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Abstract. Third-party private set intersection (PSI) enables two parties,

each holding a private set to compute their intersection and reveal the result

only to an inputless third party. In this paper, we present efficient third-party

PSI protocols, which significantly lower the computational workload compared

to prior work. Our work is motivated by real-world applications such as contact

tracing whereby expedition is essential while concurrently preserving privacy.

Our construction attains a near-linear computational complexity of O(n1+ε)

for large dataset size n, where ε > 0 is any fixed constant, and achieves post-

quantum security. For a quantum-safe third-party PSI protocol, this signifi-

cantly improves upon the current known best of O(n2.5+o(1)). Our improve-

ments stem from algorithmic changes and the incorporation of new techniques

along with precise parameter selections to achieve a tight asymptotic bound.

1. Introduction

Private set intersection (PSI) [32,47] is a cryptographic primitive used for secure

computation, which allows two or more parties to compute the intersection of their

sets while keeping their inputs secret. The applications of PSI arise in numerous

diverse settings ranging from botnet detection [49], private proximity testing [50],

human genomes testing [4], private contact discovery [36,46], online advertising [56],

privacy-preserving ride-sharing [28], as well as contact tracing [6,20,22,65,66] in the

event of a pandemic such as COVID-19. Due to its wide range of applications, a long

series of notable works [3,10–12,14,16,21,23–27,31,38,42,45,48,54–61,63,67,69,70]

have been carried out to advance the development of efficient PSI protocols in both

the theoretical and practical aspects.

Existing PSI solutions can be broadly classified from a variety of approaches.

The initial constructions of PSI arose from Diffie-Hellman based oblivious pseudo-

random functions (OPRFs) [32,47]. There exist several modern protocols [7,19,34]

which are designed based upon DH-OPRF due to the low communication cost which

it offers. Oblivious transfer (OT) extension first introduced in [35], followed by im-

provements due to [1], enables computation of a very large number of OTs at low

cost by using just a relatively small number of base-OTs. OT extensions engen-

dered a class of protocols [42, 52, 54, 60, 62], which provide a lower computational

cost with a higher communication overhead trade-off as compared to DH-OPRF

approaches. Homomorphic encryption (HE) is a core building block in several PSI

protocols. The PSI protocol [23] applies oblivious polynomial evaluation by uti-

lizing an additive partially homomorphic encryption scheme, such as the Paillier

cryptosystem [53]. The work in [14] is based on leveled HE and applies techniques

such as batching to reduce the communication cost. Fully homomorphic encryp-

tion (FHE) is employed in the works of [13,17] for a labeled PSI setting, where the

sender holds a label associated with each item, and the functionality outputs the

labels from the items in the intersection to the receiver. FHE is also applied in the
1
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Figure 1. Overview of third-party PSI

work of [31] to compute a variety of enhanced functionalities over the set intersec-

tion. General HE techniques are computationally expensive but can be useful in

certain scenarios such as in unbalanced PSI where one party’s set is significantly

smaller than the other. Circuit-based PSI [9, 57, 58, 63] has the added potential

to compute functions over the set intersection but incurs a high communication

cost. Hashing techniques have been used by some PSI protocols [23, 30, 56, 59] to

reduce the number of comparisons performed between the set elements to obtain

the intersection, thereby achieving higher efficiency.

Third-Party PSI. Yeo and Ying [68] introduced a variant of PSI, known as third-

party private set intersection, that enables the private computation of the inter-

section of datasets held by two different parties P1 and P2, while revealing the

result only to an inputless third party Q. A key challenge in efficiently achieving

third-party PSI comes from the observation that the inputless third party Q does

not himself have any information that can be used to constrain the elements that

might appear in the intersection.

1.1. Motivation and Use Cases. Third-party PSI possesses practical utility and

is relevant in settings when the intersection output is only made known to a third-

party for privacy reasons. Instances of such scenarios occur when a regulatory

authority intends to obtain relevant information from two organizations. A third-

party PSI protocol prevents sensitive information from being exposed to the partic-

ipating parties, while enabling the regulator to achieve the intended objective. For

example, in the event of a pandemic, the public health authority assumes the role

of the third-party while the premises which have records of the people who visit

along with their time stamps are the participating parties. Should contact tracing

be required, the health regulatory authority can easily obtain a database of people

who are present at specific times in a privacy-preserving manner.

1.2. Related Work and Challenges. It should be noted that existing PSI pro-

tocols with applications to contact tracing operate in a different context. In most

settings being considered, there are two main roles, one sender and one receiver,

whereby conventional PSI protocols can be applied more directly. For instance, in

the use cases of [20, 22, 65, 66], the receiver is a user who holds a set of identifiers
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within proximity while the sender is the public health authority or its associated

server which is assumed to already own a database of contact tokens from infected

users through prior collection. The user can then perform a PSI protocol with the

public health authority’s server to determine the extent of exposure with other in-

fected individuals. To minimize workload on the receiver, which is typically a user’s

mobile device, the protocol of [22] delegates a majority of the user-side computa-

tions to untrusted servers. The works of [20, 65, 66] are customized to specifically

tailor for PSI protocols with the knowledge that the user holds a set which is much

smaller than the database of the server. In our use case, there are two senders and

one inputless receiver whereby the third-party role of the public health authority

seeks to gather the database of potential individuals at risk in the event of outbreaks

at the premises.

There are other existing variants of PSI which have been explored, such as utiliz-

ing a server to either increase efficiency [37, 44] or to outsource the computational

workload [40], as well as multi-party PSI [2, 5, 9, 29, 33, 41, 43, 51] which can be

regarded as a generalization of conventional two-party PSI, where there are more

than two participants’ sets to compute over. However, these do not provide effec-

tive solutions to the specified task. In the server aided setting, the receiver is the

party with the inputs, while the receiver is inputless in third-party PSI. The latter

results in a more complex problem when the participating parties with inputs are

not allowed to obtain any information throughout the process. In the case of muti-

party PSI, one can adopt a solution by assigning the third-party the entire universe

of possible input elements, but this is clearly not ideal in theory and practice.

In [68], Yeo and Ying introduced two different third-party PSI protocols, the

first based on the use of a commutative cipher, and the second based on the use

of a key agreement protocol. Both protocols are communication efficient, requiring

only a small amount of communication between the participating parties. However,

in practice, the protocols can incur significant computational costs.

1.3. Our Contributions. In this paper, we improve upon the current state-of-

the-art for third-party PSI, and significantly reduce the computational cost of the

protocol in [68] from O(n2.5+o(1)) to O(n1+ε), where ε is any positive constant and n

is the size of the each dataset.1 We achieve this by incorporating two improvements,

which can be applied either separately or concurrently, to the original protocol.

The first improvement involves modifying the protocol in [68] such that the set

of keys K computed by P1 during the execution of the protocol is not sent directly

to Q, but rather, it is used to interpolate a polynomial which is then sent to Q.

By making this modification, when Q is computing the intersection, it suffices for

Q to compute the roots of a single polynomial, rather than roots of n different

polynomials, thus saving a factor of approximately n in the computational cost.

The second improvement uses a hash function to hash the inputs of the parties

into some number of buckets, before applying the protocol separately to each of

these buckets. This reduces the size of the instances on which we apply the existing

third-party PSI protocol at the cost of having to perform a large number of instances

of the original protocol. With a careful choice of parameters, we achieve a protocol

with a greatly reduced computational cost compared to the original protocol.

1While the authors of [68] state a computational complexity of O(n4) for their protocol,

the complexity of their protocol can in fact be improved to O(n2.5+o(1)) by replacing the Can-

tor–Zassenhaus algorithm [8] (which is used in one of the steps of their protocol) with an algorithm

by Kedlaya and Umans [39].
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In addition, we consider a variant of the third-party PSI problem, where the aim

is to privately compute the size, but not the exact contents, of the intersection of

datasets held by P1 and P2, again revealing the result only to Q. In the conventional

two-party setting, this problem, known as PSI cardinality, was introduced and

studied by Cristofaro et al. [18]. We introduce a protocol for the third-party PSI

cardinality problem, which further improves the computational complexity for Q

compared to both our third-party PSI protocols.

As in [68], our protocols are secure against quantum adversaries as long as the

underlying key agreement protocol used is quantum-safe.

1.4. Organization. We describe formal definitions of third-party PSI related func-

tionalities and the complexities of standard polynomial operations in Section 2. A

technical overview of the first and second improvements including details of the

protocols are presented in Section 3 and Section 4 respectively. Section 5 describes

a technical overview of the third-party PSI cardinality protocol with details. We

provide a conclusion of this work in Section 6.

2. Preliminaries

2.1. Definitions. We recall the definition of a third-party PSI protocol from [68].

Definition 1 (Third-party PSI protocol). In a third-party PSI protocol, 2 parties

P1 and P2 each holds a dataset with elements in {0, 1}∗, while a third-party Q has

no input. At the end of the protocol, Q outputs the set intersection functionality,

and the other parties output ⊥.

Ideal-world/real-world simulation-based definitions can be used to define the se-

curity of such a protocol. The protocol is secure if it achieves the ideal functionality

shown in Figure 2.

(1) Get P1’s input set S1.

(2) Get P2’s input set S2.

(3) Send S1 ∩ S2 to Q.

Figure 2. Third-party PSI ideal functionality

We define a third-party PSI cardinality protocol in a similar manner (see Defi-

nition 2). Such a protocol is secure if it achieves the ideal functionality in Figure

3.

Definition 2 (Third-party PSI cardinality protocol). In a third-party PSI cardinal-

ity protocol, 2 parties P1 and P2 each holds a dataset with elements in {0, 1}∗, while
a third-party Q has no input. At the end of the protocol, Q outputs the cardinality

of the set intersection, and the other parties output ⊥.

(1) Get P1’s input set S1.

(2) Get P2’s input set S2.

(3) Send |S1 ∩ S2| to Q.

Figure 3. Third-party PSI cardinality ideal functionality
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input output
number of

F operations

multiplication f(X), g(X) ∈ F[X]≤d f(X) · g(X) M(d)

remainder f(X), g(X) ∈ F[X]≤d f(X) mod g(X) O(M(d))

GCD f(X), g(X) ∈ F[X]≤d gcd(f(X), g(X)) O(M(d) log d)

interpolation α0, . . . , αd, β0, . . . , βd f(X) s.t. f(αi) = βi O(M(d) log d)

Table 1. Complexity of standard polynomial operations

2.2. Complexity of Standard Polynomial Operations. Let F be a field and

F[X] be the ring of polynomials over F. We write F[X]≤d for the subset of F[X]

containing polynomials of degree ≤ d.

Let M(d) = O(d log d log log d) be the complexity of multiplying two polynomials

of degree ≤ d. Table 1 lists the complexity of various common operations on

polynomials over F (see, for example, Table 1 in [39]).

3. Reducing the Computational Cost by a Factor of ≈ n

3.1. An overview. In this section, we shall describe our first improvement to

Protocol 2 of [68], which is itself based on techniques from a PSI protocol introduced

by Rosulek and Trieu [64].

Let us first explain the main ideas behind Protocol 2 of [68]. Suppose P1 and

P2 have sets S1 and S2 respectively. Essentially, the protocol carries out a key

exchange for each element in S2, such that the key exchange succeeds if and only

if the element also lies in S1.

In the protocol, each key exchange is associated to some element of S2. To keep

S2 private, P2 hides these elements by encoding the key exchange messages into a

polynomial using polynomial interpolation. The set of keys that should have been

obtained if the key exchanges were carried out successfully are also encoded by P2

into a polynomial q, while the set of keys K obtained by P1 is sent to Q.

If S1 and S2 contain some common element si, then the key obtained by P2 that

is associated to si will be in the set K. The most expensive part of the protocol

lies in the final step, in which the third party Q solves q(T ) = ki for each ki ∈ K

to obtain the desired intersection.

As explained in the introduction, we improve upon this by modifying the last

few steps of the existing protocol. Instead of having P1 directly sending the set

K of keys he computed to Q as in the existing protocol, we use the set of keys

computed by P1 to interpolate a polynomial r, which is then sent to Q.

Q also receives a polynomial q from P2, which encodes the keys that result from

running the key agreement protocol for each element of P2’s dataset. The desired

intersection can then be obtained by Q by finding the roots of the polynomial q−r.

3.2. Details of the protocol. We will use a setup which is similar to the one

used in Section 4 of [68]. Let the size of each of P1 and P2’s datasets be n, and let

S1 = {s1, . . . , sn} ⊆ {0, 1}ℓ and S2 = {t1, . . . , tn} ⊆ {0, 1}ℓ.
Fix some λ > 0, which is both the correctness and the security parameter, and

fix some δ > 0. Let λ′ = max(λ, nδ). We shall identify {0, 1}ℓ with a subset S of a

finite field F satisfying |F| ≥ 2ℓ+λ′+2 logn. Choose

• a 2-round key agreement protocol KA (see Figure 4) with space of random-

ness KA.R, message space KA.M = F and key space KA.K = F, and
• an ideal permutation Π : F→ F.
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(1) P1 picks a← KA.R, and sends m1 = KA.msg1(a) to P2.

(2) P2 picks b← KA.R, and sends m2 = KA.msg2(b,m1) to P1.

(3) P1 and P2 output KA.key1(a,m2) and KA.key2(b,m1) respectively.

Figure 4. A 2-round key agreement protocol between P1 and P2

For two probability distributions X and Y (each indexed by a security parame-

ter), we writeX ≈ Y to denote thatX and Y are computationally indistinguishable.

The key agreement protocol KA should satisfy the following three properties:

Property 1. A 2-round key agreement protocol KA is correct if

KA.key1(a,KA.msg2(b,KA.msg1(a))) = KA.key2(b,KA.msg1(a))

for all a, b ∈ KA.R.
Property 2. A 2-round key agreement protocol KA has pseudorandom second mes-

sages if

{(a,KA.msg2(b,m1))}b←KA.R ≈ {(a,m2)}m2←KA.M

for all a ∈ KA.R, m1 = KA.msg1(a).

Property 3. A 2-round key agreement protocol KA has pseudorandom keys if

{KA.key2(b,KA.msg1(a))}b←KA.R ≈ {k}k←KA.K

for all a ∈ KA.R.
Fix some u ∈ F\S. If h is a positive integer, we denote by [h] the set {1, 2, . . . , h}.

Recall that S1 = {s1, . . . , sn} and S2 = {t1, . . . , tn}. Our improved protocol works

as follows:

(1) P1 picks a random a← KA.R.
(2) P1 sends m = KA.msg1(a) to P2.

(3) For each i ∈ [n], P2 picks a random bi ← KA.R and computes m′i =

KA.msg2(bi,m) and fi = Π−1(m′i).

(4) P2 computes the unique polynomial p of degree ≤ n − 1 such that

p(ti) = fi for all i ∈ [n], and sends p to P1.

(5) For each i ∈ [n], P1 computes ki = KA.key1(a,Π(p(si))).

(6) P1 picks a random k ← KA.K, computes the unique polynomial r of

degree ≤ n such that r(u) = k and r(si) = ki for all i ∈ [n], and sends

r to Q.

(7) P2 picks a random k′ ← KA.K, computes the unique polynomial q

of degree ≤ n such that q(u) = k′ and q(ti) = KA.key2(bi,m) for all

i ∈ [n], and sends q to Q.

(8) Q computes all solutions t to the equation q(T )− r(T ) = 0 with t ∈ S,

and outputs {t ∈ S : q(t)− r(t) = 0}.

Protocol 1. An improved semi-honest third-party PSI protocol

In steps 6 and 7 of the Protocol 1, we require P1 and P2 to each choose a random

element in KA.K, and interpolate a polynomial such that the polynomial has this

chosen value at some fixed point u. Essentially, instead of choosing the unique

polynomials of degree ≤ n− 1 satisfying their respective constraints, P1 and P2 are

choosing random polynomials of degree ≤ n that satisfy the constraints.

This is needed to deal with the edge case where S1 = S2; otherwise, in this

particular case, the polynomials q and r will be identical, and hence Q will be

unable to determine the intersection.
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Compared to Protocol 2 in [68], the computations needed by Q to determine

the intersection has been reduced from solving n equations q(T ) = ki, for i ∈ [n],

to solving a single equation q(T ) − r(T ) = 0. Using the fast polynomial factor-

ization algorithm by Kedlaya and Umans [39], the computational complexity of

the protocol is O(n1.5+o(1) log1+o(1) |F| + n1+o(1) log2+o(1) |F|) bit operations. The

communication cost is 3(n+ 1) log |F| bits.

3.3. Correctness. We now prove that Protocol 1 correctly computes the set in-

tersection functionality except with negligible probability:

Proposition 1. Assume that KA satisfies Properties 1, 2 and 3 with security pa-

rameter λ′, and that Π is an ideal permutation. Then Protocol 1 is correct except

with probability ≤ 2−λ
′+1 + n2η(λ′), where η(λ′) is a negligible function of λ′. In

particular, Protocol 1 is correct except with probability negligible in λ.

Proof. Protocol 1 outputs S1 ∩ S2 unless

(i) for some i ∈ [n] and tj ∈ S2 such that tj ̸= si, ki = KA.key2(bj ,m) where

bj ∈ KA.R is the randomness corresponding to tj , or

(ii) q(T )− r(T ) = 0 has a solution t ∈ S with t ̸∈ S1 ∩ S2.

By Property 3 of KA, for fixed i, j ∈ [n] such that tj ̸= si, the probability that

ki = KA.key2(tj ,m) is negligibly close to 1/|KA.K|. Taking the union bound over

i, j ∈ [n], we see that the probability that (i) holds is ≤ n2/|KA.K| + n2η(λ′) =

2−ℓ−λ
′
+ n2η(λ′), where η(λ′) is a negligible function of λ′.

Now suppose that (i) does not occur. Note that Properties 1, 2 and 3 together

imply that

{KA.key1(a,m)}m←KA.M ≈ {k}k←KA.K

for all a ∈ KA.R.
Since outputs of KA.key1 and KA.key2 are both indistinguishable from uniformly

random, the pair (q, r) is indistinguishable from a pair of random polynomials of

degree ≤ n in F[X] such that q(t) = r(t) for t ∈ S1 ∩ S2. As we are assuming

that (i) does not occur, the polynomials q and r must be distinct if S1 ̸= S2. In

the case where S1 = S2, the probability that q and r are identical is equal to

1/|F| = 2−ℓ−λ
′−2 logn.

Now, assume the polynomials q and r are distinct, so that q − r is not the

zero polynomial. Then, the roots of q − r in F are (S1 ∩ S2) ∪ {γ1, . . . , γn′}, with
n′ ≤ n− |S1 ∩ S2|, and γ1, . . . , γn′ being indistinguishable from uniformly random

elements of F. By the union bound, the probability that some γj lies in S ⊂ F is

≤ n|S|/|F| = n2−λ
′−2 logn.

Thus, Protocol 1 gives the correct output except with probability ≤ 2−ℓ−λ
′
+

n2η(λ′) + 2−ℓ−λ
′−2 logn + n2−λ

′−2 logn ≤ 2−λ
′+1 + n2η(λ′). Since n2 ≤ (λ′)

2
δ is

bounded above by a polynomial in λ′, Protocol 1 is correct except with probability

negligible in λ′. As λ′ ≥ λ, this probability is also negligible in λ. □

3.4. Security. Next, we shall modify the proofs of Propositions 5, 6 and 7 in [68]

to prove that Protocol 1 is secure against a semi-honest adversary corrupting a

single party.

Proposition 2. Assume KA satisfies Property 2 with security parameter λ′, and

Π is an ideal permutation. Then Protocol 1 is secure against a semi-honest P1.

Proof. Since KA satisfies Property 2, changing some m′i = KA.msg2(bi,m) to m′i ←
KA.M cannot be distinguished by P1 except with probability negligible in λ′. As
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n is bounded above by a polynomial in λ′, performing this change for all i is

still indistinguishable to P1 except with probability negligible in λ′. Thus, the

polynomial p can be simulated by a uniformly random polynomial of degree ≤
n− 1. □

Proposition 3. Protocol 1 is secure against a semi-honest P2.

Proof. This is clear as P2 only receives the message m from P1, which does not

depend on the input S1. □

Proposition 4. Assume KA satisfies Properties 1, 2 and 3 with security parameter

λ′, and that Π is an ideal permutation. Then Protocol 1 is secure against a semi-

honest Q.

Proof. Hybrid 0 : The real interaction.

Hybrid 1 : We abort if there exists s∗ ∈ S1 \ S2 and t∗ ∈ S2 such that p(s∗) =

p(t∗). Since p is indistinguishable from a uniformly chosen polynomial of degree

≤ n− 1, by the union bound, the probability of abort is ≤ n2/|F| = 2−ℓ−λ
′
< 2−λ

′
,

which is negligible. Thus, this hybrid is indistinguishable from Hybrid 0.

Hybrid 2 : We shall change how the ideal permutation Π is simulated. Since we

have not aborted, we know there has been no query to Π at p(si) in steps 1 to 4

for each si ∈ S1 \ S2. In this hybrid, we choose ri ← KA.R, and set Π(p(si)) =

KA.msg2(ri,m). Since KA.msg2(ri,m) is indistinguishable from uniformly random

by Property 2 of KA, and |S1 \ S2| ≤ n is bounded by a polynomial in λ′, this

hybrid is indistinguishable from Hybrid 1.

Hybrid 3 : We shall change how the ki values are computed. If si = tj for some

tj ∈ S2, we set ki = KA.key2(bj ,m), else we set ki = KA.key2(ri,m). Hybrids 2 and

3 are identical by Property 1 of KA.
Hybrid (4, h) for h ∈ [n+ 1]: We again change how the ki values are computed.

We set:

ki =

⎧⎪⎨⎪⎩
KA.key2(bj ,m) if si = tj for some tj ∈ S2,

k′i where k′i ← KA.K if si ̸= tj for all tj ∈ S2 and i < h,

KA.key2(ri,m) otherwise.

Hybrid (4, 1) is identical to Hybrid 3. By Property 3 of KA, Hybrid (4, h) is indis-

tinguishable from Hybrid (4, h + 1) for each h ∈ [n]. Hence, Hybrid (4, n + 1) is

indistinguishable from Hybrid 3.

Hybrid (5, h) for h ∈ [n + 1]: We let q be the unique polynomial of degree ≤ n

such that q(u) = k′ where k′ ← KA.K and

q(tj) =

{︄
KA.key2(bj ,m) if tj = si for some i ∈ [n] or j ≥ h,

k′′j where k′′j ← KA.K otherwise.

Hybrid (5, 1) is identical to Hybrid (4, n+1), and Hybrid (5, h) is indistinguishable

from Hybrid (5, h+ 1) for each h ∈ [n], again, by Property 3 of KA.
Simulator : We simulate

q, r ← {ρ ∈ F[X] : deg(ρ) ≤ n, ρ(tj) = KA.key2(bj ,m) for tj ∈ S1 ∩ S2}.
This interaction is identically distributed to Hybrid (5, n+ 1). □

4. A Near-Linear Third-Party PSI Protocol via Hashing

4.1. An overview. In this section, we shall introduce our second improvement to

the protocol in [68]. While this improvement can be applied separately from the first
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improvement described in Section 3, we shall present a protocol incorporating both

improvements at the same time, so as to achieve the best possible communication

and computational efficiency.

As explained in the introduction, we achieve this by using a hash function to hash

the inputs of the parties into some number of buckets, before applying Protocol 1

multiple times, once to each bucket. Key to the correctness and security of this

improved protocol is a careful analysis and choice of parameters for the protocol.

Crucially, a “large” number of buckets is essential for us to obtain a low compu-

tational cost, as only then will each bucket have a “small” number of elements, thus

reducing the size of the instances on which we apply Protocol 1 to. However, Pro-

tocol 1 has a small negligible probability of producing an incorrect output. Since

the probability is negligible, this is not an issue when running the protocol only

once. As we are now running the protocol many times, once on each bucket, we

must ensure that the number of buckets is not too large so that the probability of

obtaining even an incorrect output is still negligible. By carefully balancing these

two requirements, we obtain a suitable choice for the number b of buckets.

Now, since each party will hash the elements of his dataset into b buckets and

the hash function behaves essentially like a random function, each bucket will on

average have n/b elements, where n is the size of each party’s dataset. However,

due to the randomness inherent in the process, buckets will not contain exactly n/b

elements, but rather, they will contain close to n/b elements.

Since we want to preserve the privacy of the datasets, the exact number of

elements in each bucket cannot be leaked to an adversary. Thus, it is necessary to

pad each bucket with dummy elements up to some maximum size M . Choosing

too small a value for M will result in a non-negligible probability of some bucket

overflowing and the protocol aborting. On the other hand, a value of M that is too

large will affect the computation and communication costs of the protocol. Again,

we have to strike a balance between these two contrasting requirements to obtain

a suitable choice for the maximum bucket size M , and we can do so using the

Chernoff bound [15].

Finally, we need to ensure that there are enough dummy elements that can be

used to pad the buckets up to the maximum size M . We achieve this by embedding

the set of all possible elements into a larger set. We choose the set just large enough

so that there are enough dummy elements with high probability, while, at the same

time, not causing a significant increase in the computation and communication

costs.

The idea of applying hashing techniques to PSI has been explored before by

various works such as [23, 30, 56, 59], where the number of buckets used is Θ̃(n)

(i.e. linear in n up to logarithmic terms). In this paper, however, we use a novel

choice of b = ⌈nα⌉ buckets, where α is some constant satisfying 0 < α < 1. This

complicates the analysis, but as we will see, choosing a value of α < 1 allows us to

achieve a lower communication complexity compared to α = 1, and thus results in

a more communication efficient protocol.

4.2. Details of the protocol. We will modify the setup used in Section 3. We

start by identifying {0, 1}ℓ as a subset of {0, 1}κ for some κ > ℓ. (Most commonly,

we will let κ = ℓ+ 1.)

Fix some positive integer b, and let H : {0, 1}κ → [b] be an ideal hash function.

We introduce a parameter 0 < µ < 1 such that the probability that any bucket

contains more than (1 + µ)n/b elements or less than (1 − µ)n/b elements of S1 or
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S2 is negligible in λ, where, as above, λ > 0 is both the correctness and the security

parameter. The precise value of µ will be chosen later.

Assume that, for each j ∈ [b], there are at least ⌈4µn/b⌉ + 4 elements of

{0, 1}κ \ {0, 1}ℓ that hashes to the j-th bucket, and let us fix any two disjoint

subsets R1,j , R2,j ⊆ {0, 1}κ \ {0, 1}ℓ, each of size ⌈2µn/b⌉ + 2, such that elements

in R1,j and R2,j are both mapped to the j-th bucket under the hash function H.

Fix some δ > 0 and let λ′ = max(λ, nδ). We shall identify {0, 1}κ with a subset

S of a finite field F with |F| ≥ 2κ+λ′+2 logn. We choose

• a 2-round key agreement protocol KA with space of randomness KA.R,
message space KA.M = F and key space KA.K = F, and
• ideal permutations Π1, . . . ,Πb : F→ F.

We now present our improved third-party PSI protocol which has near-linear

computation and communication costs:

(1) P1 and P2 use H to hash their elements into b buckets. Let

si,j = |{s ∈ Si : H(s) = j}|
be the size of the j-th bucket for Pi. Abort if si,j > (1 + µ)n/b or

si,j < (1− µ)n/b for some i, j.

(2) For each j ∈ [b]:

(a) Let M = ⌈(1 + µ)n/b⌉. Pi chooses a subset R′i,j ⊆ Ri,j of size

M − si,j , and defines

Si,j = {s ∈ Si : H(s) = j} ∪R′i,j .

Write S1,j = {sj,1, . . . , sj,M} and S2,j = {tj,1, . . . , tj,M}.
(b) P1 picks a random aj ← KA.R.
(c) P1 sends mj = KA.msg1(aj) to P2.

(d) For each i ∈ [M ], P2 picks a random bj,i ← KA.R and let m′j,i =

KA.msg2(bj,i,mj) and fj,i = Π−1j (m′j,i).

(e) P2 computes the unique polynomial pj of degree ≤ M − 1 such

that pj(tj,i) = fj,i for all i ∈ [M ], and sends pj to P1.

(f) For each i ∈ [M ], P1 computes kj,i = KA.key1(aj ,Πj(pj(sj,i))).

(g) P1 picks a random k′j ← KA.K, computes the unique polynomial

rj of degree ≤ M such that rj(u) = k′j and rj(sj,i) = kj,i for all

i ∈ [M ], and sends rj to Q.

(h) P2 picks a random k′′j ← KA.K, computes the unique polyno-

mial qj of degree ≤ M such that qj(u) = k′′j and qj(tj,i) =

KA.key2(bj,i,mj) for all i ∈ [M ], and sends qj to Q.

(i) Q computes all solutions t to the equation qj(T )−rj(T ) = 0 with

t ∈ S, and sets

Ij = {t ∈ S : qj(t)− rj(t) = 0}.
(3) Q outputs

⋃︁b
j=1 Ij .

Protocol 2. A near-linear semi-honest third-party PSI protocol

Essentially, steps 2(b) to 2(i) correspond to running Protocol 1 a total of b times,

once on each bucket.

4.3. Parameter choices.



A NEAR-LINEAR QUANTUM-SAFE THIRD-PARTY PSI PROTOCOL 11

4.3.1. Choice of µ. In Protocol 2, the parties abort if any bucket contains more

then (1+µ)n/b elements or less then (1−µ)n/b elements of S1 or S2, hence µ must

be chosen so that the probability of abort is negligible. To choose an appropriate

value of µ, we will now obtain an upper bound on this probability using the Chernoff

bound [15]:

Proposition 5 (Chernoff bound). Let X be a binomial random variable with N

trials and success probability p. If 0 < µ < 1, then

Pr[X < (1− µ)pN ] ≤ exp

(︃
−µ2pN

2

)︃
and Pr[X > (1 + µ)pN ] ≤ exp

(︃
−µ2pN

3

)︃
.

Proposition 6. Let Xi,j be the number of elements of Si in the j-th bucket. If

µ =

√︃
3b

n
(λ+ ln 2b),

then

Pr

[︃
Xi,j >

(1 + µ)n

b
or Xi,j <

(1− µ)n

b
for some i, j

]︃
is negligible in λ.

Proof. Each Xi,j is a binomial random variable with N = n and p = 1/b. By

Proposition 5,

Pr

[︃
Xi,j >

(1 + µ)n

b
or Xi,j <

(1− µ)n

b

]︃
≤ exp

(︃
−µ2n

2b

)︃
+ exp

(︃
−µ2n

3b

)︃
< 2 exp

(︃
−µ2n

3b

)︃
.

Now, applying the union bound over i, j, we have

Pr

[︃
Xi,j >

(1 + µ)n

b
or Xi,j <

(1− µ)n

b
for some i, j

]︃
< 2b exp

(︃
−µ2n

3b

)︃
= exp(−λ),

which is negligible in λ, as required. □

4.3.2. Choice of b. We fix some 0 < α < 1 and let b = ⌈nα⌉. As we shall see later,

such a choice of b allows us achieve a low computational cost.

4.3.3. Choice of κ. We need to choose κ such that, there are at least ⌈4µn/b⌉ + 4

elements of {0, 1}κ \ {0, 1}ℓ that hashes to the j-th bucket for each j ∈ [b]. Note

that

⌈4µn/b⌉+ 4 ≤
⌈︂
4
√︁
3n1−α(λ+ ln(2nα + 2))

⌉︂
+ 4 = Θ

(︂
n

1−α
2

√︁
log n

)︂
and

n

b
=

n

⌈nα⌉ = Θ(n1−α).

It follows that, for sufficiently large n, we have ⌈4µn/b⌉+ 4 < n/2b.

Hence, by Proposition 5, given any set of at least n elements (with n sufficiently

large), the probability that there are less than ⌈4µn/b⌉ + 4 elements that hashes

to the j-th bucket (for any fixed j) is bounded above by exp(−n/8b). Now, by the

union bound, the probability that the above happens for some j ∈ [b] is bounded

above by

b exp(−n/8b) < 2nα exp
(︁
−n1−α/16

)︁
= o(1).
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Since |{0, 1}ℓ+1 \ {0, 1}ℓ| = 2ℓ ≥ n, this shows that κ = ℓ + 1 will work with high

probability.

4.4. Communication and computational costs. From the protocol descrip-

tion, we note that Protocol 2 requires 3b(M + 1)(κ + λ′ + 2 log n) bits of commu-

nication. With the above choice of parameters, this is bounded above by

3
(︂
n+

√︁
3(n1+α + n)(ln(2nα + 2) + λ) + 2nα + 2

)︂
(nδ + 2 log n+ λ+ ℓ+ 1)

= O(n1+δ),

where we assume κ = ℓ+ 1.2

The computational cost of Protocol 2 is dominated by step 2(i), which has a

complexity of O(M1.5+o(1) log1+o(1) |F|+M1+o(1) log2+o(1) |F|) bit operations using
the algorithm of Kedlaya and Umans [39]. Since step 2(i) is performed b times, this

gives us a total complexity of O(bM1.5+o(1) log1+o(1) |F| + bM1+o(1) log2+o(1) |F|).
With our choice of parameters, this becomes

O
(︂
n1.5−0.5α+o(1) log1+o(1) |F|+ n1+o(1) log2+o(1) |F|

)︂
= O

(︂
n1.5−0.5α+δ+o(1) + n1+2δ+o(1)

)︂
.

By picking 0 < α < 1 and δ > 0 appropriately, the computational complexity can

be made O(n1+ε) for any ε > 0.

4.5. Correctness. From this point on, we will assume that (1 + µ)/b ≤ 1, i.e. the

maximum size M of each bucket satisfies M = ⌈(1 + µ)n/b⌉ ≤ n. Note that the

assumption (1 + µ)/b ≤ 1 is equivalent to

1 +

√︃
3⌈nα⌉
n

(λ+ ln 2⌈nα⌉) ≤ ⌈nα⌉,

which is clearly satisfied for sufficiently large n.

A straightforward modification of Proposition 1 yields the following:

Lemma 7. Let j ∈ [b]. Assume that KA satisfies Properties 1, 2 and 3 with security

parameter λ′, and that Πj is an ideal permutation. Then

Ij = S1,j ∩ S2,j = {s ∈ S1 ∩ S2 : H(s) = j}
except with probability ≤ M2

n2 2
−λ′+1 +M2η(λ′), where η(λ′) is a negligible function

of λ′.

Proposition 8. Assume that KA satisfies Properties 1, 2 and 3 with security pa-

rameter λ′, and that Π1, . . . ,Πb are ideal permutations. Then Protocol 2 is correct

except with probability negligible in λ.

Proof. By the choice of µ, the probability of abort in step 1 of the protocol is

negligible in λ. Assume that

(1) Ij = {s ∈ S1 ∩ S2 : H(s) = j}
for all j ∈ [b], then Q outputs

b⋃︂
j=1

Ij = {s ∈ S1 ∩ S2 : H(s) ∈ [b]} = S1 ∩ S2.

2For fixed δ > 0, choosing α = 1 instead of α < 1 gives us a comparatively worse communication

complexity of O(n1+δ
√︁

log(n)).
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By Lemma 7, for each j ∈ [b], condition (1) holds except with probability ≤
M2

n2 2
−λ′+1 + M2η(λ′), where η(λ′) is a negligible function of λ′. Thus, by the

union bound, condition (1) holds for all j ∈ [b] except with probability

≤ bM2

n2
2−λ

′+1 + bM2η(λ′) ≤ b(2−λ
′+1) + bn2η(λ′).

Since λ′ ≥ nδ, both b = ⌈nα⌉ and bn2 = n2⌈nα⌉ are bounded above by some

polynomial in λ′, hence b(2−λ
′+1) + bn2η(λ′) is a negligible function of λ′. As

λ′ ≥ λ, it too is a negligible function of λ. □

4.6. Security. The following propositions prove that Protocol 2 is secure against

a semi-honest adversary corrupting a single party.

Proposition 9. Assume KA satisfies Property 2 with security parameter λ′, and

Π1, . . . ,Πb are ideal permutations. Then Protocol 2 is secure against a semi-honest

P1.

Proof. We argue as in the proof of Proposition 2, noting that Mb ≤ n⌈nα⌉ is

bounded above by a polynomial in λ′. Thus, for each j ∈ [b], the polynomial pj
can be simulated by a uniformly random polynomial of degree ≤M − 1. □

Proposition 10. Protocol 2 is secure against a semi-honest P2.

Proof. This is clear as P2 only receives the messages m1, . . . ,mb from P1. □

The next lemma follows immediately from the proof of Proposition 4:

Lemma 11. Assume KA satisfies Properties 1, 2 and 3 with security parameter λ′,

and that Πj is an ideal permutation. Then simulating qj and rj by

qj , rj ← {ρ ∈ F[X]≤M : ρ(tj,i) = KA.key2(bj,i,mj) for tj,i ∈ S1,j ∩ S2,j}
is indistinguishable to Q except with probability negligible in λ′.

Proposition 12. Assume KA satisfies Properties 1, 2 and 3 with security parame-

ter λ′, and that Π1, . . . ,Πb are ideal permutations. Then Protocol 2 is secure against

a semi-honest Q.

Proof. By Lemma 11, for each j ∈ [b], we can simulate

qj , rj ← {ρ ∈ F[X]≤M : ρ(tj,i) = KA.key2(bj,i,mj) for tj,i ∈ S1,j ∩ S2,j}.
By the union bound, this change is indistinguishable to Q except with probability

at most bζ(λ′), where ζ(λ′) is a negligible function of λ′. Again, since b = ⌈nα⌉
is bounded above by a polynomial in λ′, the probability bζ(λ′) is negligible in λ′,

hence negligible in λ. □

5. A Third-Party PSI Cardinality Protocol

5.1. An overview. To obtain a third-party PSI cardinality protocol, we make a

small modification to Protocol 1 and have P1 and P2 first apply a pseudorandom

permutation (PRP) to their elements using a common key, so that the actual in-

tersection elements are hidden from Q. This small change already gives us a secure

third-party PSI cardinality protocol. However, we can further improve its compu-

tational costs to obtain a more efficient protocol.

Recall that the most computational expensive step in Protocol 1 is the final step,

which involves Q solving a polynomial to detemine the intersection elements. As we

do not now require the actual intersection elements, the computational complexity
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of this step can be improved by replacing it with a more efficient algorithm that

determines only the number of roots, but not the set of roots, of the polynomial.

To make this more efficient algorithm work, we make a slight modification to the

setup used in Protocol 1 so that the set {0, 1}ℓ is now identified with a subfield S
(instead of an arbitrary subset) of F.

5.2. Details of the protocol. We use the same setup as in Section 3.2, except

that {0, 1}ℓ is now identified with the unique subfield S of cardinality 2ℓ of a finite

field F (which satisfies |F| ≥ 2ℓ+λ′+2 logn). Furthermore, let E : K × S → S be a

PRP with key space K, and fix some u ∈ F \ S.
(1) P1 and P2 agree on a random key k ← K.
(2) P1 picks a random a← KA.R.
(3) P1 sends m = KA.msg1(a) to P2.

(4) For each i ∈ [n], P2 picks a random bi ← KA.R and computes m′i =

KA.msg2(bi,m) and fi = Π−1(m′i).

(5) P2 computes the unique polynomial p of degree ≤ n − 1 such that

p(Ek(ti)) = fi for all i ∈ [n], and sends p to P1.

(6) For each i ∈ [n], P1 computes ki = KA.key1(a,Π(p(Ek(si)))).

(7) P1 picks a random k′ ← KA.K, computes the unique polynomial r of

degree ≤ n such that r(u) = k′ and r(Ek(si)) = ki for all i ∈ [n], and

sends r to Q.

(8) P2 picks a random k′′ ← KA.K, computes the unique polynomial q of

degree ≤ n such that q(u) = k′′ and q(Ek(ti)) = KA.key2(bi,m) for all

i ∈ [n], and sends q to Q.

(9) Let f(X) = q(X) − r(X). Q computes g(X) = X2ℓ mod f(X) using

repeated squaring and reduction modulo f(X).

(10) Q computes h(X) = gcd(f(X), g(X)−X) and outputs deg h(X).

Protocol 3. A semi-honest third-party PSI cardinality protocol

Note that step 9 takes ℓ(M(n) +O(M(2n))) = O(n log n log log n) field oper-

ations, while step 10 takes O(M(n) log n) = O(n log2 n log log n) field operations,

giving a total computational complexity for Q that is quasilinear. The communi-

cation cost of Protocol 3 is 3(n+ 1) log |F|+ log |K| bits.

5.3. Correctness and Security.

Proposition 13. Assume that KA satisfies Properties 1, 2 and 3 with security

parameter λ′, and that Π is an ideal permutation. Then Protocol 3 is correct except

with probability negligible in λ.

Proof. Following the proof of Proposition 1, the roots of the polynomial f = q − r

which lie in S are Ek(s) for s ∈ S1 ∩ S2 except with probability negligible in λ.

Since S is the unique subfield of F of cardinality 2ℓ, the roots of the polynomial

X2ℓ −X =
∏︁

α∈S(X − α) are precisely the elements of S.
From the observation that h(X) = gcd(f(X), g(X)−X) = gcd(f(X), X2ℓ −X),

it follows that the roots of h are precisely Ek(s) for s ∈ S1 ∩ S2 except with

probability negligible in λ, so h has degree |S1 ∩ S2|, as required. □

Proposition 14. Assume KA satisfies Properties 1, 2 and 3 with security param-

eter λ′, and that Π is an ideal permutation. Then Protocol 3 is secure against a

semi-honest adversary corrupting a single party.
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The proof of Proposition 14 essentially follows from the proofs of Propositions

2, 3 and 4, and is therefore omitted.

6. Conclusion

Third-party private set intersection was recently introduced in [68]. They pre-

sented two protocols, one of which is a Diffie-Hellman based approach and the

other is quantum-safe. While their solution achieves a low communication cost,

the computational overhead incurred for their quantum-safe protocol is high. In

this paper, we overcome the limitations of existing work by developing an improved

protocol which achieves post-quantum security while also significantly lowering the

computational cost.

We propose two improvements to the third-party PSI protocol of [68] to reduce

the computation cost incurred by the third party Q. The first improvement gives

a significant reduction in the computational cost from O(n2.5+o(1)) to O(n1.5+o(1))

and works even for small n, while the second improvement is an asymptotic im-

provement that is important for large n and further reduces the computational cost

to O(n1+ε) for any constant ε > 0.

Depending on the specific use case, it might make sense to either use only the

first improvement, or to use both improvements together to achieve the best com-

putational performance.

Finally, we also introduce a protocol with an even lower computational complex-

ity of O(n log2 n log log n) for the third-party Q, in the situation where it is desired

that only the size, but not the contents, of the intersection is revealed.
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[38] Ferhat Karakoç and Alptekin Küpçü. Linear complexity private set intersection for secure

two-party protocols. In International Conference on Cryptology and Network Security, pages

409–429. Springer International Publishing, 2020.

[39] Kiran S. Kedlaya and Christopher Umans. Fast polynomial factorization and modular com-

position. SIAM Journal on Computing, 40(6):1767–1802, 2011.

[40] Florian Kerschbaum. Outsourced private set intersection using homomorphic encryption. In

Proceedings of the 7th ACM Symposium on Information, Computer and Communications

Security, pages 85–86. ACM, 2012.

[41] Lea Kissner and Dawn Song. Privacy-preserving set operations. In Annual International

Cryptology Conference, pages 241–257. Springer Berlin Heidelberg, 2005.

[42] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched obliv-

ious PRF with applications to private set intersection. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security (CCS’16), pages 818–829.

ACM, 2016.

[43] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu. Practical

multi-party private set intersection from symmetric-key techniques. In Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security, pages 1257–1272.

ACM, 2017.

[44] Phi Hung Le, Samuel Ranellucci, and S. Dov Gordon. Two-party private set intersection with

an untrusted third party. In Proceedings of the 2019 ACM SIGSAC Conference on Computer

and Communications Security (CCS’19), pages 2403–2420. ACM, 2019.

[45] Jack P. K. Ma and Sherman S. M. Chow. Friendly private set intersection from oblivious

compact graph evaluation. In Proceedings of the 2022 ACM on Asia Conference on Computer

and Communications Security, pages 1086–1097. ACM, 2022.

[46] Moxie Marlinspike. The difficulty of private contact discovery, 2014. https://signal.org/

blog/contact-discovery.

[47] Catherine Meadows. A more efficient cryptographic matchmaking protocol for use in the

absence of a continuously available third party. In Proceedings of the 1986 IEEE Symposium

on Security and Privacy, pages 134–134. IEEE, 1986.

https://eprint.iacr.org/2023/1407
https://signal.org/blog/contact-discovery
https://signal.org/blog/contact-discovery


18 FOO YEE YEO AND JASON H. M. YING

[48] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung. Two-sided ma-

licious security for private intersection-sum with cardinality. In Advances in Cryptology –

CRYPTO 2020: 40th Annual International Cryptology Conference, CRYPTO 2020, pages

3–33. Springer International Publishing, 2020.

[49] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita Borisov. Bot-

Grep: Finding P2P bots with structured graph analysis. In 19th USENIX Security Sympo-

sium (USENIX Security 10), pages 95–110, 2010.

[50] Arvind Narayanan, Narendran Thiagarajan, Mugdha Lakhani, Michael Hamburg, and Dan

Boneh. Location privacy via private proximity testing. In Network and Distributed Security

Symposium (NDSS’11). The Internet Society, 2011.

[51] Ofri Nevo, Ni Trieu, and Avishay Yanai. Simple, fast malicious multiparty private set inter-

section. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communi-

cations Security, pages 1151–1165. ACM, 2021.
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