
Efficient Linkable Ring Signatures: New
Framework and Post-Quantum Instantiations

Yuxi Xue1, Xingye Lu1B, Man Ho Au1, and Chengru Zhang2

1 The Hong Kong Polytechnic University, Hong Kong
yuxi-ivy.xue@connect.polyu.hk

{mhaau,xing-ye.lu}@polyu.edu.hk
2 The University of Hong Kong, Hong Kong

u3008875@connect.hku.hk

Abstract. In this paper, we introduce a new framework for constructing
linkable ring signatures (LRS). Our framework is based purely on signa-
tures of knowledge (SoK) which allows one to issue signatures on behalf
of any NP-statement using the corresponding witness. Our framework
enjoys the following advantages: (1) the security of the resulting LRS
depends only on the security of the underlying SoK; (2) the resulting
LRS naturally supports online/offline signing (resp. verification), where
the output of the offline signing (resp. verification) can be re-used across
signatures of the same ring. For a ring size n, our framework requires a
SoK of the NP statement with size logn.

To instantiate our framework, we adapt the well-known post-quantum
secure non-interactive argument of knowledge (NIAoK), ethSTARK, into
an SoK. This SoK inherents the post-quantum security and has a sig-
nature size poly-logarithmic in the size of the NP statement. Thus, our
resulting LRS has a signature size of O(polylog(log n)). By comparison,
existing post-quantum ring signatures, regardless of linkability consider-
ations, have signature sizes of O(logn) at best. Furthermore, leveraging
online/offline verification, part of the verification of signatures on the
same ring can be shared, resulting in a state-of-the-art amortized verifi-
cation cost of O(polylog(logn)).

Our LRS also performs favourably against existing schemes in practical
scenarios. Concretely, our scheme has the smallest signature size among
all post-quantum ring signatures for any ring size larger than 32. In our
experiment, at 128-bit security and ring size of 1024, our LRS has a size
of 29KB, and an amortized verification cost of 0.3 ms, surpassing the
state-of-the-art by a significant margin. Even without considering amor-
tization, the verification time for a single signature is 128 ms, which is still
10x better than state-of-the-art succinct construction, marking it com-
parable to those featuring linear signature size. A similar performance
advantage can also be seen at signing.

Keywords: linkable ring signature · post-quantum cryptography · sig-
nature of knowledge

2 Y. Xue et al.

1 Introduction

Ring signatures [38] allow a user to sign messages anonymously on behalf of a
group without revealing the signer’s identity. Initially introduced by Rivest et al.
[38], the primary motivation behind ring signatures is to allow whistleblowers to
disclose information while keeping their identity confidential and proving the re-
liability of the information. Unlike group signatures [14], which require a central
manager to handle tasks such as generating users’ public keys, managing group
membership, and deanonymizing the signer, ring signatures achieve anonymity
without relying on a central manager, and each member can spontaneously form
ad-hoc groups.

Linkable ring signatures [29] (LRS) are ring signatures with reduced anonymity
to safeguard against potential abuses of complete anonymity. Specifically, LRS
are ring signatures with linkability, meaning that multiple signatures from the
same signer can be detected (i.e., linked).

In the literature, various notions of linkability have been considered. The
origin linkable ring signatures [29,30] allow linking of signatures generated using
the same key on the same ring (referred to as ring-based linkability hereafter).
In other words, in ring-based LRS, signatures on different rings from the same
signer will not be linked. In [21], signatures generated using the same key on
the same message can be linked, and we used the term message-based linkability
to describe this kind of linking. A variant called event-oriented linkability (aka
prefix linkability in [10]) is considered in [43,4,11,10]. In an event-oriented LRS,
signatures consist of an additional component called event-id, and signatures
generated from the same key with the same event-id can be linked. Another
common type of LRS offers one-time linkability [2,5,32,25]. In these schemes,
signatures generated using the same key can be linked, and typically, the signer
will use their key only once. [44] presents a transformation that turns any ring
signatures into a one-time LRS.

It is important to note that event-oriented linkability is the most general
form of linkability among the aforementioned notions. By setting the event-id to
be the ring or the message, the resulting event-oriented LRS becomes ring-based
or message-based linkability, respectively. Similarly, if we set the event-id to be
a fixed string, we have one-time linkability.

Linkable ring signatures are employed in various applications such as e-
voting [16] and privacy-oriented cryptocurrencies [42,37]. Anonymity decouples
voters from their ballots and prevents transactions from being linked to specific
accounts, while linkability prevents double-voting and double-spending.

The security of many existing linkable ring signature schemes [38,29,28] rely
on the hardness of integer factorization or discrete logarithms problem, making
them vulnerable to quantum computers. To defend against quantum attacks
that might emerge in the coming decades, post-quantum secure solutions are of
paramount importance. Presently, post-quantum cryptography research mainly
falls within five categories [15]: lattice-based, hash-based, code-based, isogeny-
based, and Multivariate polynomial cryptography.

Efficient LRS: New Framework and Post-Quantum Instantiations 3

Among the alternatives, existing post-quantum linkable ring signature schemes
primarily concentrate on lattice-based [5,8,2,47,31] and isogeny-based approaches
[8]. However, these schemes encounter practical limitations due to either their
substantial signature sizes [5,2,31,47], or comparatively slow runtime [8], espe-
cially in scenarios involving large rings. Specifically, the verification time com-
plexity of all existing post-quantum solutions is O(n) for ring size n, and the
current smallest signature size with 128-bit security and a ring size of 1024 is 55
KB from [8]. To address this limitation, we construct a hash-based linkable ring
signature scheme with O(polylog(log n)) amortized verifier time and signature
size. At the same security level and ring size, our LRS has a signature size of only
29 KB. More importantly, our scheme is an order of magnitude faster than [8] in
both signing and verification even without consideration of amortization. Indeed,
the time complexity of our scheme is comparable to the Raptor [33], the fastest
LRS in the literature featuring linear signature size. A comparison of existing
post-quantum ring signature schemes is presented in Table 1.

Table 1. Comparison of post-quantum linkable ring signatures. OTL MBL and RBL
respectively denote one-time, message-based and ring-based linkability.

OTL MBL RBL Signature size
Verifier time

Hardness assumptions Random Oracle
offline online

[39] ✗ ✗ ✗ O(n) O(n) CRHF Yes
[46] ✗ ✗ ✗ O(n) O(n) M-LWE, M-SIS Yes
[36] ✗ ✗ ✗ O(logn) O(n) M-LWE, M-SIS Yes
[20] ✗ ✗ ✗ O(logn) O(n) M-LWE, M-SIS Yes
[2] ✓ ✗ ✗ O(n) O(n) Ring-SIS Yes
[5] ✓ ✗ ✗ O(n) O(n) M-LWE, M-SIS Yes
[33] ✓ ✗ ✗ O(n) O(n) NTRU Yes
[8] ✓ ✗ ✗ O(logn) O(n) M-LWE, M-SIS / CSIDH-512 Yes

Ours ✓ ✓ ✓ O(polylog(logn)) O(n) O(polylog(log n)) CRHF Yes

1.1 Our Contribution

We summarize our contribution as follows.

- First, we introduce a new framework for constructing event-oriented link-
able ring signatures based on hash functions and signature of knowledge
(SoK) [13]. We provide rigorous security proof for this generic construction,
demonstrating that its security hinges on the security of the underlying hash
functions and SoK.

- Second, we instantiate our framework by adapting the hash-based post-
quantum non-interactive argument of knowledge (NIAoK) ethSTARK [41]
into an SoK. Our adaption involves adding zero-knowledge to ethSTARK,
which is crucial in transforming it into an SoK (through the Fiat-Shamir
heuristic). Also, we crafted the program representation of the execution trace
to enhance the efficiency of the signing process. The results in the first post-
quantum event-oriented linkable ring signature scheme.

4 Y. Xue et al.

- Third, we evaluate the performance of our LRS and show that it is highly
efficient. Asymptotically, our LRS achieves O(polylog(log n)) signature size
and amortized verification time for ring size n. At 128-bit security, our LRS
has the smallest signature size among all post-quantum LRS when ring size
n ≥ 32. Furthermore, we implement our LRS for concrete evaluation. The
online verification time is about 0.3 ms for ring size n = 8192. The overall
verification time is always an order of magnitude faster than those with sub-
linear signature size, and is comparable with the state-of-the-art linear-size
LRS. This high efficiency, even when dealing with large ring sizes, makes our
scheme ideal for applications involving a significant number of users.

1.2 Overview of Our Contributions

Our Framework. We first describe our framework for constructing LRS from
hash functions and SoK. In our framework, each user’s public key pk is derived
from their private key sk via hashing operation: pk = Hash(sk). A collection of
user public keys, pk1, pk2, ..., pkn, forms the ring R.

To sign message m on behalf of ring R with respect to event-id e, the signer
first constructs a Merkle tree using all public keys in R as its leaf nodes and ob-
tains the Merkle root rt. The signer then calculates the Merkle path3 P from the
hash leaf of the signer’s public key pkl to the root rt. An example of the Merkle
path is illustrated in Fig. 1. The signer further computes tag T = Hash(skl, e)
from its private key skl and event-id e.

Finally, the signer constructs a signature of knowledge SoKm on message m
for the NP-statement (e, rt, T): 1. Hash(skl) is a leaf of rt, 2. T = Hash(skl, e),
using witness (l, skl,P). The output of SoKm is a signature σs that demon-
strates the possession of witness with respect to the instance and the correct
signing of message m. For concreteness, one can think of an SoK as the proof-of-
knowledge turned into a signature using the Fiat-Shamir heuristic. Finally, the
signer outputs the LRS (σs, T).

On receiving the linkable ring signature (σs, T) on message m, event e and
ring R, the verifier will compute the Merkle root rt from R and form the instance
(e, rt, T). Then, the verifier will utilize the verification algorithm of SoKm to
check whether σs is a valid proof for instance (e, rt, T) on message m. Linkability
is achieved by checking whether the receiving signatures share the same tag T
as previous ones. If there is a match, the two signatures share the same signer.

The above signing and verification processes both require the construction
of a Merkle tree, which can be done offline after the ring R is known, while
before knowing the signing message. As a result, our framework naturally divides
into online/offline signing and verification phases. The online phase involves the
signing and verification of a SoKm.

3A Merkle path of a leaf node consists of all sibling nodes along the path from the
root to the leaf node.

Efficient LRS: New Framework and Post-Quantum Instantiations 5

Fig. 1. An Example Merkle path for pk3

𝑝𝑘!
𝐻𝑎𝑠ℎ(𝑠𝑘!)

𝑁!
𝐻𝑎𝑠ℎ(𝑝𝑘!)

𝑝𝑘"
𝐻𝑎𝑠ℎ(𝑠𝑘")

𝑝𝑘#
𝐻𝑎𝑠ℎ(𝑠𝑘#)

𝑝𝑘$
𝐻𝑎𝑠ℎ(𝑠𝑘$)

𝑝𝑘%
𝐻𝑎𝑠ℎ(𝑠𝑘%)

𝑝𝑘&
𝐻𝑎𝑠ℎ(𝑠𝑘&)

𝑝𝑘'
𝐻𝑎𝑠ℎ(𝑠𝑘')

𝑝𝑘(
𝐻𝑎𝑠ℎ(𝑠𝑘()

𝑁"
𝐻𝑎𝑠ℎ(𝑝𝑘")

𝑁#
𝐻𝑎𝑠ℎ(𝑝𝑘#)

𝑁$
𝐻𝑎𝑠ℎ(𝑝𝑘$)

𝑁%
𝐻𝑎𝑠ℎ(𝑝𝑘%)

𝑁&
𝐻𝑎𝑠ℎ(𝑝𝑘&)

𝑁'
𝐻𝑎𝑠ℎ(𝑝𝑘')

𝑁(
𝐻𝑎𝑠ℎ(𝑝𝑘()

𝑁)
𝐻𝑎𝑠ℎ(𝑁!|𝑁")

𝑁!*
𝐻𝑎𝑠ℎ(𝑁#|𝑁$)

𝑁!!
𝐻𝑎𝑠ℎ(𝑁%|𝑁&)

𝑁!"
𝐻𝑎𝑠ℎ(𝑁'|𝑁()

𝑁!#
𝐻𝑎𝑠ℎ(𝑁)|𝑁!*)

𝑁!$
𝐻𝑎𝑠ℎ(𝑁!!|𝑁!")

𝑟𝑡
𝐻𝑎𝑠ℎ(𝑁!#|𝑁!$)

For public key pk3 in list {pki}i∈[8], the path P is (N4, N9, N14).

Our Instantiation. In our instantiation, we adopt the non-interactive ethSTARK
[41] as the underlying argument system to build SoKm. We choose ethSTARK
for several reasons. Firstly, ethSTARK is transparent, eliminating the need for
a trusted setup. Secondly, ethSTARK is a hash-based NIAoK resistant to at-
tacks from quantum computers. Lastly, for the proof of computation with purely
hash operations, the verification time and proof size in ethSTARK are poly-
logarithmic to the number of hash operations.

However, the plain ethSTARK lacks zero-knowledge property and thus can
not be directly utilized or transformed into an SoK. To accommodate this, we
augment ethSTARK with the zero-knowledge property, which can be considered
an independent interest.

Furthermore, we optimize the NP statement of our SoKm from ethSTARK
to improve efficiency. As mentioned in [26], while general-purpose virtual ma-
chines for the STARK program are available, e.g., Cairo [22], hand-optimized
representations are often needed for better efficiency. We construct an execution
trace consisting solely of individual traces of hash operations. We also optimized
the representation of the trace table so that the number of hash operations scales
logarithmically with the ring size. Specifically, our execution trace consists only
of 8 registers, and the total number of states is linear in log n, where n is the ring
size. Recall that in our case, the verification time and proof size in ethSTARK
scale poly-logarithmically in the number of hash operations. Thus, by leveraging
our hand-optimized representation, our scheme achieves a further improvement
in efficiency, resulting in a verification time and proof size of O(polylog(log n)).
This improvement in efficiency is a crucial aspect of our instantiation.

Table 2 provides a signature size comparison between our instantiation and
existing post-quantum linkable ring signature schemes. With 128-bit security,
our scheme achieves the smallest signature size when the ring size exceeds 25.
In ethSTARK, the length of the trace table is required to be a power of 2.
The actual trace length of our scheme is 8 log(n) + 24, where n is the ring size.

6 Y. Xue et al.

Therefore, in order to meet the trace table length required by ethSTARK, extra
randomness needs to be padded to the table so that its length is a power of
two. The trace lengths remain the same within a certain range of ring sizes. For
example, when the ring size ranges from 25 to 213, the trace length remains at
128. This uniform trace length leads to a consistent signature size across this
range of ring sizes. The predictable signature size allows for easier integration
and evaluation of our instantiation in various scenarios.

In Figure 2a, 2b, we present the comparisons of the signing time and veri-
fication time, all with a security level of 128-bit. In comparison to Raptor [33],
which is based on NTRU, our method achieves a higher security level and offers a
smaller signature size when the ring size exceeds 25. Furthermore, our construc-
tion demonstrates a smaller signature size and faster runtime when compared
to Falafl for 2 [8], which relies on module short integer solution (M-SIS) prob-
lem and module learning with error (M-LWE) problem. While the isogeny-based
scheme Calamari [8] has the smallest signature size, its runtime is significantly
slower, and it only provides 128 bits of classical security and 60 bits of quan-
tum security. Due to its slow performance, we exclude it from the comparison in
Figure 2a, 2b.

Table 2. Signature size comparison

Number of users

Security bits 23 26 28 210 212 213 214

Raptor [33] 100 bits 11KB 83KB 327KB 1302KB 5203KB 10327KB 20644KB
Falafl for 2 [8] ≥ 128 bits 50KB 52KB 53KB 54KB 55KB 55KB 56KB
Calamari [8] 60 bits 5KB 8KB 10KB 12KB 14KB 15KB 16KB
This work 99 bits 17KB 20KB 20KB 20KB 20KB 20KB 26KB
This work 128 bits 25KB 29KB 29KB 29KB 29KB 29KB 38KB

8 64 1024 2048 4096 8192
Ring size

1

4

16

64

256

1,024

4,096

16,384

65,536

Si
gn

in
g

tim
e

[m
s]

Raptor
Falafl for 2
Ours
Ours online

(a) Signing time comparison

8 64 1024 2048 4096 8192
Ring size

1
2

8

32

128

512

2,048

8,192

32,768

Ve
rif

ica
tio

n
tim

e
[m

s]

Raptor
Falafl for 2
Ours
Ours online

(b) Verification time comparison

Fig. 2. Performance comparison with 128-bit security

Efficient LRS: New Framework and Post-Quantum Instantiations 7

1.3 Related Work

Post-quantum Ring Signatures Brakerski and Kalai [12] introduced a generic
ring signature scheme based on the short integer solution (SIS) assumption in
2010. However, it is weakly secure and requires extra effort to transform into a
fully secure scheme. Building upon Lyubashevsky’s [34] lattice-based signature
scheme, Aguilar-Melchor et al. [1] further extended it to construct a ring signa-
ture scheme with a linear size. To shorten the signature size, Libert et al. [27]
proposed the first logarithmic-sized post-quantum ring signature scheme. This
scheme utilizes accumulators to prove membership by demonstrating the pos-
session of a hash chain. Thereafter, subsequent works based on zero-knowledge
proofs were introduced. Esgin et al. [19,18,20] presented a lattice-based one-out-
of-many proof based on the proposals [23,9]. Lyubashevsky et al. [36] proposed
a set membership proof from ideal lattices and transformed it into a logarithmic
size ring signature.

Different from the constructions based on accumulators and zero-knowledge
proofs, Yuen et al. [46] introduced a novel ring signature scheme consisting of two
rings, a commitment ring and a challenge ring. Their scheme can be instantiated
from both DL-based and lattice-based cryptography. Apart from the previous
lattice-based solutions, Scafuro and Zhang [39] proposed one-time traceable ring
signatures constructed purely from hash functions. Their scheme requires no
hardness assumptions and uses hash functions in a black-box way.

Post-quantum Linkable Ring Signatures Yang et al. [45] proposed the first post-
quantum linkable ring signature scheme of logarithmic size. Their scheme was
built on the lattice-based weak pseudo-random function. Torres et al. [2] con-
structed a one-time linkable ring signature with unconditional anonymity based
on lattice-based signature scheme BLISS [17]. In concurrent work, Baum et al. [5]
presented a one-time linkable ring signature scheme constructed from a collision-
resistant lattice-based hash function. The paper achieved linkability without
heavy zero-knowledge proof.

In the line of general lattice-based linkable ring signatures, Zhang et al. [47]
proposed a logarithmic size construction based on ideal lattices using lattice
signatures [35]. To be more applicable in cryptocurrencies, Liu et al. [31] pre-
sented a lattice-based linkable ring signature scheme with stealth addresses to
capture practical situations under adversarially chosen-key attacks. Lu et al. [33]
presented a practical lattice-based linkable ring signature scheme based on the
generic ring signature framework from Rivest et al. [38] adapted towards the
lattice setting. Specifically, while Revist et al.’s framework employs the one-way
trapdoor permutation, Lu et al.’s framework was built on a new primitive called
Chameleon Hash Plus, and they presented an instantiation from the NTRU lat-
tice. Beullens et al. [8] proposed logarithmic-size linkable ring signatures based
on a group action. Their scheme can be instantiated using isogeny or lattice
assumption, and is the first construction of linkable ring signatures from isogeny
assumption.

8 Y. Xue et al.

2 Preliminaries

2.1 Notations

We consider the field Fp to be a prime field that contains a sufficiently large
multiplicative sub-group. We use the notation [d] to denote the set {1, 2, . . . , d},
and l[i] to denote the ith value in the vector l = (l1, . . . , ln) ∈ Fn

p . We use

(D(0), D(1)) to represent the two elements in D ∈ F2
p and use t←$ T to represent

that we randomly select an element t from the set T .

2.2 Signatures of knowledge

We follow the notion of signature of knowledge as described in [10]. In a signature
of knowledge scheme, a signature is issued on behalf of any NP statement, that
can be interpreted as “One who has signed message m holds a valid witness w
to the NP statement x”.

A signature of knowledge is a set of probabilistic polynomial time algorithms
(Gen,Sign,Verify).

- pp ← Gen(1λ): takes the security parameter λ as input and outputs public
parameters pp.

- σ ← Sign(pp,x,w,m): takes the statement x, witness w and a message m
as inputs and outputs signature σ.

- 0/1 ← Verify(pp,x, σ,m): takes the statement x, a signature σ, and a mes-
sage m as inputs and outputs a bit representing accept(1) or reject(0).

The triple of efficient algorithms (Gen,Sign,Verify) is called a signature of
knowledge for a relation R if the following properties hold:

– Correctness. For all λ ∈ N,m ∈ {0, 1}∗, (x,w) ∈ R,

Pr

[
Verify(pp,x, σ,m) = 1

pp← Gen(1λ),
σ ← Sign(pp,x,w,m)

]
= 1.

– Simulatability. There exists a polynomial time simulator Sim consisting of
algorithms SimGen and SimSign,
• (pp, τ)← SimGen(1λ): takes the security parameter λ as input and out-

puts public parameters pp and trapdoor τ .
• σ ← SimSign(pp, τ,x,m): takes the public parameters pp, trapdoor τ ,

statement x, and a message m as input and produces a simulated signa-
ture σ.

The oracle Sim receives the input values (x,w,m), checks whether w is valid
and returns σ ← SimSign(pp, τ,x,m). For any non-uniform polynomial time
adversary A with oracle access to Sim and signer S,

Pr
[
1← ASim(pp) (pp, τ)← SimGen(1λ)

]
≈ Pr

[
1← AS(pp) pp← G(1λ)

]
.

Efficient LRS: New Framework and Post-Quantum Instantiations 9

– Simulation Extractability. In addition to oracle Sim, there exists a poly-
nomial time extractor Ex such that for any non-uniform polynomial time
adversary A,

Pr

 (pp,x,w) ∈ R∨
(x,w,m) ∈ Q∨
Verify(x, σ,m) = 0

(pp, τ)← SimGen(1λ),
(x,m, σ)← ASim(pp),
w← Ex(pp, τ,x,m, σ)

 ≈ 1.

where Q denotes all successful queries (x,w,m) that A has sent to Sim.

2.3 ethSTARK Protocol

STARK [7] (Scalable Transparent ARgument of Knowledge) is a class of proof
system addressing the computational integrity (CI) statements, where the system
translates CI statements such as “u is the result of executing hash function f for
T steps on input v” into formal algebraic language. ethSTARK [41] is a member
of the STARK family.

An execution trace of a program running for T steps is a w×T table, in which
w is the number of registers. Each column in the execution trace table corre-
sponds to a specific register, tracking its contents and changes over time as the
program executes. Each row in the table represents the state of the computation
at a particular moment during the execution. In ethSTARK, the verification of
a CI statement is initially reduced to the task of checking whether the Domain
Extension for Eliminating Pretenders (DEEP) composition polynomial has a
low degree. The passing of the low-degree test indicates that the execution trace
satisfies the given constraints. This low-degree test is achieved by leveraging the
Fast Reed-Solomon Interactive Oracle Proof of Proximity (FRI) [6] protocol.
Furthermore, the protocol can be converted to be non-interactive via the Fiat-
Shamir heuristic. For more scheme details, please refer to the literature [41].

The current version of ethSTARK does not consider the zero-knowledge prop-
erty. It can be added using the same approach as ZK-STARK [7]. We describe
this implementation in appendix A.

2.4 Merkle Tree

In the following, we describe a set of algorithms for the implementation of the
Merkle tree. First, we conclude a hash functionH : Xt → Yt using two algorithms
(HGen,H).

- ppH ← HGen(1λ): takes the security parameter as input and outputs public
parameters ppH.

- D ← H(m): takes the message m as input and outputs the hash output D.

Next, we define the algorithms for the Merkle tree as follows,

Definition 1 (Merkle Tree). Given a hash function H and a list of elements
s = (s1, . . . , sn), the Merkle tree consists of three algorithms as (MTree,GPath,MPath)
where:

10 Y. Xue et al.

- (rt,mtree) ← MTree(s): on input a list of elements s, it uses {H(si)}i∈[n]

as leaves to construct a Merkle tree. The algorithm outputs a description of
the tree mtree and the root rt.

- P ← GPath(l,mtree): on input an index l, a description of a Merkle tree
mtree, it outputs the Merkle path P to the leaf node H(sl), which contains
the siblings of sl and its ancestors’.

- rt′ ← MPath(sl,P , l): on input an element sl in the list s, a Merkle path P
and an index l, it outputs the reconstructed root rt′.

3 Linkable Ring Signature Schemes

We now review the definition of linkable ring signatures in [28,33].

Definition 2 (Linkable ring signature scheme). A linkable ring signature
scheme consists of five PPT algorithms as LRS = (Gen,KeyGen,Sign,Verify, Link)
where:

- pp ← LRS.Gen(1λ): takes the security parameter λ as input and outputs
public parameters pp.

- (pki, ski) ← LRS.KeyGen(pp): takes the public parameters pp as input and
outputs a pair of public and private keys.

- σ ← LRS.Sign(e, skl,m,R): on input an event-id e, a private key skl, a
message m, a list of public keys R that includes the public key corresponding
to the private key skl, it outputs a signature σ.

- 0/1 ← LRS.Verify(e, σ,m,R): takes an event-id e, a signature σ, a message
m, a list of public keys R as input and outputs a bit representing accept(1)
or reject(0).

- 0/1 ← LRS.Link(e, σ, σ′,m,m′,R,R′): takes an event-id e, signatures σ, σ′,
messages m,m′, lists of public keys R,R′ as input and outputs a bit repre-
senting linked(1) or unlinked(0).

Security notions we introduce the following oracles which can be accessed by
adversaries during the game.

– Joining oracle pki ← JO(⊥): the joining oracle JO adds a new member to
the system and returns a public key for the new member.

– Corruption oracle ski ← CO(pki): given a public key pki produced by JO,
the corruption oracle CO returns the associated private key ski.

– Signing oracle σ ← SO(e,R, pki,m): given en event-id e, a list of public keys
R, a public key pki ∈ R and a message m, the signing oracle SO returns a
valid signature σ.

Unforgeability requires that an adversary A cannot create a valid signature
without having any secret key in that ring. We define the unforgeability game
Gameforge between an adversary A and a challenger C as:

- C runs pp← LRS.Gen(1λ) and sends pp to A.

Efficient LRS: New Framework and Post-Quantum Instantiations 11

- (e, σ,m,R)← ASO,CO,JO(pp).
- A wins Gameforge if (i) LRS.Verify(e, σ,m,R)= 1. (ii) all public keys in R
are produced by JO. (iii) no public key in R has been input to CO. (iv) σ
is not generated by SO.

The advantage ofA inGameforge is defined as advforgeA = Pr[A wins Gameforge].

Definition 3 (Unforgeability). A linkable ring signature scheme is unforge-

able if for any polynomial-time adversary A, the advantage advforgeA for A to
win the unforgeability game Gameforge is negligible.

Anonymity requires that an adversary A cannot identify which is the signer
who produced the signature. We define the anonymity game Gameanon between
an adversary A and a challenger C as:

- C runs pp← LRS.Gen(1λ) and sends pp to A.
- A picks an event-id e, a message m and a set of public keys R = {pki}i∈[n]

where R← AJO(pp), and sends (e,m,R) to C.
- C picks b←$ [n] and runs σ ← LRS.Sign(e, skb,m,R) and sends σ to A.
- A outputs b′ and wins the game Gameanon if b′ = b.

The advantage of A in Gameanon is defined as advanonA = Pr[A wins Gameanon].

Definition 4 (Anonymity). A linkable ring signature scheme is anonymous if
for any polynomial-time adversary A, with the ring size n, the advantage advanonA

for A to win the anonymity game Gameanon is negligible close to 1/n.

Linkability requires that an adversary A cannot produce two unlinked sig-
natures using the same private key. We define the linkability game Gamelink

between an adversary A and a challenger C as:

- C runs pp← LRS.Gen(1λ) and sends pp to A.
- (e, σi,mi,Ri)← ASO,CO,JO(pp) for i ∈ [n].
- A wins the game GamelinkA if (i) LRS.Link(e, σi, σj ,mi,mj ,Ri,Rj) = 0 for
i, j ∈ [n] and i ̸= j. (ii) LRS.Verify(e, σi,mi,Ri) = 1. (iii) no σi is generated
by SO. (iv) all public keys in Ri are produced by JO. (v) A queried CO less
than n times.

The advantage of A in Gamelink is defined as advlinkA = Pr[A wins Gamelink].

Definition 5 (Linkability). A linkable ring signature scheme is linkable if for
any polynomial-time adversary A, the advantage advlinkA for A to win the link-
ability game Gamelink is negligible.

Non-slanderability requires that an adversary A cannot produce a valid sig-
nature that links to a signature generated by an honest signer. We define the
non-slanderability game Gameslan between an adversary A and a challenger C
as:

- C runs pp← LRS.Gen(1λ) and sends pp to A.

12 Y. Xue et al.

- A sends C an event-id e, a message m, a list of public key R and a public
key pk, where pk ∈ R.

- C runs σ ← LRS.Sign(e, sk,m,R) and sends the signature σ to A, where sk
is the associated private key of pk.

- (σ′,m′,R′)← ASO,CO,JO(pp, σ).
- A wins the game Gameslan if (i) pk has not been input to CO and SO. (ii) σ′

is not generated by SO. (iii) LRS.Verify(e, σ′,m′,R′) = 1. (iv) LRS.Link(e, σ, σ′,
m,m′,R,R′) = 1.

The advantage of A in Gameslan is defined as advslanA = Pr[A wins Gameslan].

Definition 6 (Non-slanderability). A linkable ring signature scheme is non-
slanderable if for any polynomial-time adversary A, the advantage advslanA for A
to win the non-slanderability game Gameslan is negligible.

4 Our Construction

We present our event-oriented linkable ring signature scheme. We begin by in-
troducing the framework and then describe the instantiation of our framework.

4.1 Framework

Assuming the number of members in the ring R is n, and R is a vector of public
keys (pk1, . . . , pkn). We start by showing how to prove the signer’s private key
skl was used to generate the tag T , while also confirming that its associated
public key pkl exists within the ring R.

Let e be the event-id, l be the signer’s index in binary form, rt be the Merkle
root of tree mtree generated using the ring R, and P be the Merkle path for
pkl in mtree. We define two one-way and collision resistant hash functions Hk :
Xk → Yk and Ht : Xt → Yt. On input of a security parameter λ, let k = ⌈log n⌉,
the relation Rs is defined as :

Rs = {((e, rt, T), (P , l, skl)) : e, skl ∈ Xk ∧ rt, T ∈ Yt ∧ l ∈ {0, 1}k∧
P = {Pi}i∈[k] ∧ Pi ∈ Yt ∧ T = Ht(skl, e) ∧ rt = MPath(Hk(skl),P , l)}

where the algorithms (MTree,GPath,MPath) defined in section 2.4 are used to
prove the membership of signer’s public key pkl in the ring.

Let m be the message to be signed. We incorporate a signature of knowledge
SoKm for the relation Rs on m and output a signature σs. A signature of
knowledge issues the public key signatures on behalf of NP statements. That
is, if σs is a valid signature, it indicates that the signer possesses the witness
(P , l, skl), and the relation Rs holds.

The public parameters in the framework include the public parameters for
Hk,Ht in the setup phase HGen, and the public parameters for SoKm. In the
offline phase, the prover and the verifier both construct a Merkle tree using all
the public keys in the ring R to obtain the tree root rt. In the online phase, the

Efficient LRS: New Framework and Post-Quantum Instantiations 13

Setup: pp← LRS.Gen(1λ)

Define functions Hk : Xk → Yk,Ht : Xt → Yt.

ppHk
← HGen(1λ), ppHt

← HGen(1λ),

pps ← SoKm.Gen(1
λ).

Return pp = (Hk,Ht, ppHk
, ppHt

, pps).

Key Generation: (pk, sk)← LRS.KeyGen(pp)

sk ←$ Xk, pk = Hk(sk) ∈ Yk.

Return (pk, sk).

Signing: σ ← LRS.Sign(e, skl,m,R)

•One-time offline signing per ring :

rt,mtree← MTree(R).

•Online signing :

P = GPath(l,mtree), T = Ht(skl, e),

σs ← SoKm.Sign(pp, (e, rt, T), (P , l, skl),m).

Return σ = (σs, T).

Verification 0/1← LRS.Verify(e, σ,m,R)

•One-time offline verification per ring :

rt,mtree← MTree(R).

•Online verification :

Parse σ = (σs, T).

Return 0/1← SoKm.Verify(pp, (e, rt, T), σs,m).

Linking: 0/1← LRS.Link(e, σ, σ′,m,m′, R,R′)

Parse σ = (σs, T), σ
′ = (σ′

s, T
′). If T ′ = T, return 1, otherwise 0.

Fig. 3. Linkable Ring Signature Scheme Framework

signer and the verifier engage in the SoKm protocol on message m. We describe
the framework of our linkable ring signature scheme in Figure 3.

We present the security proof for our framework in the full version, and give
a short intuition of the proof in Appendix B.

4.2 Instantiation

In this section, we instantiate our framework using the Rescue-Prime hash func-
tion [40] and an SoK based on ethSTARK [41].

We choose a prime field Fp with p = 2128 − 45 · 240 + 1. In our construction,
we use the Rescue-Prime hash function, referred to as H, for both hash functions
Hk and Ht. This particular hash function is chosen because it is arithmetization-
friendly, meaning it requires fewer operations in the underlying finite field than
more complex hash functions like SHA3, making them more efficient within
arithmetic circuits and is therefore well-suited for use in zero-knowledge proof
systems. For clarity of reference throughout the rest of the paper, we will use
the notation H to refer to both Hk and Ht.

To achieve 128-bit security, we configure the Rescue-Prime hash function H
to have a state width of wh = 6. We also set the rate of the sponge construction of
H to 2, meaning that H : F∗

p → F2
p outputs 2 field elements. Furthermore, we set

the number of rounds in H to 7. Considering the key generation process within
our system, given a signer’s private key skl ∈ Fp, we calculate the corresponding
public key pkl as pkl = H(skl) ∈ F2

p.

14 Y. Xue et al.

Construct SoK from ethSTARK. To adapt ethSTARK into a SoK, we first incor-
porate zero-knowledge properties into non-interactive ethSTARK to build a non-
interactive zero-knowledge argument of knowledge. The details of this process
can be found in appendix A. In non-interactive ethSTARK, the non-interaction
property is achieved through the use of the Fiat-Shamir transformation. We
denote the hash function utilized in this transformation as Hf , which hashes a
description of the statement and the public input. We argue that if Hf also takes
the message m ∈ {0, 1}∗ as input to generate the challenge, the resulting zero-
knowledge non-interactive ethSTARK will result in a signature of knowledge
SoKm on m.

Note that STARK [7] is utilized to verify the computational integrity (CI) of
the computation. To prove the following relation Rs, we transform the original
statement into a CI statement that concerns the correctness of the computation
of the procedure I and some additional constraints.

Rs = {((e, rt, T), (P , l, skl)) : e, skl ∈ Fp ∧ rt, T ∈ F2
p ∧ l ∈ {0, 1}k∧

P = {Pi}i∈[k] ∧ Pi ∈ F2
p ∧ T = Ht(skl, e) ∧ rt = MPath(Hk(skl),P , l)}

We define the procedure I as in Algorithm 1.

Algorithm 1 Procedure I((e, rt, T), (P , l, skl))

1: T = Ht(skl, e)
2: pkl = Hk(skl)
3: rt′ = Hk(pkl)
4: for i← 1, log(n) do
5: if l[i] == 1 then
6: rt′ ← Hk(Pi, rt

′)
7: else
8: rt′ ← Hk(rt

′, Pi)
9: end if
10: end for

Construct execution trace. Having transformed the CI statement, we proceed
to reduce it to an execution trace and a set of polynomial constraints, which
involves constructing our hand-optimized representations of the program. Recall
that an execution trace is a sequence of machine states with w registers that lasts
for T states. The width of our execution trace table is w = 8, and we denote these
registers as r1, . . . , r8. To be more specific, each hash operation takes N = 8 rows
and wh = 6 columns in the trace table. We concatenate the traces of individual
hashes, resulting in the total number of states C = N · log(n)+3N . However, the
actual trace length must be a power of 2, we pad the trace to length T , which
is the smallest power of 2 that is greater than C.

ethSTARK utilizes periodic columns to specify the periodic list of constants,
which includes the round constants for the hash function. These periodic columns

Efficient LRS: New Framework and Post-Quantum Instantiations 15

are available to the verifier and are not included in the execution trace as part
of the witness. In our implementation, we construct periodic columns rt, rp. The
cell values of rt are set to 0 in every state except for S1 and SN which are 1.
The cell values of rp are 0 in state SbN and 1 in other states, where b ∈ [TN]. We
present the execution trace table and the periodic columns in Table 3.

Table 3. Execution trace for our scheme. Set l[1] = 0, l[2] = 1, l[i] = 1.

rt rp r1 r2 r3 r4 r5 r6 r7 r8
S1 1 1 0 skl skl e 0 0 0 0

0 1 0 skl Hash

S8 1 0 0 skl T (0) T (1) - - - -
S9 0 1 0 0 skl 1 0 0 0 0

0 1 0 0 Hash

S16 0 0 0 0 pk(0) pk(1) - - - -

S17 0 1 0 0 pk(0) pk(1) 0 0 0 0
0 1 0 0 Hash

S24 0 0 0 0 rt(0) rt(1) - - - -

S25 0 1 l[1] 0 rt(0) rt(1) P (0)[1] P (1)[1] 0 0
0 1 0 0 Hash

S32 0 0 0 0 rt(0) rt(1) - - - -

S33 0 1 l[2] 0 P (0)[2] P (1)[2] rt(0) rt(1) 0 0
0 1 0 0 Hash

S40 0 0 0 0 rt(0) rt(1) - - - -
...

S25+8i 0 1 l[i] 0 P (0)[i] P (1)[i] rt(0) rt(1) 0 0
0 1 0 0 Hash

S32+8i 0 0 0 0 rt(0) rt(1) - - - -
...

SC 0 0 0 0 rt(0) rt(1) - - - -
...

ST 0 0

Represent constraints in polynomial form. As defined in [7], we have two types of
constraints, where the transition constraints guarantee that every pair of succes-
sive states in the trace table meets the constraints specified by the computation,
and the boundary constraints ensure that the values of particular cells in the
trace table are equal to the given values.

We denote ri to be the current state and r′i to be the next state of the
register. Let fRXLIX (·, ·) be a function that captures a single round of rescue
permutation. Denote the trace cell value in register i, state j as ri,j . For the
transition constraints, we require that all hash operations are executed correctly,
both the tag and public key calculations be performed using the same private
key, and that the Merkle tree reconstruction be performed using the computed

16 Y. Xue et al.

public key from the previous step. We enforce the transition constraints on every
row as:

(i) Vector l is a bit string: (rp − 1) · r′1 · (r′1 − 1) = 0.
(ii) Value skl in cell r2,1 is the same in r3,1: rp · rt · (r2 − r3) = 0.
(iii) Value skl in register r2 is the same from S1 to S8: rp · (r2 − r′2) = 0.
(iv) Value skl in cell r2,8 is the same in r3,9: (rp − 1) · rt · (r2 − r′3) = 0.
(v) Merkle root reconstruction is computed correctly:

(rp − 1) · (rt − 1) · r′1 · (r3 − r′5) · (r4 − r′6) = 0,
(rp − 1) · (rt − 1) · (r′1 − 1) · (r3 − r′3) · (r4 − r′4) = 0.

(vi) All Rescue-XLIX permutations are computed correctly:
rp · fRXLIX (r′i, ri) = 0 for i ∈ [3, 8].

For the boundary constraints, we require the message m, tag T , e and the re-
constructed root rt′ to be the claimed value, where the verifier checks whether
rt′ = rt(0), rt(1) is the same as the root rt computed in the preprocessing phase.
We place the boundary constraints: (i) r4,1 = e. (ii) r3,8, r4,8 = T (0), T (1).
(iii) r3,C , r4,C = rt(0), rt(1). After interpreting each column in the trace table
as a polynomial over the trace evaluation domain, we have the witness and con-
straints in polynomial form. If the computation is honest, the execution trace
will satisfy all constraints.

4.3 Efficiency Analysis

We evaluate the performance on an i9-12900k CPU with 64GB RAM. We set the
parameters as in Table 4 for 128-bit security. Within ethSTARK, the number of
queries denotes the sum of queries to the FRI protocol; more queries increase se-
curity at the cost of larger proofs and greater complexity for both the prover and
verifier. For a fixed security level, increasing the blowup factor would increase the
prover time while reducing the proof size and verification time. A higher grinding
factor increases the computational expense for a malicious prover to generate a
false proof, thereby contributing to greater security but also demanding more
time from the prover.

Computational Efficiency. Our scheme has a linear offline time andO(polylog(log n))
online verifier time in the ring size n. As shown in Figure 2b, our verification time
is primarily influenced by the linear offline preprocessing phase, which accounts
for 99% of the total time for a ring size of 28, and the portion of preprocess-
ing time increases as the ring size grows. In particular, for a ring size of 213,
our online verification only takes 0.3 ms, whereas the offline preprocessing takes
899 ms. Thus, we recommend applying our signature to applications with static
rings so that only one offline processing is required. We present our evaluation
in table 5. Similarly to the signature size, the efficiency of the online signing and
verification processes is influenced by the length of the execution trace. There-
fore, when the ring size lies in a certain range, the online performance remains
consistent.

Efficient LRS: New Framework and Post-Quantum Instantiations 17

Table 4. Concrete parameters of our implementation.

Description Value

State width of H 6

Rate of sponge constructions of H 2

Number of rounds of H 7

Number of queries 32

Blowup factor 16

Grinding factor 20

Table 5. Performance measurements of our scheme with 128-bit security bits.

Number of users 23 26 210 211 212 213

Online signing time 25 ms 47 ms 48 ms 51 ms 48 ms 50 ms
Online verifying time 0.3 ms 0.3 ms 0.3 ms 0.3 ms 0.3 ms 0.3 ms
Total signing time 25 ms 54 ms 160 ms 277 ms 497 ms 949 ms
Total verifying time 0.3 ms 7 ms 112 ms 226 ms 449 ms 899 ms

Signature Size. Our scheme exhibits a signature size that scalesO(polylog(log n))
with the ring size n. We present a size comparison of our scheme with other
schemes in Table 2. In practical scenarios, our performance is significantly influ-
enced by two factors: the choice of the SoK and the choice of the hash function
H. For instance, if we adopt GMiMC [3], the offline preprocessing time is faster,
but the proof size becomes larger compared to adopting the Rescue Prime hash
[40]. This discrepancy arises because GMiMC itself is faster, but it requires more
permutation rounds for implementation.

References

1. C. Aguilar-Melchor, S. Bettaieb, X. Boyen, L. Fousse, and P. Gaborit. Adapting
lyubashevsky’s signature schemes to the ring signature setting. Cryptology ePrint
Archive, Paper 2013/281, 2013. https://eprint.iacr.org/2013/281.

2. W. A. Alberto Torres, R. Steinfeld, A. Sakzad, J. K. Liu, V. Kuchta, N. Bhat-
tacharjee, M. H. Au, and J. Cheng. Post-quantum one-time linkable ring signature
and application to ring confidential transactions in blockchain (lattice ringct v1. 0).
In Information Security and Privacy: 23rd Australasian Conference, ACISP 2018,
Wollongong, NSW, Australia, July 11-13, 2018, Proceedings 23, pages 558–576.
Springer, 2018.

3. M. R. Albrecht, L. Grassi, L. Perrin, S. Ramacher, C. Rechberger, D. Rotaru,
A. Roy, and M. Schofnegger. Feistel structures for mpc, and more. In ESORICS
2019, pages 151–171. Springer, 2019.

4. M. H. Au, J. K. Liu, W. Susilo, and T. H. Yuen. Secure id-based linkable and
revocable-iff-linked ring signature with constant-size construction. Theoretical
Computer Science, 469:1–14, 2013.

https://eprint.iacr.org/2013/281

18 Y. Xue et al.

5. C. Baum, H. Lin, and S. Oechsner. Towards practical lattice-based one-time link-
able ring signatures. In Information and Communications Security: 20th Interna-
tional Conference, ICICS 2018, Lille, France, October 29-31, 2018, Proceedings,
pages 303–322. Springer, 2018.

6. E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Fast reed-solomon interac-
tive oracle proofs of proximity. In ICALP 2018. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

7. E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, 2018.

8. W. Beullens, S. Katsumata, and F. Pintore. Calamari and falafl: logarithmic (link-
able) ring signatures from isogenies and lattices. In ASIACRYPT 2020, pages
464–492. Springer, 2020.

9. J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, J. Groth, and C. Petit. Short account-
able ring signatures based on ddh. In ESORICS 2015, pages 243–265. Springer,
2016.

10. J. Bootle, K. Elkhiyaoui, J. Hesse, and Y. Manevich. Dualdory: Logarithmic-
verifier linkable ring signatures through preprocessing. In ESORICS 2020, pages
427–446. Springer, 2022.

11. X. Boyen and T. Haines. Forward-secure linkable ring signatures. In ACISP 2018,
pages 245–264. Springer, 2018.

12. Z. Brakerski and Y. T. Kalai. A framework for efficient signatures, ring signatures
and identity based encryption in the standard model. Cryptology ePrint Archive,
Paper 2010/086, 2010. https://eprint.iacr.org/2010/086.

13. M. Chase and A. Lysyanskaya. On signatures of knowledge. IACR Cryptol. ePrint
Arch., page 184, 2006.

14. D. Chaum and E. van Heyst. Group signatures, 1991.

15. L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. A. Perlner, and
D. Smith-Tone. Report on post-quantum cryptography, volume 12. US Department
of Commerce, National Institute of Standards and Technology, 2016.

16. S. S. Chow, J. K. Liu, and D. S. Wong. Robust receipt-free election system with
ballot secrecy and verifiability. In NDSS, volume 8, pages 81–94, 2008.

17. L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and
bimodal gaussians. In Advances in Cryptology–CRYPTO 2013: 33rd Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, pages 40–56. Springer, 2013.

18. M. F. Esgin, R. Steinfeld, J. K. Liu, and D. Liu. Lattice-based zero-knowledge
proofs: New techniques for shorter and faster constructions and applications. Cryp-
tology ePrint Archive, Paper 2019/445, 2019. https://eprint.iacr.org/2019/445.

19. M. F. Esgin, R. Steinfeld, A. Sakzad, J. K. Liu, and D. Liu. Short lattice-based
one-out-of-many proofs and applications to ring signatures. Cryptology ePrint
Archive, Paper 2018/773, 2018. https://eprint.iacr.org/2018/773.

20. M. F. Esgin, R. Steinfeld, and R. K. Zhao. Matrict+: More efficient post-quantum
private blockchain payments. In IEEE S&P 2022, pages 1281–1298. IEEE, 2022.

21. E. Fujisaki and K. Suzuki. Traceable ring signature. In PKC 2007, pages 181–200.
Springer, 2007.

22. L. Goldberg, S. Papini, and M. Riabzev. Cairo–a turing-complete stark-friendly
cpu architecture. Cryptology ePrint Archive, 2021.

23. J. Groth and M. Kohlweiss. One-out-of-many proofs: Or how to leak a secret and
spend a coin. In EUROCRYPT 2015, pages 253–280. Springer, 2015.

https://eprint.iacr.org/2010/086
https://eprint.iacr.org/2019/445
https://eprint.iacr.org/2018/773

Efficient LRS: New Framework and Post-Quantum Instantiations 19

24. V. Guruswami and M. Sudan. Improved decoding of reed-solomon and algebraic-
geometric codes. In Proceedings 39th Annual Symposium on Foundations of Com-
puter Science (Cat. No. 98CB36280), pages 28–37. IEEE, 1998.

25. M. Hu and Z. Liu. Lattice-based linkable ring signature in the standard model.
Cryptology ePrint Archive, 2022.

26. I. Khaburzaniya, K. Chalkias, K. Lewi, and H. Malvai. Aggregating and thresh-
oldizing hash-based signatures using starks. In ACM CCS 2022, pages 393–407,
2022.

27. B. Libert, S. Ling, K. Nguyen, and H. Wang. Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In EUROCRYPT 2016, pages 1–31. Springer, 2016.

28. J. K. Liu, M. H. Au, W. Susilo, and J. Zhou. Linkable ring signature with un-
conditional anonymity. IEEE Transactions on Knowledge and Data Engineering,
26(1):157–165, 2013.

29. J. K. Liu, V. K. Wei, and D. S. Wong. Linkable spontaneous anonymous group
signature for ad hoc groups. In ACISP, volume 4, pages 325–335. Springer, 2004.

30. J. K. Liu and D. S. Wong. Linkable ring signatures: Security models and new
schemes. In ICCSA 2005, pages 614–623. Springer, 2005.

31. Z. Liu, K. Nguyen, G. Yang, H. Wang, and D. S. Wong. A lattice-based linkable
ring signature supporting stealth addresses. In ESORICS 2019, pages 726–746.
Springer, 2019.

32. X. Lu, M. H. Au, and Z. Zhang. (linkable) ring signature from hash-then-one-way
signature. In IEEE TrustCom 2019, pages 578–585, 2019.

33. X. Lu, M. H. Au, and Z. Zhang. Raptor: a practical lattice-based (linkable) ring
signature. In ACNS 2019, pages 110–130. Springer, 2019.

34. V. Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures. In ASIACRYPT 2009, pages 598–616. Springer, 2009.

35. V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT 2012,
pages 738–755. Springer, 2012.

36. V. Lyubashevsky, N. K. Nguyen, and G. Seiler. Smile: Set membership from ideal
lattices with applications to ring signatures and confidential transactions. Cryp-
tology ePrint Archive, Paper 2021/564, 2021. https://eprint.iacr.org/2021/564.

37. S. Noether, A. Mackenzie, et al. Ring confidential transactions. Ledger, 1:1–18,
2016.

38. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In ASIACRYPT
2001, pages 552–565. Springer, 2001.

39. A. Scafuro and B. Zhang. One-time traceable ring signatures. In ESORICS 2021,
pages 481–500. Springer, 2021.

40. A. Szepieniec, T. Ashur, and S. Dhooghe. Rescue-prime: a standard specification
(sok). Cryptology ePrint Archive, Paper 2020/1143, 2020. https://eprint.iacr.org/
2020/1143.

41. S. Team. ethstark documentation. IACR Cryptol. ePrint Arch., 2021:582, 2021.

42. P. P. Tsang and V. K. Wei. Short linkable ring signatures for e-voting, e-cash and
attestation. In ISC 2005, pages 48–60. Springer, 2005.

43. P. P. Tsang, V. K. Wei, T. K. Chan, M. H. Au, J. K. Liu, and D. S. Wong. Separable
linkable threshold ring signatures. In INDOCRYPT 2004, pages 384–398. Springer,
2005.

44. X. Wang, Y. Chen, and X. Ma. Adding linkability to ring signatures with one-time
signatures. In ISC 2019, pages 445–464. Springer, 2019.

https://eprint.iacr.org/2021/564
https://eprint.iacr.org/2020/1143
https://eprint.iacr.org/2020/1143

20 Y. Xue et al.

45. R. Yang, M. H. Au, J. Lai, Q. Xu, and Z. Yu. Lattice-based techniques for ac-
countable anonymity: composition of abstract stern’s protocols and weak prf with
efficient protocols from lwr. Cryptology ePrint Archive, 2017.

46. T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au, and Z. Ding. Dualring: generic
construction of ring signatures with efficient instantiations. In CRYPTO 2021,
pages 251–281. Springer, 2021.

47. H. Zhang, F. Zhang, H. Tian, and M. H. Au. Anonymous post-quantum cryptocash.
In FC 2018, pages 461–479. Springer, 2018.

A Adding zero-knowledge to ethSTARK

We informally describe the process of incorporating zero-knowledge into eth-
STARK using the same approach as in ZK-STARK [7]. The intuition behind
this is to randomize trace polynomials and add random mask polynomials. As
introduced in Section 2.3, let w denote the trace width, T denote the trace
length and z denote the ZK parameter. Let Fq be the finite field, s be the
number of constraints, d be the maximal degree of the constraints, and I ⊂
{1, . . . , w} × {0, . . . , T − 1} be the pairs of indices, we have:

– K: finite extension of Fq of size qe and e ≥ 1.
– H0: trace evaluation domain, which is a multiplicative subgroup of F×

p of
size T , generated by g.

– D: evaluation domain,which is a nontrivial coset of a multiplicative group
D0 ⊂ K∗, where H0 ⊂ D0, noticing D ⊂ K∗ is disjoint from H0.

– C1, . . . , Cs: a set of constraints, where each constraint is an ordered pair
Ci = (Qi, Hi). Here Qi ∈ F≤d[Y], called the i-th constraint polynomial, is
a multivariate polynomial, and Hi ⊆ H0 is the i-th constraint enforcement
domain.

For prover P and verifier V, the protocol provides them with an instance
(Fq, w, d, s, g, I, {Ci}i∈[s]) and auxiliary interactive oracle proofs (IOP) parame-
ters (K, e,D, auxFRI), where auxFRI is auxiliary information required by the FRI
protocol.

For the definition of completeness, soundness, knowledge soundness and zero
knowledge, we refer to the original papers [41,7].

Description of the zero-knowledge protocol:

1. Prover sends execution trace oracle:
– With a w × T execution trace table, for i ∈ [w], P interprets each trace

column as a trace polynomial Pi : H0 → Fq of degree smaller than T .
– For i ∈ [w], P draw a uniformly random polynomial P ′

j(X) : Fq →
Fq for degree less than z + T such that for every y ∈ H0 it satisfies
P ′
j(y) = Pj(y). P evaluates each P ′

i on D to generate oracle functions
f1, . . . , fw : D → Fq, and sends them to V.

2. Prover sends constraint oracles:

Efficient LRS: New Framework and Post-Quantum Instantiations 21

– V samples and sends randomness R = (α1, α
′
1, . . . , αs, α

′
s)←$ K2s to P.

– Given constraints C1, . . . , Cs, P replaces variables Y in multivariate con-
straint polynomial Qj with trace polynomial values that satisfy the

assignment to get a univariate polynomial (Qj ◦
−→
P)(X), where

−→
P =

(P1, . . . , Pw). P additionally samples a random polynomial R0(X) ∈
Fq[X] with degree smaller than d. P then calculates the random linear
combination of the constraint polynomials as

C ′(X) =

s∑
j=1

(αj + α′
j ·Xej) · (Qj ◦

−→
P)(X)

ZHj
(X)

+R0(X), (1)

let dj be the degree of polynomial (Qj ◦
−→
P)(X)/ZHj

(X), ej = d− dj − 1
is the degree correction parameter.

– Instead of representing C ′(X) : H0 → Fq as a degree d polynomial, P
represents it as m polynomials C ′

1(X), . . . C ′
m(X) of degree z+T , where

m(z + T) = d, such that

C ′(X) =

m∑
k=1

Xk−1 · C ′
k(X

m). (2)

– P evaluates R0(X) and each C ′
k(X) on D to generate oracle functions

r0, c1, . . . , cd : D → Fq, where deg(ck) < z + T for k ∈ [m], and sends
them to V.

3. Verification:

– V samples and queries z ←$ K\(H0 ∪ D̄).
– P responds with f1(z), f1(gz), . . . , fw(z), fw(gz), c1(z), . . . , cm(z), r0(z).
– V calculates C ′(z) using f1(z), . . . , fw(gz), r0(z) and constraints {Cj}j∈[s].

V then checks
∑m

k=1 z
k−1 · ck(zd)

?
= C ′(z).

– V samples and sends randomness {γi}i∈[1,2w+m] ←$ K.
– P additionally samples random polynomialR1(X) ∈ Fp[X] with deg(R1)<

z + T , and sends oracle functions r1 : D → Fq to V.
– P computes DEEP composition polynomial as

g(X) =

w∑
j=1

(
γj

fj(X)− fj(z)

X − z
+ γj+w

fj(X)− fj(gz)

X − gz

)

+

m∑
l=1

γl+2w
cl(X)− cl(z)

X − zm
+ r1(X)

(3)

– P and V run FRI for g(X) ∈ F<(z+T)[X] over domain D.

Intuitive explanation for the proof of zero-knowledge. We denote the simulator
as Sim. Given a verifier V′, the simulator Sim operates as follows:

22 Y. Xue et al.

1. Sim invokes V′ and records the first message, which is the randomness R
provided by V′. Sim then instantiates a sub-prover P′, such that all further
messages and queries from V′ to FRI protocol are handled by Sim through
the invocation of P′.

2. Next, Sim samples uniformly random functions f1, . . . , fw, c1, . . . , cm, g ∈
F[X] of degree z + T . It continues to run V′ and responds to queries in the
following manner:

– For queries on f1, . . . , fw at a point x0 ∈ D, Sim returns {fi(x0)}i∈[w]

and {fi(x0g)}i∈[w].
– For queries on c1, . . . , cm at a point x0 ∈ D, Sim computes {ci(x0)}i∈[m]

and thus determines the value of C ′(x0) through Equation 2. Observe
that f1(x0), f1(x0g), . . . , fw(x0), fw(x0g) are fixed, implying that the right-
hand side of Equation 1, except for the term R0(x0), is also fixed. Given
these values, Sim determines R0(x0) as the unique field element that
satisfies the linear constraint.

– Similarly, for queries on g at a point y0 ∈ D, Sim computes g(y0) such
that both sides of Equation 3, except for the term r1(y0), are fixed.
Consequently, Sim determines r1(y0) as the unique field element that
satisfies the linear constraint.

In the honest prover’s execution, the functions (f1, . . . , fw, r0, r1) are sampled
uniformly and independently. The functions (c1, . . . , cm, g) are then computed
based on the sampled functions {fi}i∈[w] and r0, r1 according to Equations 1, 2
and 3. The distribution of messages exchanged between the verifier V′ and the
sub-prover P′, which is part of the FRI protocols, is designed to be identical to
the distribution provided by the simulator Sim. This is because both the honest
prover and Sim provide P′ with the same uniformly random input polynomial g.
As a result, the distribution of transcripts generated by the simulator Sim inter-
acting with the verifier V′ is indistinguishable from the distribution of transcripts
generated by an honest prover interacting with V′.

Reference for the proof of Soundness and Knowledge Soundness. To prove the
Knowledge Soundness, an extractor is introduced to extract a valid witness. The
extractor in [7,41] operates by running the Guruswami–Sudan list decoding algo-
rithm [24] to obtain candidate codewords, and checking each candidate to find a
satisfying witness. Our protocol adds zero-knowledge using the same techniques
as those in ZK-STARK [7]. For more details on the soundness and knowledge
soundness proofs, please refer to the ZK-STARK and ethSTARK paper [41].
These works provide a comprehensive analysis of the soundness and knowledge
soundness of the protocol, which can be adapted to our setting.

B Security Proof

Theorem 1. Our linkable ring signature is linkable if the underlying SoK is
perfectly correct, simulatable and simulation extractable.

Efficient LRS: New Framework and Post-Quantum Instantiations 23

If A is able to win the linkability game defined in Definition 5 with a non-
negligible probability, we can construct S to break either the one-wayness or
the collision-resistance of the hash function Hk. For breaking one-wayness, on
given a hash output ho, one is required to output x such that ho = Hk(x). For
breaking collision-resistance, on given x, one is required to output x′ such that
Hk(x) = hc = Hk(x

′).
At the beginning of the game, simulator S receives the one-wayness instance

ho and collision-resistance instance xc of Hk. S will sample other public param-
eters by running pp ← LRS.Gen(1λ). Ht will be programmed as random oracle.
For the Oracle simulation,

– JO(⊥): Assume thatAmakes total qj join queries. S first samples q
(o)
j , q

(c)
j ←$

[1, · · · , qj]. For the ith query, if i ̸= q
(o)
j or q

(c)
j , S runs LRS.KeyGen(pp) to

generate pki. If i = q
(o)
j , S returns pki = pko = ho. If i = q

(c)
j , S returns

pki = pkc = Hk(xc) and sets ski = skc = xc. From the adversary’s view, the
join oracle will be identical to the original one.

– CO(pki): Consider A makes qr queries to CO, where qr ≤ n−1. For pki = ho,
S aborts the game. For pki = pkc, S returns the private key ski = xc.
Otherwise, S returns the corresponding private key ski.

– SO(R, e, pki,m): When A queries SO on message m, event-id e, a list of
public keys R and the public key for the signer pki, where pki ∈ R. If pki ̸=
pko, S runs σ ← LRS.Sign(e, ski, m, R) and sends the signature σ to A. If
pki = pko, S samples T ←$ Yt and sets x = {rt, T, e,m} where rt is the
Merkle root generated from R. S then employs the simulator Sim in SoK to
simulate SimG(1λ)→ (pp, τ), SimS(pp, τ,x)→ tr, and returns the signature
as (T, tr). S will record {(·, e), T, pko} to the hash table.

– When A queries random oracle Ht on an input x ∈ Xk and e ∈ Xk, S will
check whether (x, e) is already in the hash table. If so, S responds to A
according to this entry. S will also check whether Hk(x) = pko holds, and is
there an entry {(·, e), T, pko} in the hash table. If so, x will be returned by S
as the one-wayness instance response and S will send T to A. Otherwise, S
samples y ∈ Yk uniformly at random and sends toA. S than adds {(x, e), y, ·}
to the hash table.

In the challenge phase, A outputs a set of unlinkable tuples (e, σi,mi,Ri),
where σi = (σs,i, Ti) for i ∈ [n]. However, A can only make at most n − 1
queries, meaning that at least one of the secret keys used to generate the n
linkable ring signatures is not the query output of CO. There are two cases,
either 1. A obtains a sk∗ that corresponds to a pk∗ never queried to CO, or 2.
A obtains a sk∗ that the corresponding pk∗ has been queried to CO with an
output sk′ ̸= sk∗. Assume the advantage for A wining this game is advA, and
A wins by case 1 with probability pr1A, A wins by case 2 with probability pr2A,
such that pr1A + pr2A = advA.

Since LRS.Verify(e, σi,mi,R) = 1 for i ∈ [n], given the simulation extractabil-
ity property of the SoK, we can use the extractor E to extract witnesses ski for
{e, σi,mi,R}, i ∈ [n]. We use sk∗ ∈ {ski}i∈[n] to represent the secret key that is

24 Y. Xue et al.

not a query output of CO. The probability for A wining in case 1, and pk∗ = pko
is

qj−qr
qj
· pr1A · 1

qj−d+1 which is non-negligible. In this case, S returns (sk∗, C)

to the Hk one-wayness challenger. The probability for A wining in case 2, and
pk∗ = pkc is

qj−qr
qj
· pr2A · 1

qj
which is non-negligible. In this case, S returns

(sk∗, C) to the Hk collision resistance challenger.

Theorem 2. Our linkable ring signature is anonymous in the random oracle
model if the underlying SoK is perfectly correct, simulatable and simulation ex-
tractable.

Suppose there exists a Simulator S that plays the anonymity game with adver-
sary A in Definition 4.

S generates public parameters pp ← LRS.Gen(1λ) and sends pp to A. The
hash functions Hk and Ht are modeled as random oracles.

For the oracle simulation, when A queries joining oracle JO, S samples pk
uniformly at random and returns it to A. When A queries random oracle Hk

and Ht on an input x ∈ Xk, S will check whether x already in the hash table.
If so, S responds to A according to this entry. Otherwise, S samples y ∈ Yk
uniformly at random and sends to A. S than adds (x, y) to the hash table.

In the challenge phase, A chooses a set of public keys R = {pki}i∈[n], an
event-id e and a message m, then sends (R, e,m) to S.
S constructs a Merkle root rt using the set of public keys R and samples tag

T ∈ Yt uniformly at random. S also picks b←$ [1, · · · , n].
Given x = {rt, T, e,m}, S employs the simulator Sim in SoK to run SimG(1λ)→

(pp, τ), and SimS(pp, τ,x) → tr, and sends the signature σ = (tr, T) to A. Fi-
nally, A outputs b′.

Since the underlying SoK is simulatable, the simulated signature tr is com-
putationally indistinguishable from the one in the original scheme. Moreover,
tr is generated without witness and tag T is sampled uniformly random. The
probability for b′ = b is 1

n .

Theorem 3. Our linkable ring signature is nonslanderable if the underlying SoK
is perfectly correct, simulatable and simulation extractable.

If A is able to win the non-slanderability game defined in Definition 6 with
a non-negligible probability, we can construct S to break the one-wayness of the
hash function Ht. For breaking one-wayness, on given a hash digest ho, one is
required to output x such that ho = Ht(x).

S samples public parameters by running pp← LRS.Gen(1λ) and sends pp to
A, where Hk is programmed as random oracle. For the Oracle simulation,

– JO(⊥): Whenever A queries to JO, S samples pki ←$ Yk and returns it to
adversary.

– CO(pki): S samples ski ←$ Xk and programs random oracle Hk such that
pki = Hk(ski). S returns ski and records {ski, pki, ·} to the hash table.

Efficient LRS: New Framework and Post-Quantum Instantiations 25

– SO(R, e, pki,m): when A queries SO on message m, event-id e, a list of
public keys R and the public key for the signer pk, where pk ∈ R. If pk has
been queried to CO, sign the message using LRS.Sign. If pk has not been
queried to CO, S samples ski ←$ Xk and programs random oracle Hk such
that pki = Hk(ski). S then signs the message using LRS.Sign. S returns the
signature and records {ski, pki, ·} to the hash table.

– When A queries random oracleHk on an input x ∈ Xk , S will check whether
{x, ·, ·} is already in the hash table. If so, S responds to A according to this
entry. S will also check whether for the entry {·, pk, (e, T)} in the hash table,
it has Ht(x, e) = T . If so, (x, e) will be returned by S as the response to
the one-wayness game and S will use pk to answer the query. Otherwise, S
samples y ∈ Yk uniformly at random and sends to A. S than adds {x, y, ·}
to the hash table.

In the challenge phase, A sends a set of public keys R = {pki}i∈[n], a public
key pk, a messagem and an event-id e to S, where pk ∈ R. S sets T = ho and sets
x = {rt, T, e,m} where rt is the Merkle root generated from R. S then employs
the simulator Sim in SoK to simulate SimG(1λ) → (pp, τ), SimS(pp, τ,x) → tr
and returns the signature as (T, tr). S will record {·, pk, (e, T)} to the hash table.
A outputs a list of public keys R′, messsage m′ and a signature σ′ = (σ′

s, T
′)

where LRS.Verify(e, σ′,m′,R′) = 1. In addition, pk should not been input to CO
and SO.

Given the simulation extractability property of the SoK, we can extract wit-
nesses sk′ from σ′ using the extractor E such that T ′ = Ht(sk

′, e). Since we have
LRS.Link(e, σ, σ′,m,m′, R,R′) = 1 and T ′ = T , S then can return (sk′, e) to the
one-wayness game challenger.

Theorem 4. Our linkable ring signature is unforgeable in the random oracle
model if the underlying SoK is perfectly correct, simulatable and simulation ex-
tractable.

Unforgeability is implied by linkability and nonslanderability.

	Efficient Linkable Ring Signatures: New Framework and Post-Quantum Instantiations

