
A Note on Related-Tweakey Impossible
Differential Attacks

Xavier Bonnetain and Virginie Lallemand

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
firstname.name@loria.fr

Abstract. In this short note we review the technique proposed at ToSC 2018 by
Sadeghi et al. for attacks built upon several related-tweakey impossible differential
trails. We show that the initial encryption queries are improper and lead the authors
to misevaluating a filtering value in the key recovery phase. We identified 4 papers
(from Eurocrypt, DCC, ToSC and ePrint) that follow on the results of Sadeghi et al.,
and in three of them the issue was propagated.
We thus present a careful analysis of these types of attacks and give generic complexity
formulas similar to the ones proposed by Boura et al. at Asiacrypt 2014. We apply
these to the aforementioned papers and provide patched versions of their attacks.
The main consequence is an increase in the memory complexity. We show that in
many cases (a notable exception being quantum impossible differentials) it is possible
to recover the numeric estimates of the flawed analysis, and in all cases we were able
to build a correct attack reaching the same number of rounds.

Keywords: Impossible Differential Attack · Related-Tweakey · Complexity Analysis

1 Impossible Differential Attacks and their Complexity
Analysis

We start by recalling the framework of single-key impossible differential attacks for block
ciphers, as detailed in [BNS14]. We consider an n-bit block cipher with a k-bit key K.
The attack is built around a probability-0 differential distinguisher of rd rounds that starts
with a (set of) n-bit difference(s) ∆X and ends with a (set of) n-bit difference(s) ∆Y , as
depicted in Figure 1. Then, rb rounds are added before this differential and rf rounds are
added after. The set of possible differences at the plaintext size, denoted ∆in, is a set of
differences that might lead to ∆X after rb rounds. Similarly, ∆out represents the set of
differences at the output size to which ∆Y might propagate after rf rounds. We let 2−cin

denote the probability that a difference in ∆in leads to a difference in ∆X , and 2−cout the
probability that a difference in ∆out leads to a difference in ∆Y . The set of key bits used
to compute if a difference in ∆in leads to ∆X is kin, while the corresponding set of key
bits in rf is kout.

Given a pair of messages that satisfies ∆in and ∆out, the probability that a key
guess (kin, kout) leads to ∆X and ∆Y (and thus is discarded) is equal to 2−cin−cout . Not
discarding a given key is thus of probability (1 − 2−cin−cout), and not discarding a given
key when considering N pairs is thus (1 − 2−cin−cout)N ≃ exp (−N × 2−cin−cout).

The goal of an attacker is to reduce the set of possible keys by at least a factor of 2
in order to keep the final step (of exhaustively testing the remaining keys) of reasonable
cost. We introduce the variable g to measure the number of remaining keys and denote by

mailto:firstname.name@loria.fr

2 A Note on Related-Tweakey Impossible Differential Attacks

∆
in

∆
o
u
t

∆
X

∆
Y

cin
kin

cout
kout

impossible differential trail

rb rfrd

Figure 1: Setting and notation for an impossible differential attack on a block cipher.

Ng
min the number of pairs satisfying ∆in and ∆out such that:

(1 − 2−cin−cout)Ng
min <

1
2g

.

The previous approximation using the exponential function leads to:

Ng
min > g × ln(2) × 2cin+cout .

To build a given amount of pairs N , an attacker organizes their encryption queries
into structures (either at the plaintext or at the ciphertext side). Depending on the exact
number of pairs that are required, either several structures are encrypted or less than one.
These different scenarios make the data complexity be approximated by:

D = max
{

min∆∈{∆in,∆out}
{√

N2n+1−|∆|
}

, N2n+1−|∆in|−|∆out|
}

where 2|∆in| and 2|∆out| represent the number of differences in ∆in and ∆out, respectively.
This number of encryption queries must be so that D ≤ 2n.

If we let CE denote the cost of one encryption, the lower bound of the time complexity
of the attack (T) provided in [BNS14] is:

T =
(

D +
(

N + 2|kin∪kout| N

2cin+cout

)
C ′

E + 2k−g

)
CE ,

where C ′
E is the ratio of the cost of partial encryption to the full encryption. This should

satisfy T ≤ 2kCE . The memory complexity corresponds to storing the N pairs.

2 Multiple-Tweakey Attack from ToSC 2018
This section recalls the key recovery technique used in the 23-round related-tweakey
impossible differential attack on SKINNY-n-2n described in [SMB18].

SKINNY. As a reminder, SKINNY [BJK+16] is a family of tweakable block ciphers
whose variants are denoted SKINNY-n-v, where n = 16 × s is the internal state size, s = 4
or 8 is the word size and v is the tweakey size (it can be equal to n, 2n or 3n). The round
function of SKINNY is recalled in Figure 2 and relies on 5 operations: SubCells (SC)
which is an Sbox application on each word, AddConstants (AC) which adds a constant on
words 0, 4 and 8, AddRoundTweakey (ART) which adds the round tweakey to the first and
second rows, and ShiftRows (SR) and MixColumns (MC) which are two linear operations
corresponding to a right shift of the rows and a multiplication of each column by a binary
matrix, respectively. Further details, in particular on the linear tweakey schedule producing
the round tweakeys (TK1, TK2, . . .) from the master tweakey states TK1, TK2, TK3, can
be found in [BJK+16].

Xavier Bonnetain and Virginie Lallemand 3

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

Xr Yr

TKr

Zr Wr Xr+1

SC AC

ART

≫ 1

≫ 2

≫ 3

ShiftRows MixColumns

Figure 2: Word numbering and round function of SKINNY (modified version of [Jea16]).

Description of the 23-round related-tweakey impossible differential attack on SKINNY-
n-2n of [SMB18]. We reuse the notations from [SMB18]. The attack is based on
the 15-round related-tweakey impossible differential trail represented in Figure 4. This
distinguisher is positioned between Y4 and X19 and a total of 23 rounds is attacked by
adding 3 rounds at the top and 5 rounds at the bottom for the key-recovery phase, as
detailed in Figure 5. The first round tweakey addition is moved to the end of the round (just
before X2) by defining an equivalent tweakey for the first round as ETK = MC(SR(TK1)).
Since all the operations made before do not rely on secret values, the attacker considers
an equivalent plaintext at position Y1 (see Figure 5) that corresponds to the state before
the equivalent tweakey addition.

As can be seen in Figure 4, the distinguisher starts after the SubCells operation and
relies on a difference cancellation between the difference of the internal state and the one
in the round tweakey. The difference in the master tweakey is set so that the 3 next rounds
are blank rounds, and the last round of the distinguisher also relies on a cancellation
between the internal state difference and the round tweakey difference.

The idea of the authors of [SMB18] is to use the set of all the possible distinguishers
of this shape instead of only one. The 3 blank rounds require an inactive round tweakey
in the round 3 of Figure 4, that translates into the relation ∆TK1[1] ⊕ LFSR2(TK2[1]) =
0xn ⊕LFSR2(p) = 0. There is a total of 2s − 1 pairs of such (non-zero) working tweakey
differences, that uniquely determine the master tweakey differences together with the
internal state input and output differences of the distinguisher.

The authors of [SMB18] define the "Tweakey Differentials Table" (TDT) (reproduced
in Figure 3 for the case s = 4) to store the 2s − 1 sets of valid round tweakey differences in
rounds 2, 4, 18, 20 and 22. They use 2s − 1 lists (Li) to store the data corresponding to
each distinguisher.

Figure 3: Screenshot of the TDT from [SMB16].

4 A Note on Related-Tweakey Impossible Differential Attacks

We transcribe below the beginning of the key recovery procedure proposed in [SMB18]
and provide our comments in Section 3.

The attacker queries 2x structures of 2|∆in| = 24s messages Y1 taking all the possible
values in cells 5, 7, 8 and 15 and being fixed in the other positions. A total of 2x+8s pairs of
messages (P, P̄) and their associated (C, C̄) are built from these 2x+4s+1 initial messages
(D = 2x+|∆in|+1). As |∆out| = n, these pairs are not further filtered on their ciphertext
differences and can all be used to discard wrong key guesses.

Once these pairs have been generated, the attacker guesses the value of ETK[7] to
compute the difference in the cell Y2[7] of each pair of plaintexts. By looking for the index
i such that ∆Y2[7] = TDT [1][i] in the TDT, the attacker deduces in which list Li to store
the pair. This identifies which of the 2s − 1 impossible trails is considered for this key
guess.

The TDT is also used in round 4, where the attacker needs to check if the correct
difference happens at the start of the distinguisher. Namely, it corresponds to checking
that ∆Y4[1] = TDT [2][i] (and if not, to discard the pair) as this is the required condition
to have a cancellation.

We do not transcribe here the remainder of the key recovery as it is standard and not
relevant to our discussion.

The claimed complexities of the 23-round attacks are of D = 262.47 chosen plaintexts
for SKINNY-64-128, and D = 2124.41 for SKINNY-128-256. The time complexities
(expressed in number of encryptions) are respectively of T = 2124.21 and T = 2243.61.

3 Analysis of the Key-Recovery in [SMB18]
There are a few interlinked issues in the previous process.

Data generation. First, the authors mention a total of 2x+|∆in|+1 encryption queries
corresponding to 2x structures of 2|∆in| messages that can form a total of 2x+2|∆in| pairs.
This presuppose that each plaintext is encrypted twice, under two different tweaks.

TDT. The TDT misses that the set of relevant tweak differences is actually a vector
space (if we add the 0 difference) and not an arbitrary set of values. Such vector space
stems from the linearity of the tweakey schedule and of the condition it needs to fulfill. It
implies that the queries of the plaintexts under several tweaks can be done efficiently, as
will be detailed next section.

On the "choice" of i. Following the first key guess (of ETK[7]), the attacker computes
∆Y2[7] for each pair of plaintexts (P, P̄) and deduces from it the impossible differential
trail that is used for this pair by selecting i and putting the pair in the corresponding list
Li, where i is such that ∆Y2[7] = TDT [1][i]. This means the tweak difference depends
on the value of ETK[7]. Thus, the approach breaks if (P, P̄) are each encrypted using a
unique tweak.

Filtering factor at round 2. In the initial attack, the first cancellation between ∆Y2[7]
and ∆TK2[7] happens with probability 1 as ∆TK2[7] is chosen with i. We showed in
the previous point that i cannot be chosen and that ∆TK2[7] is fixed with the pair, so
actually checking this cancellation creates a filter of 2−s of the pairs.

Following these observations we propose a new algorithm in the next section and
reassess the attacks of [SMB18] together with the attacks proposed in 4 papers that are
based on it ([HSE23, HGSE23, BDL20, DNPS23]).

Xavier Bonnetain and Virginie Lallemand 5

Figure 4: Screenshot of the 15-round related-tweakey impossible distinguisher for SKINNY-
n-2n from [SMB18].

6 A Note on Related-Tweakey Impossible Differential Attacks

Figure 5: Screenshot of the 23-round related-tweakey impossible attack for SKINNY-n-2n
from [SMB18].

Xavier Bonnetain and Virginie Lallemand 7

4 Our Corrected Key-Recovery
In this section we describe a technique to organize an attack taking advantage of a valid set
of impossible differential trails based on several tweakey differences. We start by discussing
how to modify the 23-round attack of [SMB18] and next provide generic complexity
formulas.

4.1 Principle
The encryption queries must allow to take advantage of the set of 2s − 1 impossible
differential distinguishers. As a reminder, the queries the attacker makes are for ciphertexts
corresponding to a given plaintext value P , under the secret master key K and the (master)
tweak value T . For the previous attack on SKINNY-n-2n the queries have the form
(P, ∆TK1, ∆TK2) (where actually the tweakeys are made of key material only).

As both the tweakey schedule and the condition to obtain the 3 blank rounds are
linear, the set of relevant tweak differences is actually a vector space. The attacker can
thus exploit this mathematical pattern by querying structures of plaintexts under a set
of tweakey values that take all possible values on the affine coset of the space of tweak
differences. Similar to the original attack presented in [SMB18], the considered plaintext
values are organized in one structure where all the possible values for the 4 active cells of
Y1 are spanned while the other cells are fixed to a given value. What is different is that
these 24s messages are each encrypted under a set of 2s tweakeys.

By pairing any two different messages encrypted under any two different master
tweakeys, an attacker obtains a valid message difference and a valid tweakey difference. A
total of approximately 24s+s × 24s+s × 2−1 ≈ 210s−1 such (unordered) pairs are obtained
from 24s+s initial encryption queries. This is thus repeated 2x times to get enough pairs
for the attack.

Note that this change can be seen as increasing the size of the structure by using the
additional degree of freedom on the tweakey.

In summary, the first point of Section 3 is fixed with this new data generation, the
second point (TDT use) is replaced by the subspace of tweakeys, which also fixes the value
of the previous "i" of point 3. The filtering factor (point 4) needs to be paid.

4.2 Generic Formulas
We consider the same notation as previously and in particular denote by |∆in| the number
of active bits at the plaintext side, by |∆out| the number of active bits at the ciphertext
side and by n the block size. We introduce |∆t| to denote the number of active tweakey
bits. We assume here for simplicity that all the 2|∆t| tweak differences correspond to a
valid impossible differential trail, but the formulas can easily be adapted to cover more
complex cases.

The probability to keep a key is, as in Section 1,

(1 − 2−cin−cout)N ≃ exp
(
−N × 2−cin−cout

)
,

where N is the number of pairs with an input difference in ∆in, an output difference in
∆out and a tweakey difference in ∆t. Again we can choose the number of pairs Ng

min such
that Ng

min > g × ln(2) × 2cin+cout to get (1 − 2−cin−cout)Ng
min < 1

2g .
To build these pairs, the attacker organizes the (plaintext or ciphertext) queries in 2x

structures of 2|∆in|+|∆t| (resp. 2|∆out|+|∆t|) encryption queries each, corresponding to the
encryption of all the possible plaintexts (resp. ciphertexts) with varying values on the
active positions (and a fixed value on the other cells) under all the 2|∆t| master tweakey
differences of the linear subspace.

8 A Note on Related-Tweakey Impossible Differential Attacks

If more than one full structure is necessary (2x ≥ 1), with 2x+|∆in|+|∆t| encryptions,
the attacker can approximately build 2x ×

(2|∆in|+|∆t|

2
)

≈ 2x+2|∆in|+2|∆t|−1 pairs with the
correct ∆in and ∆t. Otherwise, if only a portion of 2x < 1 of a structure is required, with
2x+|∆in|+|∆t| encryptions the attacker can build around

(2x+|∆in|+|∆t|

2
)

≈ 22(x+|∆in|+|∆t|)−1

pairs with the correct1 ∆in and ∆t.
Only the pairs with a ciphertext difference lying in ∆out are of interest, so we have:

N =
{

2x+2|∆in|+2|∆t|−1−(n−|∆out|) if 2x ≥ 1
22x+2|∆in|+2|∆t|−1−(n−|∆out|) if 2x ≤ 1.

Consequently, 2x and thus the data complexity D should be chosen so that:

D =
{

2x+|∆in|+|∆t| ≈ g ln(2)2cin+cout−|∆in|−|∆t|+1+n−|∆out| if 2x ≥ 1
2x+|∆in|+|∆t| ≈ min∆∈{∆in,∆out}{

√
g ln(2)2cin+cout+1+n−|∆|} if 2x ≤ 1.

There is finally the cost of guessing and filtering the pairs. This approach is identical to
the single-tweak case. Using early-abort and the heuristic from [BNS14], we can estimate
it to cost

N2|kin∪kout|−cin−cout .

The exhaustive search of the remaining key bits costs 2k−g.

4.3 Differences with [SMB18]
If there are 2|∆t| possible tweak differences, assuming the initial attack uses at least 2|∆t|

structures, the correction is:

• Instead of encrypting each plaintext under two different tweaks, it is encrypted under
2|∆t| tweaks.

• The tweak constraint is no longer free in our model, and divides the number of pairs
by 2|∆t| (that is, in general formulas, we need to add |∆t| to cin or cout).

Overall, the main change is the number of pairs, which is significantly increased. Every
other parameters, including the data complexity, can be reused as-is. Interestingly, the
part of the key recovery after checking the tweak constraints are identical. Thus, in some
regimes, the estimated time cost is not changed, and the only difference is the larger
memory footprint, as pairs need to be stored in memory for filtering.

5 Impact on Concrete Key-Recoveries
Including the original [SMB18], we identified 5 articles [SMB18, BDL20, DNPS23, HSE23,
HGSE23] that build upon this technique. Among them, 3 explicitly reuse the key-recovery
technique, while 2 apply the original SKINNY related-tweakey distinguisher in different
contexts. All theses attacks are against variants of SKINNY. For clarity, we express the
attack parameters in function of s.

1Note that a refinement of these approximations can be obtained to take into account the fact that the
tweak must be active, by multiplying the previous formula by 2|∆t|−1

2|∆t| . In particular we will use this in
the case |∆t| = 1, as it corresponds to a factor 1

2 .

Xavier Bonnetain and Virginie Lallemand 9

5.1 Revisiting the Original Article [SMB18]
In addition to the 23-round attack that we detailed in Section 2, Sadeghi et al. proposed
a 19-round related tweakey impossible differential attack on SKINNY-n-n (see [SMB18,
Appendix A]) that uses the same technique. By applying the formulas from Section 4.2 to
both these attacks (aiming for the same success probability as in [SMB18]), we obtain the
patched parameters and complexities as presented in Table 1.

Table 1: Claimed and patched parameters and costs for the attacks of [SMB18].

Attack Version |∆in| cin |∆out| cout |∆t| x D N T

[SMB18]

64-64 4s 4s 9s 8s 1 44.3 261.3 248.3 262.83

128-128 89.47 2122.47 297.47 2124.43

64-128 4s 3s 16s 16s 1 45.47 262.47 277.47 2124.21

128-256 91.40 2124.41 2155.41 2243.61

patch

64-64 4s 4s 9s 9s s 41.3 261.3 252.3 262.83

128-128 82.47 2122.47 2105.47 2124.43

64-128 4s 4s 16s 16s s 42.47 262.47 281.47 2124.21

128-256 84.40 2124.40 2163.40 2243.61

Note that it’s the error in the cin/cout value that creates the error in N .

5.2 Attack Presented at Eurocrypt 2023 [HSE23]
The article [HSE23] presents a new CP-based method to search for impossible-differential,
integral and zero-correlation attacks. Among the impossible differential attacks that
are presented, only two attacks are related-tweakey attacks that use the framework
from [SMB18]. The two are almost-identical, with distinct targets: SKINNY-64-192
and SKINNY-128-384. They are both detailed in the full version of the article [HSE22,
Appendix F.4].

As with the previous application, we need to consider |∆t| = s and an increased cin.
The changes in the attack parameters are detailed in Table 2. While the increase of cin

and thus of N impacts the key-recovery detailed in [HSE23], its first step is to tackle the
tweak difference. This first filtering step has a negligible cost compared with later steps
and hence, the overall cost of the pair filtering is the same. In the end, the time and data
complexities of our patched version matches the ones obtained with the flawed technique.

Table 2: Claimed and patched parameters and costs for the attacks from [HSE23, Table
1]. † The caption of [HSE22, Fig. 10] claims cin = 4s. This is however inconsistent with
the computations the page before and likely a typo.

Attack Version |∆in| cin |∆out| cout |∆t| x D N T

[HSE23] 64-192 4s 3s† 16s 16s 1 46.64 263.64 278.64 2183.26

128-384 91.99 2124.99 2155.99 2362.61

patch 64-192 4s 4s 16s 16s s 43.64 263.64 282.64 2183.26

128-384 84.99 2124.99 2163.99 2362.61

10 A Note on Related-Tweakey Impossible Differential Attacks

5.3 Follow-up of the Eurocrypt Article [HGSE23]

A follow-up of the previous article was posted on ePrint [HGSE23] in November 2023.
Among other things, it proposes an extension of the previous CP model that covers
bit-oriented ciphers and that does not require the attacker to set the contradiction point
of the impossible differential distinguisher.

The authors applied this improved model to various variants of SKINNY (SKINNY,
ForkSKINNY and SKINNYe-v2) and proposed 15 impossible differential attacks. As
with the previous article, the key-recovery technique of [SMB18] is explicitly used. For
most of the attacks the time cost is unaffected. Still, for 2 of them the updated costs are
slightly above what was initially claimed. Our results are summarized in Table 3.

We communicated our observations to the authors of the preprint who confirmed our
findings and added a discussion in the published version of their article (see Appendix A
of [HGSE24]).

5.4 Cryptanalysis of ForkSKINNY [BDL20]

In [BDL20], Bariant et al. proposed two attacks on ForkSKINNY-128-256. The first
one, which attacks the 128-bit key version, reuses as-is the attack against 19-rounds
SKINNY-128-128 from [SMB18] to attack 24-round ForkSKINNY. Thus, the issues of
the previous section also convey to this attack, and the correction is exactly the same.

The second attack, which targets the 256-bit key version, relies on an extension of
the distinguisher described in [SMB18] on SKINNY-128-256. By taking advantage of
ForkSKINNY’s structure, the authors add 3 blank rounds to the distinguisher and are
able to attack 26 rounds of ForkSKINNY with ri = 7, r0 = 27 and r1 = 19 rounds.

Given that their distinguisher has a distinct input difference, the authors made their
own key recovery. The proposed data generation step begins with the encryption of each
structure under several keys, as in the correction we propose.

Their distinguisher requires an initial tweakey difference that makes the round tweakeys
TK6 anf TK9 inactive which corresponds to selecting δ ∈ Fs

2 so that δ ⊕ LFSR15(δ) = 0.
For both s = 4 and s = 8 there are 15 such solutions δ (and hence there are 15 related-key
impossible differential trails for 18 rounds), and as the condition is linear the solutions
form a linear subspace.

We agree with the parameters and with the complexity analysis made by the authors.

5.5 Quantum Impossible Differential Attacks [DNPS23]

The article [DNPS23] proposes a framework for quantum impossible attacks, and gives as
an application a quantum attack heavily inspired by [SMB18], but with 2 less rounds in the
output. Unfortunately, they reuse as-is the parameters for the input, that is, there is no
tweak variation and a cancellation is free. While the authors use these flawed parameters
to estimate the number of pairs, they also describe a detailed key-recovery, which is correct
(and in particular is inconsistent with the claimed value for cin). The authors also seek
enough filtering to directly obtain the correct kin ∪ kout subkey.

As quantum computing is not the focus of this paper, we refer to [DNPS23] for details
and formulas. In particular, the quantum framework can be used with our key recovery, it
only amounts in changing some parameters in their formulas.

We can patch the attack by adding |∆t| = s to the initial |∆in| (each plaintext is
encrypted with all tweaks) and cin. We can then reuse their formulas to obtain an updated
quantum cost. This cost corresponds to what the authors would have obtained had they
used correct parameters.

Xavier Bonnetain and Virginie Lallemand 11

Table 3: Claimed and updated parameters and costs for the attacks from [HGSE23].
Patched variants keep the same data complexity, reoptimized variants change it to minimize
the time.

Cipher rounds Version |∆in| cin |∆out| cout |∆t| x D N T

ForkSKINNY
64-192

28

[HGSE23, G.1] 13s 11s 14s 14s 1 8 260 2104 2169.6

patch 13s 13s 14s 14s 2s 1.2 261.2 2112 2169.6

[HGSE23, G.2] 6s 5s 16s 16s 1 38 262 286 2123.73

patch 6s 6s 16s 16s s 35 263 290 2123.73

30
[HGSE23, G.4] 6s 5s 16s 16s 1 38 262 286 2123.73

patch 6s 6s 16s 16s s 35 263 290 2123.73

32
[HGSE23, G.3] 13s 12s 16s 16s 1 10 262 2114 2186.27

patch 13s 13s 16s 16s s 7 263 2118 2186.27

ForkSKINNY
128-256

20

[HGSE23, G.8] 5s 4s 10s 7s 1 61 2101 293 2102.2

patch 5s 5s 10s 7s s 54 2102 2101 2107.26

reoptimized 5s 5s 10s 7s s 53.2 2101.2 2100.2 2106.5

24

[HGSE23, G.6] 8s 6s 8s 8s 1 54.4 2118.4 2118.4 2123.17

patch 8s 7s 8s 8s s/2 51.4 2119.4 2122.4 2126.83

reoptimized 8s 7s 8s 8s s/2 50 2118 2121 2126.27

[HGSE23, G.7] 8s 7s 12s 12s 1 62.7 2126.7 2158.7 2246.62

patch 8s 8s 12s 12s s/2 59.7 2127.7 2162.7 2246.62

26
[HGSE23, G.5] 13s 12s 9s 9s 1 23.6 2127.6 2175.6 2238.5

patch 13s 13s 9s 9s s/2 20.6 2128.6 2179.6 2238.5

ForkSKINNY
128-288

26
[HGSE23, G.12] s 0 8s 8s 1 116.6 2124.5 268.6 2126.74

patch s s 8s 8s s/2 113.6 2125.6 272.6 2126.74

28

[HGSE23, G.10] 8s 7s 5s 5s 1 60.8 2124.8 2100.8 2126.68

patch 8s 8s 5s 5s s/2 57.8 2125.8 2104.8 2126.67

[HGSE23, G.11] 7s 6s 13s 13s 1 70.9 2126.9 2158.9 2277.23

patch 7s 7s 13s 13s s/2 67.9 2127.9 2162.9 2277.23

31
[HGSE23, G.9] 8s 7s 16s 16s 1 62.5 2126.5 2190.5 2280.5

patch 8s 8s 16s 16s s/2 59.5 2127.5 2194.5 2280.5

SKINNY
128-288

23
[HGSE23, H.2] 7s 6s 5s 5s 1 64.8 2120.8 288.8 2126.73

patch 7s 7s 5s 5s s 57.8 2121.8 296.8 2126.73

26
[HGSE23, H.1] 9s 8s 16s 16s 1 50 2122 2194 2286.38

patch 9s 9s 16s 16s s 43 2123 2202 2286.38

SKINNYe-v2 31
[HGSE23, H.3] 12s 11s 16s 16s 1 14 262 2110 2251.14

patch 12s 12s 16s 16s s 11 263 2114 2251.14

12 A Note on Related-Tweakey Impossible Differential Attacks

Optimization. We also propose an improved variant, that contains the following changes:

• The rejection probability of a key is estimated more precisely, using the natural
logarithm,

• As the first filtering step in their key recovery does not depend on any key guess, it
is moved to the pair generation part.

Our results are summarized in Table 4.

Table 4: Parameters and costs for the attacks. s = 8 bits. Note that the "no QRAM"
attack requires classical pair generation in 2128 classical time and queries. † Using the
formulas from [DNPS23] we obtain 2114.46. We believe this was a typo.

Attack |∆in| + |∆t| cin
|∆out| N

Pair generation cost Pair filtering cost
and cout (with QRAM) With QRAM no QRAM

Original 4s 3s 9s 2103.17 2119.17 2104.32 2117.46†
Direct patch 5s 4s 9s 2111.17 2121.84 2112.32 2122.70

Optimized 5s 4s 8s 2102.64 2118.64 2103.79 2114.15

6 Conclusion
This short note discusses a problem in the key recovery procedure that has been proposed
in [SMB18] and that was later reused in [HSE23, HGSE23, BDL20] and [DNPS23]. It also
suggests a technique to fix this procedure, that we applied on all the identified attacks.

Shortly after noticing the problem, we shared an early version of this note with the
authors of the 5 papers. Notably, the authors of [HGSE23] confirmed our results and
provided a short discussion of the impact of our fix on their automated tool in the final
version of their article, published at ToSC 2024 issue 1 (see [HGSE24, Appendix A]).

Acknowledgments
The authors would like to thank the authors of [SMB18, HSE23, HGSE23, BDL20] and
[DNPS23] for their valuable feedback.

This work has been partially supported by the French Agence Nationale de la Recherche
through the OREO project under Contract ANR-22-CE39-0015, and through the France
2030 program under grant agreement No. ANR-22-PECY-0010 CRYPTANALYSE.

References
[BDL20] Augustin Bariant, Nicolas David, and Gaëtan Leurent. Cryptanalysis of forkci-

phers. IACR Trans. Symm. Cryptol., 2020(1):233–265, 2020.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of
LNCS, pages 123–153. Springer, Heidelberg, August 2016.

Xavier Bonnetain and Virginie Lallemand 13

[BNS14] Christina Boura, María Naya-Plasencia, and Valentin Suder. Scrutiniz-
ing and improving impossible differential attacks: Applications to CLEFIA,
Camellia, LBlock and Simon. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 179–199. Springer,
Heidelberg, December 2014.

[DNPS23] Nicolas David, María Naya-Plasencia, and André Schrottenloher. Quantum
impossible differential attacks: Applications to aes and skinny. Designs, Codes
and Cryptography, pages 1–29, 2023.

[HGSE23] Hosein Hadipour, Simon Gerhalter, Sadegh Sadeghi, and Maria Eichlseder.
Improved search for integral, impossible-differential and zero-correlation attacks:
Application to ascon, forkskinny, skinny, mantis, PRESENT and qarmav2.
Cryptology ePrint Archive, Report 2023/1701, version 20231123:125414, 2023.
https://eprint.iacr.org/archive/2023/1701/20231123:125414.

[HGSE24] Hosein Hadipour, Simon Gerhalter, Sadegh Sadeghi, and Maria Eichlseder.
Improved search for integral, impossible differential and zero-correlation attacks:
Application to ascon, forkskinny, skinny, mantis, present and qarmav2. IACR
Transactions on Symmetric Cryptology, 2024(1):234–325, Mar. 2024.

[HSE22] Hosein Hadipour, Sadegh Sadeghi, and Maria Eichlseder. Finding the impossible:
Automated search for full impossible differential, zero-correlation, and integral
attacks. Cryptology ePrint Archive, Report 2022/1147, 2022. https://eprint.
iacr.org/2022/1147.

[HSE23] Hosein Hadipour, Sadegh Sadeghi, and Maria Eichlseder. Finding the impossible:
Automated search for full impossible-differential, zero-correlation, and integral
attacks. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part IV, volume 14007 of LNCS, pages 128–157. Springer, Heidelberg, April
2023.

[Jea16] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/
tikz/, 2016.

[SMB16] Sadegh Sadeghi, Tahere Mohammadi, and Nasour Bagheri. Cryptanalysis
of reduced round SKINNY block cipher. Cryptology ePrint Archive, Report
2016/1120, 2016. https://eprint.iacr.org/2016/1120.

[SMB18] Sadegh Sadeghi, Tahereh Mohammadi, and Nasour Bagheri. Cryptanaly-
sis of reduced round SKINNY block cipher. IACR Trans. Symm. Cryptol.,
2018(3):124–162, 2018.

https://eprint.iacr.org/archive/2023/1701/20231123:125414
https://eprint.iacr.org/2022/1147
https://eprint.iacr.org/2022/1147
https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/
https://eprint.iacr.org/2016/1120

	Impossible Differential Attacks and their Complexity Analysis
	Multiple-Tweakey Attack from ToSC 2018
	Analysis of the Key-Recovery in ToSC:SadMohBag18
	Our Corrected Key-Recovery
	Principle
	Generic Formulas
	Differences with ToSC:SadMohBag18

	Impact on Concrete Key-Recoveries
	Revisiting the Original Article ToSC:SadMohBag18
	Attack Presented at Eurocrypt 2023 EC:HadSadEic23
	Follow-up of the Eurocrypt Article ePrintHadipourGSE23
	Cryptanalysis of ForkSKINNY ToSC:BarDavLeu20
	Quantum Impossible Differential Attacks david2023quantum

	Conclusion

