
CONVOLUTION-FRIENDLY IMAGE COMPRESSION IN FHE

Axel Mertens⋆ Georgio Nicolas⋆ Sergi Rovira†

⋆ KU Leuven - Cosic
† Pompeu Fabra University - WiSeCom

1. ABSTRACT

Fully Homomorphic Encryption (FHE) is a powerful tool
that brings privacy and security to all sorts of applica-
tions by allowing us to perform additions and multiplica-
tions directly on ciphertexts without the need of the se-
cret key. Some applications of FHE that were previously
overlooked but have recently been gaining traction are data
compression and image processing. Practically, FHE en-
ables applications such as private satellite searching, pri-
vate object recognition, or even encrypted video editing.

We propose a practical FHE-friendly image com-
pression and processing pipeline where an image can
be compressed and encrypted on the client-side, sent to
a server which decompresses it homomorphically and
then performs image processing in the encrypted domain
before returning the encrypted result to the client.

Inspired by JPEG, our pipeline also relies on discrete
cosine transforms and quantization to simplify the repre-
sentation of an image in the frequency domain, making it
possible to effectively use a compression algorithm. This
pipeline is designed to be compatible with existing image-
processing techniques in FHE, such as pixel-wise process-
ing and convolutional filters. Using this technique, a high-
definition (1024 × 1024) image can be homomorphically
decompressed, processed with a convolutional filter and
re-compressed in under 24.7s, while using 8GB memory.

2. INTRODUCTION

Data compression is a crucial subfield within the domain
of data science, playing a pivotal role in efficiently man-
aging the flood of data generated and processed daily. Its
significance is clear in diverse applications such as internet
browsing, telecommunications, and data storage. Recent
developments in Fully Homomorphic Encryption (FHE)
have opened the door to new privacy-preserving applica-
tions which use data compression such as private satellite
searching and object recognition. FHE allows us to per-
form additions and multiplications directly on ciphertexts

© 2024 IEEE. Personal use of this material is permitted. Per-
mission from IEEE must be obtained for all other uses, in any cur-
rent or future media, including reprinting/republishing this mate-
rial for advertising or promotional purposes, creating new collec-
tive works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

without the need of the secret key. Unfortunately, using
FHE has the inherent drawback of ciphertext expansion -
a blowup in the size of a plaintext when encrypted. There-
fore, adding privacy to data compression and processing
applications requires a robust data compression algorithm
tailored for FHE.

This paper takes a big step in this direction, specifi-
cally for the homomorphic compression and processing of
images. Possible applications of our work include satel-
lite image-search, private object detection, facial recogni-
tion, etc. In this paper, we propose a compression scheme
for the encryption of natural images in CKKS, that uses
a modification of the method used in the JPEG-1 stan-
dard [1]. Our pipeline is as in figure 1, where an image
is compressed and encrypted before being sent to a server
for processing. The server performs decompression, pro-
cessing and compression all in the encrypted domain, be-
fore sending it back to the client for decryption. The sug-
gested scheme is designed to be compatible with server-
side image processing with convolutional filters and pixel-
wise image processing. The compression (decompression,
resp.) algorithm is associative with encryption (decryp-
tion, resp.) algorithm, improving client-side performance.

2.1. Related Work

Very little research can be found on the topic of compres-
sion and decompression of encrypted images. There is
more work on the related topic of ciphertext compression,
where the ciphertext is compressed without taking into ac-
count the underlying plaintext data. This technique is in-
dependent of the scope of this paper, so both techniques
can be used in the same applications.

In 2017, Canard et al. [2] analyzed the execution of
a run-length coding scheme in FHE. The authors came
to the conclusion that homomorphic run-length coding is
impractical, due to the large number of comparisons it re-
quires. They further argue that lossless compression in
FHE cannot be guaranteed, stating that any lossless com-
pression algorithm has a lousy worst-case behavior. In
FHE, every algorithm achieves its worst-case behavior. In
a followup work [3], the authors suggest an FHE-friendly
homomorphic compression scheme. Unfortunately, they
do not describe how to encode a compressed image nor
how to perform processing on it. Moreover, their method
results into images with less quality than those produced

https://orcid.org/0000-0002-4598-8265
https://orcid.org/0000-0002-3240-9009
https://orcid.org/0000-0001-8440-9345

Fig. 1. Sketch of our pipeline

by our compression method.
In [4], the authors suggest a technique using invertible

Bloom filters to compress an encrypted sparse array, with
a joint decompression - decryption function. However,
they suggest no solution for an encrypted decompression.
While their method is more general than the one suggested
in this paper, ours is more effective for images. We require
fewer operations and achieve a higher compression rate.
In [5], the author studies the leakage in systems that have
both compression and encryption. He describes a number
of attacks that use only the compression ratio as a side-
channel. This study serves as a warning that for perfect
privacy, the compression ratio should be secret.

3. FULLY HOMOMORPHIC ENCRYPTION

Since the first FHE scheme [6], research in FHE has seen
rapid growth, leading to a wide range of schemes built
from different techniques and security assumptions [7–
10]. In this section we only provide the definition of a
public-key HE scheme and give a bit more details regard-
ing CKKS [9], the scheme used in this work. We refer the
interested reader to the numerous surveys on the topic, for
example [11].

Informally, a public-key Fully Homomorphic Encryp-
tion (FHE) scheme is an encryption scheme which allows
us to perform arbitrary computations over encrypted in-
puts without decrypting them first. That is, given a cipher-
text ct encrypting a plaintext m and an arbitrary function
f , we can obtain a new ciphertext ct′ encrypting f(m)
without decrypting ct. It is important to remark that HE
schemes can only directly compute additions (XOR) and
multiplications (AND) between ciphertexts. More com-
plex functions are represented as arithmetic (boolean) cir-
cuits built from these two basic operations. The encryption
function of most FHE schemes adds a random element to
the message, referred to as error or noise in the literature.
When a multiplication or an addition is performed, this
error increases. After a given number of operations, the

error is too big and the message cannot be recovered by
the decryption algorithm. To solve this, an additional al-
gorithm called bootstrapping is added to the scheme. This
procedure reduces the noise of a ciphertext, allowing fur-
ther operations. Unfortunately, bootstrapping is a costly
operation. Therefore, it is common practice to set parame-
ters of a HE scheme in such a way that the we can evaluate
a function of our choice without the need of bootstrapping.
This is called leveled FHE and is the approach that we take
in this work.

Definition 3.1 (Homomorphic Encryption scheme)
A public-key homomorphic encryption scheme E con-
sists of a set of probabilistic polynomial-time algorithms
(KeyGen,Enc,Dec,Eval) such that:

• KeyGen(1λ): outputs the secret key sk, the public
key pk and the evaluation key evk given the secu-
rity parameter λ. The evaluation key is also public,
and it is used to perform the homomorphic opera-
tions over ciphertexts.

• Encpk(m): Outputs a ciphertext ct encrypting m
under the public key pk.

• Decsk(ct): Outputs a message m. If the algorithm
cannot recover m from ct, the output is ⊥.

• Evalevk(f ; ct1, . . . , ctn): Given a function f and
a list of ciphertexts ct1, . . . , ctn, outputs a cipher-
text ctf such that Decsk(ctf) = f(m1, . . . ,mn),
where cti ← Encpk(mi) for all i ∈ {1, . . . , n}.

Among the most popular FHE schemes available to-
day [7,9,12–14], we have chosen CKKS [9] since it allows
us to compute directly on floating-point numbers, which is
crucial for the fast evaluation of our compression and de-
compression algorithms. Furthermore, this allows us to
work with non-integer kernels. The other key feature of
CKKS is ciphertext packing. We expand on our use of
ciphertext packing in Section 4.2.

3.1. Background on CKKS

The CKKS scheme [9] is an approximate homomorphic
encryption scheme. The key difference between CKKS
and other schemes, such as BGV [12] or TFHE [14], is
that the decryption function of CKKS does not remove the
encryption noise. This makes the decryption structure to
be m+ e mod q where m is the encrypted message, e is
the encryption error and q a suitable modulus. If e is small
enough compared to m, it would only alter the least sig-
nificant bits of m. Another characteristic of CKKS is the
native support for ciphertext packing, which allows pack-
ing multiple encrypted messages into a single ciphertext.
More importantly, it provides the capability of perform-
ing computations between ciphertexts in a SIMD manner,
reducing both effective memory and computational com-
plexities.

4. OUR TECHNIQUE

When using lossy compression, data is represented more
compactly, with the aim of retaining as much fidelity as
possible to the original before compression. In the case of
images, there are different methods to measure the level
of fidelity or closeness. The measure closest to how the
human eye perceives images is the Structural Similarity
Index (SSI) [15]:

Definition 4.1 (Structural Similarity Index (SSI)) SSI
is defined as: SSI(x, y) =

(2µxµy+c1)(2σxy+c2)

(µ2
x+µ2

y+c1)(σ2
x+σ2

y+c2)

where µi is the pixel sample mean of image i, σ2
i is the

variance of image i, σ2
xy is the covariance of images x and

y, c1 = (0.01L)2, c2 = (0.03L)2, with L the dynamic
range of the pixel values.

It compares an imperfect image to its perfect version, and
is a value between -1 and 1, where 1 is a perfect match,
-1 is a perfectly negative correlation, and 0 means the two
images are very different. The SSI is typically good at
detecting structural deformations (stretching, rotation, etc)
and other degradations such as blurriness or blockiness.
Images with values of 0.95 are considered to be of good
quality [16].

Another important metric is the compression ratio:

Definition 4.2 (Compression ratio) Let B0 be the num-
ber of bytes needed to represent some data X , and let B1

be the number of bytes needed for the same, compressed
data X ′. The compression ratio is then B0

B1
, also written

as B0:B1.

The ideal compression scheme has a high compression ra-
tio, while maintaining an SSI that is close to 1.

Most traditional compression algorithms used in the
clear are unfit for FHE. They often contain comparisons
and do not have a constant run-time. FHE inflicts its
own special set of requirements upon an algorithm. The
most important property of a homomorphic compression
scheme is that no additional data or metadata about the

image leaks, even through side-channels such as the com-
pression ratio or running-time. Secondly, the compression
and decompression should be efficient. Thirdly, the ci-
phertext packing should be done in a way that a ciphertext
structurally reflects the compression of a plaintext. With
some inefficient packing methods, the ciphertext length
would not be influenced by a (slightly) shorter plaintext.
And last but not least, it should be possible to both com-
press and decompress the message without needing to
decrypt it.
As an extra requirement, we also want the encrypted, de-
compressed form to support efficient image processing.
The type of image processing we choose to focus on is
using convolutional filters, but we also look at pixel-wise
processing methods. Furthermore, our technique can also
handle coloured images, both in the RGB format as in the
YCbCr format, depending on the application.

4.1. Compression Algorithm.

In this section we introduce our algorithms for compres-
sion and decompression. We want to emphasize that we
present them in unencrypted format, as the client will run
them. The reader should keep in mind that the server will
execute them in the encrypted domain. Specifically, in the
server side, the image data (a, A, B) is encrypted, while
the sizes of vectors and matrices (m, n, c) remain pub-
lic. Moreover, the computations are done in the encrypted
domain.

The algorithm we suggest is based on the JPEG-
standard.

As shown in Algorithm 2, we split the image into
m ×m-sized blocks. We first center every pixel value in
the [−128, 128[interval. We call this operation Level(),
while the inverse operation is called Unlevel(). Then, we
apply the discrete cosine transform (DCT), which is done
via two fixed-point matrix multiplications with DCT ma-
trix Tm. This gives us representations of the frequency
spectrum of each block of the image. The next step, still
following the JPEG standard, is to apply a quantization,
which scales each element of this frequency representa-
tion (lines 4-6 of alg. 2). The quantization matrix Qm

is defined through exhaustive testing and standardization.
Hence, we are bound to the quantization matrices existing
in prior research. We have only found a reliable matrix for
m = 8 and a slightly less mature matrix for m = 16 [17].

Quantization results in a large number of zeros, espe-
cially towards the bottom right corner of each matrix. To
exploit this redundancy, a Zigzag traversal is applied, turn-
ing the matrix into a one-dimensional vector, with these
zeroes at the end. The function Inverse zigzag() turns a
one-dimensional vector back into a matrix, following the
same zigzag pattern.

The next step is where we really diverge from the
JPEG standard. JPEG uses Huffman encoding to repre-
sent this vector. Huffman coding,

like all other encoding schemes, works on the prin-
ciple that more frequent symbols are represented with
shorter codes compared to rarer symbols, resulting in an

overall compression. This principle is unsuited for FHE,
where consistency and constant-runtime are desired above
all.

The encoding we suggest (see Algorithm 1) is more
simple: we only keep a constant number c of non-zero el-
ements of every block, discarding all other elements. Ide-
ally, this number should be determined independent of the
image, such as not to reveal any information about the
level of texture present in the data. However, in practice,
c leaks very little information about the image. It should
be noted that predetermining this c can result in non-zero
values being discarded. This causes additional artifacts
(blockiness) in the image, but the effect is usually mini-
mal.

Using this encoding, we make sure that every block of
the image undergoes the same compression ratio. Further-
more, both compression and decompression are very sim-
ple actions, and can be done efficiently in FHE. The en-
coding itself is lossless, but can be lossy for some highly
textured or discrete-tone images. Granted, the data will
be compressed less than it would using a more evolved
coding scheme (Huffman, Golomb, ...). As discussed ear-
lier, this approach is impractical with homomorphic en-
cryption.

Decompression works very similarly to compression,
knowing that in the decoding, we pad with encryptions of
0 until we reach the required size.

Algorithm 1: Encode
Input: blocks a = [a0, a1, . . . , an−1] with

|ai| = la
Input: Cutoff point c < m2

Output: blocks b = [b0, b1, . . . , bn−1] with
|bi| = lb and la ≥ lb

1 for i ∈ [0, n− 1] do
2 bi ← ai[0 : c] ;
3 end
4 return b

4.2. Ciphertext packing.

In order to make our algorithms more efficient we exploit
the packing capabilities of CKKS [9]. Recall that cipher-
text packing refers to the ability to encrypt multiple mes-
sages in a single ciphertext.

In our work, we use ciphertext packing as follows.
First, the image is divided into blocks of size m ×m, af-
ter which each block separately undergoes compression.
Then, each position in a block is encrypted in a separate
ciphertext. We now have c ciphertexts, one for the first
position in a block, one for the second, etc. Therefore,
if m = 8 for example, a decompressed image is repre-
sented using 64 ciphertexts, regardless of the dimension
of the image. Figure 2 illustrates this principle without
compression (for clarity). Furthermore, with this design
every block-wise operation is automatically parallelized.

Algorithm 2: Compress
Input: Encrypted image A: split into n m×m

blocks: A = [A0, A1, . . . , An−1] with
Ai ∈ Zm×m

Input: Cutoff point c < m2

Output: Encrypted, compressed image
B = [b0, b1, . . . , bn−1] with bi ∈ Zc

1 for l ∈ [0, n− 1] do
2 Cl ← Level(Al) ;
3 Dl ← TmClT

⊤
m ;

4 for (i, j) ∈ N2
m do

5 El,i,j ← ⌊(
Dl,i,j

Qm,i,j
)⌉ ;

6 end
7 bl ← Zigzag(El)[0..c] ;
8 end
9 return {b0, b1, . . . , bn−1}

Observe that it is also possible to compress and pro-
cess multiple images at a time. Compressing k images at
once, there will be the same number of ciphertexts, but
they will be k times longer.

Our packing technique is not unlike others in the lit-
erature. However, it is worth noting some differences. In
CaReNets [18], images are combined to completely fill the
ciphertexts, and leave no slots empty. While this makes the
ciphertext more compact, it is not suitable for our situation
where the compression and the processing are highly par-
allelized per block. The technique used in [19] is closer to
our method, the only difference being that they create one
ciphertext per location/pixel in an image, needing as many
ciphertexts as one image has pixels. Contrarily, we cre-
ate a ciphertext per frequency in a block, which is greatly
fewer ciphertexts albeit longer ones.

4.3. Image processing.

The server needs to be able to perform convolutions on
the encrypted (but decompressed) blocks of the image.
This is hard to parallelize, as applying the convolution re-
quires neighbouring pixel values, regardless of block bor-
ders. We suggest the following solution: as the very first
step, before the client even encrypts/compresses the im-
age, the client splits the image into blocks of size (m −
2) × (m − 2). Then, it pads these smaller blocks on the
edges with the neighbouring cells, such that they end up
with overlapping blocks of size m×m. This system works
for 3 × 3 kernels, which covers almost all convolutional
filters used in practice. Recall that CKKS also provides
supports for non-integer kernels.

This obviously reduces the compression ratio, but it
does allow efficient image processing on the server, and
avoids costly server-side packing operations, where the ci-
phertexts would have to be reconfigured. Also, it is worth
noting that while we strive for a good compression ratio,
the goal of this paper is not to achieve the optimal com-
pression ratio. It rather is to provide a trade-off between

Fig. 2. Illustration of our ciphertext packing

Algorithm 3: Decompress
Input: Block size m, which can be equal to

either 8 or 16
Input: Encrypted, compressed image

B = [b0, b1, . . . , bn−1] with bi ∈ Zc

Output: Encrypted image
A = [A0, A1, . . . , An−1] with
Ai ∈ Zm×m

1 for l ∈ [0, n− 1] do
2 for i ∈ [c,m2[do
3 bl,i ← Enc(0)
4 end
5 Cl ← Inverse Zigzag(bl) ;
6 for (i, j) ∈ N2

m do
7 Dl,i,j ← Cl,i,j ·Ql,i,j ;
8 end
9 El ← T⊤

mDlTm ;
10 Al ← Unlevel(El) ;
11 end
12 return [A0, A1, . . . , An−1]

the compression ratio and efficient functionality. We have
found that for this setting, keeping the SSI close to 0.95,
most images require c8 = 30 for m = 8, leading to a
compression ratio of 100 : 83.3. For m = 16, most im-
ages require c16 = 70, leading to a compression ratio of
100 : 35.7. The simplest image processing actions, such
as inversion and brightening, are pixel-based. They do not
require any knowledge of neighbouring pixels, and thus
do not require this whole padding trick. In these cases, the
client can simply split the image in blocks of size m×m.
Here, we find that most images require c8 = 22 (respec-
tively c16 = 63) to keep the SSI ≥ 0.95, leading to a
compression ratio of 100 : 34.4 (respectively 100 : 24.6).

In reality, the value of c can be determined for a spe-
cific image or a set of images by running the compression
and decompression code in the clear, and verifying the im-
age quality. The cutoff point could potentially be quite dif-
ferent after processing compared to before, depending on
the operation that was performed.

5. RESULTS.

Both client and server were simulated a desktop with an
Intel Core i7-13700 and 32gb of RAM. Our implemen-
tation1 has been very moderately optimized, but could
still be improved. Nonetheless, we think our numbers are
promising as it would be safe to assume that the hardware
setup we used is less powerful than a standard ”server”
and more powerful than a standard client.

We ran tests for four different image dimensions, and
four algorithms each. The four algorithms are

1. Pixel-wise processing on 8× 8 blocks.
2. Convolutional processing on 8× 8 blocks.
3. Pixel-wise processing on 16× 16 blocks.
4. Convolutional processing on 16× 16 blocks.

Each timing in table 1 is for one 8-bit greyscale image of
mentioned dimensions. The values are averaged over a

1https://github.com/icip-24/
img-processing-fhe

https://github.com/icip-24/img-processing-fhe
https://github.com/icip-24/img-processing-fhe

few randomly selected images: 8 images of 512 × 512,
4 images for other dimensions. We used tailor-fitter pa-
rameters for each setting. The benchmarks are server-side
timings, meaning that the compression and decompression
are both done homomorphically. Server-side RAM Con-
sumption varied between 1GB and 13GB based on the size
of the image being processed.

The decompression is more costly than the compres-
sion, because the server needs to pad the compressed
ciphertext with encryptions of zero and process them as
well.

It is clear that the pixel-wise processing is highly effi-
cient, but the 3 × 3 convolution as well is relatively fast.
The largest image size we experimented on is consider-
ably less fast, while the other image sizes are not as differ-
ent. This has everything to do with the choices of CKKS-
parameters. The parameter choices for 1024 × 1024 im-
ages do not allow for secure ciphertexts long enough to fit
2048 × 2048 images. Remember that the length of each
ciphertext is equal to the number of blocks in the image.

We notice that the 8× 8 techniques (1 and 2) are con-
sistently faster, and keep the image quality the highest.
This is expected, because these quantisation matrices are
more mature, and because smaller blocks have more ef-
ficient matrix multiplication. We do not include example
images that have been put through our pipeline, because
with SSI-values above 0.9, it is very hard to tell the differ-
ence.

6. SUMMARY AND FUTURE DIRECTIONS

In this work, we described a technique to homomorphi-
cally compress and process natural images. This is a great
first step towards improved and more advanced privacy-
preserving image manipulation. We discussed the two
types of packing we use, depending on the processing that
should be applied (3 × 3 convolution or pixel-wise pro-
cessing). Our implementation shows that the techniques
using 8 × 8 blocks are more time-efficient, while the
16 × 16 blocks achieve more compression. The code we
provide is not production ready and is only for research
purposes.

The next step would be to move towards more com-
plex image processing, such as face recognition and object
detection.

Finally, an interesting question is whether it is possi-
ble to prove that entropy encoding is impractical in com-
bination with FHE. If not, it should be possible to further
improve the compression ratio we achieve.

Acknowledgement
This work was supported by the Defense Advanced Re-
search Projects Agency (DARPA) and Space and Naval
Warfare Systems Center, Pacific (SSC Pacific) under con-
tract No. FA8750-19-C-0502 and by the FWO under an
Odysseus project GOH9718N. This work was supported
by the Spanish Ministry of Economy and Competitive-
ness with reference number RTI2018-102112-B-I00. Any
opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and
do not necessarily reflect the views of the DARPA, the
US Government, Cyber Security Research Flanders or the
FWO. The U.S. Government is authorized to reproduce
and distribute reprints for governmental purposes notwith-
standing any copyright annotation therein.

7. REFERENCES

[1] International Organisation for Standardisation, “In-
formation technology – Digital compression and
coding of continous-tone still images - Requirements
and guidelines,” Standard, CCITT, Geneva, CH,
Sept. 1992.

[2] Sébastien Canard, Sergiu Carpov, Donald Nokam
Kuate, and Renaud Sirdey, “Running compression
algorithms in the encrypted domain: a case-study
on the homomorphic execution of RLE,” Cryptology
ePrint Archive, Report 2017/392, 2017, https:
//eprint.iacr.org/2017/392.

[3] Donald Nokam Kuate, Sébastien Canard, and Re-
naud Sirdey, “Towards video compression in the
encrypted domain: A case-study on the H264 and
HEVC macroblock processing pipeline,” in Cryp-
tology and Network Security - 17th International
Conference, CANS 2018, Naples, Italy, September
30 - October 3, 2018, Proceedings, Jan Camenisch
and Panos Papadimitratos, Eds. 2018, vol. 11124 of
Lecture Notes in Computer Science, pp. 109–129,
Springer.

[4] Nils Fleischhacker, Kasper Green Larsen, and Mark
Simkin, “Compressing encrypted data over small
fields,” Cryptology ePrint Archive, Paper 2023/946,
2023, https://eprint.iacr.org/2023/
946.

[5] John Kelsey, “Compression and information leakage
of plaintext,” in FSE 2002, Joan Daemen and Vin-
cent Rijmen, Eds. Feb. 2002, vol. 2365 of LNCS, pp.
263–276, Springer, Heidelberg.

[6] Craig Gentry, “Fully homomorphic encryption using
ideal lattices,” in 41st ACM STOC, Michael Mitzen-
macher, Ed. May / June 2009, pp. 169–178, ACM
Press.

[7] Junfeng Fan and Frederik Vercauteren, “Somewhat
practical fully homomorphic encryption,” Cryp-
tology ePrint Archive, Report 2012/144, 2012,
https://eprint.iacr.org/2012/144.

https://eprint.iacr.org/2017/392
https://eprint.iacr.org/2017/392
https://eprint.iacr.org/2023/946
https://eprint.iacr.org/2023/946
https://eprint.iacr.org/2012/144

image size setting decompression processing compression total SSI compression ratio
256× 256 1 8s < 1s 5s 13s 0.95 100 : 34.4
256× 256 2 11.3s 4s 9s 24.5s 0.935 100 : 83.3
252× 252 3 39.5 1s 29s 69.5s 0.91 100 : 24.6
252× 252 4 60s 19s 62s 131s 0.905 100 : 35.7
512× 512 1 7.5s < 1s 5s 13.5s 0.95 100 : 34.4
512× 512 2 11s 4s 9s 24ss 0.935 100 : 83.3
504× 504 3 39s < 1s 29s 68s 0.92 100 : 24.6
504× 504 4 50s 18.5s 62s 130.5s 0.92 100 : 35.7

1024× 1024 1 8s < 1s 5s 13s 0.98 100 : 34.4
1024× 1024 2 11s 4s 9.7s 24.7s 0.975 100 : 83.3
1022× 1022 3 41s < 1s 29s 70s 0.96 100 : 24.6
1022× 1022 4 61.5s 19s 62s 142.5s 0.97 100 : 35.7
2048× 2048 1 107s 1s 70s 178s 0.98 100 : 34.4
2048× 2048 2 107s 36.5s 79s 222.5s 0.98 100 : 83.3
2044× 2044 3 137s < 1s 99.5s 236.5s 0.975 100 : 24.6
2044× 2044 4 136s 41.5s 136s 313.5s 0.975 100 : 35.7

Table 1. Experimental results (server-side)

[8] Zvika Brakerski and Vinod Vaikuntanathan,
“Lattice-based FHE as secure as PKE,” in ITCS
2014, Moni Naor, Ed. Jan. 2014, pp. 1–12, ACM.

[9] Jung Hee Cheon, Andrey Kim, Miran Kim, and
Yong Soo Song, “Homomorphic encryption for
arithmetic of approximate numbers,” in ASI-
ACRYPT 2017, Part I, Tsuyoshi Takagi and Thomas
Peyrin, Eds. Dec. 2017, vol. 10624 of LNCS, pp.
409–437, Springer, Heidelberg.

[10] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva,
and Malika Izabachène, “TFHE: Fast fully homo-
morphic encryption over the torus,” Journal of Cryp-
tology, vol. 33, no. 1, pp. 34–91, Jan. 2020.

[11] Chiara Marcolla, Victor Sucasas, Marc Manzano,
Riccardo Bassoli, Frank H. P. Fitzek, and Najwa
Aaraj, “Survey on fully homomorphic encryption,
theory, and applications,” Proceedings of the IEEE,
vol. 110, no. 10, pp. 1572–1609, 2022.

[12] Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan, “(Leveled) fully homomorphic encryption
without bootstrapping,” in ITCS 2012, Shafi Gold-
wasser, Ed. Jan. 2012, pp. 309–325, ACM.

[13] Zvika Brakerski, “Fully homomorphic encryption
without modulus switching from classical GapSVP,”
in CRYPTO 2012, Reihaneh Safavi-Naini and Ran
Canetti, Eds. Aug. 2012, vol. 7417 of LNCS, pp.
868–886, Springer, Heidelberg.

[14] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva,
and Malika Izabachène, “Faster fully homomor-
phic encryption: Bootstrapping in less than 0.1 sec-
onds,” in ASIACRYPT 2016, Part I, Jung Hee Cheon
and Tsuyoshi Takagi, Eds. Dec. 2016, vol. 10031 of
LNCS, pp. 3–33, Springer, Heidelberg.

[15] Z. Wang, E.P. Simoncelli, and A.C. Bovik, “Multi-
scale structural similarity for image quality assess-

ment,” in The Thrity-Seventh Asilomar Confer-
ence on Signals, Systems & Computers, 2003, 2003,
vol. 2, pp. 1398–1402 Vol.2.

[16] Thomas Zinner, Oliver Hohlfeld, Osama Abboud,
and Tobias Hossfeld, “Impact of frame rate and reso-
lution on objective qoe metrics,” in 2010 Second In-
ternational Workshop on Quality of Multimedia Ex-
perience (QoMEX), 2010, pp. 29–34.

[17] Adel Almohammad, Gheorghita Ghinea, and
Robert M. Hierons, “Jpeg steganography: A perfor-
mance evaluation of quantization tables,” in 2009
International Conference on Advanced Information
Networking and Applications, 2009, pp. 471–478.

[18] Jin Chao, Ahmad Al Badawi, Balagopal Un-
nikrishnan, Jie Lin, Chan Fook Mun, James M.
Brown, J. Peter Campbell, Michael F. Chi-
ang, Jayashree Kalpathy-Cramer, Vijay Ramase-
shan Chandrasekhar, Pavitra Krishnaswamy, and
Khin Mi Mi Aung, “Carenets: Compact and
resource-efficient CNN for homomorphic infer-
ence on encrypted medical images,” CoRR, vol.
abs/1901.10074, 2019.

[19] Nayna Jain, Karthik Nandakumar, Nalini K. Ratha,
Sharath Pankanti, and Uttam Kumar, “Optimizing
homomorphic encryption based secure image analyt-
ics,” in 23rd International Workshop on Multimedia
Signal Processing, MMSP 2021, Tampere, Finland,
October 6-8, 2021. 2021, pp. 1–6, IEEE.

	 Abstract
	 Introduction
	 Related Work

	 Fully Homomorphic Encryption
	 Background on CKKS

	 Our Technique
	 Compression Algorithm.
	 Ciphertext packing.
	 Image processing.

	 Results.
	 Summary and Future Directions
	 References

