
Practical Proofs of Parsing for Context-free Grammars
Harjasleen Malvai

UIUC/IC3
Gregory Neven
Chainlink Labs

Andrew Miller
UIUC/IC3

Siam Hussain
Chainlink Labs

ABSTRACT
In this work-in-progress, we present a series of protocols to effi-
ciently prove statements about strings in context-free grammars
(CFGs). Our main protocol for proving proofs of correct parsing for
strings in a CFG flexibly accommodates different instantiations of
zero-knowledge proof systems as well as accumulation schemes.
While improvements in the modular cryptographic primitives can
be carried over for improvements in our protocols, even simpler
proof systems, which do not support state-of-the-art techniques
such as permutation checks [4, 18] can generate proofs of correct
parsing of a string of size 𝑛 by proving the correctness of a circuit
of size O(𝑐𝑛), where 𝑐 is the cost of verifying a set membership
proof in the chosen accumulation scheme.

1 INTRODUCTION
In many cryptographic applications, a party may have access to
a committed string which is generated according to some struc-
ture. The data sent in response to specific API calls is often used in
such applications. For instance, Grubbs et al.[19] showed, that the
messages sent during a TLS session commit to the data encrypted
within that session. DECO [32] took inspiration from this prop-
erty, to build solutions that use two-party computation and zero-
knowledge proofs to construct a way to create privacy-preserving,
but authenticated statements about web-sessions, and especially
about API responses. These API responses are structured according
to some grammar, most commonly, JSON and XML [15].

Privacy-preserving proofs about structured data motivated, for
instance, Luo, et al. [22] and Angel, et al. [4], to create schemes for
privacy-preserving parsing of regular expressions.

JSON and XML, however, cannot be parsed as regular expres-
sions and are, in fact, context-free grammars (CFGs). So far, work on
proving privacy-preserving statements about strings in CFGs has
relied either on (1) assumptions[26, 32] about what is known about
the string ahead-of-time, or (2) on naively implementing parsing
algorithms in a ZKP system. In the former category, consider for
example the partial redaction or revelation schemes of [26, 32]. For
instance, these schemes might assume that a JSON API response
only contains certain fields, resulting in a grammar that is not really
a CFG due to such domain-specific assumptions. Various implemen-
tation efforts [2, 3] fall in the latter category of naively implement-
ing ZKP for parsing a context-free grammar. The problem with the
naive implementation of such parsing algorithms is that all known
algorithms for parsing context-free grammars non-deterministically
access elements of the grammar representation and perform other
non-deterministic operations such as backtracking over parts of the
string being parsed to ensure application of the correct rules. One
way that a privacy-preserving implementation of such algorithms
could work is by implementing a program which is input-oblivious,

i.e., executes all possible branches on a particular input. Stated
another way, the most naive implementations rely on exploring
all possible paths in the non-determinstic execution of a parsing
algorithm – which makes them extremely slow. A few alternatives
in the RAM model exist, which haven’t yet been implemented and
tend to be asymptotically efficient but incur concrete overheads.

On the other hand, parse trees for context-free grammars can be
generated very quickly in a regular processor today, which leads
to the crux of our solution.
Key insight. Observe that the applications that we are concerned
with only require that a correct parse tree for a a string in a CFG
be generated and paths in this tree be used. Meaning, we only need
to verify the correctness of a generated parse tree for a commit-
ted string 𝑠 , not actually emulate generating this tree in a zero-
knowledge proof system! It is well-known that the size of the parse
tree for a string of length 𝑛 in a context free grammar has 𝑂 (𝑛)
nodes and edges, with only a small constant overhead [30]. This
means that if we generate a parse tree for a string 𝑠 of length 𝑛, and
use that as a witness to an algorithm that checks this parse tree, the
number of statements to be proven in ZKP becomes significantly
smaller than any solutions for context-free grammar parsing in
ZKP, proposed before.
Summary of our main construction. Our main construction is
a protocol for a prover to prove to a verifier, that it generated a
valid parse tree, for a string 𝑠 , committed in a commitment com,
based on a publicly known CFG G. The main idea of this construc-
tion exploits the fact that by definition, (1) a parse tree’s leaves,
concatenated from left to right must equal the original string, (2)
every node in the tree must be a symbol in the grammar, and, (3)
every non-leaf node branches out according to the rules of the
grammar, thus reducing a parsing proof problem to a sequence of
set-membership proof problems.
Our contribution. The most efficient algorithms for proving the
correct parsing of context-free grammars (CFGs) involve looking
up elements in pre-processed tables for the grammar of size linear
in the grammar. Algorithms for more complex CFG parsing also
involve backtracking. When compiling these algorithms to generic
zero-knowledge proof systems (e.g. circuits [31], arithmetic inter-
mediate representations [6]), all branches of the parser must be exe-
cuted in the compiled program, leading to a multiplicative overhead
that is linear in themaximum backtracking factor. Thus, if the parser
executes a loop where each iteration may require one of 𝑘 , switch
cases, the ultimate number of constraints to represent this program
is at least O(𝑘𝑛), where𝑛 is the size of the input string. Through our
observation that computing the parse tree of an entry has higher
complexity than simply checking the correctness of a parse tree, we
build up to a final algorithm which can be implemented in O(𝑛+𝑐),
where 𝑐 is the cost of verifying a batch of set membership proofs

1

Harjasleen Malvai, Gregory Neven, Andrew Miller, and Siam Hussain

for elements in the grammar or O(𝑐𝑛) if the scheme only supports
one membership proof at a time with the cost of verifying O(𝑐).
Comparingwith Reef [4].Angel, et al. [4] do propose an efficient
ZKP-system based proof of regular expression parsing, however, (1)
parsing of regular expressions is significantly more straightforward
than parsing context-free grammars, since they can be parsed by
finite automatons, which require no backtracking, and (2) given
that they work with finite automatons, their focus is on integrating
finite automatons with a recursive proof system for practical gains.
Since they so closely integrate with a particular ZKP system and
program representation, we also argue that our insight is more
extensible and, can be used with any black-box proof system and
commitment scheme. Besides, significant parts of the process we
implement for verifying the validity of a parse tree for a given string
can be sliced up into chunks to make them amenable to recursive
proof techniques and parallelization, and hence be combined with
the techniques of Reef for further practical improvement.

1.1 Applications
In this section, we provide a brief survey of applications that have
motivated the privacy-preserving parsing problem.
Digital identity and anonymous credentials. One place where
proofs on private, committed strings often showup is digital identity
applications. Consider for example, the active field of research that
is anonymous credentials [14, 20, 24, 27]. At a high level, an anony-
mous credential scheme enables interactions between three kinds of
parties: issuers, users and relying parties. An issuer 𝐼 attests to some
statements, stmt about a user𝑈 , binds them to the user’s public key
pk. This process enables𝑈 to later make statements to the effect of
“the issuer 𝐼 believes stmt aboutme”, based onwhich, a relying party
𝑅 is willing to provide𝑈 with some service. One example of such a
system might be digital ID cards, issued by a university (the issuer,
in this case), that allow its students (the users in this case), to swipe
the ID to get a discount at a nearby coffee shop (the relying party).

In terms of privacy properties, all anonymous credential schemes
aim for unlinkability, i.e., to separate the issuance process of a cre-
dential from the process of using the credential at a relying party.
Most works also aim for further privacy properties, in particular,
that neither the credential issuance, nor its usage should leak any-
thing about the user other than the statement stmt. As will become
clearer in the following discussion, while efficient in the abstract,
anonymous credential schemes suffer the major drawback of re-
quiring buy-in from various parties, leading to a chicken and egg
problem. Such a problem can be solved with protocols that enable
privacy-preserving parsing of broad classes of signed strings.
Anonymous credentials. Another line of work, on sanitizable
and redactable signatures (e.g. [7, 28]),extends anonymous cre-
dentials by building primitives that may support more flexible
showing of stmt in the application above. The idea is that stmt
may have some structure and actually contain multiple statements
(stmt1,...,stmt𝑛), only a subset of which may need to be shown to a
particular relying party. These primitives, while efficient, are special
purpose, require specifications which can have limited flexibility
and further, require cooperation from a network of issuers who may
not have incentive to provide data to users. This type of framing
intuits queries made to API responses, which we discuss below.

DECO: bootstrapping identity fromweb APIs. DECO, a recent
work by Zhang, et al. [32] provides a slightly different, decentralized
model, wherein, a server holds data about a user and a third-party
issuer (or set of issuers) attests to the fact that the user satisfies
some statement, per the web-server, based on its TLS certificate and
a TLS session. This model separates the issuance capability from
the party that holds the data about a user and uses zero-knowledge
proofs and commitments to achieve data privacy and integrity.

Most recently, work in this area such as [25, 27] have demon-
strated the benefits of the flexibility offered by zero-knowledge
proofs (ZKP). In fact, given that many web servers already output
structured responses can be helpful here, in extracting a flexible
set of statements from web data. Similarly to how responses to
web-APIs can be parsed and queried, perhaps we could also create
very flexible statements about users based on data coming from
web-servers, using ZKPs?
Proofs over web API responses. Even state-of-the-art proof sys-
tems have a high overhead for complex proofs. Also, while many
frameworks for programming zero-knowledge proofs have emerged,
naively encoding functions, especially non-deterministic ones, puts
a heavy burden on provers. This is especially a problem if provers
are intended to be a wide variety of internet users with potentially
constrained bandwidth and compute resources. Consider the fact
that a large proportion of web API responses are JSON and XML. For
JSON, for example, there exist query languages such as jQuery [1].
However, to extract the outputs of queries from a JSON, it must
first be parsed and then its parse tree traversed specific ways us-
ing jQuery. The existence of such query languages which require
the use of parsed CFG strings and their usefulness for generating
anonymous credentials or decentralized identity, together motivate
the need for an efficient proof of correct parsing of a CFG string.

2 BACKGROUND AND DEFINITIONS
In this section, we provide the requisite background relating to
parsing and context-free grammars, as well as the cryptographic
primitives which we will use in our constructions.

2.1 Grammars, parsing and parse tree notation
Definition 2.1. We denote a context-free grammar (CFG) as G=

(𝑉 ,Σ,𝑆,𝑃) where 𝑉 is a set of non-terminal symbols, Σ a set of
terminal symbols, 𝑃 ⊂𝑉 ×(𝑉 ∪Σ)∗ a set of productions or rules and
𝑆 ∈𝑉 the start-symbol.

The standard notation for the production rules for CFGs uses
‘-’ to denote a set minus and ‘..’ to denote a range. For a string 𝑤 ,
a parser determines if 𝑤 ∈ G by constructing a parse tree for 𝑤 .
The parse tree represents a sequence of production rules which can
then be used to extract semantics.

Given a context free grammar G, let L(G) denote the language
generated by G.

We use the notation 𝑥 ∥𝑦 to denote the concatenation of two
strings 𝑥 and 𝑦. Given a string 𝑥 , |𝑥 | denotes the bit length of 𝑥 .
Given a string 𝑠 , the notation 𝑠 [: 𝑙] denotes the bits of 𝑠 upto and
including the 𝑙th bit. 𝑠 [𝑙+1 :] denotes the bits of 𝑠 starting at the 𝑙+
1th bit. For example, for the string 𝑠 =101011, 𝑠 [: 3]=101, 𝑠 [4 :]=011.

Definition 2.2 (Chomsky Normal Form). A context-free gram-
mar G = (𝑉 , Σ, 𝑆, 𝑃) is said to be in Chomsky normal form if

2

Practical Proofs of Parsing for Context-free Grammars

𝑃 ⊂ 𝑉 × (𝑉 2 ∪ Σ), i.e. any production yields either a pair of non-
terminal symbols or a single terminal symbol.

Remark 1. Any context-free grammar G can be translated into
another grammar G′ in Chomsky normal form such that L(G) =
L(G′)[30].

Remark 2. Given a string 𝑠 of length 𝑛, if 𝑠 is in a context-free
grammar G, written in Chomsky normal form, then the parse tree of
𝑠 contains 3𝑛−1 nodes [30].

2.2 Cryptography background
Universal composability and ideal functionalities. The uni-
versal composability (UC) model, first defined by Canetti in [12]
is a strong model for proving security of cryptographic protocols.
Proving that a protocol is UC-secure with respect to some function-
ality means that it can be arbitrarily composed with other instances
of the same or other protocols without compromising security. Note
that UC security is proven with respect to a functionality. The ideal
functionality in this model is a description of the intended interface
of a protocol – an input-output API, if you will. One of the most
important results of [12] is the composition theorem. Informally,
the composition theorem states the following: Let F be an ideal
functionality and 𝜋 be a protocol that is UC secure with respect to
F . Let 𝜙 be a protocol constructed using F as a subroutine, such
that 𝜙 is UC secure with respect to another functionality G. Then,
if the protocol 𝜙 ′ is derived by rewriting 𝜙 , replacing F with 𝜋 ,
𝜙 ′ is also UC secure with respect to G. In other words, we can
build protocols modularly, similarly to writing code, only using the
APIs (i.e. ideal functionalities) for complex subroutines, without
concerning ourselves with the specifics of the API are implemented.
Zero-knowledge proofs. We will use the notation 𝑅(𝑥,𝑤) to rep-
resent a relation, i.e. 𝑅 : (𝑥,𝑤) → {0,1} and if 𝑅(𝑥,𝑤) = 1 we say
that (𝑥,𝑤) satisfies 𝑅. A zero-knowledge proof scheme is a cryp-
tographic protocol between two parties, a prover and a verifier.
The prover and verifier agree upon a relation 𝑅 and the prover
would like to show that it knows some input (𝑥,𝑤) that satisfies
𝑅, without sharing𝑤 with the verifier. In particular, if the prover
honestly generates a proof 𝜋 such that the verifier, upon running
the verification algorithm, is convinced that the prover knows an
input (𝑥,𝑤) that satisfies 𝑅 (a property called completeness). Fur-
ther, the verifier learns nothing about the witness 𝑤 , other than
what it would learn by looking at 𝑅 and 𝑥 (this is the property
of zero-knowledge). Finally, a prover who does not know a valid
input (𝑥,𝑤) cannot generate a proof that verifies according to the
verification algorithm (soundness1).

By convention, if 𝑅 is the relation whose output is being proven
using a zero-knowledge proof, then we say that 𝑥 is the public
input known to both the prover and the verifier and 𝑤 is the se-
cret input known only to the prover. We abstract out the use of a
concrete zero-knowledge proof scheme and instead, define an ideal
functionality FZK in fig. 6.
Vector commitments. A vector commitment scheme, first intro-
duced in [13], is a cryptographic primitive that allows a party to
commit to a vector (𝑣1,...,𝑣𝑞), and later prove that a particular value

1Note that the property formulated here is actually called knowledge soundness and
is a technical requirement for UC proof formalization. For more details, see, e.g. [16].

𝑣𝑖 is committed at a particular position 𝑖 . We formally define the
primitive in Def. 2.3. Note that most works focusing on vector com-
mitments (e.g. [29]) define vector commitments which can admit
updates, of the form: replace element 𝑣𝑖 at position 𝑖 with a new value
𝑣 ′
𝑖
. In our case, since we do not need this capability, we define a

simpler kind of vector commitment scheme, which we formally call
a static vector commitment.

Definition 2.3 (Static Vector Commitment Scheme). We define a
static vector commitment scheme, denoted VC as a tuple of the
following algorithms:
• pp←VC.KeyGen(1𝑘 ,𝑞): Given the security parameter 𝑘 and
the size 𝑞 of the maximum length vector to be committed
and outputs public parameters pp for it.
• (com, aux) ← VC.Commitpp ((𝑣1, ..., 𝑣𝑚)): This algorithm
takes as input a vector (𝑣1,...,𝑣𝑚) of𝑚≤𝑞 elements, returns
a commitment com and auxiliary data aux.
• 𝜋←VC.ProveCompp (𝑖,𝑣𝑖 ,aux,com): This algorithm takes at
input a position 𝑖 and corresponding value 𝑣𝑖 , as well as aux
information and outputs a proof 𝜋 .
• 0/1← VC.VerCompp (𝑖,𝑣𝑖 ,com,𝜋): Given a value 𝑣𝑖 , corre-
sponding location 𝑖 and a commitment com, this algorithm
verifies the proof 𝜋 and outputs 0 or 1.

An aggregatable static vector commitment has the following addi-
tional algorithms.
• 𝜋← VC.ProveAggpp (𝐼 , (𝜋𝑖 ,𝑣𝑖)𝑖∈𝐼 ,aux,com): This algorithm
takes at input a set of positions 𝐼 and corresponding values
𝑣𝑖 with their respective proofs 𝜋𝑖 , as well as aux information
and outputs a proof 𝜋 .
• 0/1← VC.VerAggpp (𝐼 , (𝑣𝑖)𝑖∈𝐼 ,com,𝜋): Given a set of loca-
tions 𝐼 and corresponding values 𝑣𝑖 , a commitment com, this
algorithm verifies the proof 𝜋 and outputs 0 or 1.

Note that any static vector commitment can be transformed into
an aggregatable static vector commitment naively by instantiating
the algorithm VC.ProveAgg by calling VC.ProveCom on each de-
sired entry (𝑖,𝑣𝑖) and returning the vector of proofs 𝜋𝑖 output by
these invocations of VC.ProveCom. Correspondingly, VC.VerAgg
would call VC.VerCom on each (𝑖,𝑣𝑖 ,𝜋𝑖). In the rest of this work,
when we refer to vector commitments, we will mean aggregatable
static vector commitments, unless stated otherwise.
Accumulators.We define a slightly different primitive than a vec-
tor commitment scheme, called an accumulator. Note that the ac-
cumulators required in this work do not need to support dynamic
operations, such as insertions or deletions (e.g. those defined by Ca-
menisch and Lysyanskaya [10]). We simply want a tool to commit
to unordered sets, so we provide definition and security properties
more akin to the definitions in the work of Baric and Pfitzmann [5].

Definition 2.4. A static accumulator or static accumulation scheme,
denoted Acc, as a tuple of the following algorithms
• pp← Acc.KeyGen(1𝑘 ,𝑞): Given the security parameter 𝑘
and the size 𝑞 of the maximum length set to be committed,
this algorithm outputs public parameters pp for it.
• (com, aux) ← Acc.Commitpp ({𝑒1, ..., 𝑒𝑚}): This algorithm
takes as input a set of (unique) elements (𝑒1,...,𝑒𝑚) of𝑚≤𝑞
elements, returns a commitment com and auxiliary data aux.

3

Harjasleen Malvai, Gregory Neven, Andrew Miller, and Siam Hussain

• 𝜋←Acc.ProveMempp (𝑒,aux,com): This algorithm takes at
input a value 𝑒 , as well as aux information and outputs a
proof 𝜋 .
• 0/1←Acc.VerMempp (𝑒,com,𝜋): Given a value 𝑒 and a com-
mitment com, this algorithm verifies the proof 𝜋 and outputs
0 or 1.

Definition 2.5. We say an accumulator scheme is sound if, the
following probability is negligible in the security parameter, for
any PPT adversary, A:

Pr[pp←Acc.KeyGen(1𝑘 ,𝑞),(com,aux)←Acc.Commitpp (𝐸),

(𝑒,𝜋)←A(pp,1𝑘) :Acc.VerMempp (𝑒,com,𝜋)∧𝑒 ∉𝐸] .

We only require sound accumulation schemes for our construc-
tion. Note that some accumulation schemes also support non-membership
proofs, but we omit that functionality for simplicity since it is not
required for our applications. For more details on accumulators,
see, for example [11, 17].

3 PROTOCOL
FOR PROVING CORRECT PARSING

In this section, we build up to a protocol for proving correct parsing
of a committed string. To make our construction easier to under-
stand, we define a toy context-free grammar in Chomsky normal
form and provide a sample parse-tree.

3.1 A toy grammar
In this section we introduce a toy grammar to use as a running ex-
ample. We define Gtoy= (𝑉toy,Σtoy,𝑆toy,𝑃toy) as follows: 𝑆toy= {𝑆},
𝑉toy= {S, A, B, C, AComma, BColon, Colon, Comma}, Σtoy=
{b, c, ’:’, ’,’} and we define 𝑃toy in fig. 1. Note that Gtoy is
in Chomsky normal form. Some examples of strings in Gtoy are:
• b: c
• bb: c, b: cc

We consider the parse tree for the string bb: c, b: cc, given
in fig. 1. Observe that the tree in fig. 1 has the following properties:
• The leaves, ordered left to right, concatenate to the string
bb: c, b: cc and are actually terminals in Gtoy.
• All non-leaf nodes are non-terminals in the grammar Gtoy.
• Consider a non-leaf node and its children, for example, the
node labelled S and its children AComma and A. When ordered
left-to-right, the children of S, are the right hand side of a
production rule, specficially: S→ AComma A. This applies to
all non-leaf nodes.

Also, since Gtoy is in Chomsky normal form, if a non-leaf node
has two children, these children must be non-terminals. Otherwise,
this non-leaf node must have exactly one child and it must be a
terminal node in the grammar.

Next, we will generalize these observations to create a protocol
for a party to prove the correctness of a parse tree for a given string
in a particular grammar.

3.2 Conditions for correctness of a parse tree
Recall that a parse tree for a grammar consists of applications of
production rules from that grammar to form a tree whose root
is the starting symbol, whose leaves are terminal symbols in the

S
AComma S
AComma A

AComma
A Comma

A
BColon C

BColon
B Colon

B
b
BB

C
c
CC

Colon
':'

Comma
','

Figure 1: Production rules for the toy grammar Gtoy.

grammar and whose non-leaf nodes are non-terminals. In our con-
struction, we assume for simplicity that the parse tree we would
like to prove the correctness of, is generated according to the gram-
mar 𝐺 = (𝑉 ,Σ,𝑆,𝑃) in Chomsky normal form, where 𝑉 is the set of
non-terminals, Σ is the set of terminals, 𝑆 is the set of start symbols
and 𝑃 is the set of production rules. While our construction can be
generalized to a context-free grammar in any form, it is simpler to
explain and implement it obliviously if we assume the grammar is
in Chomsky normal form.
Intuition for correctness conditions. In order for the parse tree
to conform to the grammar 𝐺 , the following conditions must hold:
• The root of the tree must be labelled with a valid start symbol,
i.e. an element of the set of the start symbols 𝑆 .
• Each non-leaf vertex must be labelled with an element of the set
𝑉 of non-terminal symbols.
• Each leaf vertex must be labelled with an element of the set of
terminal symbols Σ.
• The children of each non-leaf node must, together with that node,
form a valid production, i.e. be in the set 𝑃 . To be precise, if a
non-leaf node with label ℓ has children with labels ℓ1, ℓ2, then it
must hold that (ℓ,(ℓ1,ℓ2)) ∈𝑃 .
While the set of conditions stated above shows that a tree is

valid according to the grammar 𝐺 , it is not sufficient to show the
validity of the tree itself. In particular, for a graph to be a tree, we
need the following:
• The root node has no parents, i.e. in-edges.

4

Practical Proofs of Parsing for Context-free Grammars

S

AComma A

A Comma BColon C

BColon C ‘,’ B Colon C C

B Colon c b ‘:’

B B ‘:’

b b

c c

Figure 2: Parse tree for the string bb: c, b: cc in Gtoy.

root

B B

C D E F

Figure 3: An example of a tree. The vertices of this tree,
ordered breadth-first, left-first are labelled (root, B, B, C, D,
E, F).

• Every non-root node has one, and only one parent.
Finally, to show that the parse tree in question is indeed the

parse tree of a given string 𝑠 , we need to ensure that:
• The leaf nodes, ordered breadth first from left to right, must have
labels that concatenate to form the string 𝑠 .
In order to formalize these conditions, we must first formalize

the description of a tree that we will work with. To this end, we
define something we will call a labelled tree representation.
Labelled tree representation. The typical representation of a tree
consists of a tuple of vertices and edges (Verts,Edges). We will call
(Verts,Edges) the cannonical representation of a tree. The under-
lying assumption that makes this representation unambiguous is
that all vertices have distinct identifiers.

In the case of a parse tree, several vertices might have identical
labels, due to multiple occurrences of the same production rule. To
understand the ambiguity caused by the loosening of the unique
node identifier assumption, consider the tree in fig. 3. There are two
nodes with labels 𝐵. Suppose we were to simply use the labels of
nodes as their identifiers. Then, we could write an unordered set of
vertices (root, C, B, D, B, E, F) and an unordered set of edges, ((root,
B), (root, B), (B, C), (B, D), (B, E), (B, F)). In this representation, the
exact structure of the tree cannot be inferred.

We could try to remedy this with a simple ordering solution,
for example, by stating that the vertices are ordered in left-right
breadth-first order. However, we still wouldn’t be able to unam-
biguously infer which of the vertices with label B is the parent of
any of the nodes C, D, E and F. Thus, we need a way to uniquely
identify vertices, separately from their labels.

To this end, we define a modified, but compact tree representa-
tion, which we will call a labelled tree representation.

We define a labelled tree representation as a tuple (Labels,Edges),
where Labels is the ordered set of node labels, ordered as they ap-
pear in a left-right, breadth first traversal of the tree. Edges is an
ordered set with elements of the form (parent,child) ∈ [|Labels|]2,
where (𝑖, 𝑗) ∈ Edges means that there exists an edge from the
𝑖th node in the breadth-first, left-right traversal to the 𝑗th node
in that traversal. Also, note that Edges is ordered according to
the following relation: (𝑖, 𝑗) < (𝑖 ′, 𝑗 ′) if ther 𝑖 < 𝑖 ′ or, 𝑖 = 𝑖 ′ and
𝑗 < 𝑗 ′. Note that this is a full ordering on edges in any well-
formed tree, since trees contain no cycles and each vertex must
have at most one in-edge. The labelled tree representation of the
tree in fig. 3 would be as follows: Verts = (root, B, B, C, D, E, F),
Labels = ((0,1), (0,2), (1,3), (1,4), (2,5), (2,6)). This allows us to see
that there are two vertices labelled 𝐵 and there exist edges from root
to each of them. We can also infer that the left node with label B
has edges to the nodes labelled C and D, and the right node labelled
B has edges to E and F.
Correctness of a labelled parse tree Let G = (𝑉 ,Σ, 𝑆, 𝑃), be a
context-free grammar in Chomsky normal form. Given a string
𝑠 ∈ L(G), let PTree be a parse tree of 𝑠 , according to G and we
assume that PTree is in labelled tree representation as described
above. Therefore, if it is indeed a valid parse tree in labelled rep-
resentation, it must be the case that PTree := (Labels,Edges) and
firstly, satisfies the conditions for being a valid labelled tree of the
appropriate size. PTree := (Labels,Edges) being a valid tree amounts
to the following statements:

stmt 1 All edges have validly indexed elements: For all (𝑖, 𝑗) ∈
Edges, 𝑖, 𝑗 ∈ [|Labels|].

stmt 2 Every non-root node has exactly one parent: Let the set
𝐶 := {child : (·,child) ∈Edges}, then checking that every non-
root node has exactly parent is equivalent to checking that:
(1) |𝐶 | = |Edges| and, (2) 𝐶 = [|Labels|] \ {0}. Note that if
we consider Edges to be in increasing order of child values,
we can also just check that the vector of child values is the
ordered set of integers from 1 to |Labels|−1.

stmt 3 There exist no cycles in this graph i.e. it is a tree: Since
vertices are indexed in breadth-first, left-right order, we
know that for any node in our tree representation, its child
nodes must have higher indices than the node itself. This
means that for all 𝑖 ∈ [|Edges|], Edges[𝑖] .0 < Edges[𝑖] .1.
Also, by construction each vertex is uniquely indexed, this
means that checking this property alone is enough to know
that no cycles exist in this graph. Note that since the root
node is indexed 0, this check also ensures that the root node
has no parents.

Note that for now, we don’t actually require the ordering property
of Edges, it simply comes in handy in efficiently implementing the
range checks in stmt 1.

5

Harjasleen Malvai, Gregory Neven, Andrew Miller, and Siam Hussain

That said, even if PTree := (Labels,Edges) is a valid tree, in order
to be a valid parse tree for the string 𝑠 , it must satisfy the following
additional conditions relating to the grammar:

stmt 4 The root node is labelledwith a start symbol:This amounts
to checking that Labels[0] ∈𝑆 .

stmt 5 Every leaf node is labelled with a terminal: Let parents
be the set {𝑖 :∃(𝑖, 𝑗) ∈ Edges}, i.e. the set of non-leaf nodes.
Let parents𝐶 = [|Labels|] \parents, i.e. parents𝐶 is the set of
indices of nodes which have no children. We require for each
𝑖 ∈parents𝐶 , that Labels[𝑖] ∈Σ. Note that this and the follow-
ing condition together ensure that for all ℓ ∈Labels, ℓ ∈𝑉 ∪Σ.

stmt 6 All non-leaf nodes decompose to valid productions:
Let parents be the set of indices for nodes which have chil-
dren, i.e. for each 𝑖 ∈ parents, there exists (𝑖, 𝑗) ∈ Edges
for some index 𝑗 . For all 𝑖 ∈ parents, let children𝑖 := { 𝑗 :
(𝑖, 𝑗) ∈ Edges}, i.e. the set of children indices of the node
indexed 𝑖 . Recall that this parse tree is based on a grammar
𝐺 in Chomsky normal form, so the first property we must
check is that (1) for all 𝑖 ∈parents, |children𝑖 |=1 or 2. Now,
(2) if |children𝑖 | = 1, we just check that for 𝑗 ∈ children𝑖 ,
(Labels[𝑖],Labels[𝑗]) ∈𝑃 i.e. a valid production rule, (3) else,
we check that (Labels[𝑖], Labels[𝑗], Labels[𝑘]) ∈ parents
such that 𝑗 < 𝑘 and 𝑗, 𝑘 ∈ children𝑖 . Note that this check
implicitly ensures that every non-leaf is labelled with a non-
terminal.

stmt 7 This is a parse tree of the string 𝑠: We check that the
leaf nodes, in correct order, concatenate to 𝑠 . More formally,
let 𝑇 = (𝑖0, ..., 𝑖𝑘) where 𝑇 = parents𝐶 defined above, and
𝑖𝑚 < 𝑖𝑚+1, for all𝑚 ∈ [|parents𝐶 |−1] i.e.𝑇 is a sorted version
of parents𝐶 . The string Labels[𝑖0] |...|Labels[𝑖𝑘] equals 𝑠 .

stmt 8 The tree has the appropriate size: Finally, we include an
additional check to ensure that this tree is generated cor-
rectly. Specifically, we check that if 𝑘 = |𝑠 |, then |Labels| =
3𝑘 − 1 and that |Edges| = 3𝑘 − 2, since we assume G is in
Chomsky normal form.

3.3 Protocol
for proving correctness of a parse tree

In the previous section, we laid out the requirements to prove that
a parse tree for a string 𝑠 is correctly generated. Here, we build a
protocol for proving these statements about a parse tree in a way
that hides the actual tree structure. For now, we assume that both
the prover and verifier have the string 𝑠 . In an updated version of
the paper, we will provide a simple modification of the protocol to
account for the scenario where the verifier has only a commitment
com𝑠 to the string 𝑠 , while the prover holds the string 𝑠 itself, the
commitment com𝑠 and some auxiliary information aux.

3.3.1 Strawman protocol. Our protocol is a two party protocol
with parties prover P andV . In this strawman, we assume both P
andV know the grammar G = (𝑉 ,Σ,𝑆,𝑃) and the string 𝑠 ∈L(G).
We assume P holds a parse tree (Labels,Edges), which it claims is
the parse tree for 𝑠 according to G. The intuition behind this simple
construction is that P uses a zero knowledge proof system to prove
the requirements stated in stmts 1-9 above. At the end of an honestly

run protocol,V can be convinced of the validity of the parse tree
(Labels,Edges) for 𝑠 , without having to compute it on its own.

We define the relation 𝑅1 (publicInp, privateInp) such that it
parses publicInp as the tuple (G,𝑠) and privateInp as (Labels,Edges).
We say 𝑅1 ((G,𝑠), (Labels,Edges)) = 1 iff all the statements stmt 1
through 8 above, are true for these inputs. Let F 1

ZK be the ideal
functionality FZK in fig. 6 parametrized by the relation 𝑅1.

Then, we devise a strawman protocol with the following phases:
Input Phase:. Both P andV receive the grammar G and the string
𝑠 as inputs. They also receive a session identifier 𝑠𝑖𝑑 .
Parse and Proof Phase:. P computes (Labels,Edges), the parse
tree for 𝑠 and sends the message (“prove”,𝑠𝑖𝑑,(G,𝑠),(Labels,Edges))
to F 1

ZK.
Verification:. Upon receipt of a message of the form (“proven”,𝑠𝑖𝑑,
P, (G∗,𝑠∗)) from F 1

ZK, V checks that G∗ = G and 𝑠∗ = 𝑠 , if so, it
outputs 1, else it outputs 0. Otherwise, if it receives a message of
the form (“unproven”,𝑠𝑖𝑑,P,·) from F 1

ZK, it also outputs 0.

3.3.2 Detailed Protocol 1. In the strawman above, we have ab-
stracted out the details of how the relation 𝑅1 is described. Here, we
discuss the implementation of a function NaiveParseTreeChecker,
which checks if a set of inputs satisfies the relation 𝑅1. The pseu-
docode for NaiveParseTreeChecker is given in fig. 4, excluding
boxed text.

NaiveParseTreeChecker assumes that the sets 𝑃,Σ,𝑉 ,𝑆 and the
string 𝑠 are represented as arrays. In such a case, checking for
membership in a set, using function CheckMemNaive, requires
traversing the entire array representation of the set. Hence, each
set membership check is linear in the size of the set, when imple-
mented in a circuit geared towards a cryptographic proof system.

Overall, using CheckMemNaive as a subroutine, when imple-
mented as an input-oblivious circuit, the following factors con-
tribute to the circuit-size complexity of NaiveParseTreeChecker:

• The check for stmt 4 is linear in |Labels| and |Edges|, which are,
in turn, if computed honestly, of sizes O(|𝑠 |).
• Checking stmt 5 similarly costs O(|𝑆 |), where 𝑆 is the set of start
symbols.
• For now, we assume that each operation in the for loop over the
size of Edges (on line 17 in fig. 4) is constant time and thus the
loop only adds O(|𝑠 |) overhead.
• Several checks require work linear in the size of 𝑠 to count its
length (stmt 4), or check equality with 𝑠 (stmt 8). This adds cost
linear in O(|𝑠 |).
• Since each iteration of the for loop over the set of labels (see
line 33 in fig. 4) in the treemust obliviously implement an if state-
ment, whose branches make calls toCheckMemNaive. Each such
iteration adds cost O(|Σ|+ |𝑃 |), since CheckMemNaive requires
a circuit linear in the size of the set. The number of iterations,
which is the size of the set Labels, is linear in the length of 𝑠 , so,
in total, the for loop over the length of Labels amounts to an
overhead of O(|𝑠 | (|Σ|+ |𝑃 |)).

In total, the complexity of implementing NaiveParseTreeChecker
is O(|𝑠 | (|Σ|+ |𝑃 |)+ |𝑆 |). Next, we consider how to reduce this cost.

3.3.3 Detailed Protocol 2. Now that we have considered the costs of
implementing 𝑅1 using CheckMemNaive as a subroutine: a blowup

6

Practical Proofs of Parsing for Context-free Grammars

factor of (|Σ|+ |𝑃 |) as well as an additional constant factor |𝑆 |, where
𝑆 is the set of start symbols in the grammar.

Besides, the description of 𝐺 may be long and the verifier has
to read the public input. Therefore, we may not want the verifier
to have to read 𝐺 for every verification it conducts, given that it
might wish to verify proofs of correct parsing of different strings
in𝐺 . Further, naively showing membership in a set 𝑍 , using a zero-
knowledge proof system requires a number of constraints asymp-
totically at least Ω(𝑝𝑜𝑙𝑦𝑙𝑜𝑔|𝑍 |) (using something called oblivious
RAM, see [21]) and concretely often 𝑂 (|𝑍 |) for smaller sets. At a
high level, we now optimize both the proving and verification of
the various set membership relationships, we recommend a pre-
processing step committing to the terms in𝐺 = (𝑉 ,Σ,𝑆,𝑃) using a set
accumulator. Then, the prover can provide membership proofs for
each required set as (public or private) inputs and run the verifying
function as part of the zero-knowledge proof relation.

More concretely, we slightly modify the original protocol, to
introduce a global setup phase, described below. We also replace
the functionality F 1

ZK with another functionality F 2
ZK. Let F

2
ZK be

the ideal functionality FZK in fig. 6 parameterized by the relation
𝑅2, detailed in fig. 4, excluding the shaded text, and which we will
explain in more detail shortly. At a high level, the relation 𝑅2 is sim-
ilar to 𝑅1, except, instead of naively checking for set membership,
it takes as input the proofs of membership of the requisite entries
in the sets 𝑉 ,Σ,𝑆,𝑃 of the grammar.
Setup Phase:. Both P andV receive as input a set of public param-
eters pp←Acc.KeyGen(1𝑘 ,max(|G|)) across all possible grammars
which the protocol may use for the given parameter 𝑘 .

Then, the input phase gets modified as follows:
Input Phase:. Both P andV receive the grammar G and the string
𝑠 as inputs. They also receive a session identifier 𝑠𝑖𝑑 . They each com-
pute the tuple ((com𝑉 , aux𝑉),(comΣ, auxΣ),(com𝑆 ,, aux𝑆),(com𝑃 ,

aux𝑃))← (Acc.Commitpp (𝑉),Acc.Commitpp (Σ),Acc.Commitpp (𝑆),
Acc.Commitpp (𝑃)). Let comG denote the tuple (com𝑉 ,comΣ,com𝑆 ,com𝑃)
and each party stores comG .P additionally stores (aux𝑉 ,auxΣ,aux𝑆 ,aux𝑃).
Observe that the parties can drop the commitments and associated
information for the set of non-terminals 𝑉 , since their validity is
implicitly checked in the process of checking production rules.
Parse and Proof Phase:. P computes (Labels,Edges), the parse
tree for 𝑠 . P then runs the following:

• Initialize arrays ΠΣ,Π𝑃 .
• ComputeΠ𝑆 =Acc.ProveMem(Labels[0],aux𝑆), i.e. the proof
of membership of the root node’s label in the set 𝑆 of valid
start symbols.
• For each node index 𝑖 if there exist children indices (𝑗1, 𝑗2,...),
i.e. if there exist (𝑖, 𝑗1), (𝑖, 𝑗2), ... ∈ Edges, then, append the
proof of correct production, to Π𝑃 . That is, let 𝑡 = (Labels[𝑖],
(Labels[𝑗1], Labels[𝑗2],...)), and append the proofAcc. ProveMem
(𝑡,aux𝑃) to Π𝑃 . Else, append ⊥ to Π𝑃 . Note that this im-
plicitly shows that the node indexed 𝑖 is labelled by a non-
terminal.
• For each node index 𝑖 ∈ [|Labels|], if there exists no entry
of the form (𝑖,·) ∈ Edges, append the proof Acc.ProveMem
(Labels[𝑖],auxΣ) to ΠΣ. Else, append ⊥ to ΠΣ.
• Output (ΠΣ,Π𝑆 ,Π𝑃).

Given the notation we have just introduced, we define the rela-
tion 𝑅2 (publicInp,privateInp) such that it parses publicInp as the
tuple (comG,𝑠) and privateInp as (Labels,Edges,ΠΣ,Π𝑆 ,Π𝑃). We
say 𝑅2 ((comG,𝑠), (Labels,Edges,ΠΣ,Π𝑆 ,Π𝑃)) = 1 iff all the state-
ments stmt 1 through 8 above, are true for the inputs where the
grammar G is committed in comG and ΠΣ,Π𝑆 and Π𝑃 attest to the
membership of the respective elements of the purported parse tree
in elements of the grammar.

At the end of this phase, the prover sends themessage (“prove”,𝑠𝑖𝑑,
(comG,𝑠),(Labels,Edges,ΠΣ,Π𝑆 ,Π𝑃)) to F 2

ZK.
Verification:. Upon receipt of a message of the form (“proven”,𝑠𝑖𝑑,
P,(com∗G,𝑠

∗)), from F 2
ZK,V checks that com∗G =comG and 𝑠∗=𝑠 , if

so, it outputs 1, else it outputs 0. Otherwise, if it receives a message
of the form (“unproven”,𝑠𝑖𝑑,P,·) from F 2

ZK, it outputs 0.
The complexity of this protocol is similar to the previous one,

except, at each step which previously required circuits linear in
the sizes of Σ, 𝑆 or 𝑃 , the required circuit size is now the circuit to
run the function Acc.VerMem. Let us denote the circuit complex-
ity of Acc.VerMem as 𝑐Acc. Then, the total circuit complexity of
implementing 𝑅2 is O(|𝑠 |×𝑐Acc).

Depending on the instantiation, the verification cost ofAccmight
vary from O(log𝑛) (e.g., in the case of tree-based structures) to as
low as O(1) (e.g. [8]), thus adding only the corresponding circuit
complexity 𝑐Acc, above.

3.4 Optimizations and extensions
Proving correct parsing on committed strings. The protocols
and optimizations considered so far assume that both the prover
and verifier receive a string 𝑠 as an input. An example where such
an assumption may be useful in applications such as generating
reproducible builds for open-source code [23].

However, if we have a very small client, even in the case of ver-
ifying reproducible builds, we may not want this client to read the
entire source code (or string) being parsed. In other cases, such as
those motivated by privacy-preserving disclosure of credentials [9],
or privacy preserving oracles [32], the verifier may only receive a
commitment to the string.

In such a case, we modify 𝑅2, described above, to obtain the rela-
tion 𝑅, to include as public input (comG,com𝑠), and an additional
parameter Π𝑠 in the private inputs, where com𝑠 is the commitment
to the string 𝑠 and Π𝑠 is a proof of correct opening of com𝑠 . We
then augment the private input, to include 𝑠 and any extra data aux
to prove the correctness of 𝑠 as the opening for com𝑠 .
Batching accumulator proofs. The circuit we need to implement
for the relation used to check correct parsing must, at minimum
read the entire input string. However, certain instantiations of the
accumulator definition from Def. 2.4 may introduce two more al-
gorithms to make the computation of the entire relation faster:
Acc.ProveBatch and Acc.VerifyBatch to respectively prove and ver-
ify the membership of a batch of elements in a committed set. For
instance, consider the 𝑐Acc factor we introduced in calculating the
circuit complexity of 𝑅2 as in fig. 4. We may be able to replace
the calls to Acc.VerMem for the same commitment, with a sin-
gle Acc.VerifyBatch call, making the circuit complexity essentially

7

Harjasleen Malvai, Gregory Neven, Andrew Miller, and Siam Hussain

1 function NaiveParseTreeChecker((𝑉 ,Σ,𝑆,𝑃),𝑠,Labels,Edges):
2 function ParseTreeChecker((comG,𝑠),(Labels,Edges,ΠΣ,Π𝑆 ,Π𝑃)) :
3 # Assumes that the elements of Edges are arranged in
4 # increasing order of child nodes, i.e. for (·, 𝑗),(·,𝑘) ∈Edges,
5 # (·, 𝑗) appears before (·,𝑘) iff, 𝑗 ≤𝑘 .
6 output = 1
7 (·,comΣ,com𝑆 ,com𝑃) :=comG
8 # Check stmt 4: that the inputs are the right length
9 output = output ∧ (3×|𝑠 |−1== |Labels|)
10 ∧ (3×|𝑠 |−2== |Edges|)
11 # Check stmt 5: the root is labelled with a start symbol.
12 output = output ∧ CheckMemNaive(Labels[0],𝑆)
13 Acc.VerMem(Labels[0],com𝑆 ,Π𝑆)
14 # Initialize a dict. mapping ints to arrays of ints, used to
15 # check for production rules + identify leaf/non−leaf vertices
16 prodDict = EmptyDictionary()
17 for i=0...|Edges| − 1:
18 (parentIdx, childIdx) := Edges[i]
19 # Add this to the set of children for this parent.
20 prodDict[parentIdx] = prodDict[parentIdx]
21 .append(childIdx)
22 # This checks the ranges of the indices in edges i.e. stmt 1.
23 output = output ∧ (0≤parentIdx< |Labels|)
24 ∧ (0≤ childIdx< |Labels|)
25 # This checks that every non−root node occurs
26 # only once as a child, i.e. stmt 2.
27 output = output ∧ (childIdx==𝑖+1)
28 # Checks stmt 3: vertices indexed breadth−first + no cycles.
29 output = output ∧ (parentIdx< childIdx)
30 end for
31 # Let's initialize a variable to keep count of leaves
32 leaves = 0
33 for i in 0...|Labels| − 1:
34 if prodDict[i] = []: # Leaf case
35 # Check stmt 6
36 output = output ∧ CheckMemNaive(Labels[i],Σ)
37 Acc.VerMem(Labels[i],comΣ,ΠΣ [𝑖])
38 # Partial check for stmt 8
39 output = output ∧(Labels[i]==s[leaves])
40 leaves = leaves + 1
41 else: # Non−leaf case −− check stmt 7
42 output = output ∧
43 CheckMemNaive((Labels[i],prodDict[i]),𝑃)
44 Acc.VerMem((Labels[i],prodDict[i]),com𝑃 ,Π𝑃 [𝑖])
45 end for
46 # Check (part of) stmt 8:
47 output = output ∧ (leaves == |s|)
48 return output
Figure 4: Pseudocode for simple functions to compute 𝑅1
and 𝑅2.

O(|𝑠 |+𝑐batchAccum), where 𝑐batchAccum is the complexity of verify-
ing a batched proof of membership for |𝑠 | elements in sets whose
size is dictated by the grammar.
Privacy. If the prover were to share the parse tree (Labels,Edges)
with the verifier, since all parties know the grammar𝐺 , the verifier
could verify the validity of the parse tree in the clear. However, this
would leak the leaves of the parse tree also, which are equivalent
to a string 𝑠 the prover may want to hide from the verifier in our
motivating applications. Further, often the structure of the parse
tree itself may leak sensitive information which may be inferred
by the verifier about 𝑠 , even if the set of leaf labels within Labels
which correspond to terminals, i.e. 𝑠 are somehow hidden. Our con-
struction so far hides the entire tuple (Labels,Edges), while leaking
the lengths of the vectors Labels and Edges, which, in turn, leak
the length of 𝑠 . Later, we will motivate and discuss a construction
where the length of 𝑠 is also obscured.

3.5 Security intuition
We define the security of privacy-preserving parsing protocols in
the UCmodel. In particular, we say that a secure privacy-preserving
parsing protocol emulates the simple ideal functionality FParse as-
suming authenticated communication channels between parties.
For now, we assume that both P andV receive G and 𝑠 as inputs
from the environment. Informally, we argue, that detailed protocol
2, above emulates FParse, since an ideal world simulator can work
as follows in the various cases:

• If neither P, norV is corrupted, the simulator does nothing.
• If only P is corrupted, the simulator runs A internally, and
if A does not output valid values satisfying 𝑅2, it inputs
a string 𝑠 ′, a slightly modified version of 𝑠 , which will not
parse according to G, as the prover’s input to FParse, leading
the honest ideal-world V to output 0, same as the honest
real-worldV . In the case thatV outputs 1 in the real-world,
A must have supplied satisfying public inputs (comG,𝑠) and
a parse tree, as well as corresponding membership proofs
to FZK, showing that 𝑠 ∈G. If 𝑠 ∉ grammar, either our condi-
tions for parse-tree checking are not complete or A can be
used to create an adversary B, which breaks the soundness
of Acc from Def. 2.5.
• If only V is corrupt, in the ideal world, the simulator re-
trieves the input G,𝑠 from “parsed” sent by FParse. It inter-
nally runs copies of the real world P and FZK, with P input
G,𝑠 and provides the requisite messages to the adversarial
verifier algorithm and outputs whatever it outputs.
• If both parties are corrupted, simulator simply runs both of
them internally, with their respective inputs and FZK.

4 CONCLUSION AND FUTUREWORK
We have presented an efficient, modular protocol for proving that
a given string has been parsed according to a specific grammar.

We intend to extend this work and update it shortly with the
following. Firstly, we plan to provide a more detailed security anal-
ysis and a more detailed protocol with privacy, for example, if the
input string is only committed. Secondly, we will we will consider
protocols for redacting portions of a committed string 𝑠 and give

8

Practical Proofs of Parsing for Context-free Grammars

FParse

Parties P, V .
Parameters: A context-free grammar G.
(1) On input (𝑠𝑖𝑑,“parse”,𝑠) from a party P , check if 𝑠 ∈ G, and if so, send the mes-

sage (“parsed”,𝑠𝑖𝑑,G,𝑠,1) to V and A, otherwise send (“parsed”,𝑠𝑖𝑑,G,𝑠,0)
to V and A.

Figure 5: An ideal functionality, FParse, to parse a string in a given grammar.

security definitions in this scenario. Further, we will discuss pro-
tocols for proving statements about the entirety of a string 𝑠 , while
only parsing parts of it inside a proof system, to further optimize
the process for applications where parts of an API response may
already be public.

Finally, we intend to provide an evaluation of our techniques
and compare them concretely with works such as Reef and other
simple, related techniques.

REFERENCES
[1] [n.d.]. jQuery API. https://api.jquery.com. Accessed: March 22, 2024.
[2] [n.d.]. JSON parsing inside circuit. https://github.com/o1-labs/o1js/issues/91.

Accessed: March 22, 2024.
[3] [n.d.]. zkJSON. https://github.com/chokermaxx/zkjson/tree/

b485c3aa03e928958b67bf977eacb749cb1d7185. Accessed: March 22, 2024.
[4] Sebastian Angel, Eleftherios Ioannidis, Elizabeth Margolin, Srinath Setty, and

Jess Woods. 2023. Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex
Proofs. Cryptology ePrint Archive (2023).

[5] Niko Barić and Birgit Pfitzmann. 1997. Collision-free accumulators and fail-stop
signature schemes without trees. In International conference on the theory and
applications of cryptographic techniques. Springer, 480–494.

[6] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2019. Scalable
zero knowledge with no trusted setup. In Advances in Cryptology–CRYPTO
2019: 39th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 18–22, 2019, Proceedings, Part III 39. Springer, 701–732.

[7] Arne Bilzhause, Henrich C Pöhls, and Kai Samelin. 2017. Position paper: The past,
present, and future of sanitizable and redactable signatures. In Proceedings of
the 12th International Conference on Availability, Reliability and Security. 1–9.

[8] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. 2009. An accumulator
based on bilinear maps and efficient revocation for anonymous credentials. In
Public Key Cryptography–PKC 2009: 12th International Conference on Practice
and Theory in Public Key Cryptography, Irvine, CA, USA, March 18-20, 2009.
Proceedings 12. Springer, 481–500.

[9] Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Læssøe Mikkelsen,
Gregory Neven, and Michael Østergaard Pedersen. 2015. Formal treatment of
privacy-enhancing credential systems. In International Conference on Selected
Areas in Cryptography. Springer, 3–24.

[10] Jan Camenisch and Anna Lysyanskaya. 2002. Dynamic accumulators and
application to efficient revocation of anonymous credentials. In Advances in
Cryptology—CRYPTO 2002: 22nd Annual International Cryptology Conference
Santa Barbara, California, USA, August 18–22, 2002 Proceedings 22. Springer,
61–76.

[11] Matteo Campanelli, Dario Fiore, Semin Han, Jihye Kim, Dimitris Kolonelos, and
Hyunok Oh. 2021. Succinct Zero-Knowledge Batch Proofs for Set Accumulators.
Cryptology ePrint Archive, Paper 2021/1672. https://eprint.iacr.org/2021/1672
https://eprint.iacr.org/2021/1672.

[12] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. 2002. Universally
composable two-party and multi-party secure computation. In Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing. 494–503.

[13] Dario Catalano and Dario Fiore. 2013. Vector commitments and their appli-
cations. In Public-Key Cryptography–PKC 2013: 16th International Conference
on Practice and Theory in Public-Key Cryptography, Nara, Japan, February
26–March 1, 2013. Proceedings 16. Springer, 55–72.

[14] David Chaum. 1983. Blind signatures for untraceable payments. In Advances
in Cryptology: Proceedings of Crypto 82. Springer, 199–203.

[15] Bryan Cooksey. [n.d.]. Chapter 3: API types and formats. https:
//zapier.com/resources/guides/apis/data-formats#. Accessed: March 22, 2024.

[16] Ivan Damgård. 2002. On Σ-protocols. Lecture Notes, University of Aarhus,
Department for Computer Science 84 (2002).

[17] Nelly Fazio and Antonio Nicolosi. 2002. Cryptographic accumulators: Definitions,
constructions and applications. Paper written for course at New York University:

www. cs. nyu. edu/nicolosi/papers/accumulators. pdf 24 (2002).
[18] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. 2019. Plonk:

Permutations over lagrange-bases for oecumenical noninteractive arguments
of knowledge. Cryptology ePrint Archive (2019).

[19] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. 2017. Message Franking via
Committing Authenticated Encryption. In CRYPTO.

[20] Marios Isaakidis, Harry Halpin, and George Danezis. 2016. UnlimitID: Privacy-
preserving federated identity management using algebraic MACs. In Proceedings
of the 2016 ACM on Workshop on Privacy in the Electronic Society. 139–142.

[21] Kasper Green Larsen and Jesper Buus Nielsen. 2018. Yes, there is an oblivious
RAM lower bound!. In Annual International Cryptology Conference. Springer,
523–542.

[22] Ning Luo, Chenkai Weng, Jaspal Singh, Gefei Tan, Ruzica Piskac, and Mariana
Raykova. 2023. Privacy-Preserving Regular Expression Matching using
Nondeterministic Finite Automata. Cryptology ePrint Archive (2023).

[23] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly,
Linus Gasser, Ismail Khoffi, Justin Cappos, and Bryan Ford. 2017. {CHAINIAC}:
Proactive {Software-Update} transparency via collectively signed skipchains
and verified builds. In 26th USENIX Security Symposium (USENIX Security 17).
1271–1287.

[24] Kai Rannenberg, Jan Camenisch, and Ahmad Sabouri. 2015. Attribute-based
credentials for trust. Identity in the Information Society, Springer (2015).

[25] Deevashwer Rathee, Guru Vamsi Policharla, Tiancheng Xie, Ryan Cottone,
and Dawn Song. 2022. Zebra: Anonymous credentials with practical on-chain
verification and applications to kyc in defi. Cryptology ePrint Archive (2022).

[26] Chainlink Labs Research. 2023. DECO Research Series #3: Parsing the Response.
https://blog.chain.link/deco-parsing-the-response/. Accessed: March 22, 2024.

[27] Michael Rosenberg, JacobWhite, Christina Garman, and IanMiers. 2023. zk-creds:
Flexible anonymous credentials from zksnarks and existing identity infrastruc-
ture. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 790–808.

[28] Kai Samelin and Daniel Slamanig. 2020. Policy-based sanitizable signatures.
In Topics in Cryptology–CT-RSA 2020: The Cryptographers’ Track at the RSA
Conference 2020, San Francisco, CA, USA, February 24–28, 2020, Proceedings.
Springer, 538–563.

[29] Weijie Wang, Annie Ulichney, and Charalampos Papamanthou. 2023.
{BalanceProofs}: Maintainable Vector Commitments with Fast Aggregation.
In 32nd USENIX Security Symposium (USENIX Security 23). 4409–4426.

[30] John Watrous. 2008. Parse trees, ambiguity, and Chomsky normal form.
https://cs.uwaterloo.ca/ watrous/ToC-notes/ToC-notes.08.pdf. Accessed: March
22, 2024.

[31] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. 2021. Wolverine:
fast, scalable, and communication-efficient zero-knowledge proofs for boolean
and arithmetic circuits. In 2021 IEEE Symposium on Security and Privacy (SP).
IEEE, 1074–1091.

[32] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari
Juels. 2020. Deco: Liberating web data using decentralized oracles for tls.
In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security. 1919–1938.

A STANDARD CRYPTOGRAPHIC
IDEAL FUNCTIONALITIES

In this section, we will provide ideal functionalities for various
standard cryptographic primitives. For now, we restrict ourselves
to the ideal functionality FZK, parameterized by a relation 𝑅, for
showing that the relation 𝑅 is satisfied by the given inputs.

9

https://api.jquery.com
https://github.com/o1-labs/o1js/issues/91
https://github.com/chokermaxx/zkjson/tree/b485c3aa03e928958b67bf977eacb749cb1d7185
https://github.com/chokermaxx/zkjson/tree/b485c3aa03e928958b67bf977eacb749cb1d7185
https://eprint.iacr.org/2021/1672
https://eprint.iacr.org/2021/1672
https://zapier.com/resources/guides/apis/data-formats##
https://zapier.com/resources/guides/apis/data-formats##
https://blog.chain.link/deco-parsing-the-response/

Harjasleen Malvai, Gregory Neven, Andrew Miller, and Siam Hussain

FZK

Parties: P, V , adversary A
Parameters: A relation 𝑅, security parameter 1_ .
(1) On input (“prove”,𝑠𝑖𝑑,𝑥,𝑤) from P, if 𝑅 (𝑥,𝑤) =1 this functionality

sends (“proven”,𝑠𝑖𝑑,P,𝑥) to V and A and halts. Otherwise, send
(“unproven”,𝑠𝑖𝑑,P,𝑥) to V and A and halt.

Figure 6: An ideal functionality, FZK, for zero-knowledge proofs, based on [12].

10

	Abstract
	1 Introduction
	1.1 Applications

	2 Background and Definitions
	2.1 Grammars, parsing and parse tree notation
	2.2 Cryptography background

	3 Protocol for proving correct parsing
	3.1 A toy grammar
	3.2 Conditions for correctness of a parse tree
	3.3 Protocol for proving correctness of a parse tree
	3.4 Optimizations and extensions
	3.5 Security intuition

	4 Conclusion and future work
	References
	A Standard Cryptographic Ideal Functionalities

