
Efficient isochronous fixed-weight sampling with
applications to NTRU

Décio Luiz Gazzoni Filho1,2 , Tomás S. R. Silva3 and Julio López1

1 Universidade Estadual de Campinas (UNICAMP), Instituto de Computação, Campinas, Brazil
2 State University of Londrina, Department of Electrical Engineering, Londrina, Brazil

3 Universidade Estadual de Campinas (UNICAMP), Instituto de Matemática, Estatística e
Computação Científica, Campinas, Brazil

Abstract. We present a solution to the open problem of designing an efficient,
unbiased and timing attack-resistant shuffling algorithm for NTRU fixed-weight
sampling. Although it can be implemented without timing leakages of secret data in
any architecture, we illustrate with ARMv7-M and ARMv8-A implementations; for
the latter, we take advantage of architectural features such as NEON and conditional
instructions, which are representative of features available on architectures targeting
similar systems, such as Intel. Our proposed algorithm improves asymptotically
upon the current approach, which is based on constant-time sorting networks (O(n)
versus O(n log2 n)), and an implementation of the new algorithm is also faster in
practice, by a factor of up to 6.91 (591%) on ARMv8-A cores and 12.58 (1158%)
on the Cortex-M4; it also requires fewer uniform random bits. This translates into
performance improvements for NTRU encapsulation, compared to state-of-the-art
implementations, of up to 50% on ARMv8-A cores and 71% on the Cortex-M4, and
small improvements to key generation (up to 2.7% on ARMv8-A cores and 6.1% on
the Cortex-M4), with negligible impact on code size and a slight improvement in
RAM usage for the Cortex-M4.
Keywords: Post-quantum cryptography · NTRU · Sampling · ARM

1 Introduction
In the late 1990s, the rise of quantum algorithms for database search and factoriza-
tion [Gro96, Sho97] posed a threat to public-key cryptosystems based on integer factoriza-
tion and/or discrete logarithms. Even though quantum computers capable of efficiently
performing such computations do not exist yet, growing concern within the community led
to seeking alternative cryptographic primitives capable of resisting attacks from quantum
algorithms. Thus, Post-Quantum Cryptography (PQC) arises as an attempt to counter
these attacks by developing new public-key cryptographic algorithms built on problems
known to be resistant to quantum attacks, such as lattice-based problems.

One of the oldest lattice-based cryptosystems is NTRU, first presented in the rump
session of CRYPTO ’96 [HPS]. It remains relevant, as shown by advancing to the third
round of the NIST PQC standardization process [CDH+20, Nat17], and its standardization
in other forums [IEE09, ASC10]. A performance bottleneck of NTRU is fixed-weight
sampling of polynomials, i.e. those with a prescribed number of randomly permuted
−1, 0 and 1 coefficients, employed in key generation and encapsulation. Unless carefully
optimized, this contributes a large runtime cost, particularly to encapsulation.

E-mail: decio.gazzoni@ic.unicamp.br (Décio Luiz Gazzoni Filho), tomas@ime.unicamp.br (Tomás
S. R. Silva), jlopez@ic.unicamp.br (Julio López)

This work is licensed under a “CC BY 4.0” license.
Date of this document: 2024-04-09.

https://orcid.org/0000-0002-6001-2172
https://orcid.org/0000-0002-5825-9133
https://orcid.org/0000-0001-5139-0158
mailto:decio.gazzoni@ic.unicamp.br
mailto:tomas@ime.unicamp.br
mailto:jlopez@ic.unicamp.br
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Efficient isochronous fixed-weight sampling with applications to NTRU

Shuffling algorithms appear perfectly suited to solve the problem of fixed-weight
sampling; however, there is no known efficient algorithm that is resistant to timing attacks
for this problem. Instead, constant-time sorting is used to generate random permutations,
as mandated by the NTRU submission to the NIST PQC contest [CDH+20]. We propose
a new, timing attack-resistant shuffling algorithm to replace the sorting-based approach,
with improved asymptotic running time and large performance improvements in actual
implementations, especially for embedded architectures.

Prior to our work, the main proposal to avoid the cost of fixed-weight sampling for
NTRU is NTRU-HRSS [HRSS17]. Their technique was later merged into the NTRU
proposal for NIST’s PQC standardization process [CDH+20]. Due to larger key and
ciphertext sizes, it was adopted for only one out of the four suggested parameter sets.

There exist many shuffling algorithms, such as Fisher-Yates [FY38, Dur64, Knu97],
Rao-Sandelius [Rao61, San62] and MergeShuffle [BBHL18]. Algorithms in the coin
tossing model, aimed at minimizing the consumption of random bits, are reviewed in
[BBHT17]. However, none of these are designed to resist side-channel attacks. Indeed,
[Dan19] remarks that Fisher-Yates is the most straightforward implementation of fixed-
weight sampling, but cautions that “implementing Fisher-Yates in such a way that there is
no side channel is difficult.” They opt for a constant-time sorting network, as proposed by
Bernstein for use with the McEliece [BCS13] and NTRUPrime [BCLvV18] cryptosystems.

A constant-time version of Fisher-Yates has been proposed by Sendrier [Sen21] with
running time O(n2) for the BIKE cryptosystem; as BIKE samples O(

√
n) out of n

elements, its performance behaves acceptably as O((
√

n)2) = O(n). In NTRU, a full shuffle
is required, and Sendrier’s algorithm cannot compete with O(n log2 n) for the fastest
practical sorting networks.

Our contributions. In §3, we solve the open problem of designing an unbiased shuffling
algorithm resistant to timing attacks for the NTRU fixed-weight sampling problem. It is
a drop-in replacement for NTRU’s current sampling-by-sorting approach, improving the
running time from O(n log2 n) for the best practical sorting networks to O(n), without
impacting security; we discuss implementation aspects in §4. We show in §5 that an
implementation of our proposed approach is considerably faster for the fixed-weight
sampling step: up to 6.91× (591%) on ARMv8-A cores and 12.58× (1158%) on the Cortex-
M4. This translates into considerable improvements for the KEM encapsulation operation
(up to 50% on ARMv8-A cores and 71% on the Cortex-M4) and smaller improvements
for key generation (up to 2.7% and 6.1% on the same respective platforms), with little
effect on code size, and small gains in memory usage, for embedded architectures. We
illustrate how to implement its main operations efficiently in the ARMv8-A and ARMv7-M
architectures, as well as generic operations suitable for any architecture, and discuss
possible implementations for Intel architectures. Our implementation is available under an
open source license in https://github.com/... 1

2 Preliminaries
2.1 NTRU random sampling
NTRU is a post-quantum public-key cryptosystem whose security relies on the difficulty of
finding short vectors in high-dimensional lattices [Ajt96, MG02]. It is based on a polynomial
ring over a finite field, and some of its parameters are random ternary polynomials, i.e.,
with coefficients in {−1, 0, +1}2. A subset of these are additionally restricted to being
fixed-weight, i.e. having a prescribed number of −1, 0 and +1 coefficients. The NTRU

1Source code will be made available following the publication of the paper.
2Given that these are ternary polynomials, the coefficient 2 may be used interchangeably with −1.

https://github.com/...

Décio Luiz Gazzoni Filho, Tomás S. R. Silva, Julio López 3

specification [CDH+20] defines T (d) as the set of ternary “polynomials that have exactly
d/2 coefficients equal to +1 and d/2 coefficients equal to −1”.

The straightforward approach to sample from T (d) is to fix a representative of T (d) (e.g.,
−1 for the first d/2 coefficients, +1 for the next d/2 coefficients, and 0 for the remaining
ones), and randomly permute its coefficients using a shuffling algorithm. However, known
shuffling algorithms are not side-channel attack resistant [Dan19]. The usual solution to this
problem, mandated by the NTRU specification [CDH+20], is based on sorting. Briefly, an
array of key-value pairs are created, using uniformly random samples as keys, and values are
coefficients from the chosen fixed representative of T (d). Sorting the random keys induces
a random permutation of the coefficients. This approach is illustrated in Algorithm 1.
Note that sorting must be performed in constant-time to avoid timing leaks; while most
classical sorting algorithms are variable-time, sorting networks [Knu98, Section 5.3.4] are
constant-time and have proven to be efficient enough in practice [BCS13, BCLvV18].

Algorithm 1 SampleFixedType: fixed-weight sampling by sorting [CDH+20, §1.10.5]
Input: (b0, b1, . . . , bl−1) (random bit string of length l = 30(n− 1))
Output: v (a polynomial in T (q/16− 1))
Notes: We denote by Int(x0, . . . , xk−1) the unsigned integer with xj (0 ≤ j ≤ k − 1) at

the j-th bit of its binary representation.
1: a← [0, 0, . . . , 0] ▷ Array of n− 1 zeros
2: v ← 0 ▷ The zero polynomial
3: i← 0
4: for i = 0 to q/16− 2 do
5: a[i]← 1 + 4 · Int(b30i, . . . , b30i+29)
6: for i = q/16− 1 to q/8− 3 do
7: a[i]← 2 + 4 · Int(b30i, . . . , b30i+29)
8: for i = q/8− 2 to n− 2 do
9: a[i]← 0 + 4 · Int(b30i, . . . , b30i+29)

10: Sort a in constant time
11: for i = 0 to n− 2 do
12: v ← v + (a[i] mod 4)xi

13: return v

2.2 Shuffling algorithms
Fisher-Yates. The Fisher-Yates shuffle algorithm, also known as Knuth’s shuffle [FY38,
Dur64, Knu97], is a classical technique for randomly and unbiasedly permuting elements
in a collection. It is displayed in Algorithm 2.

Algorithm 2 Fisher-Yates(a, n)
Input: An array a of n elements
Output: A random permutation of a

1: for i = n− 1 downto 0 do
2: j ← random integer such that 0 ≤ j ≤ i
3: Exchange a[j] and a[i]
4: return a

Fisher-Yates has favourable performance characteristics: O(n) running time with small
constants. However, the pioneering work of [Ber04], applied to S-boxes in the AES cipher,
revealed that array accesses indexed by secret data are susceptible to side-channel attacks,

4 Efficient isochronous fixed-weight sampling with applications to NTRU

due to timing variabilities induced by the presence or absence of data in CPU caches. A
similar attack can be mounted on Algorithm 2 by recovering the indices j in the accesses
to a[j] in line 3, allowing the permutation to be reconstructed by an attacker. We recall
that a constant-time version was proposed in [Sen21]; however, its running time for a full
shuffle (as required in NTRU) is degraded to O(n2).

Rao-Sandelius. A relevant shuffling algorithm is Rao-Sandelius, independently proposed
in the 1960s by [Rao61] and [San62]. It relies on a divide-and-conquer strategy.

Algorithm 3 RS(a, n): Rao-Sandelius shuffle
Input: An array a of n elements
Output: A random permutation of a

1: if n ≤ 1 then
2: return a
3: if n = 2 then
4: if rand-bit = 1 then
5: return [a[1], a[0]]
6: else
7: return [a[0], a[1]]
8: Let A0 and A1 be two empty arrays
9: for i = 0 to n do

10: Add a[i] into Arand-bit

11: return RS(A0, |A0|) || RS(A1, |A1|)

The case n = 2 can be made constant-time using standard techniques. Line 10 directs
each element a[i] to a different array depending on a random bit; by evicting both arrays
from the cache for later probing, an attacker can find which array was written to. This
can be countered by writing to both arrays regardless of the random bit drawn, but only
incrementing the correct pointer. However, the random choice of array for assignment
may lead to uneven growth of the arrays. We are unaware of any concrete analyses in the
literature, but conjecture that this leaks enough data to mount a cache timing attack.

MergeShuffle. Finally, MergeShuffle, introduced in [BBHL18], “is an (easy to
implement) extremely efficient algorithm to generate random permutations (or to randomly
permute an existing array)”. As with the Rao-Sandelius algorithm, MergeShuffle uses
a divide-and-conquer strategy and is amenable to a parallel implementation.

Let k be a cut-off threshold to switch to Fisher-Yates. MergeShuffle splits an input
array (a0, a1, . . . , an−1) into 2k blocks to be shuffled using Fisher-Yates (Algorithm 2),
and then merges the resulting permutations as presented in Algorithm 4. The merging
procedure is similar in spirit to that of e.g. mergesort, but it is performed in-place and
uses a random bit to choose whether to swap elements from the two input arrays.

The use of Fisher-Yates as a subroutine of MergeShuffle renders it equally susceptible
to cache timing attacks. It is also unclear whether the merging step can be vectorized, to
attain competitive performance, and implemented in constant-time.

3 Fixed-weight sampling by constant-time shuffling
As just discussed, while shuffling is the natural solution to the fixed-weight sampling
problem in NTRU, we are unaware of any shuffling algorithm resistant to side-channel
attacks. In this section, we propose an efficient, unbiased and timing attack-resistant

Décio Luiz Gazzoni Filho, Tomás S. R. Silva, Julio López 5

Algorithm 4 MergeShuffle(a, k)
Input: An array a of n elements
Output: A random permutation of a

1: Divide a into 2k blocks of roughly the same size
2: Shuffle each block independently using Fisher-Yates
3: p← k
4: repeat
5: Merge adjacent blocks of size 2p into new blocks of size 2p+1 ▷ See text
6: p← p + 1
7: until a consists of a single block
8: return a

shuffling algorithm suitable for NTRU fixed-weight sampling. Throughout this section, n
is defined as in the NTRU specification and assumes values of either 509, 677 or 821.

We first describe a subroutine (Algorithm 5) to generate an array of random integers
si such that si[i] ∼ U(0, n− 1− i) for 0 ≤ i < n− 1. It is a slightly modified version of
[Lem19, Algorithm 5]. While other approaches exist to achieve the same result, some of
which are discussed in the same paper, this method achieves the best performance among
all methods we experimented with, while restricting costly (and, in all CPUs we’re familiar
with, variable-time) divisions by non-power-of-two integers to a pre-computation step.

Algorithm 5 RejSamplingMod(n, rnd): Unbiased uniform random number generation
Input: n
Input: rnd (array of random L-bit integers; refer to discussion in §4 for its length)
Output: si (output array of n− 1 integers)

1: for i = 0 to n− 2 do ▷ Precomputation
2: t[i] = 2L mod (n− 1− i)
3: j ← 0
4: for i = 0 to n− 2 do
5: repeat
6: m← rnd[j]× (n− 1− i)
7: j ← j + 1
8: l← m mod 2L ▷ Implement with a bitmask
9: until l ≥ t[i]

10: si[i]← ⌊m/2L⌋ ▷ Implement using right-shift by L bits
11: return si

Lemma 1 (Correctness and unbiasedness of Algorithm 5 [Lem19]). Let L ∈ N∗ = N \ {0}.
Then, ∀s ∈ [0, 2L) and ∀y ∈ [0, s), with s, y integers, there are ⌊2L/s⌋ values of x ∈ [0, 2L)
such that ⌊(x · s)/2L⌋ = y and (x · s) mod 2L ≥ 2L mod s.

Proof. Let L ∈ N∗. Take s ∈ [0, 2L) and y ∈ [0, s). Given x ∈ [0, 2L), the product x·s maps
integers in [0, 2L) to integers in [0, s · 2L). Take z ∈ [0, s · 2L) an integer, the result of the
integer division of z by 2L is 0 if z ∈ [0, 2L), 1 if z ∈ [2L, 2L+1), and so on. Every interval
[i · 2L, (i + 1) · 2L) contains

⌊
((i + 1) · 2L − i · 2L)/s

⌋
=
⌊
2L/s

⌋
multiples of s; as such, the

interval [i·2L +(2L mod s), (i+1)·2L) contains ⌊((i + 1) · 2L − i · 2L − (2L mod s))/s⌋ =
⌊2L/s⌋ multiples of s, since (2L − (2L mod s)) is multiple of s.

Lemma 1 implies that rejecting values in the interval [i · 2L, (i + 1) · 2L + 2L mod s)
that are multiple of s produces exactly ⌊2L/s⌋ multiples of s. We discuss issues of timing

6 Efficient isochronous fixed-weight sampling with applications to NTRU

Algorithm 6 Shuffle(n, c0, c1, rnd): Fixed-weight sampling by shuffling
Input: n
Input: c0, c1 (prescribed number of coefficients equal to 0, resp. 1)
Input: rnd (array of random L-bit integers; refer to discussion in §4 for its length)
Output: v (output array of n− 1 integers)

1: si← RejSamplingMod(n, rnd)
2: for i = 0 to n− 2 do
3: if si[i] < c0 then ▷ See text for discussion of constant-time implementation
4: v[i]← 0
5: c0 ← c0 − 1
6: else if si[i] < c0 + c1 then
7: v[i]← 1
8: c1 ← c1 − 1
9: else

10: v[i]← −1
11: return v

attack resistance, as well as the choice of the performance-critical parameter L in §4.
Algorithm 6 is our proposed shuffling approach for the fixed-weight sampling problem.

Evidently, the main loop of Algorithm 6, as presented, does not execute in constant
time due to the use of branches. However, architecture-agnostic standard techniques, as
well as architecture-specific conditional instructions, can be used to obtain a branchless,
constant-time implementation; see §4. Moreover, all accesses to the arrays si and v are
performed sequentially. We exploit the fact that O(1) distinct values need to be shuffled
(indeed, only 3: −1, 0, 1), a situation not considered in the usual shuffling algorithms.
Intuitively, one could draw an analogy between Fisher-Yates shuffling and selection sort,
and by replacing the latter with counting sort, arrive at our proposed algorithm.

Lemma 2 (Correctness and unbiasedness of Algorithm 6). Let n be an integer and rnd an
array of random L-bit integers as in Algorithm 6. Let ci for i ∈ {−1, 0, 1} be the number
of coefficients equal to i in the output polynomial, so that c−1 + c0 + c1 = n− 1, and write
Σ = {−1}c−1 × {0}c0 × {1}c1 . Then, Algorithm 6 produces an array v = σ(Σ), where
σ ∈ Perm(Σ; c−1, c0, c1) is an uniformly taken permutation of Σ with c−1, c0, c1 repetitions.

Proof. It is immediate to verify that the output of Algorithm 6 is v = (σ(Σ1), . . . , σ(Σn−1))
for some σ ∈ Perm(Σ; c−1, c0, c1). To show unbiasedness, we proceed by directly computing
P (v = (σ(Σ1), . . . , σ(Σn−1))) for an arbitrary σ. Recalling that si[j] ∼ U(0, n− 1− j) for
0 ≤ j < n− 1, we have that

P (v = (σ(Σ1), . . . , σ(Σn−1))) =
n−1∏
k=0

P (vk = σ(ΣK))

=
(

c−1−1∏
l=0

c−1 − l

n− 1− l

)
·

(
c0−1∏
m=0

c0 −m

n− 1− c−1 −m

)
·

(
c1−1∏
p=0

c1 − p

n− 1− c−1 − c0 − p

)

= c−1!(
c−1−1∏

l=0
n− 1− l

) · c0!(
c0−1∏
m=0

n− 1− c−1 −m

) · c1!(
c1−1∏
p=0

n− 1− c−1 − c0 − p

)

= c−1!c0!c1!
(n− 1)! = 1

|Perm(Σ; c−1, c0, c1)| ,

Décio Luiz Gazzoni Filho, Tomás S. R. Silva, Julio López 7

where the fourth equality follows from the fact that n = c−1 + c0 + c1. Hence, Algorithm 6
covers all possible permutations σ ∈ Perm(Σ; c−1, c0, c1) with uniform probability.

Lemma 3. Algorithm 6 executes in time O(n) on average, assuming 2L > 2n.

Proof. The loop of line 2 clearly executes in time O(n). Thus, the remaining work consists
in analyzing Algorithm 5. The outer loop (line 4) consists of n−1 iterations. Noticing that
t[i] < n,∀i, the condition in line 9 will be satisfied with probability 1− n

2L > 50%. Thus,
the expected number of iterations in the inner loop (line 5) is less than 2, so Algorithm 5
also executes in time O(n) on average.

We remark that the O(n) running time of Algorithm 6 improves upon the O(n log2 n)
running time of sorting networks typically used for constant-time sorting implementa-
tions [BCS13, BCLvV18], such as Batcher’s odd-even merge sort [Knu98].

The algorithm necessarily consumes at least n− 1 random L-bit integers and may, in
principle, consume an infinite number of them due to rejections; however, in §4, we show
that, for L = 16, generating just 4% to 5.5% extra random integers is sufficient in practice.

4 Implementation aspects
Architectural guarantees regarding constant-time execution. Both ARMv8-A
and Intel architectures have recently introduced hardware flags that, when set, guarantee
constant-time execution of a subset of CPU instructions, which should generally be sufficient
to implement most cryptographic algorithms: FEAT_DIT for ARMv8-A [ARM23, Sections
A2.6.1, B1.3.6, C5.2.4] and DOIT for Intel [Int23a, Int23b]. We verified that all instructions
handling secret data in our ARMv8-A implementations are included in the affected subset.

These new features do not imply that CPUs launched prior to the introduction of these
flags execute these instructions in variable time. Indeed, ARM is unaware of older CPUs
with variable timing for instructions now covered by FEAT_DIT [ARM]; and Intel advises
developers to assume older microarchitectures behave as if DOIT is enabled [Int23a].

This issue has garnered attention at the beginning of 2024, as Apple ARMv8-A cores
(which are designed by Apple and not ARM) are subject to a microarchitectural attack
called GoFetch [CWS+24]; setting the FEAT_DIT bit on the M3 disables the data
memory-dependent prefetchers targeted by the attack, rendering it ineffective.

Resistance against timing attacks of Algorithm 5. There are some possible sources
of timing leaks in Algorithm 5, which we enumerate and analyze.

The integer multiplication in line 6 must execute in constant-time, which is the norm
in modern CPUs3, although there are rare exceptions such as the ARM Cortex-M3 for
32× 32 = 64-bit multiplications; however, 32× 32 = 32-bit multiplication suffices for the
purpose of this algorithm, and there is evidence that it executes in constant time in the
Cortex-M3 [dG15, Por18].

Array accesses in lines 6 and 9 use sequential indices; thus, secret data is not leaked.
The loop in lines 5 to 9 performs rejection sampling based on public data, precomputed

in line 2: the remainder of 2L divided by integers in the sequence n− 1, n− 2, . . . , 1, where
L and n are public parameters. Nevertheless, given the attack of Guo et al. [GHJ+22]
targeting rejection sampling in fixed-weight sampling algorithms for BIKE and HQC
code-based cryptosystems, it is worth analyzing whether a similar attack could apply here.
We note that their attack relies on two key assumptions:

3Note that multiplication instructions are covered by ARMv8-A’s FEAT_DIT and Intel’s DOIT flags.

8 Efficient isochronous fixed-weight sampling with applications to NTRU

1. A high rejection rate, leading to multiple calls to the seedexpander routine (equiva-
lently in our case, the randombytes routine) which creates a timing distinguisher.
As discussed later, the rejection rate for our chosen parameter L = 16 is sufficiently
small that e.g. a full run of Algorithm 5 in the case n = 509 has > 40% probability of
no rejections at all. Due to this low rejection rate, we sample enough uniform random
integers from the outset so that the probability is overwhelmingly low (< 2−74)
that extra samples are required, avoiding potential extra calls to randombytes while
introducing a negligible overhead.

2. Derivation of the random seed for fixed-weight sampling from secret data – namely,
the output of decryption from the reencryption step of decapsulation, as required by
the Fujisaki-Okamoto transform for IND-CCA security of the KEM. The attack starts
by trial encrypting many candidate messages until finding an m that requires multiple
calls to seedexpander, which gives rise to a timing distinguisher (made considerably
harder, but not impossible, in our case by the first point above). Carefully constructed
perturbations of the resulting ciphertext c are fed to the decapsulation procedure,
while using the timing distinguisher to determine whether the decryption step of
reencryption outputs the same m or a different message, allowing the attacker to
learn information about the secret key. Repeated application of this procedure
extracts the vast majority of key material, and the remaining bits are easily found.
However, we note that NTRU does not require reencryption due to the rigidity of
the NTRU DPKE [CDH+20, Figures 9 and 10]; indeed, the fixed-weight sampling
algorithm is not executed at all during either decapsulation or decryption.

Thus, we conclude that Algorithm 5 does not render NTRU vulnerable to the attack
of Guo et al [GHJ+22].

Choosing the parameter L. The choice of L in Algorithm 5 is a tradeoff between
the cost of random number generation and the frequency of rejections; the latter lead to
branch mispredictions and costly pipeline flushes in modern, highly-pipelined superscalar
CPUs such as some of the ARMv8-A cores considered in this work. If samples are rarely
rejected, a SIMD implementation of the algorithm becomes feasible; one can keep track of
which lanes were rejected and resample them later (usually with scalar code). To minimize
rejection, one must choose L such that 2L ≫ n− i, but this translates into added cost for
random number generation, and thus L should not be unreasonably larger than n− i.

We propose L = 16 as a natural choice, supported by all scalar and SIMD instruction
sets we’re aware of. The next smaller size, 8 bits, is insufficient for half or more of the values
to be sampled in the standard NTRU parameter sets, and for most of the intervals where it
is sufficient, it would lead to a high rejection rate, running counter to the SIMD philosophy.
By exactly matching an available lane size, no bit shifts/masks/permutations are required
to load random integers into SIMD registers, further improving performance. It is also
the natural choice for storing the 11- or 12-bit NTRU polynomial coefficients; indeed, it is
the representation used by the reference code and the state-of-the-art implementations we
chose for performance comparisons, requiring no size conversions.

Finally and most importantly, rejections are relatively rare: a block of 16 samples
is fully accepted (zero rejections) with probability at least 94.2%, 91.6% and 90.1% for
n = 509, 677 and 821, respectively. These are minimum figures, and as n− i decreases, the
acceptance probability increases even further. Furthermore, the probability of accepting
all n− 1 samples (i.e., no rejections at all during a complete execution of the algorithm) is
40.2%, 18.9% and 8.6% for n = 509, 677 and 821 respectively. These figures are obtained
by modeling the number of required samples as a sum of geometric random variables and
are displayed in a Jupyter notebook accompanying the source code of our implementation.

Due to the low rejection probability, it is sufficient to generate just a few extra random
integers over the lower bound of n. For each n, we computed the cumulative distribution

Décio Luiz Gazzoni Filho, Tomás S. R. Silva, Julio López 9

function P (x ≤ k) and sought the minimum k such that 1− P (x ≤ k) < 2−74, enough to
sample 210 > n integers for each of 264 key exchanges. For L = 16, and rounding up to the
next multiple of 8 (the number of 16-bit lanes in a NEON register), we find that 536, 704
and 856 random 16-bit integers are sufficient (i.e., an overhead of 5.5%, 4.1% and 4.4%)
for n = 509, 677 and 821, respectively; these are the suggested lengths for the array rnd in
Algorithms 5 and 6. This calculation is included in the aforementioned Jupyter notebook,
and can be used to obtain suggested array lengths for other choices of L if desired.

One might argue that L = 16 is a “wasteful” choice, as it requires 123%, 109% and
103% more bits than the (unattainable) lower bound of log2(n!) bits for n = 509, 677 and
821, respectively. Still, we note this is slightly more than half as many random bits as the
approach dictated by the NTRU specification [CDH+20], which calls for 30× n bits.

Taking L > 16 appears counterproductive, e.g. due to reduced computational through-
put from using larger SIMD lanes. On the other hand, in scenarios where pseudo-random
number generation is expensive, SIMD is not available and pipeline flushes have less
performance impact (i.e. deeply embedded cores such as the Cortex-M4), choosing L < 16
(say, 12 or 10) may result in better overall performance. One might even conceive of an
adaptive choice, decreasing L along with n− i, although this results in more complex code.

SIMD implementation of Algorithm 5. To minimize the execution time of Algo-
rithm 6, we seek to implement Algorithm 5 using SIMD instructions. At first glance, it
is unsuitable for SIMD, as some lanes may be rejected while others are accepted during
sampling. However, it is possible to sample a whole SIMD register and take note of which
lanes, if any, were rejected, to be fixed up later using scalar code (recall that an adequate
choice of L ensures that rejections only happen with low probability, so the effect of this
fixup procedure on the running time is small.) We also break the dependency on the index
j of the random array by using disjoint ranges of the array for SIMD sampling (indices 0
to n− 2) and the fixup procedure (n− 1 onwards). This idea is captured in Algorithm 7.

In addition to previously discussed issues of timing attack resistance of Algorithm 5,
we note that any non-sequential accesses to the array rnd arise from switching between
the ranges of indices 0 ≤ i + k < n− 1 and j ≥ n− 1, that is, they are due to rejections
and thus do not leak secret data; accesses within each range are sequential.

Line 10 should use SIMD comparison instructions (e.g. NEON’s CMHI or AVX2’s
VPCMPGT). These create a mask with all bits set or clear in the corresponding lane, while
Algorithm 7 as written calls for setting and clearing individual bits, a choice made purely
for ease of exposition. Actual implementations are advised to tweak the representation to
employ groups of bits instead, so as to achieve an efficient implementation of the inner
loop of line 6. For instance, VPMOVMSKB is a natural choice in AVX2, resulting in 2-bit
mask groups for 16-bit lanes. In NEON, we extract 8-bit masks with UZP1, and reduce
them to 4-bit masks using SHRN by 4. NEON’s 128-bit registers suggest a choice of W = 8
if L = 16. However, we achieved better performance by taking W = 16, implemented as
an unrolled 2-iteration loop processing 8-element vectors. We attribute this to the fact
that converting a mask with UZP1 and SHRN costs the same for 8 or 16 values.

Constant-time implementation of Algorithm 6. We now discuss how to implement
Algorithm 6 in constant-time. First, we rewrite it using the C language’s ternary operator,
as shown in Algorithm 8, and then discuss strategies to implement this operator in constant
time, firstly as an architecture-agnostic solution, and then consider conditional instructions
present in the ARMv8-A, ARMv7-M and Intel architectures. Note that this version
replaces −1 coefficients by 2; this is not an issue as the sampled polynomial has coefficients
in Z/3Z, and indeed, the reference NTRU code employs the same representation.

Expressions of the form (x < y) ?− 1 : 0, in lines 4 and 5 of Algorithm 8, can be made
constant-time by noticing that, in two’s complement integer arithmetic (used in nearly all

10 Efficient isochronous fixed-weight sampling with applications to NTRU

Algorithm 7 SIMD-RejSamplingMod(n, rnd): SIMD version of Algorithm 5.
Input: n
Input: rnd (array of random L-bit integers; refer to previous discussion about its length)
Output: si (output array of (W + 1)⌊(n− 1)/W ⌋ integer elements, of which only the first

n− 1 entries are valid.)
1: for i = 0 to n− 2 do ▷ Precomputation
2: t[i] = 2L mod (n− 1− i)
3: j ← n− 1
4: for i = 0, W, 2W, . . . , W ⌊(n− 1)/W ⌋ do
5: mask ← 0
6: for k = 0 to W − 1 do ▷ Loop body implemented using SIMD code
7: m[k]← rnd[i + k]× (n− 1− (i + k))
8: l[k]←m[k] mod 2L

9: si[i + k]← ⌊m/2L⌋
10: if l[k] < t[i + k] then
11: maskk ← 1 ▷ maskk denotes the k-th bit of mask
12: else
13: maskk ← 0
14: while mask ̸= 0 do ▷ Loop body implemented using scalar code
15: k = CountTrailingZeros(mask)
16: repeat
17: m′ ← rnd[j]× (n− 1− (i + k))
18: j ← j + 1
19: l′ ← m mod 2L

20: until l′ ≥ t[i + k]
21: si[i + k]← ⌊m′/2L⌋
22: maskk ← 0
23: return si

modern architectures), −1 and 0 have all bits set and cleared, respectively. The sign (most
significant) bit of x− y is 1 if x < y and 0 otherwise; an arithmetic right shift by w − 1
bits, where w is the word size, replicates the sign bit across the entire word. Concretely,
the following C code implements line 4 for 16-bit signed integer variables:

t0 = (si[i] - c0) >> 15;

While already efficient, better performance is achievable. To that end, we analyze the
critical path of the main loop of Algorithm 8, shown in Figure 1. We disregard memory
loads and stores, which can be removed from the critical path by proper scheduling. For any
mobile-, desktop- or server-class modern CPU, one can assume at least a 2-way superscalar
pipeline and single-cycle latency for all used operations, in which case the critical path
from lines 4 and 5 of one iteration to the next (the bold arrows in the figure) takes 3 cycles.

In ARMv8-A, arithmetic operations can be encoded so that one of the input operands
is shifted; thus, a single instruction can compute both t0 = t0 ≫ (w − 1) and c0 = c0 + t0.
Unfortunately, ARMv8-A CPUs considered in this work, such as the Apple M1 [Joh22]
and Cortex-A72 [ARM15], execute these instructions with a 2-cycle latency, offering no
gain in performance (but a slight reduction in code size).

By employing ARMv8-A conditional instructions such as CINC and CSET, it is possible
to reduce the critical path to 2 cycles. However, Algorithm 8 calls for decrementing c0
and c01, and there is no CDEC instruction in ARMv8-A; we modify the algorithm to use
negative values for c0, c01 and si[i], so that we can increment c0 and c01 using CINC instead.
Thus, we arrive at the following code for the algorithm’s main loop:

Décio Luiz Gazzoni Filho, Tomás S. R. Silva, Julio López 11

Algorithm 8 CT-Shuffle(n, c0, c1, rnd): Fixed-weight sampling by shuffling, imple-
mented in constant-time
Input: n
Input: c0, c1 (prescribed number of coefficients equal to 0, resp. 1)
Input: rnd (array of random L-bit integers; refer to previous discussion about its length)
Output: v (output array of n− 1 integers)
Notes: We employ the C language ternary operator ? to denote constant-time selection

between two values based on a condition. See text for implementation possibilities.
1: si← SIMD-RejSamplingMod(n, rnd)
2: c01 ← c0 + c1 ▷ Note this invariant is maintained in the loop body
3: for i = 0 to n− 2 do
4: t0 ← (si[i] < c0) ?− 1 : 0
5: t1 ← (si[i] < c01) ?− 1 : 0
6: c0 ← c0 + t0
7: c01 ← c01 + t1
8: v[i]← 2 + t0 + t1

9: return v

t0 = si[i]− c0;

t1 = si[i]− c01;

Iteration i

t0 = t0 � (w − 1);

t1 = t1 � w − 1;

v[i] = 2 + t0;

c0 = c0 + t0;

c1 = c1 + t1;

v[i] = v[i] + t1;

t0 = si[i+ 1]− c0;

t1 = si[i+ 1]− c01;

Iteration i+ 1

. . .

. . .

Figure 1: Critical path of the main loop of Algorithm 8.

cmp c0, si[i]
cinc c0, c0, lt
cset v[i], ge
cmp c01, si[i]
cinc c01, c01, lt
cinc v[i], v[i], ge

There are two critical paths: one from cmp c0, r to cinc c0, c0, lt to the next
iteration’s cmp c0, r; and the second for the same instructions involving c01. In all
the considered ARM CPUs, all instructions in the code fragment above have single-cycle
latency, and thus the loop has the potential to execute in 2 cycles/iteration.

Unfortunately, we run into throughput issues: in the Apple M1, reverse engineering
efforts [Joh22] indicate that, although it is capable of executing 6 scalar instructions/cycle,
only 3 execution units can execute flag-setting and conditional instructions, i.e. all
instructions in the above code fragment. While theoretically sufficient to run the code at
maximum throughput, we have observed instruction scheduling issues while attempting to
software-pipeline Algorithms 7 and 8, preventing execution at maximum throughput. The
following instruction sequence requires more µops, but performs better in the M1:

subs tmp, c0, si[i]

12 Efficient isochronous fixed-weight sampling with applications to NTRU

cinc c0, c0, lt
add v[i], two, tmp, asr #31
subs tmp, c01, si[i]
cinc c01, c01, lt
add v[i], v[i], tmp, asr #31

We use 32-bit registers (w0, w1, etc.) and initialize two with the constant 2. It is also
advantageous for the Cortex-A72, since the add instruction with shifted argument executes
in the M pipeline, whereas all other instructions execute in the I0/I1 pipelines. While
other bottlenecks come into play in the Cortex-A72, notably its 3-wide instruction decoder,
this alternative instruction sequence performs better than the original.

Intel has conditional instructions for conditional moves (CMOVcc) and sets (SETcc),
where cc are condition codes, but no conditional increments or decrements. For positive
values of c0 and c01, as in the original version of Algorithm 8, an alternative is to decrement
c0 and c01 and use CMOV to select between original and decremented values; decrements
can execute in parallel with comparisons, thus the critical path is not lengthened.

Unfortunately, Intel instructions do not offer the three-operand form of ARMv8-A
and other RISC architectures, so an extra MOV is required to create a copy prior to
decrementing in order to avoid overwriting the original values; this doesn’t necessarily
increase the critical path, due to MOV elimination [Fog22], but it does increase front-end
pressure. Implementers are advised to keep in mind the achievable performance given the
critical path, to benchmark and analyze compiler-generated code if employing a high-level
language, and to consider inline assembly (or a full assembly language implementation) to
emit instructions that are well-matched to the decoder restrictions.

For the ARMv7-M architecture, a straightforward implementation of Algorithm 8,
implementing lines 4 and 5 using the arithmetic right shift trick, works really well; this
is aided by the ability to shift one of the input operands to data processing (logical and
arithmetic) instructions, resulting in very compact and efficient code.

We have experimented with ARMv7-M’s IT instruction, attempting to improve per-
formance compared to the straightforward implementation, but we were unsuccessful.
However, we did find an especially compact instruction sequence, devoid of conditional
execution instructions, to implement the main loop of Algorithm 8:

cmp si[i], c0
sbc c0, #0
sbc v[i], one
cmp si[i], c01
sbc c01, #0
sbc v[i], #-1

We set one to the constant 1. As the straightforward implementation is already efficient,
this alternative saves one clock cycle per loop iteration, i.e. < 1000 cycles for the full
algorithm. As fixed-weight sampling is performed only once during key generation and
encapsulation, the speedup is just < 0.02% for the former and ≈ 0.15% for the latter.

Software pipelining of Algorithms 7 and 8. Modern superscalar CPUs use distinct
execution units for scalar and SIMD instructions. Most of the execution time of Algorithm
7 is spent in SIMD code, while Algorithm 8 is strictly scalar. This is amenable to software
pipelining [Lam88]. In the best-case scenario, one can achieve execution time close to the
maximum, rather than the sum, of the execution times of Algorithms 7 and 8.

Concretely, we inline Algorithm 7 into Algorithm 8, strip-mine the main loop of the
latter, and then fuse the outer loops of both algorithms, processing W entries at a time.

Décio Luiz Gazzoni Filho, Tomás S. R. Silva, Julio López 13

With this approach, we were able to achieve, in the Apple M1, execution times only
≈ 12% slower than the lower bound (2 cycles/iteration) for the main loop of Algorithm 8
alone. This includes all overhead such as function calls and returns, prologue and epilogue,
initialization, and of course, the execution of Algorithm 7 itself, as seen in Table 4. The
narrow (3-wide) decoder of the Cortex-A72 precludes achieving a similar result as the M1,
but by interleaving instructions of both algorithms to improve scheduling, we achieved
results not far from the limit dictated by the decoder bandwidth bottleneck.

Known Answer Tests. We note that the Known Answer Tests (KATs) in NTRU’s
specification [CDH+20] are tightly coupled to the fixed-weight sampling by sorting approach
mandated there. Therefore, an implementation employing Algorithm 6 will fail these
KATs for key generation and encapsulation. However, our sampled polynomials meet the
fixed-weight requirement imposed by NTRU and are in principle indistinguishable from
those generated by the existing approach. Thus, keys generated using our algorithm are
valid, and the result of an encapsulation employing our algorithm will produce a correct
decapsulation even by an unmodified implementation of the current NTRU proposal.

Given the simplicity and improved performance and code size characteristics of Algo-
rithm 6, we suggest that future standardization attempts of NTRU specify our approach
instead of sampling by sorting, and generate KATs accordingly. Implementers attempting
to replicate our results, whether on ARMv8-A or other architectures, can use unofficial
KATs generated by us, included in our source code package.

5 Experimental results
We now present experimental results for implementations of our proposed approach for
various 64-bit ARMv8-A cores, as well as the 32-bit ARMv7-M Cortex-M4 core.

5.1 Methodology
We implemented reference versions of Algorithms 5 and 6, and optimized versions for
ARMv7-M and ARMv8-A by replacing Algorithm 6 with Algorithm 8; for ARMv8-A
specifically, we replaced Algorithm 5 by a NEON version of Algorithm 7. We integrated the
reference and optimized implementations with existing state-of-the-art implementations
of NTRU: pqm4 [KPR+]4 for ARMv7-M and [GFBL24, NG21, CCHY23] for ARMv8-A.
KATs were generated using the reference implementation and compared against the opti-
mized implementations; we added tests to ensure interoperability between a conventional
implementation (using sampling by sorting) and our proposed approach.

Testbeds and measurement methods. Our testbeds for performance measurement,
with their corresponding CPU cores, are:

• Apple M1 P-core at 3200 MHz in an Apple MacBook Air laptop running macOS;

• Apple M3 P-core at 4064 MHz in an Apple MacBook Pro laptop running macOS;

• Cortex-A72 at 1500 MHz in a Raspberry Pi 4 single-board computer running Linux;

• Cortex-A57 at 1430 MHz in an Nvidia Jetson Nano single-board computer running
Linux;

• Cortex-A53 at 1400 MHz in a Raspberry Pi 3 single-board computer running Linux;
4Although NTRU was removed from the most recent version of pqm4, after Kyber was selected in the

NIST post-quantum standardization process, we used the most recent version prior to NTRU’s removal.

14 Efficient isochronous fixed-weight sampling with applications to NTRU

• Cortex-M4 at 24 MHz in an STM32F4DISCOVERY development board.

Save for the ARMv7-M Cortex-M4 core, the remaining testbeds are ARMv8-A, running
in 64-bit mode. Of these, the Apple M1, M3 and Cortex-A57 cores feature ARMv8-A
Cryptographic Extensions, but the Cortex-A72 and the Cortex-A53 do not.

Our ARMv8-A performance measurements use the cycle counting routines originally
introduced in [NG21]. Each routine is executed for 1,024 times and the average cycle count
is reported. ARMv7-M measurements employ the pqm4 [KPR+] benchmarking harness,
which counts cycles using the Cortex-M4 SysTick timer. The number of iterations is set to
10, and the mean of results are reported; although this is a small number, the Cortex-M4
core is much simpler and more deterministic than the large out-of-order ARMv8-A cores,
thus exhibiting little run-to-run variability.

While, to a first approximation, cycle counts are not influenced by CPU clock speed,
there may be second-order effects such as the decoupling of CPU and bus/RAM/cache
clocks. Thus, we take precautions to maximize the likelihood that benchmarks are
performed at the nominal clock speeds quoted above: we use the performance scaling
governor for Linux systems; in Apple systems, as far as we aware, there is no control
over clock speeds, and there is no TurboBoost-like feature. In both cases, we try to avoid
thermal throttling by inserting delays between benchmark runs to allow systems to cool
down. The Cortex-M4 core does not automatically boost/throttle clock speeds; pqm4
configures it to 24 MHz at startup, ensuring all benchmarks run at that fixed clock speed.

ARMv8-A binaries were compiled with Apple clang 15 (Apple M1 and M3), clang
17 (Cortex-A72 and Cortex-A53), and clang 10 (Cortex-A57), with -O3 and core-specific
-mcpu optimization flags. ARMv7-M binaries were compiled with gcc 12.2.1, passing the
-o speed flag to the pqm4 benchmark script. We enable the FEAT_DIT bit on ARMv8-A
cores where it is available (in the case of our testbeds, only the Apple M1 and M3).

ARMv8-A implementation. Our implementation is based on the source code provided
by [GFBL24], which contains their AMX implementation and the NEON implementations
of [CCHY23, NG21]. As [CCHY23] is the state-of-the-art in NEON implementations,
but targets only the HPS2048677 and HRSS701 parameter sets, [NG21] is included to
display HPS2048509 and HPS4096821 results. Importantly, [GFBL24] backports opti-
mized auxiliary routines of [CCHY23] to [NG21] (in particular a NEON implementation of
constant-time sorting) and provides an optimized implementation of NIST’s randombytes()
AES-CTR-DRBG pseudo-random number generator (PRNG), using ARMv8-A Crypto-
graphic Extensions. These routines are critical to the performance of fixed-weight sampling.

For CPUs without ARMv8-A Cryptographic Extensions, the ChaCha20 PRNG of
[CCHY23] is used. As KATs are incompatible across different PRNGs, we supply two sets
of KATs for validation, using ChaCha20 and AES-CTR-DRBG generators. We ensure that
latter matches those provided in the NTRU specification, which uses the same PRNG.

ARMv7-M implementation. pqm4 [KPR+] is the gold standard for Cortex-M4 im-
plementations of PQC schemes. While its NTRU implementation has highly optimized
polynomial multiplication and inversion routines, the constant-time sorting routine in use
is the portable3 variant of djbsort [Ber19], using a non-architecture-specific implementa-
tion of the core minimum/maximum operation of the sorting network. Compiler output
inspection reveals that the compiler the minimum/maximum idiom was not recognized,
thus generating suboptimal code without using e.g. conditional instructions. We performed
some optimization work on this routine, so as to avoid casting our proposed approach in an
excessively favorable light. We switched to the more efficient portable4 variant of djbsort,
wrote inline assembly versions of the core minimum/maximum operation using conditional
operations and a reduced number of memory accesses, and replaced all long long (64-bit)
variables by 32-bit long variables to avoid unnecessary use of multi-precision arithmetic,

Décio Luiz Gazzoni Filho, Tomás S. R. Silva, Julio López 15

given that ARMv7-M is a 32-bit architecture. This range reduction does not present an
issue in NTRU due to the small lengths (hundreds of elements) of the arrays to be sorted.
While it is certainly possible to further optimize this routine, further experiments by us
resulted in code size increases, which are undesirable in deeply embedded environments.

Table 1 compares the performance, code size and stack memory usage of encapsulation
in the existing NTRU scheme (using sampling by sorting), for the original pqm4 implemen-
tation and our optimized version in our STM32F4DISCOVERY testbed; we denote these
as “[KPR+] original” and “[KPR+] optimized”, respectively, in Table 1. It is seen that
our optimizations result in large speedups (44–48%) with negligible effect on code size and
none at all on stack usage. While we omit corresponding figures for key generation, our
optimizations also outperformed stock pqm4, although by smaller amounts (5.4–6.0%); code
size and stack usage differences are similar. Results for decapsulation and for the HRSS701
parameter set are not shown, as they do not call the constant-time sorting routine.

Table 1: Comparison of the original pqm4 [KPR+] NTRU implementation and our
optimized version for encapsulation. Code size and stack usage are in bytes. For differences,
positive values denote an increase in the optimized version relative to the original one.

Parameter set Work Cycle count Code size Stack usage

HPS2048509

[KPR+] original 557 131 192 560 14 084
[KPR+] optimized 386 278 192 632 14 084

Speedup 44%
Difference +0.04% 0%

HPS2048677

[KPR+] original 801 357 282 292 19 996
[KPR+] optimized 546 570 282 364 19 996

Speedup 47%
Difference +0.03% 0%

HPS4096821

[KPR+] original 997 084 370 808 23 436
[KPR+] optimized 672 825 370 884 23 436

Speedup 48%
Difference +0.02% 0%

5.2 Performance figures and analysis
We present performance figures for NTRU KEM key generation and encapsulation in
Tables 2 (for Apple SoCs) and 3 (for ARM Cortex cores); decapsulation does not employ
fixed-weight sampling, thus its performance is unaffected by our proposed approach. We
present NEON results from the implementations of [NG21] for the HPS2048509 and
HPS4096821 parameter sets, and [CCHY23] for the HPS2048677 and HRSS701 parameter
sets. AMX results are from the implementation of [GFBL24]. We emphasize that all
ARMv8-A implementations use the NEON optimized constant-time sorting routine of
[CCHY23]. For the Cortex-M4 core, we use the implementation of [KPR+], incorporating
our optimizations for constant-time sorting. We present performance results as cycle
counts, calculating speedups as csorting/cshuffling − 1.

Results for the shuffling approach consist in replacing the sample_fixed_type routine
by our proposed algorithms, and adjusting the amount of uniform random bits to match
the requirements of the shuffling algorithms, as discussed in Section 4.

We also present performance figures for fixed-weight sampling, by measuring calls
to the sample_fixed_type routine, whose results are presented in Table 4. Finally, we
present code size (Flash) and stack (RAM) usage figures for the Cortex-M4 in Table 5.

16 Efficient isochronous fixed-weight sampling with applications to NTRU

Table 2: Cycle counts (in kilocycles) for NTRU KEM key generation (KG) and encapsu-
lation (Enc.) in the Apple M1 and M3 SoCs.

Param.
Set Sampling

Apple M1 Apple M3

NEON AMX NEON AMX

KG Enc. KG Enc. KG Enc. KG Enc.

509
Sorting 218 16.1 170 12.5 214 15.5 164 11.7

Shuffling 214 12.5 167 8.90 211 12.0 160 8.22
Speedup 1.7% 29% 2.1% 40% 1.7% 29% 2.2% 43%

677
Sorting 307 20.6 283 17.1 296 19.4 266 16.0

Shuffling 309 14.9 278 11.9 296 14.1 260 10.9
Speedup -0.7% 39% 1.9% 44% -0.2% 37% 2.1% 46%

821
Sorting 498 28.0 384 19.4 491 27.2 371 18.1

Shuffling 491 21.8 378 13.1 485 21.2 365 12.1
Speedup 1.3% 28% 1.6% 48% 1.2% 28% 1.8% 50%

701

N/A 323 14.6 287 11.5 309 13.9 270 10.5
Slowdown vs.

677 sorting 5.4% -29% 1.4% -33% 4.4% -28% 1.4% -35%

Slowdown vs.
677 shuffling 4.7% -1.7% 3.3% -3.9% 4.3% -1.6% 3.5% -4.2%

Key generation and encapsulation. Our proposed approach achieved performance
improvements across the board, for both key generation and encapsulation, save for a few
outliers in the former. For Cortex-M4, these improvements come at a negligible cost to
code size (Flash), and even a slight improvement in stack (RAM) usage, as seen in Table 5.

With regards to key generation, we see improvements of up to 2.7% for ARMv8-A cores
and 6.1% for the Cortex-M4. We recall that NTRU key generation is computationally
expensive; disregarding simpler operations, it requires a modulo-q inversion (usually
realized by a modulo-2 inversion followed by 8 multiplications), a modulo-3 inversion, 5
extra multiplications, 2 different types of sampling (including sample_fixed_type) and
pseudo-random number generation. Therefore, it is not surprising that optimizing a single
sampling routine results in limited performance improvements.

Results are more significant for encapsulation, which are arguably of more interest
than key generation, seeing as, for most cryptographic applications, the former will be run
far more often than the latter. We see improvements of up to 44% and 50% for NEON
and AMX implementations in ARMv8-A, and 71% for the Cortex-M4. Improvements
correlate well with polynomial multiplication performance, which is fastest for NEON in
the HPS2048677 parameter set (based on the faster TMVP approach of [CCHY23]) and
in AMX implementations; this is expected due to Amdahl’s law.

Fixed-weight sampling. Table 4 shows that our shuffling approach significantly im-
proves performance of fixed-weight sampling compared to the sampling by sorting approach
of previous works. We see very significant speedups for all platforms: up to 6.91 (591%)
in ARMv8-A cores and 12.58 (1158%) in the Cortex-M4. Measurements do not include
the cost of pseudo-random number generation (i.e. the randombytes routine), which is
highly platform-dependent; recall that our approach requires slightly more than half as
many pseudo-random bytes as sampling by sorting.

Comparison with NTRU-HRSS. It is instructive to compare NTRU-HPS2048677
to NTRU-HRSS701, as both are designed to the same NIST security level. Fortunately,

Décio Luiz Gazzoni Filho, Tomás S. R. Silva, Julio López 17

Table 3: Cycle counts (in kilocycles) for NTRU KEM key generation (KG) and encapsu-
lation (Enc.) in ARM Cortex cores.

Param.
Set Sampling

Cortex-A72 Cortex-A57 Cortex-A53 Cortex-M4

KG Enc. KG Enc. KG Enc. KG Enc.

509
Sorting 884 71.2 884 61.5 1243 111 2674 386

Shuffling 860 54.1 892 51.8 1213 86.7 2520 234
Speedup 2.7% 32% -0.8% 19% 2.4% 28% 6.1% 65%

677
Sorting 1140 77.4 1146 65.1 1636 121 4317 547

Shuffling 1123 55.3 1123 45.3 1600 84.9 4094 327
Speedup 1.5% 40% 2.1% 44% 2.3% 43% 5.4% 67%

821
Sorting 2156 135 2131 121 2993 197 5705 673

Shuffling 2111 109 2102 95.2 2951 156 5419 395
Speedup 2.1% 24% 1.4% 27% 1.4% 26% 5.3% 71%

701

N/A 1200 58.0 1200 53.6 1579 77.7 4188 368
Slowdown vs.

677 sorting 5.2% -25% 4.7% -18% -3.5% -36% -3.0% -33%

Slowdown vs.
677 shuffling 6.8% 4.8% 6.9% 18% -1.3% -8.5% 2.3% 13%

Table 4: Cycle counts (in kilocycles) for fixed-weight sampling, excluding the cost of
uniform random number generation.

Param.
Set Sampling

Apple
M1

Apple
M3

Cortex-
A72

Cortex-
A57

Cortex-
A53

Cortex-
M4

509
Sorting 4.49 4.36 13.0 14.0 23.2 152

Shuffling 1.11 1.06 2.28 2.30 4.97 13.3
Speedup 4.04× 4.12× 5.71× 6.11× 4.67× 11.45×

677
Sorting 6.43 6.25 19.5 21.2 35.1 221

Shuffling 1.49 1.41 3.11 3.07 6.79 18.4
Speedup 4.32× 4.42× 6.25× 6.91× 5.18× 12.05×

821
Sorting 7.65 7.48 22.6 24.9 40.9 280

Shuffling 1.79 1.71 3.75 3.77 8.12 22.3
Speedup 4.26× 4.37× 6.03× 6.61× 5.03× 12.58×

the state-of-the-art NEON implementation of [CCHY23] implements both parameter sets,
allowing for a fair comparison. Tables 2 and 3 include rows marked “Slowdown vs. 677
sorting” and “Slowdown vs. 677 shuffling”, computed as c701/c677− 1; thus, positive values
indicate that HRSS701 is slower than HPS2048677, and the contrary for negative values.

Even with the sampling by sorting approach, HPS2048677 is usually faster than
HRSS701 for key generation, with the exception of the Cortex-A53 and Cortex-M4 cores;
with the shuffling approach, HPS2048677 key generation always outperforms HRSS701.
As for encapsulation, HPS2048677 using sampling by sorting was significantly slower in
all cases, by up to 33% in Apple SoCs and the Cortex-M4, and 36% in ARMv8-A Cortex
cores. The shuffling approach closes this gap, with HPS2048677 slower by at most 4.2%
in Apple SoCs, and 8.5% in the Cortex-A53; for other ARMv8-A cores, HPS2048677 is
actually faster, by up to 18%, and in the Cortex-M4, it is also faster by 13%.

18 Efficient isochronous fixed-weight sampling with applications to NTRU

Table 5: Code size (Flash) and stack (RAM) usage, in bytes, for ARMv7-M binaries.
Statically allocated data (.data and .bss sections) were reported as zero in all cases.
“Diff.” refers to the percentual difference between implementations; positive values denote
an increase in our version relative to [KPR+].

Param. Work Code Stack usage
set size Key gen. Encaps.

HPS
2048509

[KPR+] 192 632 21 376 14 084
Ours 193 092 20 544 13 244
Diff. +0.2% −3.9% −6.0%

HPS
2048677

[KPR+] 282 364 28 480 19 996
Ours 283 164 27 352 18 868
Diff. +0.3% −4.0% −5.6%

HPS
4096821

[KPR+] 370 884 35 216 23 436
Ours 371 964 33 856 22 076
Diff. +0.3% −3.9% −5.8%

HRSS701 [KPR+] 265 264 27 528 18 332

6 Conclusion
In this work, we showed that timing attack-resistant fixed-weight sampling can be performed
without using constant-time sorting. We have proposed a new algorithm (Algorithm 8)
which achieves a running time of O(n), an improvement over O(n log2(n)) for previous,
sorting network-based approaches. This results in performance improvements in actual
implementations across a range of different platforms, from deeply embedded to high-
performance laptop CPUs. Additionally, the amount of random data needed for sampling
is reduced by almost half, which is advantageous for architectures without instructions
to accelerate cryptographically secure PRNGs. Moreover, our proposed method may be
simpler to implement in an optimized fashion than constant-time sorting networks.

This solves a long-standing open problem: to date, the best alternative was the NTRU-
HRSS variant, which also seeks to eliminate the cost of constant-time sorting required for
sampling fixed-weight polynomials. As discussed in §5, a modified NTRU-HPS2048677,
using our proposed approach, closes the performance gap to NTRU-HRSS701 (recalling
that both are designed to the same NIST security level). We also note that key and
ciphertext sizes for NTRU-HPS2048677 are smaller: 930 (resp. 1138) bytes for the public
key and ciphertext, and 1234 (resp. 1450) bytes for the private key, for NTRU-HPS2048677
(resp. NTRU-HRSS701). Finally, the need to support both NTRU-HPS and NTRU-HRSS
to achieve different security levels results in increased implementation complexity, e.g. due
to the HRSS-specific version of Lift [CDH+20, §1.9.3] and the additional Ternary_Plus
sampling routine [CDH+20, §1.10.4]. In light of these arguments, we call into question the
need for a separate NTRU-HRSS parameter set.

Future work Although NTRU is no longer being considered by NIST, we recall that it
has been standardized in other forums [IEE09, ASC10]. Since our proposed Algorithm 8
improves upon the existing fixed-weight sampling by sorting approach mandated by
the NTRU specification submitted to NIST [CDH+20], we suggest amending NTRU
specifications to use Algorithm 8, and incorporating it into any future standardization efforts
(for instance, we note that FrodoKEM [BCD+16] is also no longer under consideration
by NIST, but is being considered for standardization by ISO [Int23c]). We also suggest
developing implementations for other widely-used architectures, in particular, Intel (using

Décio Luiz Gazzoni Filho, Tomás S. R. Silva, Julio López 19

AVX2 and AVX-512 SIMD extensions) and the recently released ARMv8.1-M Helium
SIMD instruction set for deeply embedded systems [Dir19].

Algorithm 8, as stated, is not amenable to vectorization, due to a loop-carried de-
pendency between iterations of its main loop. Using a similar idea as the initial step of
MergeShuffle (Algorithm 4), vectorization becomes possible; we developed a prototype
implementation that confirms its potential for large speedups, especially on wide CPUs such
as the M1 and M3. However, without applying the remaining steps of MergeShuffle,
the resulting permutation is biased, which may create an avenue of attack. An alternative
we envisioned involves sampling from the hypergeometric distribution; however, this is an
uncommon distribution in cryptography, and we were unable to find any efficient, constant-
time algorithms. We invite future work into either modifying MergeShuffle to be
constant-time, or to propose efficient, constant-time hypergeometric sampling algorithms.

References
[Ajt96] M. Ajtai. Generating hard instances of lattice problems (extended abstract).

In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of
Computing, STOC ’96, pages 99–108, New York, NY, USA, 1996. ACM. doi:
10.1145/237814.237838.

[ARM] ARM Limited. How is instruction timing affected by the FEAT_DIT architec-
tural feature? URL: https://developer.arm.com/documentation/ddi0487/
ja/.

[ARM15] ARM Limited. Cortex®-A72 software optimization guide, 2015. URL: https:
//developer.arm.com/documentation/uan0016/a/.

[ARM23] ARM Limited. Arm® architecture reference manual for a-profile architecture,
2023. URL: https://developer.arm.com/documentation/ka005181/1-0/.

[ASC10] ASC X9.98. Lattice-based polynomial public key establishment algorithm for
the financial services industry. ASC/X9 - ANSI X9.98, 2010.

[BBHL18] Axel Bacher, Olivier Bodini, Alexandros Hollender, and Jérémie O. Lumbroso.
MergeShuffle: a very fast, parallel random permutation algorithm. In Luca
Ferrari and Malvina Vamvakari, editors, Proceedings of the 11th International
Conference on Random and Exhaustive Generation of Combinatorial Structures,
GASCom 2018, Athens, Greece, June 18-20, 2018, volume 2113 of CEUR
Workshop Proceedings, pages 43–52, Aachen, Germany, 2018. CEUR-WS.org.
URL: http://ceur-ws.org/Vol-2113/paper3.pdf.

[BBHT17] Axel Bacher, Olivier Bodini, Hsien-Kuei Hwang, and Tsung-Hsi Tsai. Gen-
erating random permutations by coin tossing: Classical algorithms, new anal-
ysis, and modern implementation. ACM Trans. Algorithms, 13(2), feb 2017.
doi:10.1145/3009909.

[BCD+16] Joppe Bos, Craig Costello, Leo Ducas, Ilya Mironov, Michael Naehrig, Valeria
Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the
ring! Practical, quantum-secure key exchange from LWE. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM, oct 2016. URL: https://doi.org/10.1145/2976749.2978425.

[BCLvV18] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine
van Vredendaal. NTRU Prime: Reducing attack surface at low cost. In Carlisle
Adams and Jan Camenisch, editors, Selected Areas in Cryptography – SAC 2017,
pages 235–260, Cham, 2018. Springer International Publishing.

https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237838
https://developer.arm.com/documentation/ddi0487/ja/
https://developer.arm.com/documentation/ddi0487/ja/
https://developer.arm.com/documentation/uan0016/a/
https://developer.arm.com/documentation/uan0016/a/
https://developer.arm.com/documentation/ka005181/1-0/
http://ceur-ws.org/Vol-2113/paper3.pdf
https://doi.org/10.1145/3009909
https://doi.org/10.1145/2976749.2978425

20 Efficient isochronous fixed-weight sampling with applications to NTRU

[BCS13] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: Fast constant-time
code-based cryptography. In Guido Bertoni and Jean-Sébastien Coron, editors,
Cryptographic Hardware and Embedded Systems - CHES 2013, pages 250–272,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[Ber04] Daniel J. Bernstein. Cache-timing attacks on AES. http://cr.yp.to/papers.
html#cachetiming, 2004.

[Ber19] Daniel J. Bernstein. djbsort. https://sorting.cr.yp.to, 2019.

[CCHY23] Han-Ting Chen, Yi-Hua Chung, Vincent Hwang, and Bo-Yin Yang. Algorith-
mic views of vectorized polynomial multipliers – NTRU. Cryptology ePrint
Archive, Report 2023/1637, 2023. https://ia.cr/2023/1637. To appear at
INDOCRYPT 2023.

[CDH+20] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hülsing, Joost Rijn-
eveld, John M.Schanck, Tsunekazu Saito, Peter Schwabe, William Whyte, Keita
Xagawa, Takashi Yamakawa, and Zhenfei Zhang. NTRU algorithm specifications
and supporting documentation. Submission to the NIST Post-Quantum Cryptog-
raphy Standardization Project, 2020. https://ntru.org/resources.shtml.

[CWS+24] Boru Chen, Yingchen Wang, Pradyumna Shome, Christopher W. Fletcher,
David Kohlbrenner, Riccardo Paccagnella, and Daniel Genkin. GoFetch: Break-
ing constant-time cryptographic implementations using data memory-dependent
prefetchers. In USENIX Security, 2024. URL: https://gofetch.fail/files/
gofetch.pdf.

[Dan19] Oussama Danba. Optimizing NTRU using AVX2. Master’s thesis, Radboud
University, 2019.

[dG15] Wouter de Groot. A performance study of X25519 on Cortex-M3 and M4.
Master’s thesis, Eindhoven University of Technology, 2015.

[Dir19] Rhonda Dirvin. Next-generation Armv8.1-M architecture: Delivering en-
hanced machine learning and signal processing for the smallest embedded
devices. https://www.arm.com/company/news/2019/02/next-generation-
armv8-1-m-architecture, 2019.

[Dur64] Richard Durstenfeld. Algorithm 235: Random permutation. Commun. ACM,
7(7):420, jul 1964. doi:10.1145/364520.364540.

[Fog22] Agner Fog. The microarchitecture of Intel, AMD, and VIA CPUs. https:
//www.agner.org/optimize/microarchitecture.pdf, 2022.

[FY38] R. A. Fisher and F. Yates. Statistical tables for biological, agricultural and
medical research. Oliver & Boyd, Oxford, England, 3rd edition, 1938.

[GFBL24] Décio Luiz Gazzoni Filho, Guilherme Brandão, and Julio López. Fast polynomial
multiplication using matrix multiplication accelerators with applications to
NTRU on Apple M1/M3 SoCs. Cryptology ePrint Archive, Paper 2024/002,
2024. URL: https://eprint.iacr.org/2024/002.

[GHJ+22] Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexan-
der Nilsson, and Robin Leander Schröder. Don’t reject this: Key-recovery
timing attacks due to rejection-sampling in HQC and BIKE. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, page 223–263,
June 2022. URL: http://dx.doi.org/10.46586/tches.v2022.i3.223-263,
doi:10.46586/tches.v2022.i3.223-263.

http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
https://sorting.cr.yp.to
https://ia.cr/2023/1637
https://ntru.org/resources.shtml
https://gofetch.fail/files/gofetch.pdf
https://gofetch.fail/files/gofetch.pdf
https://www.arm.com/company/news/2019/02/next-generation-armv8-1-m-architecture
https://www.arm.com/company/news/2019/02/next-generation-armv8-1-m-architecture
https://doi.org/10.1145/364520.364540
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://eprint.iacr.org/2024/002
http://dx.doi.org/10.46586/tches.v2022.i3.223-263
https://doi.org/10.46586/tches.v2022.i3.223-263

Décio Luiz Gazzoni Filho, Tomás S. R. Silva, Julio López 21

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing, STOC ’96, page 212–219, New York, NY, USA, 1996. Association
for Computing Machinery. URL: https://doi.org/10.1145/237814.237866.

[HPS] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: a new high
speed public key cryptosystem. CRYPTO ’96 rump session. https://web.
securityinnovation.com/hubfs/files/ntru-orig.pdf.

[HRSS17] Andreas Hülsing, Joost Rijneveld, John Schanck, and Peter Schwabe. High-speed
key encapsulation from NTRU. In Wieland Fischer and Naofumi Homma, editors,
Cryptographic Hardware and Embedded Systems – CHES 2017, volume 10529 of
Lecture Notes in Computer Science, pages 232–252, Cham, 2017. Springer-Verlag
Berlin Heidelberg.

[IEE09] IEEE standard specification for public key cryptographic techniques based
on hard problems over lattices. IEEE Std 1363.1-2008, pages 1–81, 2009.
doi:10.1109/IEEESTD.2009.4800404.

[Int23a] Intel Corporation. Data operand independent timing instruction set archi-
tecture (ISA) guidance, 2023. URL: https://www.intel.com/content/www/
us/en/developer/articles/technical/software-security-guidance/
resources/data-operand-independent-timing-instructions.html.

[Int23b] Intel Corporation. Data operand independent timing instructions, 2023.
URL: https://www.intel.com/content/www/us/en/developer/articles/
technical/software-security-guidance/best-practices/data-operand-
independent-timing-isa-guidance.html.

[Int23c] International Organization for Standardization. FrodoKEM: Learning with
errors key encapsulation preliminary draft standard, 2023. URL: https://
frodokem.org/files/FrodoKEM-ISO-20230314.pdf.

[Joh22] Dougall Johnson. Apple M1 microarchitecture research. https://dougallj.
github.io/applecpu/firestorm.html, 2022.

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms. Addison-Wesley, Boston, third edition, 1997.

[Knu98] Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting and
Searching. Addison-Wesley Longman Publishing Co., Inc., USA, 2nd edition,
1998.

[KPR+] Matthias J. Kannwischer, Richard Petri, Joost Rijneveld, Peter Schwabe, and
Ko Stoffelen. PQM4: Post-quantum crypto library for the ARM Cortex-M4.
https://github.com/mupq/pqm4.

[Lam88] M. Lam. Software pipelining: An effective scheduling technique for VLIW
machines. SIGPLAN Not., 23(7):318–328, jun 1988. doi:10.1145/960116.
54022.

[Lem19] Daniel Lemire. Fast random integer generation in an interval. ACM Trans.
Model. Comput. Simul., 29(1), jan 2019. doi:10.1145/3230636.

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a
cryptographic perspective, volume 671 of The Kluwer International Series in
Engineering and Computer Science. Kluwer Academic Publishers, Boston,
Massachusetts, 2002.

https://doi.org/10.1145/237814.237866
https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
https://doi.org/10.1109/IEEESTD.2009.4800404
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/data-operand-independent-timing-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/data-operand-independent-timing-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/data-operand-independent-timing-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://frodokem.org/files/FrodoKEM-ISO-20230314.pdf
https://frodokem.org/files/FrodoKEM-ISO-20230314.pdf
https://dougallj.github.io/applecpu/firestorm.html
https://dougallj.github.io/applecpu/firestorm.html
https://github.com/mupq/pqm4
https://doi.org/10.1145/960116.54022
https://doi.org/10.1145/960116.54022
https://doi.org/10.1145/3230636

22 Efficient isochronous fixed-weight sampling with applications to NTRU

[Nat17] National Institute of Standards and Technology. Post-Quantum Cryptography,
2017. https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization.

[NG21] Duc Tri Nguyen and Kris Gaj. Fast NEON-based multiplication for lattice-
based NIST post-quantum cryptography finalists. In Jung Hee Cheon and
Jean-Pierre Tillich, editors, Post-Quantum Cryptography, pages 234–254, Cham,
2021. Springer International Publishing.

[Por18] Thomas Pornin. Constant-time multiplication. https://www.bearssl.org/
ctmul.html, 2018.

[Rao61] C. Radhakrishna Rao. Generation of random permutations of given number
of elements using random sampling numbers. Sankhyā: The Indian Journal
of Statistics, Series A (1961-2002), 23(3):305–307, 1961. URL: http://www.
jstor.org/stable/25049166.

[San62] Martin Sandelius. A simple randomization procedure. Journal of the Royal
Statistical Society. Series B (Methodological), 24(2):472–481, 1962. URL: http:
//www.jstor.org/stable/2984238.

[Sen21] Nicolas Sendrier. Secure sampling of constant-weight words – application to
BIKE. Cryptology ePrint Archive, Report 2021/1631, 2021. https://ia.cr/
2021/1631.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, October
1997. doi:10.1137/S0097539795293172.

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://www.bearssl.org/ctmul.html
https://www.bearssl.org/ctmul.html
http://www.jstor.org/stable/25049166
http://www.jstor.org/stable/25049166
http://www.jstor.org/stable/2984238
http://www.jstor.org/stable/2984238
https://ia.cr/2021/1631
https://ia.cr/2021/1631
https://doi.org/10.1137/S0097539795293172

	Introduction
	Preliminaries
	NTRU random sampling
	Shuffling algorithms

	Fixed-weight sampling by constant-time shuffling
	Implementation aspects
	Experimental results
	Methodology
	Performance figures and analysis

	Conclusion

