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Abstract. Fault attacks that exploit the propagation of effective/ineffective
faults present a richer attack surface than Differential Fault Attacks, in
the sense that the adversary depends on a single bit of information to
eventually leak secret cryptographic material. In the recent past, a num-
ber of propagation-based fault attacks on Lattice-based Key Encapsu-
lation Mechanisms have been proposed; many of which have no known
countermeasures. In this work, we propose an orthogonal countermeasure
principle that does not follow adhoc strategies (like shuffling operations
on secret coefficients), but rather depends on cryptographically-backed
guarantees to provide quantifiable defence against aforementioned fault
attacks. Concretely, we propose a framework that uses rejection sam-
pling (which has been traditionally used as alternatives to trapdoors) to
convert otherwise deterministic algorithms to probabilistic ones. Our spe-
cific goals allow careful selection of distributions such that our framework
functions with a constant number of retries (around 2− 3) for unfaulted
executions. In other words, should a fault be injected, the probability
of success is negligible; for correct execution however, the probability of
success is overwhelmingly high. Using our framework, we hence enable
probalistic decryptions in Kyber, NewHope, and Masked Kyber, and
completely cut-off fault propagation in known attacks on these construc-
tions, allowing a sound defence against known fault attacks in literature.

Furthermore, we show the extension of our framework to discrete distri-
butions, and demonstrate it against recent fault attacks on Dilithium.
In similar semantics as with KEMs, our framework, to the best of our
knowledge, allows development of the first (sound) countermeasure strat-
egy against Differential Fault Analysis attacks on Dilithium. Concretely,
use of our framework converts the otherwise deterministic sampling of
blinding vector coefficients in Dilithium to probabilistic sampling, and
ties this probability to presence of faults. As with KEMs, in absence of
faults, our rejection samplers allow operation of Dilithium in a constant
number of retries. In presence of faults however, the number of retries
grows unacceptably high for an adversary.

Finally, although demonstrated at applications for countering faults in
Post-Quantum Cryptography, our framework is rather generic and may
be of interest independently from fault analysis. In some sense, given
a-priori knowledge of a target distribution f , our framework converts a
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deterministic algorithm to its probabilistic variant that “verifies” whether
it executes on distributions statistically indistinguishable from f . Should
the algorithm attempt to operate upon an incorrect distribution, the
probability of success drops sharply to negligible, essentially rendering
the algorithm ineffective and unable to make progress. For correct execu-
tion, however, the design of the framework guarantees a constant number
of retries, thereby preventing a non-constant blowup of execution time
due to rejection sampling. Finally, the exact description of f helps in fur-
ther implementation optimizations, reducing the computation overhead
of evaluating the probabilities involved in rejection sampling.

Keywords: Fault Attacks, Kyber, Dilithium, Post-Quantum Cryptog-
raphy, Rejection Sampling

1 Introduction

Physical Attacks in Post-Quantum Cryptography (PQC). PQC com-
prises cryptosystems that derive their security from cryptographic problems
considered to be intractable by sizable quantum computers. As such, much ef-
fort has been expended by the National Institute of Standards and Technology
(NIST) in the past few years into standardizing such post-quantum implemen-
tations, broadly under the following primitives [1]: Key-Encapulation Mecha-
nisms (KEM), Digital Signatures (DS), and Public-Key Encryption (PKE). The
computationally hard problems used to construct instantiations of these primi-
tives are derived usually from either code-based crpytographic constructions (like
general/syndrome decoding problem), or from multivariate cryptography (like
multivariate quadratic polynomial problem and the min-rank problem), or from
lattice-based cryptography (as in short-integer solutions, learning from errors,
and so on).

As a consequence, over the years, the various submissions to NIST have un-
dergone rigorous scrutiny wrt. both adherence to theoretical security guarantees
of the associated primitives, as well as resilience against physical attacks (in-
cluding passive side-channel attacks, and active fault injection attacks). Physical
attacks, while not strictly voiding security of the primitives, have been consid-
ered important since PQC is expected to operate in the evolving landscape of
embedded systems, which are expected to be functionally operational without
explicit human supervision. As consequence, such embedded systems are usu-
ally assumed accessible by a physical adversary. In fact, physical attacks have
been traditionally considered as welcome contributions to NIST’s standardiza-
tion process [2].

Working Principle of Fault Attacks. NIST finalists have therefore received
considerable attention wrt. susceptibility to fault injection attacks [24]. For this
work, we mainly consider the attacks on lattice-based primitives 1. Fault attacks

1 Lattice-based primitives total up to 9 out of 15 NIST’s 3-rd round finalists.
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on such primitives rely upon the capability of the adversary to force erroneous
computation on secret-key dependent operations, which in turn causes a statis-
tical bias distinguishable from that of non-faulty execution.

Fault attacks are then classified based on how the adversary exploits such
statistical biases. In case of signature schemes like Dilithium [18], for instance,
the adversary has access to the faulty output from the signing oracle, and can
perform differential analysis of the faulty output against the non-faulty output to
extract the secret cryptographic material. As such, fault models like instruction
skips [27,8,29,14] and skews in randomness used by set-to-constant faults [25,26]
have been typically used in such attack settings. These attacks can therefore be
grouped under the umbrella term: 1○ “Differential Fault Attacks”. On the other
hand, specifically in the case of KEMs, the adversary injects faults in the de-
capsulation oracle, but the IND-CCA2 security provided by the Fujisaki-Okamoto
(FO) Transform [23] does the allow the adversary any access to the faulty output.
Rather, failure in verification of the FO transform essentially leaks one bit of
information to the adversary: whether the injected fault propagated the the FO
verification. This fault propagation allows the adversary to classify injected faults
as effective or ineffective, and essentially links the secret cryptographic material
to such propagation. Such attacks can be referred to as 2○ “Propagation-based
Fault Attacks”. Several works like [15,10,23,11,4,9] have used effective/ineffective
fault propagation to first leak the sign of linear decryption noise (of the Learning
with Errors (LWE) samples), then create a system of inequations in the unknown
error and secret, and finally use statistical solvers like Belief Propagation [23] or
Lattice Reduction [10].

Existing Countermeasures. The existing countermeasures in literature closely
follow the principles upon which 1○ Differential Fault Attacks (DFA), and 2○
Propagation-based Fault Attacks operate. For instance, to counter DFA, it is
sufficient to prevent the adversary from obtaining the faulty output. This can
be achieved by detection-based countermeasures which verify the extent of
functional correctness of the victim primitive. For instance, in case of digital
signatures, explicit verification of the random coins [24] as well as of the NTT3

factors [12] prevents attacks like [25,26] which use faults to force skewness in
randomness essential to hiding the secret key within the concerned operations.
Likewise, explicit equality checks [24] are useful in defending against fault attacks
which skip initialization of sensitive cryptographic material. We note that the
countermeasure principle (i.e. explicit verification) against DFA therefore also
neatly ties to the functioning of the FO transform in Lattice-based KEMs. FO
transform essentially recomputes and verifies the correctness of the encapsulated
ciphertext, thereby guaranteeing security against chosen ciphertext attacks. As
an unintended consequence however, the FO transform randomizes the output

2 Indistinguishability against Chosen Ciphertext Attacks
3 Number Theoretic Transform
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if a fault is detected4, thereby offering a natural line of defence against DFA on
Lattice-based KEMs.

Countering 2○ propagation-based attacks is, however, trickier. In fact, the
very design of detection-based countermeasures aids attack strategies relying on
propagation. For instance, the FO Transform in Lattice-based KEMs, while pro-
viding IND-CCA security and resilience to DFA, becomes the main aide of prop-
agation based attacks [15,10,23,11,4,9]. Concretely, by reverifying correctness of
ciphertext and randomizing the output in case of failure, the FO Transform leaks
information on whether the injected fault was effective or ineffective, eventually
leading to key recovery. To the best of our knowledge, the only known counter-
measure principle in literature is to shuffle the order of ciphertext coefficients in
the decapsulation routine. This prevents the adversary from understanding the
actual secret key coefficient involved with the effective/ineffective fault propaga-
tion. While this countermeasure principle is successful for some attacks like [23],
it fails in context of other attacks like [4] and [15]. Precisely, the attack in [4] re-
lies on fault correction to infer the actual faulted coefficient, and hence bypasses
shuffling. On the other hand, the attack in [15] suggests use of side-channels to
infer the shuffled permutation of secret coefficients.

Our goal is henceforth to develop a countermeasure principle that provides sound
defence against the generic class of propagation based attacks on Lattice-based
cryptography; and we want to achieve this 1○ through cryptographically backed
tools (instead of implementation afterthoughts such as shuffling), 2○ with quan-
tifiable analysis of the extent of the defence in preventing the attack, while being
3○ lightweight (i.e. little overhead), and 4○ with potential extension to DFA.

1.1 Our Contributions

Generic Framework for Probabilistic variants of Deterministic Algo-
rithms. The main result of this work is a generic framework that, with a-priori
knowledge of the target distribution f , converts a deterministic algorithmM to
its probabilistic variant A. In some sense, this amounts to “verifying” whether
A operates upon the “correct” distribution f .

We achieve this by adapting rejection sampling [16,17] to our use-case. Re-
jecting sampling allows to sample from an arbitrary target distribution f , given
a source distribution g. If ∀x, f(x) ≤M.g(x), then should the sample be output
with probability f(x)

M.g(x) , the distribution of x is statistically indistinguishable
from a random sample from f . Additionally, the expected number of retries for
the rejection sampling to output x is M . As such, prior works [16,17] tailor g to
be as close as possible to f . Their end goal is to set g to a distribution depen-
dent on some secret cryptographic material, while f is independent of the secret.
Thus, drawing from g is equivalent to using the secret cryptographic material to
4 Note that some recent works like [20] enable DFA on KEM by skipping FO Trans-

form itself. We do not consider these attacks here, as they are trivially bypassed by
replicating the FO Transform check in the temporal domain.
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generate some output x. However, outputting x with distribution statistically
indistinguishable from f ensures nothing about the secret is leaked.

Our goal, however, is different: we simply want to enable a probabilistic
variant of M on distribution f (i.e. ensure A operates upon f). This shift in
goal allows us to tailor g as a “slightly smoothed”5 variant of f (unlike markedly
different distribution, as in [16,17]). Now since f and g are “almost” close, we
show that ∀x, f(x) ≤ M.g(x) for M = O(1). That is, our rejection sampling
requires a constant number of retries for A to produce an output statistically
indistinguishable from f . From hereon, we first move from deterministic M to
probabilistic F (without rejection sampling), and then invoke the framework
from [16] to move from F to A (with rejection sampling). Formally:

Theorem 1 (Framework for “moving” from deterministic M to prob-
abilistic A with a-priori knowledge of f).

Let f and g be probability distributions with the property that:

Pr
[
f(z) ≤M.g(z); z

$← f,M = O(1)
]
≥ 1− ϵ(.)

then the distribution of the following algorithm M:

1. z
$← f

2. Operate upon z

is within statistical distance | 1− 1
M | of the following algorithm F :

1. z
$← f

2. With probability 1
M , operate upon z

which is, in turn, within statistical distance ϵ(.)
M of the following algorithm A:

1. z
$← g

2. With probability min
(
1, f(z)

M.g(z)

)
, operate upon z

The probability for A to operate upon z is ≥ 1−ϵ(.)
M .

It is easy to see from Theorem 1, that for some z∗
$← f∗, where f∗ is at

non-negligible statistical distance from f , algorithm A operates upon z∗ with
negligible probability. This provides us with a handle to construct the remaining
contributions of this work.

Applications to preventing Propagation-based Fault Attacks. To the
best of our knowledge, current propositions to defend against propagation based
fault attacks on Lattice-based KEMs rely upon shuffling of coefficients. However,
attacks like [4] and [15] bypass shuffling. In this work, however, we present a
subsuming argument: fault attacks in [15,10,23,11,4,9] rely on injecting faults to
5 Refer to Sec. 3, Sec. 4, and Sec. 5 for concrete instantiations.
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force the decapsulation oracle of KEMs to operate upon some distribution f∗

(statistically distinguishable from f), and exploit the effective/ineffective fault
propagation to leak secret cryptographic material. It is straightforward to see
then, that our framework essentially prevents the decapsulation oracle of Lattice-
base KEMs to operate upon f∗. Concretely, for the unfaulted execution (i.e. z $←
f), A operates upon z with overwhelming probability (i.e. a constant number of
retries; empirically 2− 3); for faulted execution (i.e. z∗ $← f∗), A rejects z with
overwhelming probability. Essentially, our framework stops fault propagation,
stripping the adversary with the foundation piece central to mounting the attack.

Extension to DFA. We also show that the framework in Theorem 1 is
equally applicable over discrete distributions. As such, we extend it to countering
fault attacks on Dilithium. Essentially, Dilithium relies upon sampling a blinding
vector y from a “safe” set G to prevent leaking any information about s from
z (= y+sc). Recent attacks [27,8,14] introduce faults (either instruction skips or
stuck-at faults) to force sampling of y /∈ G, eventually leaking s. Without further
assumptions on G, we extend our framework in Theorem 1 by superposing a
discrete distribution upon G, and thereby “verify” that Dilithium operates upon
z (with overwhelming probability) iff y ∈ G. To the best of our knowledge,
this presents the first cryptographically-backed countermeasure to recent fault
attacks on Dilithium [27,8,14].

Overhead. Essentially, we would like the empirical overhead of A to be as
close as possible to that of M. We hence discuss overhead in two dimensions:
1○ number of retries M before A produces an output, and 2○ the additional
computational cost of evaluating the sampler probabilities.

As already mentioned, our specific goal of moving from deterministic M
to probabilistic A allows choice of g to be very “close” to f , thus bounding the
number of retries (i.e. M) by a constant. In other words, for unfaulted execution,
a constant number of retries (2 − 3 in our empirical validation) is sufficient for
A to produce output. Likewise, for faulted execution, because of the precise
choices of f and g, A effectively does not generate output (with all but negligible
probability).

Finally, as later sections detail, distributions f and g are Bimodal Gaussian
in case of Lattice-based KEMs, and are discrete distributions over safe set G for
Dilithium. For Bimodal Gaussian, we perform a constant number of additional
exponentiation operations. For Dilithium, we use the contiguous structure of G
over Z to reduce computing probabilities over G to simple range-checks (i.e. if
min(G) ≤ x ≤ max(G), it is assigned a non-zero constant probability. Otherwise,
it is assigned probability 0. More details follow in Sec. 5). All in all, computing
f and g incur overhead asymptotically constant overhead wrt. parameterization
of the respective constructions (i.e. overhead is indepedent of parameterization),
and is thus acceptable.
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2 Preliminaries

We capture the essential background used as building blocks for this work.

2.1 LPR Public-Key Encryption

The LPR public-key encryption is a lattice based primitive based off the Ring-
LWE (RLWE) problem [19]. The LPR encryption scheme syntax consists of
a tuple of three algorithms: LPR.PKE.KeyGen, LPR.PKE.Enc, and LPR.PKE.Dec,
which are summarized in Algo. 1, Algo. 2, and Algo. 3 respectively. For an integer
q, the set Zq represents a ring of integer modulo q6. By extension, Rq is then the
polynomial ring Zq[X]/(Xn+1). As evident from Algo. 1, LPR.PKE.KeyGen first
samples secret polynomial s and noise polynomial e from a narrow distribution X
over Rq. Likewise, the public polynomial a is sampled from a uniform distribution
over Rq. Finally, b is computed as as + e. The decisional version of RLWE
problem then (informally) states: it is computionally intractable for an adversary
to distinguish b from U(Rq).

Algorithm 1 LPR.PKE.KeyGen
1: a ← U(Rq)
2: s, e ← X (Rq)
3: b = (as + e)
4: return (pk = (a, b), sk = (a, s))

LPR.PKE.Enc, as stated in Algo. 2, then proceeds to encode the message m
onto Rq by first centering the message bit around 0 or q

2 , and then adding a
narrow noise to it.

Algorithm 2 LPR.PKE.Enc
1: Input: Public Key pk, message m ∈ Zn

2

2: r, e1, e2 ← X (Rq)
3: u = ar + e1
4: v = br + e2 + m · ⌊ q

2
⌋

5: return (u, v)

Finally, LPR.PKE.Dec, as stated in Algo. 3, extracts m
′
, and decodes it to the

actual bit depending on whether m
′
is centered about 0 or q

2 . Correctness follows
by ensuring the parameter q to be much larger than the narrow noise around
0 and q

2 , preventing a ciphertext corresponding to bit 1 from being incorrectly
decoded as bit 0 (and vice-versa). We refer to [19] for a detailed security reduction
to RLWE.
6 q, or the ring-modulo, is one of the most important parameters in security analysis

of RLWE, and by extension, the cryptosystems depending upon it.
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Algorithm 3 LPR.PKE.Dec
1: Input: Secret key sk, ciphertext (u, v)
2: m

′
= v - us

3: return DECODE(m
′
)

2.2 KEMs from LPR

LPR is secure against Chosen Plaintext attacks. In order to construct a IND-CCA
secure KEM from LPR, the post-quantum variant of the Fujisaki-Okamoto
(FO) transformation [13] is used. A CCA-secure KEM is thus syntactically de-
scribed as a tuple of three algorithms: LPR.KEM.KeyGen, LPR.KEM.Encaps, and
LPR.KEM.Decaps, summarized in Algo. 4, Algo. 5, and Algo. 6. LPR.KEM therefore
uses LPR.PKE with modifications for the end-goal of establishing a symmetric key
K. To this end, LPR.KEM.KeyGen, in addition to invoking LPR.PKE.KeyGen as a
black-box, also initializes pkh (using a public hash function H) and a uniform
n-bitstring z.

Algorithm 4 LPR.KEM.KeyGen
1: (pk, sk) = LPR.PKE.KeyGen()
2: pkh = H(pk)
3: z ← U({0, 1}n)
4: return (pk, sk, pkh, z)

LPR.KEM.Encaps then samples a uniform message m and encrypts it using
black-box LPR.PKE.Enc. The ciphertext, along with the hashed public key mate-
rial pkh, is then used in a sequence of transformations to eventually extract the
symmetric key K through a public hash oracle G and a key derivation function
KDF . Following the communication model established by LPR.PKE, the encap-
sulation oracle then communicates the ciphertext c to the decapsulation oracle.

Algorithm 5 LPR.KEM.Encaps
1: Input: pk, pkh
2: Message m = H(U({0, 1}n))
3: (KH , r) = G(pkh, m)
4: c = LPR.PKE.Enc(pk, m, r)
5: K = KDF (KH , H(c))
6: return (c, K)

The decapsulation oracle, represented by LPR.KEM.Decaps as in Algo. 6,
first decrypts the message through a black-box invocation of LPR.PKE.Enc.
Then, the public hash oracle G and the key-derivation function KDF are in-
voked in manner similar to LPR.KEM.Encaps to create the symmetric key K.
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To defend against chosen-ciphertext attacks, post-decryption, a re-encryption
through LPR.PKE.Enc is performed and the correct key K is output iff the in-
put ciphertext c was indeed correct. Otherwise, a random key (using a random
vector z) is generated. It is straightforward to see that the security guarantees
of a generic KEM can be derived from the semantic security of the underlying
LPR.PKE, with the additional IND-CCA being derived from the Fujisaki-Okamoto
(FO) transform. Finally, correctness of LPR.KEM is (informally) the same key K
established for the correct ciphertext c; correctness is henceforth derived from
the correctness of LPR.PKE. Likewise, it is straightforward to reduce LPR.KEM to
RLWE through LPR.PKE. We note that all candidates for NIST’s standardization
for post-quantum Lattice-based KEMs are founded upon LPR.KEM as discussed
here.

Algorithm 6 LPR.KEM.Decaps.
1: Input: (sk, c)
2: m = LPR.PKE.Dec(sk, c) // Point of Fault Injection
3: (K

′
H , r

′
) = G(pkh, m)

4: c∗ = LPR.PKE.Enc(pk, m, r
′
)

5: if c∗ = c then
6: K = KDF (K

′
H , H(c)) // Ineffective Fault

7: else
8: K = KDF (z, H(c)) // Effective Fault
9: return (c, K)

2.3 Propagation based Fault Attacks

Most prior works on fault attacks [15,10,23,11,4,9] on KEMs follow the same un-
derlying principle: 1○ inject a fault in LPR.PKE.Dec (refer Algo. 6), and 2○ query
the victim which has established K using LPR.KEM.Decaps. Should decryption
failures arise, the adversary infers that fault was effective (Line 8 in Algo. 6);
otherwise, the fault was ineffective (Line 6 in Algo. 6). The core underlying
difference between the attacks in [15,10,23,11,4,9] is the fault model.

Without loss of generality, we concretely establish the attack in [23] on Ky-
ber7. Refer Fig. 1. The lower horizontal axis is associated with the ciphertext
distribution as Kyber’s decoding proceeds; likewise, the upper horizontal axis is
associated with the corresponding plaintext distribution. The solid curve denotes
the ciphertext distribution for plaintext message bit 0 (notice the narrow distri-
bution around 0), while the dotted curve denotes the ciphertext distribution for
plaintext message bit 1 (notice the narrow distribution around q

2 ). Conversion
of the ciphertext distribution to plaintext domain then proceeds in three steps:
1○ ×2, 2○ + q

2 , and 3○ observing the least-significant bit of the transformed
ciphertext distribution to recover the corresponding plaintext message bit.
7 A Lattice-based NIST Round-3 finalist for KEMs.
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Fig. 1. Schematic of the propagation-based fault attack in [23] on Kyber.

The attack in [23] uses an instruction skip fault model to skip the second step,
causing the ciphertext distribution to left-shift by q

2 . An attempt to decode this
faulty ciphertext distribution then causes either an ineffective fault or an effective
fault. The adversary hence is able to infer the following inequation:

〈
r[i], e

〉
−
〈
e1[i], s

〉
+ e2[i]

{
≥ 0, if fault is ineffective
< 0, if fault is effective

where bold-faced randomness r and error terms e/e1/e2 are polynomials
specific to Kyber’s LPR.KEM.KeyGen routine, i represents the faulted coefficient,
and ⟨.⟩ represents dot product. As is the case with LPR.PKE.Enc (Algo. 2), r,
e1 and e2 are known to the adversary, while e and s are secret (being a part of
LPR.PKE.KeyGen). Over several fault injections, a system of such inequations is
created by the adversary, post which statistical solvers are used to recover s.

2.4 Rejection Sampling

Rejection sampling was first introduced in [28] to sample from an arbitrary target
distribution f , given a sample from a distinct source distribution g. Rejection
sampling was later used in a number of works [17,6] to construct efficient Lattice-
based signatures, and was also a core tool used in CRYSTALS-Dilithium [18,7].
We state the core result from [17]:

Lemma 1 (Rejection Sampling). Let V be an arbitrary set, and h : V → R
and f : Zm → R be probability distributions. If gv : Zm → R is a family of
probability distributions indexed by v ∈ V with the property that there exists a
M ∈ R such that:

∀v ∈ V,∀z ∈ Zm,M.gv(z) ≥ f(z)

then the output distributions of the following two algorithms are statistically
indistinguishable (within statistical distance ϵ

M ):
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1. v
$← h, z $← gv, output (z, v) with probability f(z)

M.gv(z)

2. v
$← h, z $← f , output (z, v) with probability 1

M

2.5 Discrete Gaussian Distribution

The Gaussian Distribution for some x ∈ R, centered at c ∈ R with standard

deviation σ ∈ R is defined by ρc,σ(x) = e−
(x−c)2

2σ2 . A straightforward extension

to Rn is then given by ρc,σ(x) = e−
∥x−c∥2

2σ2 for x, c ∈ Rn. The discrete Gaussian
distribution centered at c is then given by Dn

c,σ(x) = ρc,σ(x)/ρσ(Zn).

3 Probabilistic Decryption with Rejection Sampling

We present our main result now: enabling probabilistic decryption in LPR.KEM.Decaps
using rejection sampling. Careful choice of the rejection sampler is then tied
to defending against fault attacks; concretely, the rejection sampler accepts
(with overwhelming probability) non-faulted ciphertext distribution, while re-
jects (with overwhelming probability) the faulted distribution. In some sense,
our construction allows cryptographic verification of the correctness of the ci-
phertext distribution, and prevents an adversary from introducing exploitable
bias (cf. Sec. 2.3). With reference to prior attacks exploiting effective/ineffective
fault propagation [15,10,23,11,4,9], probabilistic decryption in LPR.KEM.Decaps
effectively eliminates fault propagation, and thus entirely prevents these attacks.

3.1 Intuition

Ciphertext Distribution. First, we establish the ciphertext distribution for
various KEM instantiations based upon LPR.KEM, namely Kyber [3], NewHope [22],
and Masked Kyber [21]. While the exact error distributions chosen does not play
a part in the hardness of the underlying LWE problem [3], we remark that all
implementations prefer a narrow discrete Gaussian about two peaks in the ci-
phertext space (one for each bit 0 and 1; refer Fig. 1). Formally, we can represent
the ciphertext distribution of NIST KEMs as:

BG(x; c1, c2, σ, λ1, λ2) = λ1.D
n
c1,σ(x) + λ2.D

n
c2,σ(x)

Where c1 and c2 are centers of the Bimodal Gaussian (BG) corresponding
to plaintext bit 0 and 1 without loss of generality, and λi : i ∈ {1, 2} are the
mixing parameters of the two Gaussians. Without forcing any assumption on
the sample x8, we use λ1 = λ2 = 1

2 hereon.

Rejection Sampler for ciphertext distribution “verification” . It follows
from Lemma 1, Sec. 2.4 that if ∃M ∈ R,∀z $← f : f(z) ≤ M.gv(z), then
8 The ciphertext x has equal probability of encoding the plaintext bit 0 or bit 1.
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the rejection sampling procedure produces an output distribution statistically
indistinguishable from f . Intuitively, the farther apart the curves M.gv and f
are, for any z, higher is the expected number of retries (i.e. M) of the rejection
sampling before an output is produced. As such, prior works [17,6] focus on
carefully crafted f and gv to reasonably bound M . The main goal of rejection
sampling is to sample z from a secret dependent distribution gv, but output
(z, v) iff z is statistically indistinguishable from a random sample from secret
independent distribution f .

In our case, we target an orthogonal goal- use of rejection sampling to “verify”
ciphertext distribution such that LPR.KEM.Decaps operates (with overwhelming
probability) only for the non-faulted distribution. To do so, for any given cipher-
text z, we allow sampling of z in LPR.KEM.Encaps from a “slightly” smoother
BG(x; c1, c2, σ

β ,
1
2 ,

1
2 ) for a small constant β = O(1) such that β < 1, while

LPR.KEM.Decaps is allowed to operate on z with probability BG(z;c1,c2,σ,
1
2 ,

1
2 )

M.BG(z;c1,c2,
σ
β , 12 ,

1
2 )

.

In other words, z is sampled from BG(z; c1, c2, σ
β ,

1
2 ,

1
2 ), but the rejection sam-

pler ensures that the output distribution is statistically indistinguishable from
BG(z; c1, c2, σ, 1

2 ,
1
2 ), which is exactly the ciphertext distribution in LPR.KEM.

We also note that since BG(z; c1, c2, σ
β ,

1
2 ,

1
2 ) is forced to be “slightly smoother”9

by virtue of larger standard deviation σ
β , it is straightforward to establish BG(z; c1, c2, σ, 1

2 ,
1
2 )

≤ M.BG(z; c1, c2, σ
β ,

1
2 ,

1
2 ) for M = O(1). This implies that such a sampler re-

quires only a constant expected number of retries to produce output. We formally
prove this in Sec. 3.2. Moreover, M = O(1) also plays an important role in not
putting much overhead in benign execution of LPR.KEM.Decaps due to repeated
rejections. We provide experimental details in Sec. 4.

Finally, by parameterization of NIST KEMs, BG(z; c1, c2, σ, 1
2 ,

1
2 ) is usually

very narrow10 about c1 and c2. As detailed in Sec. 2.3, prior attacks utilize
fault injection to force LPR.KEM.Decaps to operate upon a faulty distribution
BG(z; c∗1, c∗2, σ, 1

2 ,
1
2 ); subsequent fault propagation leaks sign of linear decryp-

tion noise, and consequently the secret key. However, it is straightforward to see
that in presence of rejection sampling of form BG(z;c1,c2,σ,

1
2 ,

1
2 )

M.BG(z;c1,c2,
σ
β , 12 ,

1
2 )

, any sample z∗

drawn from BG(z; c∗1, c∗2, σ, 1
2 ,

1
2 ) has a negligible probability of being accepted by

the rejection sampler, thereby preventing any fault propagation. In some sense,
such form of rejection sampling offers verification of the ciphertext distribution,
and is particularly useful in discarding ciphertexts from faulted ciphertext dis-
tributions, thereby eliminating the possibility of fault propagation and eventual
key recovery. We provide experimental details in Sec. 4.

9 Since our goal is just to “verify” BG(z; c1, c2, σ, 1
2
, 1
2
), and not remove dependence of

the output on secret cryptographic material (as in [17,6]), we can take the liberty
to choose gv as a “slightly” smoothed variant of f , thereby bounding M = O(1).
In [17,6], gv is radically different from f , hence resulting in non-constant M .

10 In other words, all but negligible probability mass is centered about c1 and c2.
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3.2 Enabling LPR.KEM.Decaps with Rejection Sampling

We now establish a probabilistic LPR.KEM.Decaps by virtue of rejection sampling
in LPR.PKE.Dec. As mentioned in Sec. 3.1, we aim to integrate a rejection sampler
of form BG(z;c1,c2,σ,

1
2 ,

1
2 )

M.BG(z;c1,c2,
σ
β , 12 ,

1
2 )

in LPR.KEM.Decaps. Details on the same follow.

Lemma 2. In LPR.KEM.Decaps [3,22,21], for some c1, c2 ∈ Zn and some σ, β ∈
R : β < 1, the following holds for some negligible function ϵ(.):

Pr
[ BG(z; c1, c2, σ, 1

2 ,
1
2 )

BG(z; c1, c2, σ
β ,

1
2 ,

1
2 )
≤ O(1); z

$← BG(z; c1, c2, σ,
1

2
,
1

2
)
]
≥ 1− ϵ(.)

Proof. From Sec. 3.1, we expand BG(z; c1, c2, σ, 1
2 ,

1
2 ) as such:

1

2
.Dn

c1,σ(z) +
1

2
.Dn

c2,σ(z)

=
1

2
.exp

(
− ∥ z− c1 ∥2

2σ2

)/
ρσ(Zn) +

1

2
.exp

(
− ∥ z− c2 ∥2

2σ2

)/
ρσ(Zn)

While BG(z; c1, c2, σ
β ,

1
2 ,

1
2 ) can be likewise expanded as:

1

2
.Dn

c1,
σ
β
(z) +

1

2
.Dn

c2,
σ
β
(z)

=
1

2
.exp

(
− ∥ z− c1 ∥2

2(σβ )
2

)/
ρσ

β
(Zn) +

1

2
.exp

(
− ∥ z− c2 ∥2

2(σβ )
2

)/
ρσ

β
(Zn)

It is not straightforward to further reduce the given terms as they are. How-
ever, we derive another observation from the structure of ciphertext distributions
in Kyber [3], NewHope [22], and Masked Kyber [21]: the centers of the bimodals
can be interpreted as ( q4 −

q
4 ) and ( q4 + q

4 ) (cf. Fig. 6, Fig. 8, and Fig. 9 for
a schematic). To make analysis simpler, a left-shift of BG(z; c1, c2, σ, 1

2 ,
1
2 ) and

BG(z; c1, c2, σ
β ,

1
2 ,

1
2 ) by q

4 allows centers of the bimodals to be around − q
4 and

q
4 . In other words, around the origin, the two modes reside at equal offset in
opposite directions. We stress that the shifting is performed to ease up analysis;
the bounds on the distributions are not affected by shifts in modal centers. The
bounds are rather the property of scaling of the distributions (i.e. the standard
deviations), which we do not disturb. The equation thus resolves to:

1

2
.exp

(
− ∥ z− c ∥2

2σ2

)/
ρσ(Zn) +

1

2
.exp

(
− ∥ z+ c ∥2

2σ2

)/
ρσ(Zn)

And
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1

2
.exp

(
− ∥ z− c ∥2

2(σβ )
2

)/
ρσ

β
(Zn) +

1

2
.exp

(
− ∥ z+ c ∥2

2(σβ )
2

)/
ρσ

β
(Zn)

The ratio in the lemma is then obtained by:

1
2 .exp

(
− ∥z−c∥2

2σ2

)/
ρσ(Zn) + 1

2 .exp
(
− ∥z+c∥2

2σ2

)/
ρσ(Zn)

1
2 .exp

(
− ∥z−c∥2

2(σ
β )2

)/
ρσ

β
(Zn) + 1

2 .exp
(
− ∥z+c∥2

2(σ
β )2

)/
ρσ

β
(Zn)

For β < 1, note that the terms in the numerator are dominated by their
respective counterparts in the denominator11. Thus, this equation holds with all
but negligible probability ≥ 1−ϵ(.), for correct parameterization of β. Informally,
this iterates the fact that a smoother Gaussian (i.e. a higher standard deviation)
will strictly dominate a sharper Gaussian (i.e. a lower standard deviation) for
its entire input range except for a negligible fraction around the center (where
the sharper curve is dominant). However, as stated in Corollary 1, scaling of the
smoother Gaussian by some constant factor12 adjusts this relational dominance
at the center (as well as at every other point in the input domain).

Corollary 1. In LPR.KEM.Decaps [3,22,21], for some c1, c2 ∈ Zn, some σ, β ∈
R : β < 1, and some constant M ∈ Z, the following holds for some negligible
function ϵ(.):

Pr
[
BG(z; c1, c2, σ,

1

2
,
1

2
) ≤M . BG(z; c1, c2,

σ

β
,
1

2
,
1

2
);

M = O(1) , z $← BG(z; c1, c2, σ,
1

2
,
1

2
)
]
≥ 1− ϵ(.)

Proof. This follows directly from Lemma 2. The exact value of M , in our case, is
empirically determined to allow the rejection sampler to work as close as possible
with the target distribution BG(z; c1, c2, σ, 1

2 ,
1
2 ).

11 The normalization factors cancel out without much effect from the change in stan-
dard deviation, since the total probability mass in both cases remains same. Only
its distribution changes.

12 Since, by design, the source and the target distributions differ not in modal centers
but just in standard deviations, the scaling factor is constant. This allows bounding
the number of retries of the rejection sampling to a constant, allowing an acceptable
overhead on LPR.KEM.Decaps.
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Lemma 3. Let f and g be probability distributions with the property that:

Pr
[
f(z) ≤M.g(z); z

$← f
]
≥ 1− ϵ(.)

then the distribution of the following algorithm M:

1. z
$← f

2. PROCESS(z)

is within statistical distance | 1− 1
M | of the following algorithm F :

1. z
$← f

2. With probability 1
M , PROCESS(z)

The expected number of tries for F to PROCESS(z) is M .

Proof. The design ofM and F follows from an abstraction of LPR.KEM.Encaps
and LPR.KEM.Decaps. The distribution f abstracts the ciphertext distribution;
transitively, z then abstracts the actual ciphertext output by LPR.KEM.Encaps.
Finally, PROCESS abstracts the operations of LPR.KEM.Decaps upon z. For this
abstraction, note then that algorithm M is essentially the current operation
of LPR.KEM, where the decapsulation operates upon the ciphertext output by
LPR.KEM.Encaps with certainty. Intuitively, this lemma allows moving from a
deterministic algorithm to a probabilistic one (but without the rejection sam-
pling for now).

LetM(z) denote the distribution ofM when operating upon z; likewise for
F . Let NM denote the probability of M not operating upon z; likewise for F .
We now bound the statistical distance between M and F :

∆(M,F) = 1

2

( ∑
z∈Zn

|M(z)−F(z)|+ |NM −NF |
)

Note that M, by design, has no failure probability. Thus NM = 0. We thus
obtain:

∆(M,F) = 1

2

( ∑
z∈Zn

∣∣∣∣f(z)− f(z).
1

M

∣∣∣∣+ ∣∣∣∣1− 1

M

∣∣∣∣ )

≤ 1

2

( ∑
z∈Zn

f(z)

∣∣∣∣1− 1

M

∣∣∣∣+ ∣∣∣∣1− 1

M

∣∣∣∣ )

=
1

2

∣∣∣∣1− 1

M

∣∣∣∣ ( ∑
z∈Zn

f(z) + 1
)

=
1

2

∣∣∣∣1− 1

M

∣∣∣∣ . 2 =

∣∣∣∣1− 1

M

∣∣∣∣
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Intuitively, statistical distance bounds the difference between probabilities
that algorithmsM and F assign to the same event (i.e. PROCESS(z)). By design,
M assigns probability 1, while F assigns probability 1

M for a single try; the
difference between the two thus upper bounded by

∣∣1− 1
M

∣∣.
Furthermore, multiple tries of F are independent of each other, thereby al-

lowing to represent PROCESS(z) as a binomial random variable (say X). As such,
the expected number of tries of the binomial variable X equal to the inverse
of probability of success for a single try (i.e. M). To summarize, F performs
PROCESS(z) in expected M13 trials.

Lemma 4. Let f and g be probability distributions with the property that:

Pr
[
f(z) ≤M.g(z); z

$← f
]
≥ 1− ϵ(.)

then the distribution of the following algorithm F :

1. z
$← f

2. With probability 1
M , PROCESS(z)

is within statistical distance ϵ(.)
M of the following algorithm A:

1. z
$← g

2. With probability min
(
1, f(z)

M.g(z)

)
, PROCESS(z)

The probability for A to PROCESS(z) is ≥ 1−ϵ(.)
M .

Proof. The design of F follows the same goal as Lemma 3 did. In addition, the de-
sign of A abstracts the operation of the rejection sampler. Note how PROCESS(z),
which abstracts the operations of LPR.KEM.Decaps as in Lemma 3, is encapsu-
lated within the operation of the rejection sampler. This abstracts the main
result of this work: enabling a probabilistic operation LPR.KEM.Decaps through
carefully crafted probability distributions engaging in rejection sampling. Intu-
itively, this lemma allows moving from a “blind” probabilistic LPR.KEM.Decaps
(i.e. F) to a rejection sampling enabled LPR.KEM.Decaps, which can then be
used to cryptographically “verify” distribution of z.

We first bound the probability that A performs PROCESS(z). We partition the
set Zn such that subset S contains all z ∈ Zn for which Pr

[
f(z) ≤M.g(z); z

$←

f
]
≥ 1− ϵ(.) holds. We thus derive the following, after splitting this summation

over z belonging over S and over Zn\S [16]:

13 This reinforces the need to bound M = O(1).
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Pr
[
A performs PROCESS(z)

]
=

∑
z∈S

g(z) . min
(
1,

f(z)

M.g(z)

)
+

∑
z/∈S

g(z)

=
∑
z∈S

f(z)

M
+

∑
z/∈S

g(z)

Where the first summation follows from the generic rejection sampling the-
orem (cf. Lemma 1). For z ∈ Zn\S where the relation f(z) ≤ M.g(z) does not
hold, A simply relies upon the probability distribution g(z). For our use-case,
however, it follows from Lemma 2 that ∀z, the relation f(z) > M.g(z) holds
with negligible probability. Thereby, we obtain:

Pr
[
A performs PROCESS(z)

]
≥

∑
z∈S

f(z)

M

Note, finally, that the premise of Pr
[
f(z) ≤ M.g(z); z

$← f
]
≥ 1 − ϵ(.) is

that z is sampled from f , thereby lower bounding f(z) with all but negligible
probability:

Pr
[
A performs PROCESS(z)

]
=

∑
z∈S

f(z)

M
≥ 1− ϵ(.)

M

We now bound the statistical distance between A and F . As with Lemma 3,
let A(z) denote the distribution of A when operating upon z; likewise for F(z).
Likewise, let NA denote the probability of A not operating upon z; likewise for
F . The statistical distance hence is given as:

∆(A,F) = 1

2

( ∑
z∈Zn

|A(z)−F(z)|+ |NA −NF |
)

=
1

2

(∑
z∈S

∣∣∣∣g(z) . min(1, f(z)

M.g(z)

)
− f(z)

M

∣∣∣∣+∑
z/∈S

∣∣∣∣g(z)− f(z)

M

∣∣∣∣+ |NA −NF |
)

Using Lemma 1 upon all but negligible z ∈ S:

≤ 1

2

(∑
z∈S

∣∣∣∣f(z)M
− f(z)

M

∣∣∣∣+∑
z/∈S

∣∣∣∣g(z)− f(z)

M

∣∣∣∣+ |NA −NF |
)

=
1

2

(∑
z/∈S

∣∣∣∣g(z)− f(z)

M

∣∣∣∣+ |NA −NF |
)

It follows from Lemma 2 that ∀z, the relation f(z) > M.g(z) holds with
negligible probability.
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≤ 1

2

(∑
z/∈S

∣∣∣∣f(z)M

∣∣∣∣+ |NA −NF |
)

Substituting NA and NF , the equation now becomes:

≤ 1

2

(∑
z/∈S

∣∣∣∣f(z)M

∣∣∣∣+ ∣∣∣∣(1− 1− ϵ(.)

M

)
−

(
1− 1

M

)∣∣∣∣ )
From Lemma 2, it is straightforward to infer that Zn\S is an empty set in

all but negligible probability. The final bound hence becomes:

≤ 1

2

(ϵ(.)
M

+

∣∣∣∣(1− 1− ϵ(.)

M

)
−

(
1− 1

M

)∣∣∣∣ ) =
ϵ(.)

M

This completes the proof. We now state the main result formally.

Theorem 2 (Probabilistic Decryption in LPR.KEM.Decaps using Rejec-
tion Sampling).

In LPR.KEM.Decaps [3,22,21], for some c1, c2 ∈ Zn and some σ, β ∈ R : β < 1,
let the following property hold, given some negligible function ϵ(.):

Pr
[ BG(z; c1, c2, σ, 1

2 ,
1
2 )

BG(z; c1, c2, σ
β ,

1
2 ,

1
2 )
≤ O(1); z

$← BG(z; c1, c2, σ,
1

2
,
1

2
)
]
≥ 1− ϵ(.)

then the distribution of the following algorithm M:

1. z
$← BG(z; c1, c2, σ, 1

2 ,
1
2 )

2. Execute LPR.KEM.Decaps(z)

is within statistical distance | 1− 1
M | of the following algorithm F :

1. z
$← BG(z; c1, c2, σ, 1

2 ,
1
2 )

2. With probability 1
M , execute LPR.KEM.Decaps(z)

Which is, in turn, within statistical distance ϵ(.)
M of the following algorithm

A:

1. z
$← BG(z; c1, c2, σ

β ,
1
2 ,

1
2 )

2. With probability min
(
1,

BG(z;c1,c2,σ,
1
2 ,

1
2 )

M.BG(z;c1,c2,
σ
β , 12 ,

1
2 )

)
, execute LPR.KEM.Decaps(z)

Here, M = O(1) is the expected number of tries for A to successfully execute
LPR.KEM.Decaps.

Proof. The proof follows from Lemma 2, Lemma 3, Lemma 4, and Corollary 1.



Title Suppressed Due to Excessive Length 19

3.3 Illustrative Example

We now present an illustrative example of our rejection sampler BG(z;c1,c2,σ,
1
2 ,

1
2 )

M.BG(z;c1,c2,
σ
β , 12 ,

1
2 )

to better establish a hypothetical distribution and the operation of the rejection
sampler. For the toy example, we consider BG(z;−4, 4, 1.5, 1

2 ,
1
2 ) as the target

distribution, visualized in Fig. 2. The normalization factor to convert this into a
probability distribution is omitted: it bears no effect over the overall operation
of the sampler.

Fig. 2. The target distribution [5].

We set β = 0.5; our source distribution hence becomes BG(z;−4, 4, 1.5
0.5 ,

1
2 ,

1
2 ).

This distribution is visualized in Fig. 3. The normalization factor to convert
this into a probability distribution is also omitted. Finally, with an empirically
determined value M = 2, the distribution enforced by the rejection sampler
BG(z;−4,4,1.5, 12 ,

1
2 )

M.BG(z;−4,4, 1.50.5 ,
1
2 ,

1
2 )

as visualized in Fig. 4 is very close to the target distribution.
Fig. 5 captures the required number of trials (maximum possible trials being
10000014) for a sample to be output by BG(z;−4,4,1.5, 12 ,

1
2 )

M.BG(z;−4,4, 1.50.5 ,
1
2 ,

1
2 )

. As evident, not only
is the sampler capable of generating the correct distribution in constant number
of retries, but also in preventing generation of samples from incorrect distribu-
tions. In other words, our rejection sampler, by design, provides verification of
the sample distribution before it can be operated upon.

14 In a realistic setting, no such upper bound will be placed. Hence, the sampler effec-
tively ceases all operations until z belongs to the correct distribution.
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Fig. 3. The source distribution [5].

Fig. 4. The distribution enforced by the rejection sampler (in green), superimposed
over the target distribution (in red) [5].
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Fig. 5. The number of trials needed by the rejection sampler BG(z;−4,4,1.5, 1
2
, 1
2
)

M.BG(z;−4,4, 1.5
0.5

, 1
2
, 1
2
)

to

output a certain sample (the experiment aborts upon hitting a maximum of 100000
trials).

4 Case Studies

We now capture the specifics of applying probabilistic decryptions to refer-
ence implementations of Lattice-based KEMs, and by extension, preventing the
known fault attacks on such instantiations.

4.1 Kyber

Kyber [3] is a Lattice-based KEM that closely follows the construction of LPR-
styled public key encryption scheme, with an additional FO transform to achieve
CCA security.

Structure and Differences with LPR . There are two main differences in
Kyber’s structure wrt. classic LPR construction. First, Kyber relies on Module
Learning-with-Errors (MLWE). Informally, in Algo. 1, a is no longer a polyno-
mial, rather a square matrix of polynomials in Rk×k

q for some module rank k.
Likewise, s, r, e, e1, and e2 are column vectors of polynomials from Rk

q . Sec-
ondly, Kyber employs lossy ciphertext compression. Informally, for both u and
v in Algo. 2, the most-significant bits du and dv are (respectively) considered in
Kyber’s encapsulation and decapsulation routines. Hereafter, we abstract such
differences wrt. LPR with the algorithm triple

{
Kyber.KeyGen, Kyber.Encaps,

Kyber.Decaps
}

. We note these differences bear no impact on the description
and working of the rejection sampling, and refer to [3] for a detailed exposition.
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Attacks on Kyber . Attacks on Kyber exploiting fault propagation have been
explored in [23,4,11,10]. The attack in [23] (also summarized in Fig. 1) adds an
additional error q

2 to the ciphertext, and exploits consequent effective/ineffective
fault propagation to derive a system of inequations and leak the secret key. A
similar attack principle is followed in [11] except for the fact that the error
is introduced in the encapsulation oracle. This allows the adversary to have
greater control over the faulted coefficient of the ciphertext, thereby allowing the
strategy in [11] to resist countermeasures like shuffling that [23] cannot. Finally,
the attacks in [11,10] follow the same attack principle, albeit with improvements
in fault model used, exploitable fault locations, tractability of key recovery in
presence of experimental setup hysterisis, and so on.

Kyber with Rejection Sampling . Fig. 6 captures the distributions of cipher-
texts generated by Kyber.Encaps and the subsequent transformations performed
in Kyber.Decaps. The lower horizontal line depicts the ciphertext space, while
the upper horizontal line depicts the plaintext space. Within the semantics of
our rejection sampling, it is clear that the expected distributions for Kyber can
be approximated as a Bimodal about centers 0 and q

2 . This leads to a natural
extension of Theorem 2 as Corollary 2.

Fig. 6. Schematic of transformations performed during Kyber.Decaps [23].

Corollary 2 (Probabilistic Decryption in Kyber.Decaps using Rejection
Sampling).

In Kyber.Decaps [3], for centers c1 = 0 and c2 = q
2 and some σ, β ∈ R : β <

1, let the following property hold, given some negligible function ϵ(.):

Pr
[ BG(z; 0, q

2 , σ,
1
2 ,

1
2 )

BG(z; 0, q
2 ,

σ
β ,

1
2 ,

1
2 )
≤ O(1); z

$← BG(z; 0, q
2
, σ,

1

2
,
1

2
)
]
≥ 1− ϵ(.)

then the distribution of the following algorithm M:

1. z
$← BG(z; 0, q

2 , σ,
1
2 ,

1
2 )

2. Execute Kyber.Decaps(z)

is within statistical distance | 1− 1
M | of the following algorithm F :
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1. z
$← BG(z; 0, q

2 , σ,
1
2 ,

1
2 )

2. With probability 1
M , execute Kyber.Decaps(z)

Which is, in turn, within statistical distance ϵ(.)
M of the following algorithm

A:

1. z
$← BG(z; 0, q

2 ,
σ
β ,

1
2 ,

1
2 )

2. With probability min
(
1,

BG(z;0, q2 ,σ,
1
2 ,

1
2 )

M.BG(z;0, q2 ,
σ
β , 12 ,

1
2 )

)
, execute Kyber.Decaps(z)

Here, M = O(1) is the expected number of tries for A to successfully execute
Kyber.Decaps.

We implement probabilistic decryption for Kyber in line with Corollary 2,
and set parameters q = 332915, σ = 1.516, β = 0.5, and M = 2. When we repeat
the attacks from [23,4,11,10], the rejection sampler reliably prevents fault prop-
agation, thereby completely cutting off these attacks. Fig. 7 plots the number of
retries needed for probabilistic Kyber.Decaps to execute. As evident, around 0
and q

2 , the average number of retries is about 2. Elsewhere (specifically about q
4

where prior attacks operate), note that the number of retries has maxed out (at
100000) in our experimental setup. In a real-world scenario, Kyber.Decaps will
essentially keep retrying with all but negligible probability. From all practical
perspectives, the adversary does not observe fault propagation at all.

4.2 NewHope and Masked Kyber

The attacks in [15,10,23,11,4,9] also translate to NewHope and Masked Kyber.
We omit the specifics of porting our rejection sampling to NewHope and Masked
Kyber, by observing that the ciphertext distributions in NewHope (cf. Fig. 8 )
and Masked Kyber (cf. Fig. 9) can also be approximated by samplers similar
to Kyber. In our experimentation, attacks on NewHope and Masked Kyber are
also reliably prevented.

5 Extension to DFA: A Case Study of Dilithium

So far, we have focused on enabling probabilistic decryptions for Lattice-based
KEMs, and established how cryptographically-backed guarantees could be given
at countering prior attacks that exploit effective/ineffective propagation. In this
section, we show the genericness of our approach by extending it to countering
DFA based attacks on Dilithium [27,8,14]. To the best of our knowledge, this is
the first work to offer defences against these attacks on Dilithium.

15 In line with parameterization in [3]
16 In line with parameterization in [3]
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Fig. 7. Number of trials needed by Kyber.Decaps before generating output. For em-
pirical evaluation, the number of retries is maxed at 100000.

Fig. 8. Schematic of transformations performed during NewHope.Decaps [23].

Fig. 9. Schematic of transformations performed during MaskedKyber.Decaps [23].

5.1 Attacks on Dilithium

Dilithium [18] is a Lattice-based instantiation in NIST standardization for dig-
ital signatures. Dilithium culminates a rich line of work [16,17,6] which rely on
Fiat-Shamir transformation of interactive protocols (along with aborts) to con-
struct primitives such as identification schemes, digital signatures, and so on.
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The constructions in [16,17,6], as well as Dilithium [18], follow a similar foun-
dation which attacks like [27,8,14] void and eventually exploit. Concretely, for
some secret scalar s and some scalar challenge c ∈ {−1, 0, 1}, the constructions
sample some blinding scalar y and output z = y+sc iff z ∈ G for some safe set G.
The set G varies from instantiation to instantiation, but ensures nothing useful
about sc is leaked from z. Extension of z = y+ sc to vectors is straightforward
and natural, and we refer to [16,17,6,18] for details. The fault attacks in [27,8,14]
force the distribution of y to be skewed such that the output z from the con-
struction belongs no longer to G (i.e. z /∈ G). Eventually, this allows recovery of
s, for both settings where c is deterministic as well as randomized.

5.2 “Verifying” distribution of y through Rejection Sampling

Approximating y . The first step towards extending our rejection sampler to
Dilithium is to approximate the distribution of y. From [18], it follows that a
series of operations sample vj : j ∈ {0, · · · , 255} from the set {0, · · · , 2γ1 − 2}.
The coefficients of y are then sampled as q+γ1−1−vj : j ∈ {0 · · · 255}. Hereon,
we refer the “safe” set G = q + γ1 − 1− vj : j ∈ {0 · · · 2γ1 − 2}17 as the set of all
coefficients of y that hides sc in z = y+ sc.

Definition 1. For any x ∈ Z, the discrete probability distribution DG approxi-
mates the sampling of coefficients of y in Dilithium’s reference implementation:

DG = PrG(x)

{
1
|G| , if x ∈ G
0, otherwise

In other words, without assuming further skewness or constraints over the
sampling of coefficients of y, we assume a uniform distribution over G.

Approximating a “smooth” distribution D̂G over y . As with KEMs (cf.
Sec. 3.2), the next step is to approximate a slightly “smoothed” distribution D̂G
of y which eventually becomes the source distribution for the sampler.

Definition 2. For any x ∈ Z and for the set P = {−α, · · · , α}, the “smoothed”
discrete probability distribution D̂G approximates the sampling of coefficients of
y from the coset p.G defined over the addition operator + :

D̂G = PrĜ(x)

{
1

(2α+1)|G| , if x ∈ p.G
0, otherwise

Intuitively, for each integer k ∈ G, D̂G redistributes its probability mass to
additional 2α integers centered about k. We now establish the rejection sampler
for Dilithium formally.
17 Both q and γ1 are constants in Dilithium’s parameterization.
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Lemma 5. For any y ∈ Z, the following holds for some negligible function ϵ(.):

Pr
[DG(y)

D̂G(y)
≤ O(1); y $← DG

]
≥ 1− ϵ(.)

Proof. We begin by remarking that the set G is a proper subset of p.G for all
α > 0. As such, for all y /∈ G, DG(y) = 0 by definition and the upper bound is
established trivially. For y ∈ G:

DG(y)

D̂G(y)
=

1
|G|
1

(2α+1)|G|
= (2α+ 1) ≤ O(1); ∀α = O(1)

It is straightforward to bound M thus, which abstracts the number of retries
before output is produced.

Corollary 3. For any y ∈ Z and for some M = O(1), the following holds for
some negligible function ϵ(.):

Pr
[
DG(y) ≤M.D̂G(y); y

$← DG

]
≥ 1− ϵ(.)

By extension, M ≥ (2α+ 1).

Lemma 6. Let DG and D̂G be probability distributions with the property that:

Pr
[
DG(y) ≤M.D̂G(y); y

$← DG

]
≥ 1− ϵ(.)

then the distribution of the following algorithm M

1. y
$← DG

2. PROCESS(y)

is within statistical distance | 1− 1
M | of the following algorithm F :

1. y
$← DG

2. With probability 1
M , PROCESS(y)

Finally, the expected number of tries for F to PROCESS(y) is M .

Proof. The designs of M and F abstract operations of Dilithium’s signing or-
acle. Concretely, after sampling y from the safe set G, PROCESS(y) abstracts
the sequence of operations used to generate the signature z, perform additional
checks as necessary, and output the signature. Intuitively, this lemma allows
moving from a deterministic algorithm to a probabilistic one (but without the
rejection sampling for now).
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LetM(y) denote the distribution ofM when operating upon y; likewise for
F . Let NM denote the probability of M not operating upon y; likewise for F .
We now bound the statistical distance between M and F :

∆(M,F) = 1

2

(∑
y∈G
|M(y)−F(y)|+ |NM −NF |

)
Note that M, by design, has no failure probability. Thus NM = 0. We thus

obtain:

∆(M,F) = 1

2

(∑
y∈G

∣∣∣∣DG(y)−DG(y).
1

M

∣∣∣∣+ ∣∣∣∣1− 1

M

∣∣∣∣ )

≤ 1

2

(∑
y∈G

DG(z)

∣∣∣∣1− 1

M

∣∣∣∣+ ∣∣∣∣1− 1

M

∣∣∣∣ )

=
1

2

∣∣∣∣1− 1

M

∣∣∣∣ (∑
y∈G

DG(z) + 1
)

=
1

2

∣∣∣∣1− 1

M

∣∣∣∣ . 2 =

∣∣∣∣1− 1

M

∣∣∣∣
Intuitively, statistical distance bounds the difference between probabilities

that algorithmsM and F assign to the same event (i.e. PROCESS(y)). By design,
M assigns probability 1, while F assigns probability 1

M for a single try; the
difference between the two thus upper bounded by

∣∣1− 1
M

∣∣.
Furthermore, multiple tries of F are independent of each other, thereby al-

lowing to represent PROCESS(z) as a binomial random variable (say X). As such,
the expected number of tries of the binomial variable X equal to the inverse
of probability of success for a single try (i.e. M). To summarize, F performs
PROCESS(z) in expected M18 trials.

Lemma 7. Let DG and D̂G be probability distributions with the property that:

Pr
[
DG(y) ≤M.D̂G(y); y

$← DG

]
≥ 1− ϵ(.)

then the distribution of the following algorithm F :

1. y
$← DG

2. With probability 1
M , PROCESS(y)

is statistically indistinguishable from the algorithm A:
18 This reinforces the need to bound M = O(1).
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1. y
$← D̂G

2. With probability min(1, DG

M.D̂G
) PROCESS(y)

The probability for A to PROCESS(y) is 1
M

Proof. Note that the design of A abstracts the working of the rejection sampler
for Dilithium, and encapsulates the main result of this section. Intuitively, this
lemma allows moving from a “blind” probabilistic signing (i.e. F) to a rejection
sampling enabled signing, which can then be used to cryptographically “verify”
distribution of y. To prove statistically indistinguishability, we begin by bound-
ing the probability of A to execute PROCESS(y). We partition the set Zn such
that subset S contains all y ∈ Zn for which Pr

[
DG(y) ≤M.D̂G(y); y

$← DG

]
≥

1− ϵ(.) holds. We thus derive the following, after splitting this summation over
y belonging to S and to Zn\S [16]:

Pr
[
A performs PROCESS(y)

]
=

∑
y∈S

D̂G(y) . min
(
1,

DG(y)

M.D̂G(y)

)
+

∑
y/∈S

D̂G(y)

=
∑
y∈S

DG(y)

M
+

∑
y/∈S

D̂G(y)

Where the first summation follows from the generic rejection sampling theo-
rem (cf. Lemma 1). From Lemma 5, it is clear that the set Zn\S is null for the
considered discrete distributions DG and D̂G . We hence obtain:

Pr
[
A performs PROCESS(y)

]
=

∑
y∈S

DG(y)

M
=

1

M

We now bound the statistical distance between A and F . As with Lemma 6,
let A(y) denote the distribution of A when operating upon y; likewise for F(y).
Likewise, let NA denote the probability of A not operating upon y; likewise for
F . The statistical distance hence is given as:

∆(A,F) = 1

2

( ∑
y∈Zn

|A(y)−F(y)|+ |NA −NF |
)

=
1

2

(∑
y∈S

∣∣∣∣∣D̂G(y) . min
(
1,

DG(y)

M.D̂G(y)

)
− DG(y)

M

∣∣∣∣∣+∑
y/∈S

∣∣∣∣D̂G(y)−
DG(y)

M

∣∣∣∣+|NA −NF |
)

It follows from Lemma 5 that DG is a proper subset of D̂G , and that the set
Zn\S is null for the considered discrete distributions DG and D̂G . Moreover, by
Definition 1, DG evaluates to 0 for any y ∈ Zn\G. We hence reduce the above
equation to:
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∆(A,F) = 1

2

(∑
y∈G

∣∣∣∣∣D̂G(y) . min
(
1,

DG(y)

M.D̂G(y)

)
− DG(y)

M

∣∣∣∣∣+ |NA −NF |
)

Using Lemma 1, we reduce further to

∆(A,F) = 1

2

(∑
y∈G

∣∣∣∣DG(y)

M
− DG(y)

M

∣∣∣∣+ |NA −NF |
)
=

1

2
|NA −NF |

By definition, probability of F giving an output is 1
M . Moreover, as estab-

lished earlier, Pr
[
A performs PROCESS(y)

]
= 1

M . We hence obtain:

∆(A,F) = 1

2

( ∣∣∣∣1− 1

M

∣∣∣∣− ∣∣∣∣1− 1

M

∣∣∣∣ )
Finally establishing

∆(A,F) = 0

This concludes the proof. We now state the main result formally.

Theorem 3 (“Verification” in Dilithium using Rejection Sampling).
Let DG and D̂G be probability distributions with the property that:

Pr
[
DG(y) ≤M.D̂G(y); y

$← DG

]
≥ 1− ϵ(.)

then the distribution of the following algorithm M

1. y
$← DG

2. PROCESS(y)

is within statistical distance | 1− 1
M | of the following algorithm F :

1. y
$← DG

2. With probability 1
M , PROCESS(y)

which is in turn statistically indistinguishable from the following algorithm A

1. y
$← D̂G

2. With probability min(1, DG

M.D̂G
) PROCESS(y)

Here, M = O(1) is the expected number of tries for A to successfully execute
PROCESS(y).

Proof. The proof follows from Lemma 5, Lemma 6, Lemma 7, and Corollary 3.
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We implement verification in Dilithium using rejection sampling in line with
Theorem 3 and set parameters q = 838041719, γ1 =

(
q−1
16

)
20, α = 1, and

M ≥ (2α+1) = 3. When we mount attacks from [27,8,14], our rejection sampler
for Dilithium is able to completely stop skewed sampling of coefficients in y,
thereby stopping these attacks. The number of retries for an unfaulted execution
is on average 3, while retries for faulted execution are effectively infinite (because
of negligible probability of success).

6 Discussion

The main contribution of this work is a framework to convert a deterministic
algorithm M (with a-priori knowledge of some distribution f) to its proba-
bilistic variant A, such that the latter can “verify” its execution on f . In other
words, the probability of A executing on some distribution f∗ (that is statisti-
cally distinguishable from f) is negligible. Moreover, the specific goals for this
framework allow us to remodel rejection sampling in this context, where the
number of retries for the samplers to generate output is constant (by carefully
crafting the distributions of the sampler). We demonstrate the use of our frame-
work to prevent fault attacks on Lattice-based Key-Encapsulation Mechanisms
(including Kyber, NewHope, and Masked Kyber), as well as on Lattice-based
digital signature construction Dilithium. By design of our framework and imple-
mentation optimizations of the distributions specific to KEMs and Dilithium,
we achieve negligible overhead in our framework. Concretely, for unfaulted exe-
cution, the probabilistic variants of these PQC algorithms generate output in a
constant number of retries (2− 3). However, when faults are injected, the num-
ber of retries grows unacceptably large for an adversary. We remark that, to
the best of our knowledge, our framework provides the first cryptographically-
backed and quantifiable defence strategy against recent fault attacks on KEMs
and Dilithium.

We conclude by remarking that our framework is of independent interest
for applications that require “verification” of complex distributions in the exe-
cution of their algorithms. Moreover, the design of the framework achieves this
“verification” in an additional constant overhead (that is independent of the pa-
rameterization of the underlying construction). We believe that our framework’s
perspective on rejection sampling could lead to a richer class of constructions
from a security viewpoint.
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