the number of comparisons performed between the set elements to obtain the intersection, thereby achieving higher efficiency.

Third-Party PSI. Yeo and Ying [68] introduced a variant of PSI, known as third-party private set intersection, that enables the private computation of the intersection of datasets held by two different parties P_1 and P_2, while revealing the result only to an inputless third party Q. A key challenge in efficiently achieving third-party PSI comes from the observation that the inputless third party Q does not himself have any information that can be used to constrain the elements that might appear in the intersection.

1.1. Motivation and Use Cases. Third-party PSI possesses practical utility and is relevant in settings when the intersection output is only made known to a third-party for privacy reasons. Instances of such scenarios occur when a regulatory authority intends to obtain relevant information from two organizations. A third-party PSI protocol prevents sensitive information from being exposed to the participating parties, while enabling the regulator to achieve the intended objective. For example, in the event of a pandemic, the public health authority assumes the role of the third-party while the premises which have records of the people who visit along with their time stamps are the participating parties. Should contact tracing be required, the health regulatory authority can easily obtain a database of people who are present at specific times in a privacy-preserving manner.

1.2. Related Work and Challenges. It should be noted that existing PSI protocols with applications to contact tracing operate in a different context. In most settings being considered, there are two main roles, one sender and one receiver, whereby conventional PSI protocols can be applied more directly. For instance, in the use cases of [20, 22, 65, 66], the receiver is a user who holds a set of identifiers...
within proximity while the sender is the public health authority or its associated server which is assumed to already own a database of contact tokens from infected users through prior collection. The user can then perform a PSI protocol with the public health authority’s server to determine the extent of exposure with other infected individuals. To minimize workload on the receiver, which is typically a user’s mobile device, the protocol of [22] delegates a majority of the user-side computations to untrusted servers. The works of [20, 65, 66] are customized to specifically tailor for PSI protocols with the knowledge that the user holds a set which is much smaller than the database of the server. In our use case, there are two senders and one inputless receiver whereby the third-party role of the public health authority seeks to gather the database of potential individuals at risk in the event of outbreaks at the premises.

There are other existing variants of PSI which have been explored, such as utilizing a server to either increase efficiency [37, 44] or to outsource the computational workload [40], as well as multi-party PSI [2, 5, 9, 29, 33, 41, 43, 51] which can be regarded as a generalization of conventional two-party PSI, where there are more than two participants’ sets to compute over. However, these do not provide effective solutions to the specified task. In the server aided setting, the receiver is the party with the inputs, while the receiver is inputless in third-party PSI. The latter results in a more complex problem when the participating parties with inputs are not allowed to obtain any information throughout the process. In the case of multi-party PSI, one can adopt a solution by assigning the third-party the entire universe of possible input elements, but this is clearly not ideal in theory and practice.

In [68], Yeo and Ying introduced two different third-party PSI protocols, the first based on the use of a commutative cipher, and the second based on the use of a key agreement protocol. Both protocols are communication efficient, requiring only a small amount of communication between the participating parties. However, in practice, the protocols can incur significant computational costs.

1.3. Our Contributions. In this paper, we improve upon the current state-of-the-art for third-party PSI, and significantly reduce the computational cost of the protocol in [68] from $O(n^{2.5+o(1)})$ to $O(n^{1+\varepsilon})$, where ε is any positive constant and n is the size of the each dataset. We achieve this by incorporating two improvements, which can be applied either separately or concurrently, to the original protocol.

The first improvement involves modifying the protocol in [68] such that the set of keys K computed by P_1 during the execution of the protocol is not sent directly to Q, but rather, it is used to interpolate a polynomial which is then sent to Q. By making this modification, when Q is computing the intersection, it suffices for Q to compute the roots of a single polynomial, rather than roots of n different polynomials, thus saving a factor of approximately n in the computational cost.

The second improvement uses a hash function to hash the inputs of the parties into some number of buckets, before applying the protocol separately to each of these buckets. This reduces the size of the instances on which we apply the existing third-party PSI protocol at the cost of having to perform a large number of instances of the original protocol. With a careful choice of parameters, we achieve a protocol with a greatly reduced computational cost compared to the original protocol.

\footnote{While the authors of [68] state a computational complexity of $O(n^4)$ for their protocol, the complexity of their protocol can in fact be improved to $O(n^{2.5+o(1)})$ by replacing the Cantor–Zassenhaus algorithm [8] (which is used in one of the steps of their protocol) with an algorithm by Kedlaya and Umans [39].}
In addition, we consider a variant of the third-party PSI problem, where the aim is to privately compute the size, but not the exact contents, of the intersection of datasets held by P_1 and P_2, again revealing the result only to Q. In the conventional two-party setting, this problem, known as PSI cardinality, was introduced and studied by Cristofaro et al. [18]. We introduce a protocol for the third-party PSI cardinality problem, which further improves the computational complexity for Q compared to both our third-party PSI protocols.

As in [68], our protocols are secure against quantum adversaries as long as the underlying key agreement protocol used is quantum-safe.

1.4. Organization. We describe formal definitions of third-party PSI related functionalities and the complexities of standard polynomial operations in Section 2. A technical overview of the first and second improvements including details of the protocols are presented in Section 3 and Section 4 respectively. Section 5 describes a technical overview of the third-party PSI cardinality protocol with details. We provide a conclusion of this work in Section 6.

2. Preliminaries

2.1. Definitions. We recall the definition of a third-party PSI protocol from [68].

Definition 1 (Third-party PSI protocol). In a third-party PSI protocol, 2 parties P_1 and P_2 each holds a dataset with elements in $\{0,1\}^*$, while a third-party Q has no input. At the end of the protocol, Q outputs the set intersection functionality, and the other parties output \bot.

Ideal-world/real-world simulation-based definitions can be used to define the security of such a protocol. The protocol is secure if it achieves the ideal functionality shown in Figure 2.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Get P_1’s input set S_1.</td>
</tr>
<tr>
<td>(2)</td>
<td>Get P_2’s input set S_2.</td>
</tr>
<tr>
<td>(3)</td>
<td>Send $S_1 \cap S_2$ to Q.</td>
</tr>
</tbody>
</table>

Figure 2. Third-party PSI ideal functionality

We define a third-party PSI cardinality protocol in a similar manner (see Definition 2). Such a protocol is secure if it achieves the ideal functionality in Figure 3.

Definition 2 (Third-party PSI cardinality protocol). In a third-party PSI cardinality protocol, 2 parties P_1 and P_2 each holds a dataset with elements in $\{0,1\}^*$, while a third-party Q has no input. At the end of the protocol, Q outputs the cardinality of the set intersection, and the other parties output \bot.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Get P_1’s input set S_1.</td>
</tr>
<tr>
<td>(2)</td>
<td>Get P_2’s input set S_2.</td>
</tr>
<tr>
<td>(3)</td>
<td>Send $</td>
</tr>
</tbody>
</table>

Figure 3. Third-party PSI cardinality ideal functionality
2.2. Complexity of Standard Polynomial Operations. Let \mathbb{F} be a field and $\mathbb{F}[X]$ be the ring of polynomials over \mathbb{F}. We write $\mathbb{F}[X]_{\leq d}$ for the subset of $\mathbb{F}[X]$ containing polynomials of degree $\leq d$.

Let $M(d) = O(d \log d \log \log d)$ be the complexity of multiplying two polynomials of degree $\leq d$. Table 1 lists the complexity of various common operations on polynomials over \mathbb{F} (see, for example, Table 1 in [39]).

<table>
<thead>
<tr>
<th>Operation</th>
<th>Input</th>
<th>Output</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplication</td>
<td>$f(X), g(X) \in \mathbb{F}[X]_{\leq d}$</td>
<td>$f(X) \cdot g(X)$</td>
<td>$O(M(d))$</td>
</tr>
<tr>
<td>Remainder</td>
<td>$f(X), g(X) \in \mathbb{F}[X]_{\leq d}$</td>
<td>$f(X) \mod g(X)$</td>
<td>$O(M(d))$</td>
</tr>
<tr>
<td>GCD</td>
<td>$f(X), g(X) \in \mathbb{F}[X]_{\leq d}$</td>
<td>$\gcd(f(X), g(X))$</td>
<td>$O(M(d) \log d)$</td>
</tr>
<tr>
<td>Interpolation</td>
<td>$\alpha_0, \ldots, \alpha_d, \beta_0, \ldots, \beta_d$</td>
<td>$f(X)$ s.t. $f(\alpha_i) = \beta_i$</td>
<td>$O(M(d) \log d)$</td>
</tr>
</tbody>
</table>

Table 1. Complexity of standard polynomial operations

3. REDUCING THE COMPUTATIONAL COST BY A FACTOR OF $\approx n$

3.1. An overview. In this section, we shall describe our first improvement to Protocol 2 of [68], which is based on techniques from a PSI protocol introduced by Rosulek and Trieu [64].

Let us first explain the main ideas behind Protocol 2 of [68]. Suppose P_1 and P_2 have sets S_1 and S_2 respectively. Essentially, the protocol carries out a key exchange for each element in S_2, such that the key exchange succeeds if and only if the element also lies in S_1.

In the protocol, each key exchange is associated to some element of S_2. To keep S_2 private, P_2 hides these elements by encoding the key exchange messages into a polynomial using polynomial interpolation. The set of keys that should have been obtained if the key exchanges were carried out successfully are also encoded by P_2 into a polynomial q, while the set of keys K obtained by P_1 is sent to Q.

If S_1 and S_2 contain some common element s_i, then the key obtained by P_2 that is associated to s_i will be in the set K. The most expensive part of the protocol lies in the final step, in which the third party Q solves $q(T) = k_i$ for each $k_i \in K$ to obtain the desired intersection.

As explained in the introduction, we improve upon this by modifying the last few steps of the existing protocol. Instead of having P_1 directly sending the set K of keys he computed to Q as in the existing protocol, we use the set of keys computed by P_1 to interpolate a polynomial r, which is then sent to Q.

Q also receives a polynomial q from P_2, which encodes the keys that result from running the key agreement protocol for each element of P_2’s dataset. The desired intersection can then be obtained by Q by finding the roots of the polynomial $q - r$.

3.2. Details of the protocol. We will use a setup which is similar to the one used in Section 4 of [68]. Let the size of each of P_1 and P_2’s datasets be n, and let $S_1 = \{s_1, \ldots, s_n\} \subseteq \{0, 1\}^\ell$ and $S_2 = \{t_1, \ldots, t_n\} \subseteq \{0, 1\}^\ell$.

Fix some $\lambda > 0$, which is both the correctness and the security parameter, and fix some $\delta > 0$. Let $\lambda' = \max(\lambda, n^\delta)$. We shall identify $\{0, 1\}^\ell$ with a subset S of a finite field \mathbb{F} satisfying $|\mathbb{F}| \geq 2^{\ell + \lambda' + 2\log n}$. Choose

- a 2-round key agreement protocol KA (see Figure 4) with space of randomness KA, R, message space $KA, M = \mathbb{F}$ and key space $KA, K = \mathbb{F}$, and
- an ideal permutation $\Pi : \mathbb{F} \to \mathbb{F}$.
(1) P_1 picks $a \leftarrow \text{KA.R}$, and sends $m_1 = \text{KA.msg}_1(a)$ to P_2.
(2) P_2 picks $b \leftarrow \text{KA.R}$, and sends $m_2 = \text{KA.msg}_2(b, m_1)$ to P_1.
(3) P_1 and P_2 output $\text{KA.key}_1(a, m_2)$ and $\text{KA.key}_2(b, m_1)$ respectively.

Figure 4. A 2-round key agreement protocol between P_1 and P_2

For two probability distributions X and Y (each indexed by a security parameter), we write $X \approx Y$ to denote that X and Y are computationally indistinguishable. The key agreement protocol KA should satisfy the following three properties:

Property 1. A 2-round key agreement protocol KA is correct if

$$\text{KA.key}_1(a, \text{KA.msg}_2(b, \text{KA.msg}_1(a))) = \text{KA.key}_2(b, \text{KA.msg}_1(a))$$

for all $a, b \in \text{KA.R}$.

Property 2. A 2-round key agreement protocol KA has pseudorandom second messages if

$$\{(a, \text{KA.msg}_2(b, m_1))\}_{b \leftarrow \text{KA.R}} \approx \{(a, m_2)\}_{m_1 \leftarrow \text{KA.M}}$$

for all $a \in \text{KA.R}$, $m_1 = \text{KA.msg}_1(a)$.

Property 3. A 2-round key agreement protocol KA has pseudorandom keys if

$$\{\text{KA.key}_2(b, \text{KA.msg}_1(a))\}_{b \leftarrow \text{KA.R}} \approx \{k\}_{k \leftarrow \text{KA.K}}$$

for all $a \in \text{KA.R}$.

Fix some $u \in F \setminus S$. If h is a positive integer, we denote by $[h]$ the set $\{1, 2, \ldots, h\}$. Recall that $S_1 = \{s_1, \ldots, s_n\}$ and $S_2 = \{t_1, \ldots, t_n\}$. Our improved protocol works as follows:

1. P_1 picks a random $a \leftarrow \text{KA.R}$.
2. P_1 sends $m = \text{KA.msg}_1(a)$ to P_2.
3. For each $i \in [n]$, P_2 picks a random $b_i \leftarrow \text{KA.R}$ and computes $m'_i = \text{KA.msg}_2(b_i, m)$ and $f_i = \Pi^{-1}(m'_i)$.
4. P_2 computes the unique polynomial p of degree $\leq n - 1$ such that $p(t_i) = f_i$ for all $i \in [n]$, and sends p to P_1.
5. For each $i \in [n]$, P_1 computes $k_i = \text{KA.key}_1(a, \Pi(p(s_i)))$.
6. P_1 picks a random $k \leftarrow \text{KA.K}$, computes the unique polynomial r of degree $\leq n$ such that $r(u) = k$ and $r(s_i) = k_i$ for all $i \in [n]$, and sends r to Q.
7. P_2 picks a random $k' \leftarrow \text{KA.K}$, computes the unique polynomial q of degree $\leq n$ such that $q(u) = k'$ and $q(t_i) = \text{KA.key}_2(b_i, m)$ for all $i \in [n]$, and sends q to Q.
8. Q computes all solutions t to the equation $q(T) - r(T) = 0$ with $t \in S$, and outputs $\{t \in S : q(t) - r(t) = 0\}$.

Protocol 1. An improved semi-honest third-party PSI protocol

In steps 6 and 7 of the Protocol 1, we require P_1 and P_2 to each choose a random element in KA.K, and interpolate a polynomial such that the polynomial has this chosen value at some fixed point u. Essentially, instead of choosing the unique polynomials of degree $\leq n - 1$ satisfying their respective constraints, P_1 and P_2 are choosing random polynomials of degree $\leq n$ that satisfy the constraints.

This is needed to deal with the edge case where $S_1 = S_2$; otherwise, in this particular case, the polynomials q and r will be identical, and hence Q will be unable to determine the intersection.
Compared to Protocol 2 in [68], the computations needed by \(Q \) to determine the intersection has been reduced from solving \(n \) equations \(q(T) = k_i \), for \(i \in [n] \), to solving a single equation \(q(T) - r(T) = 0 \). Using the fast polynomial factorization algorithm by Kedlaya and Umans [39], the computational complexity of the protocol is \(O(n^{1.5+o(1)} \log^{1+o(1)} |F| + n^{1+o(1)} \log^{2+o(1)} |F|) \) bit operations. The communication cost is \(3(n+1) \log |F| \) bits.

3.3. Correctness. We now prove that Protocol 1 correctly computes the set intersection functionality except with negligible probability:

Proposition 1. Assume that \(KA \) satisfies Properties 2 and 3 with security parameter \(\lambda' \), and that \(\Pi \) is an ideal permutation. Then Protocol 1 is correct except with probability \(\leq 2^{2^{\lambda'}-\lambda} + n^2 \eta(\lambda') \), where \(\eta(\lambda') \) is a negligible function of \(\lambda' \). In particular, Protocol 1 is correct except with probability negligible in \(\lambda \).

Proof. Protocol 1 outputs \(S_1 \cap S_2 \) unless

(i) for some \(i \in [n] \) and \(t_j \in S_2 \) such that \(t_j \neq s_i \), \(k_i = KA.key_2(b_j, m) \) where \(b_j \in KA.R \) is the randomness corresponding to \(t_j \), or

(ii) \(q(T) - r(T) = 0 \) has a solution \(t \in S \) with \(t \notin S_1 \cap S_2 \).

By Property 3 of \(KA \), for fixed \(i, j \in [n] \) such that \(t_j \neq s_i \), the probability that \(k_i = KA.key_2(t_j, m) \) is negligibly close to \(1/|KA.K| \). Taking the union bound over \(i, j \in [n] \), we see that the probability that (i) holds is \(\leq n^2/|KA.K| + n^2 \eta(\lambda') = 2^{2^{\lambda'}-\lambda} + n^2 \eta(\lambda') \), where \(\eta(\lambda') \) is a negligible function of \(\lambda' \).

Now suppose that (i) does not occur. Note that Properties 1, 2 and 3 together imply that

\[\{KA.key_1(a, m)\}_{m \leftarrow KA.M} \approx \{k\}_{k \leftarrow KA.K} \]

for all \(a \in KA.R \).

Since outputs of \(KA.key_1 \) and \(KA.key_2 \) are both indistinguishable from uniformly random, the pair \((q, r)\) is indistinguishable from a pair of random polynomials of degree \(\leq n \) in \(\mathbb{F}[X] \) such that \(q(t) = r(t) \) for \(t \in S_1 \cap S_2 \). As we are assuming that (i) does not occur, the polynomials \(q \) and \(r \) must be distinct if \(S_1 \neq S_2 \). In the case where \(S_1 = S_2 \), the probability that \(q \) and \(r \) are identical is equal to \(1/|\mathbb{F}| = 2^{2^{\lambda'}-\lambda-2 \log n} \).

Now, assume the polynomials \(q \) and \(r \) are distinct, so that \(q - r \) is not the zero polynomial. Then, the roots of \(q - r \) in \(\mathbb{F} \) are \((S_1 \cap S_2) \cup \{\gamma_1, \ldots, \gamma_n\}\), with \(n' \leq n - |S_1 \cap S_2| \), and \(\gamma_1, \ldots, \gamma_n \) being indistinguishable from uniformly random elements of \(\mathbb{F} \). By the union bound, the probability that some \(\gamma_j \) lies in \(S \subset \mathbb{F} \) is \(\leq n|S|/|\mathbb{F}| = n2^{2^{\lambda'}-\lambda-2 \log n} \).

Thus, Protocol 1 gives the correct output except with probability \(\leq 2^{2^{\lambda'}-\lambda} + n^2 \eta(\lambda') + 2^{2^{\lambda'}-\lambda-2 \log n} + n2^{2^{\lambda'}-\lambda-2 \log n} = 2^{2^{\lambda'}+1} + n^2 \eta(\lambda') \). Since \(n^2 \leq (\lambda')^{2} \) is bounded above by a polynomial in \(\lambda' \), Protocol 1 is correct except with probability negligible in \(\lambda' \). As \(\lambda' \geq \lambda \), this probability is also negligible in \(\lambda \).

3.4. Security. Next, we shall modify the proofs of Propositions 5, 6 and 7 in [68] to prove that Protocol 1 is secure against a semi-honest adversary corrupting a single party.

Proposition 2. Assume \(KA \) satisfies Property 3 with security parameter \(\lambda' \), and \(\Pi \) is an ideal permutation. Then Protocol 1 is secure against a semi-honest \(P_1 \).

Proof. Since \(KA \) satisfies Property 3 changing some \(m'_i = KA.msg_2(b_i, m) \) to \(m'_i \leftarrow KA.M \) cannot be distinguished by \(P_1 \) except with probability negligible in \(\lambda' \). As
n is bounded above by a polynomial in λ', performing this change for all i is still indistinguishable to P_1 except with probability negligible in λ'. Thus, the polynomial p can be simulated by a uniformly random polynomial of degree $\leq n - 1$.

Proposition 3. Protocol 1 is secure against a semi-honest P_2.

Proof. This is clear as P_2 only receives the message m from P_1, which does not depend on the input S_1. \square

Proposition 4. Assume KA satisfies Properties 1, 2 and 3 with security parameter λ', and that Π is an ideal permutation. Then Protocol 1 is secure against a semi-honest Q.

Proof. Hybrid 0: The real interaction.

Hybrid 1: We abort if there exists $s^* \in S_1 \setminus S_2$ and $t^* \in S_2$ such that $p(s^*) = p(t^*)$. Since p is indistinguishable from a uniformly chosen polynomial of degree $\leq n - 1$, by the union bound, the probability of abort is $\leq n^2/|F| = 2^{-n-\lambda'} < 2^{-\lambda'}$, which is negligible. Thus, this hybrid is indistinguishable from Hybrid 0.

Hybrid 2: We shall change how the ideal permutation Π is simulated. Since we have not aborted, we know there has been no query to Π at $p(s_i)$ in steps 1 to 4 for each $s_i \in S_1 \setminus S_2$. In this hybrid, we choose $r_i \leftarrow KA.R$, and set $\Pi(p(s_i)) = KA.msg_2(r_i, m)$, Since $KA.msg_2(r_i, m)$ is indistinguishable from uniformly random by Property 2 of KA, and $|S_1 \setminus S_2| \leq n$ is bounded by a polynomial in λ', this hybrid is indistinguishable from Hybrid 1.

Hybrid 3: We shall change how the k_i values are computed. If $s_i = t_j$ for some $t_j \in S_2$, we set $k_i = KA.key_2(b_j, m)$, else we set $k_i = KA.key_2(r_i, m)$. Hybrids 2 and 3 are identical by Property 3 of KA.

Hybrid $(4, h)$ for $h \in [n + 1]$: We again change how the k_i values are computed. We set:

$$k_i = \begin{cases} KA.key_2(b_j, m) & \text{if } s_i = t_j \text{ for some } t_j \in S_2, \\ k'_i & \text{if } s_i \neq t_j \text{ for all } t_j \in S_2 \text{ and } i < h, \\ KA.key_2(r_i, m) & \text{otherwise.} \end{cases}$$

Hybrid $(4, 1)$ is identical to Hybrid 3. By Property 3 of KA, Hybrid $(4, h)$ is indistinguishable from Hybrid $(4, h + 1)$ for each $h \in [n]$. Hence, Hybrid $(4, n + 1)$ is indistinguishable from Hybrid 3.

Hybrid $(5, h)$ for $h \in [n + 1]$: We let q be the unique polynomial of degree $\leq n$ such that $q(u) = k'$ where $k' \leftarrow KA.K$ and

$$q(t_j) = \begin{cases} KA.key_2(b_j, m) & \text{if } t_j = s_i \text{ for some } i \in [n] \text{ or } j \geq h, \\ k'' & \text{otherwise.} \end{cases}$$

Hybrid $(5, 1)$ is identical to Hybrid $(4, n + 1)$, and Hybrid $(5, h)$ is indistinguishable from Hybrid $(5, h + 1)$ for each $h \in [n]$, again, by Property 3 of KA.

Simulator: We simulate

$$q, r \leftarrow \{ \rho \in F[X] : \deg(\rho) \leq n, \rho(t_j) = KA.key_2(b_j, m) \text{ for } t_j \in S_1 \cap S_2 \}.$$

This interaction is identically distributed to Hybrid $(5, n + 1)$. \square

4. A Near-Linear Third-Party PSI Protocol via Hashing

4.1. An overview. In this section, we shall introduce our second improvement to the protocol in [68]. While this improvement can be applied separately from the first
improvement described in Section 3, we shall present a protocol incorporating both improvements at the same time, so as to achieve the best possible communication and computational efficiency.

As explained in the introduction, we achieve this by using a hash function to hash the inputs of the parties into some number of buckets, before applying Protocol 1 multiple times, once to each bucket. Key to the correctness and security of this improved protocol is a careful analysis and choice of parameters for the protocol.

Crucially, a “large” number of buckets is essential for us to obtain a low computational cost, as only then will each bucket have a “small” number of elements, thus reducing the size of the instances on which we apply Protocol 1 to. However, Protocol 1 has a small negligible probability of producing an incorrect output. Since the probability is negligible, this is not an issue when running the protocol only once. As we are now running the protocol many times, once on each bucket, we must ensure that the number of buckets is not too large so that the probability of obtaining even an incorrect output is still negligible. By carefully balancing these two requirements, we obtain a suitable choice for the number of buckets.

Now, since each party will hash the elements of his dataset into b buckets and the hash function behaves essentially like a random function, each bucket will on average have n/b elements, where n is the size of each party’s dataset. However, due to the randomness inherent in the process, buckets will not contain exactly n/b elements, but rather, they will contain close to n/b elements.

Since we want to preserve the privacy of the datasets, the exact number of elements in each bucket cannot be leaked to an adversary. Thus, it is necessary to pad each bucket with dummy elements up to some maximum size M. Choosing too small a value for M will result in a non-negligible probability of some bucket overflowing and the protocol aborting. On the other hand, a value of M that is too large will affect the computation and communication costs of the protocol. Again, we have to strike a balance between these two contrasting requirements to obtain a suitable choice for the maximum bucket size M, and we can do so using the Chernoff bound [15].

Finally, we need to ensure that there are enough dummy elements that can be used to pad the buckets up to the maximum size M. We achieve this by embedding the set of all possible elements into a larger set. We choose the set just large enough so that there are enough dummy elements with high probability, while, at the same time, not causing a significant increase in the computation and communication costs.

The idea of applying hashing techniques to PSI has been explored before by various works such as [23, 30, 56, 59], where the number of buckets used is $\Theta(n)$ (i.e. linear in n up to logarithmic terms). In this paper, however, we use a novel choice of $b = \lceil n^\alpha \rceil$ buckets, where α is some constant satisfying $0 < \alpha < 1$. This complicates the analysis, but as we will see, choosing a value of $\alpha < 1$ allows us to achieve a lower communication complexity compared to $\alpha = 1$, and thus results in a more communication efficient protocol.

4.2. Details of the protocol. We will modify the setup used in Section 3. We start by identifying $\{0, 1\}^\ell$ as a subset of $\{0, 1\}^\kappa$ for some $\kappa > \ell$. (Most commonly, we will let $\kappa = \ell + 1$.)

Fix some positive integer b, and let $H : \{0, 1\}^\kappa \rightarrow [b]$ be an ideal hash function. We introduce a parameter $0 < \mu < 1$ such that the probability that any bucket contains more than $(1 + \mu)n/b$ elements or less than $(1 - \mu)n/b$ elements of S_1 or
Subsets R is negligible in λ, where, as above, $\lambda > 0$ is both the correctness and the security parameter. The precise value of μ will be chosen later.

Assume that, for each $j \in [b]$, there are at least $\lceil 4\mu n/b \rceil + 4$ elements of $\{0,1\}^\kappa \setminus \{0,1\}^\ell$ that hashes to the j-th bucket, and let us fix any two disjoint subsets $R_{1,j}, R_{2,j} \subseteq \{0,1\}^\kappa \setminus \{0,1\}^\ell$, each of size $\lceil 2\mu n/b \rceil + 2$, such that elements in $R_{1,j}$ and $R_{2,j}$ are both mapped to the j-th bucket under the hash function H.

Fix some $\delta > 0$ and let $\lambda' = \max(\lambda, n^\delta)$. We shall identify $\{0,1\}^\kappa$ with a subset S of a finite field F with $|F| \geq 2^{\lambda' + 4\log n}$. We choose

- a 2-round key agreement protocol KA with space of randomness $KA.R$, message space $KA.M = F$ and key space $KA.K = F$, and
- ideal permutations $\Pi_1, \ldots, \Pi_6 : F \rightarrow F$.

We now present our improved third-party PSI protocol which has near-linear computation and communication costs:

1. P_1 and P_2 use H to hash their elements into b buckets. Let

 $s_{i,j} = |\{s \in S_i : H(s) = j\}|$

 be the size of the j-th bucket for P_1. Abort if $s_{i,j} > (1 + \mu)n/b$ or $s_{i,j} < (1 - \mu)n/b$ for some i,j.

2. For each $j \in [b]$:
 a. Let $M = \lceil (1 + \mu)n/b \rceil$. P_i chooses a subset $R'_{i,j} \subseteq R_{i,j}$ of size $M - s_{i,j}$, and defines

 $S_{i,j} = \{s \in S_i : H(s) = j\} \cup R'_{i,j}.$

 Write $S_{1,j} = \{s_{1,j}, \ldots, s_{j,M}\}$ and $S_{2,j} = \{t_{j,1}, \ldots, t_{j,M}\}$.

 b. P_1 picks a random $a_j \leftarrow KA.R$.

 c. P_1 sends $m_j = KA.msg_1(a_j)$ to P_2.

 d. For each $i \in [M]$, P_2 picks a random $b_{j,i} \leftarrow KA.R$ and let $m'_{j,i} = KA.msg_2(b_{j,i}, m_j)$ and $f_{j,i} = \Pi_j^{-1}(m'_{j,i})$.

 e. P_2 computes the unique polynomial p_j of degree $\leq M - 1$ such that $p_j(t_{j,i}) = f_{j,i}$ for all $i \in [M]$, and sends p_j to P_1.

 f. For each $i \in [M]$, P_1 computes $k_{j,i} = KA.key_1(a_j, \Pi_j(p_j(s_{j,i})))$.

 g. P_1 picks a random $k'_j \leftarrow KA.K$, computes the unique polynomial r_j of degree $\leq M$ such that $r_j(u) = k'_j$ and $r_j(s_{j,i}) = k_{j,i}$ for all $i \in [M]$, and sends r_j to Q.

 h. P_2 picks a random $k''_j \leftarrow KA.K$, computes the unique polynomial q_j of degree $\leq M$ such that $q_j(u) = k''_j$ and $q_j(t_{j,i}) = KA.key_2(b_{j,i}, m_j)$ for all $i \in [M]$, and sends q_j to Q.

 i. Q computes all solutions t to the equation $q_j(T) - r_j(T) = 0$ with $t \in S$, and sets

 $I_j = \{t \in S : q_j(t) - r_j(t) = 0\}$.

3. Q outputs $\bigcup_{j=1}^b I_j$.

Protocol 2. A near-linear semi-honest third-party PSI protocol

Essentially, steps 2(b) to 2(i) correspond to running Protocol 1 a total of b times, once on each bucket.

4.3. Parameter choices.
4.3.1. Choice of μ. In Protocol 2, the parties abort if any bucket contains more then $(1+\mu)n/b$ elements or less then $(1-\mu)n/b$ elements of S_1 or S_2, hence μ must be chosen so that the probability of abort is negligible. To choose an appropriate value of μ, we will now obtain an upper bound on this probability using the Chernoff bound \[15\].

Proposition 5 (Chernoff bound). Let X be a binomial random variable with N trials and success probability p. If $0 < \mu < 1$, then

$$\Pr[X < (1-\mu)pN] \leq \exp \left(-\frac{\mu^2 pN}{2}\right) \quad \text{and} \quad \Pr[X > (1+\mu)pN] \leq \exp \left(-\frac{\mu^2 pN}{3}\right).$$

Proposition 6. Let $X_{i,j}$ be the number of elements of S_i in the j-th bucket. If

$$\mu = \sqrt{\frac{3b}{n}(\lambda + \ln 2b)},$$

then

$$\Pr \left[X_{i,j} > \frac{(1 + \mu)n}{b} \text{ or } X_{i,j} < \frac{(1 - \mu)n}{b} \text{ for some } i, j \right]$$

is negligible in λ.

Proof. Each $X_{i,j}$ is a binomial random variable with $N = n$ and $p = 1/b$. By Proposition 5

$$\Pr \left[X_{i,j} > \frac{(1 + \mu)n}{b} \text{ or } X_{i,j} < \frac{(1 - \mu)n}{b} \right] \leq \exp \left(\frac{-\mu^2 n}{2b}\right) + \exp \left(\frac{-\mu^2 n}{3b}\right) < 2\exp \left(\frac{-\mu^2 n}{3b}\right).$$

Now, applying the union bound over i, j, we have

$$\Pr \left[X_{i,j} > \frac{(1 + \mu)n}{b} \text{ or } X_{i,j} < \frac{(1 - \mu)n}{b} \text{ for some } i, j \right]$$

$$< 2b\exp \left(\frac{-\mu^2 n}{3b}\right) = \exp(-\lambda),$$

which is negligible in λ, as required. \[\square \]

4.3.2. Choice of b. We fix some $0 < \alpha < 1$ and let $b = \lceil n^\alpha \rceil$. As we shall see later, such a choice of b allows us achieve a low computational cost.

4.3.3. Choice of κ. We need to choose κ such that, there are at least $\lceil 4\mu n/b \rceil + 4$ elements of $\{0, 1\}^\ell \setminus \{0, 1\}^\ell$ that hashes to the j-th bucket for each $j \in [b]$. Note that

$$\lceil 4\mu n/b \rceil + 4 \leq \lceil 4\sqrt{3n^{1-\alpha}}(\lambda + \ln(2n^{\alpha} + 2)) \rceil + 4 = \Theta \left(n^{\frac{1-\alpha}{2}}\sqrt{\log n}\right)$$

and

$$\frac{n}{b} = \frac{n}{\lceil n^\alpha \rceil} = \Theta(n^{1-\alpha}).$$

It follows that, for sufficiently large n, we have $\lceil 4\mu n/b \rceil + 4 < n/2b$.

Hence, by Proposition 5 given any set of at least n elements (with n sufficiently large), the probability that there are less than $\lceil 4\mu n/b \rceil + 4$ elements that hashes to the j-th bucket (for any fixed j) is bounded above by $\exp(-n/8b)$. Now, by the union bound, the probability that the above happens for some $j \in [b]$ is bounded above by

$$b\exp(-n/8b) < 2n^{\alpha} \exp(-n^{1-\alpha}/16) = o(1).$$
Since $|\{0,1\}^{\ell+1} \setminus \{0,1\}^\ell| = 2^\ell \geq n$, this shows that $\kappa = \ell + 1$ will work with high probability.

4.4. **Communication and computational costs.** From the protocol description, we note that Protocol 2 requires $3b(M + 1)(\kappa + \lambda' + 2\log n)$ bits of communication. With the above choice of parameters, this is bounded above by

$$3\left(n + \sqrt{3(n^{1+\alpha} + n)(\ln(2n^{\alpha} + 2) + 2n^{\alpha} + 2)}(n^{\delta} + 2\log n + \lambda + \ell + 1)\right) = O(n^{1+\delta}),$$

where we assume $\kappa = \ell + 1$.

The computational cost of Protocol 2 is dominated by step 2(i), which has a complexity of $O(M^{1.5+o(1)}\log^{1+o(1)}|\mathbb{F}| + M^{1+o(1)}\log^{2+o(1)}|\mathbb{F}|)$ bit operations using the algorithm of Kedlaya and Umans [39]. Since step 2(i) is performed b times, this gives us a total complexity of $O(bM^{1.5+o(1)}\log^{1+o(1)}|\mathbb{F}| + bM^{1+o(1)}\log^{2+o(1)}|\mathbb{F}|)$.

With our choice of parameters, this becomes

$$O\left(n^{1.5-0.5\alpha+o(1)}\log^{1+o(1)}|\mathbb{F}| + n^{1+o(1)}\log^{2+o(1)}|\mathbb{F}|\right) = O\left(n^{1.5-0.5\alpha+\delta+o(1)} + n^{1+2\delta+o(1)}\right).$$

By picking $0 < \alpha < 1$ and $\delta > 0$ appropriately, the computational complexity can be made $O(n^{1+\varepsilon})$ for any $\varepsilon > 0$.

4.5. **Correctness.** From this point on, we will assume that $(1 + \mu)/b \leq 1$, i.e. the maximum size M of each bucket satisfies $M = \lceil(1 + \mu)n/b\rceil \leq n$. Note that the assumption $(1 + \mu)/b \leq 1$ is equivalent to

$$1 + \sqrt{3[n^{\alpha}]/n}(\lambda + \ln 2[n^{\alpha}]) \leq \lceil n^{\alpha} \rceil,$$

which is clearly satisfied for sufficiently large n.

A straightforward modification of Proposition 1 yields the following:

Lemma 7. Let $j \in [b]$. Assume that KA satisfies Properties 1, 2 and 3 with security parameter λ', and that Π_j is an ideal permutation. Then

$$I_j = S_{1,j} \cap S_{2,j} = \{s \in S_1 \cap S_2 : H(s) = j\}$$

except with probability $\leq \frac{M^2}{n^2}2^{-\lambda'+1} + M^2\eta(\lambda')$, where $\eta(\lambda')$ is a negligible function of λ'.

Proposition 8. Assume that KA satisfies Properties 1, 2 and 3 with security parameter λ', and that Π_1, \ldots, Π_b are ideal permutations. Then Protocol 2 is correct except with probability negligible in λ.

Proof. By the choice of μ, the probability of abort in step 1 of the protocol is negligible in λ. Assume that

$$I_j = \{s \in S_1 \cap S_2 : H(s) = j\}$$

for all $j \in [b]$, then Q outputs

$$\bigcup_{j=1}^b I_j = \{s \in S_1 \cap S_2 : H(s) \in [b]\} = S_1 \cap S_2.$$

\footnote{For fixed $\delta > 0$, choosing $\alpha = 1$ instead of $\alpha < 1$ gives us a comparatively worse communication complexity of $O(n^{1+\delta}\sqrt{\log(n)})$.}
By Lemma 7 for each $j \in [b]$, condition 1 holds except with probability $\leq \frac{M^2}{n^2} 2^{-\lambda'+1} + M^2 \eta(\lambda')$, where $\eta(\lambda')$ is a negligible function of λ'. Thus, by the union bound, condition 1 holds for all $j \in [b]$ except with probability

$$\leq \frac{bM^2}{n^2} 2^{-\lambda'+1} + bM^2 \eta(\lambda') \leq b(2^{-\lambda'+1}) + bn^2 \eta(\lambda').$$

Since $\lambda' \geq n^\alpha$, both $b = \lceil n^\alpha \rceil$ and $bn^2 = n^2 \lceil n^\alpha \rceil$ are bounded above by some polynomial in λ', hence $b(2^{-\lambda'+1}) + bn^2 \eta(\lambda')$ is a negligible function of λ'. As $\lambda' \geq \lambda$, it too is a negligible function of λ. □

4.6. Security. The following propositions prove that Protocol 2 is secure against a semi-honest adversary corrupting a single party.

Proposition 9. Assume KA satisfies Property 1 with security parameter λ', and Π_1, \ldots, Π_b are ideal permutations. Then Protocol 2 is secure against a semi-honest P_1.

Proof. We argue as in the proof of Proposition 2, noting that $Mb \leq n\lceil n^\alpha \rceil$ is bounded above by a polynomial in λ'. Thus, for each $j \in [b]$, the polynomial p_j can be simulated by a uniformly random polynomial of degree $\leq M - 1$. □

Proposition 10. Protocol 2 is secure against a semi-honest P_2.

Proof. This is clear as P_2 only receives the messages m_1, \ldots, m_b from P_1. □

The next lemma follows immediately from the proof of Proposition 4.

Lemma 11. Assume KA satisfies Properties 1, 2 and 3 with security parameter λ', and that Π_j is an ideal permutation. Then simulating q_j and r_j by

$$q_j, r_j \left\{ \rho \in \mathbb{F}[X]_{\leq M} : \rho(t_{j,i}) = \text{KA.key}_2(b_{j,i}, m_j) \text{ for } t_{j,i} \in S_1 \cap S_2 \right\}$$

is indistinguishable to Q except with probability negligible in λ'.

Proposition 12. Assume KA satisfies Properties 1, 2 and 3 with security parameter λ', and that Π_1, \ldots, Π_b are ideal permutations. Then Protocol 2 is secure against a semi-honest Q.

Proof. By Lemma 11, for each $j \in [b]$, we can simulate

$$q_j, r_j \left\{ \rho \in \mathbb{F}[X]_{\leq M} : \rho(t_{j,i}) = \text{KA.key}_2(b_{j,i}, m_j) \text{ for } t_{j,i} \in S_1 \cap S_2 \right\}.$$

By the union bound, this change is indistinguishable to Q except with probability at most $b\zeta(\lambda')$, where $\zeta(\lambda')$ is a negligible function of λ'. Again, since $b = \lceil n^\alpha \rceil$ is bounded above by a polynomial in λ', the probability $b\zeta(\lambda')$ is negligible in λ', hence negligible in λ. □

5. A Third-Party PSI Cardinality Protocol

5.1. An overview. To obtain a third-party PSI cardinality protocol, we make a small modification to Protocol 1 and have P_1 and P_2 first apply a pseudorandom permutation (PRP) to their elements using a common key, so that the actual intersection elements are hidden from Q. This small change already gives us a secure third-party PSI cardinality protocol. However, we can further improve its computational costs to obtain a more efficient protocol.

Recall that the most computational expensive step in Protocol 1 is the final step, which involves Q solving a polynomial to determine the intersection elements. As we do not now require the actual intersection elements, the computational complexity
of this step can be improved by replacing it with a more efficient algorithm that determines only the number of roots, but not the set of roots, of the polynomial.

To make this more efficient algorithm work, we make a slight modification to the setup used in Protocol 1 so that the set \(\{0,1\}^k \) is now identified with a subfield \(S \) (instead of an arbitrary subset) of \(F \).

5.2. Details of the protocol. We use the same setup as in Section 3.2 except that \(\{0,1\}^k \) is now identified with the unique subfield \(S \) of cardinality \(2^\ell \) of a finite field \(F \) (which satisfies \(|F| \geq 2^{\ell + \lambda^2 + 2\log n} \)). Furthermore, let \(E : K \times S \to S \) be a PRP with key space \(\mathcal{K} \), and fix some \(u \in F \setminus S \).

(1) \(P_1 \) and \(P_2 \) agree on a random key \(k \leftarrow \mathcal{K} \).
(2) \(P_1 \) picks a random \(a \leftarrow \mathcal{KA.R} \).
(3) \(P_1 \) sends \(m = \mathcal{KA.msg}_1(a) \) to \(P_2 \).
(4) For each \(i \in [n] \), \(P_2 \) picks a random \(b_i \leftarrow \mathcal{KA.R} \) and computes \(m'_i = \mathcal{KA.msg}_2(b_i, m) \) and \(f_i = \Pi^{-1}(m'_i) \).
(5) \(P_2 \) computes the unique polynomial \(p \) of degree \(\leq n - 1 \) such that \(p(E_k(t_i)) = f_i \) for all \(i \in [n] \), and sends \(p \) to \(P_1 \).
(6) For each \(i \in [n] \), \(P_1 \) computes \(k_i = \mathcal{KA.key}_1(a, \Pi(p(E_k(s_i)))) \).
(7) \(P_1 \) picks a random \(k' \leftarrow \mathcal{KA.K} \), computes the unique polynomial \(r \) of degree \(\leq n \) such that \(r(u) = k' \) and \(r(E_k(s_i)) = k_i \) for all \(i \in [n] \), and sends \(r \) to \(Q \).
(8) \(P_2 \) picks a random \(k'' \leftarrow \mathcal{KA.K} \), computes the unique polynomial \(q \) of degree \(\leq n \) such that \(q(u) = k'' \) and \(q(E_k(t_i)) = \mathcal{KA.key}_2(b_i, m) \) for all \(i \in [n] \), and sends \(q \) to \(Q \).
(9) Let \(f(X) = q(X) - r(X) \). \(Q \) computes \(g(X) = X^{2^\ell} \mod f(X) \) using repeated squaring and reduction modulo \(f(X) \).
(10) \(Q \) computes \(h(X) = \gcd(f(X), g(X) - X) \) and outputs \(\deg h(X) \).

Protocol 3. A semi-honest third-party PSI cardinality protocol

Note that step 9 takes \(\ell(M(n) + O(M(2n))) = O(n \log n \log \log n) \) field operations, while step 10 takes \(O(M(n) \log n) = O(n \log^2 n \log \log n) \) field operations, giving a total computational complexity for \(Q \) that is quasilinear. The communication cost of Protocol 3 is \(3(n + 1) \log |F| + \log |\mathcal{K}| \) bits.

5.3. Correctness and Security.

Proposition 13. Assume that \(\mathcal{KA} \) satisfies Properties 2 and 3 with security parameter \(\lambda' \), and that \(\Pi \) is an ideal permutation. Then Protocol 3 is correct except with probability negligible in \(\lambda \).

Proof. Following the proof of Proposition 4, the roots of the polynomial \(f = q - r \) which lie in \(S \) are \(E_k(s) \) for \(s \in S_1 \cap S_2 \) except with probability negligible in \(\lambda \). Since \(S \) is the unique subfield of \(F \) of cardinality \(2^\ell \), the roots of the polynomial \(X^{2^\ell} - X = \prod_{\alpha \in S}(X - \alpha) \) are precisely the elements of \(S \).

From the observation that \(h(X) = \gcd(f(X), g(X) - X) = \gcd(f(X), X^{2^\ell} - X) \), it follows that the roots of \(h \) are precisely \(E_k(s) \) for \(s \in S_1 \cap S_2 \) except with probability negligible in \(\lambda \), so \(h \) has degree \(|S_1 \cap S_2| \), as required. \(\square \)

Proposition 14. Assume \(\mathcal{KA} \) satisfies Properties 2 and 3 with security parameter \(\lambda' \), and that \(\Pi \) is an ideal permutation. Then Protocol 3 is secure against a semi-honest adversary corrupting a single party.
The proof of Proposition 14 essentially follows from the proofs of Propositions 2, 3, and 4, and is therefore omitted.

6. Conclusion

Third-party private set intersection was recently introduced in [68]. They presented two protocols, one of which is a Diffie-Hellman based approach and the other is quantum-safe. While their solution achieves a low communication cost, the computational overhead incurred for their quantum-safe protocol is high. In this paper, we overcome the limitations of existing work by developing an improved protocol which achieves post-quantum security while also significantly lowering the computational cost.

We propose two improvements to the third-party PSI protocol of [68] to reduce the computation cost incurred by the third party Q. The first improvement gives a significant reduction in the computational cost from $O(n^{2.5+O(1)})$ to $O(n^{1.5+O(1)})$ and works even for small n, while the second improvement is an asymptotic improvement that is important for large n and further reduces the computational cost to $O(n^{1+\varepsilon})$ for any constant $\varepsilon > 0$.

Depending on the specific use case, it might make sense to either use only the first improvement, or to use both improvements together to achieve the best computational performance.

Finally, we also introduce a protocol with an even lower computational complexity of $O(n \log^2 n \log \log n)$ for the third-party Q, in the situation where it is desired that only the size, but not the contents, of the intersection is revealed.

References

Foo Yee Yeo, Seagate Technology, Singapore
Email address: foyee.yeo@seagate.com

Jason H. M. Ying, Seagate Technology, Singapore
Email address: jasonhweiming.ying@seagate.com