
A post-quantum Distributed OPRF from the
Legendre PRF

Nan Cheng, Novak Kaluđerović, and Katerina Mitrokotsa

Cybersecurity and Applied Cryptography group, Universität St. Gallen, Switzerland
{nan.cheng,novak.kaluderovic, katerina.mitrokotsa}@unisg.ch

Abstract. A distributed OPRF allows a client to evaluate a pseudoran-
dom function on an input chosen by the client using a distributed key
shared among multiple servers. This primitive ensures that the servers
learn nothing about the input nor the output, and the client learns noth-
ing about the key. We present a post-quantum OPRF in a distributed
server setting, which can be computed in a single round of communication
between a client and the servers. The only server-to-server communica-
tion occurs during a precomputation phase. The algorithm is based on
the Legendre PRF which can be computed from a single MPC multipli-
cation among the servers. To this end we propose two MPC approaches
to evaluate the Legendre PRF based on replicated and optimised se-
cret sharing, respectively. Furthermore, we propose two methods that
allows us to perform MPC multiplication in an efficient way that are of
independent interest. By employing the latter, we are able to evaluate
the Legendre OPRF in a fashion that is quantum secure, verifiable and
secure against malicious adversaries under a threshold assumption, as
well as computable in a single round of interaction. To the best of our
knowledge, our proposed distributed OPRFs are the first post-quantum
secure offering such properties. We also provide an implementation of
our protocols, and benchmark it against existing OPRF constructions.

Keywords: OPRF · post-quantum · Legendre PRF · Distributed OPRF
· MPC.

1 Introduction

An oblivious PRF (OPRF) is a two party protocol that involves two parties
a client (receiver) and a server (sender) in which the server has a PRF key k
and the client learns Fk(x), where F is a PRF and x is the input chosen by
the client. The design of the OPRF ensures that the server cannot gain any
knowledge about the client’s input or output, while it also prevents the client
from learning anything about the server’s key.

OPRFs were originally introduced by Freedman et al. [FIPR05], and they
found widespread application in numerous areas of cryptography. The inherent
obliviousness of OPRFs facilitates the development of protocols that safeguard
private data. A common design paradigm to leverage an OPRF is to let a client

2 Nan Cheng, Novak Kaluđerović, and Katerina Mitrokotsa

compute a high-entropy cryptographic object (e.g., a token) from a low-entropy
input (e.g., a password). Furthermore, the fact that the computation is assisted
by one or multiple servers allows for delegating computations to the servers and
keeping a lightweight computation on the client side. The high-entropy crypto-
graphic material can then be securely stored on the servers and does not need
to be stored by the client, which only needs to remember a low-entropy value
such as a password.

A variation of OPRFs are distributed OPRFs (dOPRFs), originally intro-
duced by Jarecki et al. [JKKX17], which consider the setting where multiple
servers are employed for the evaluation of the function. The secret key k is dis-
tributed among the servers and the servers and the client jointly evaluate the
function Fk(x) on the client’s input x without revealing any information about x
to the servers. Additionally, the distributed nature of the key provides additional
protection from server breaches.

OPRFs have been demonstrated to be the fundamental building block for cre-
ating password-authenticated key exchange [Wu00, art07, art17], password secret
sharing [JKK14, JBSL10, JKKX17, BFH+19, DHL20], single sign-on protocols
[BFH+19, AMMM18], and private set intersection [HL09, KKRT16, JL09, JL10],
among many other use cases. All existing practical OPRF constructions base
their security on the difficulty of solving the discrete logarithm problem. This
reliance makes such constructions vulnerable to attacks by quantum computers.
Post-quantum OPRFs are an active area of research, and current constructions
are either broken [BKW20, BKM+], inefficient [ADDS19, Bas23], only presented
in the semi-honest model [ADDG23, FOO23, DGH+], or require many rounds of
communication [BKW20, BDFH24, Dod23], and neither of them are distributed.
Therefore, we address the following open question:

Is it possible to construct an efficient distributed OPRF that provides post-
quantum security guarantees?

Our answer is affirmative and we introduce four different variants of dis-
tributed OPRFs that provide post-quantum security guarantees in different se-
curity models varying from semi-honest to fully malicious.

Contributions: Through the use of generic secure MPC techniques, any pseu-
dorandom function can be computed in an oblivious fashion. This involves the
client and the servers simulating a secure MPC protocol to compute (x, k) 7→
(Fk(x),⊥). However, these protocols have significant communication and compu-
tational overheads. We propose an alternative approach where the client shares
their input secretly with the servers but does not participate in the PRF com-
putation. The servers then perform the PRF computation in an MPC setting,
as depicted in Figure 1.

We use the Legendre PRF as the PRF candidate due to its compatibility with
MPC. In general it can be computed with just a few MPC multiplications. This,
combined with the client-less MPC approach, allows us to compute the PRF in a
single communication round between the client and the servers, eliminating the
need for inter-server communication. This approach offers several benefits, in-

A post-quantum Distributed OPRF from the Legendre PRF 3

cluding efficiency, reduced communication costs, and compatibility with classical
OPRFs computed in the same communication model in a distributed setting.

We offer four different algorithms that provide security guarantees for differ-
ent considered security models, ranging from the semi-honest to malicious. Two
of these algorithms are based on replicated secret sharing (RSS), while the other
two are based on optimised secret sharing (OSS), one for each security model.
The cornerstone of our approach is a verifiable non-interactive maliciously secure
MPC multiplication algorithm, which may be of independent interest.

Finally, we provide an implementation and benchmarks, comparing our al-
gorithm against similar classical and post-quantum primitives.

Client Servers

C S1, . . . , Sm

Setup phase

x 7→ [[x]] [[k]]

[[x]]

MPC
[[x]], [[k]] 7→ [[Fk(x)]]

[[Fk(x)]] 7→ Fk(x) [[Fk(x)]]

[[x]]

[[Fk(x)]]

Fig. 1: MPC based distributed OPRF

Adversarial model: We provide different algorithms that are secure in the
presence of diverse adversarial behaviours. We call an adversary semi-honest if
they follow the protocol specification, but may try to learn more information
than allowed from the protocol transcript. An adversary is called malicious if
they have the full freedom to run any strategy available to them. The adversary
is assumed to be probabilistic polynomial-time.

The main parties in the protocol is the client and n servers. We denote by
t the threshold on the number of corrupted servers. The client may or may not
be corrupted irrespective of t. We provide different protocols that are provably
secure when t < n/2, t < n/3 and t < n respectively. The non-corrupted servers

4 Nan Cheng, Novak Kaluđerović, and Katerina Mitrokotsa

are honest, meaning that they follow the protocol and do not collude with any
corrupted parties.

Our algorithms provide output verification, meaning that the client can be
assured of the output’s correctness. We also introduce the concept of input ver-
ification, which is crucial in the new MPC setting. This protects the honest
parties from the adversary in the event of malicious client behavior. Specifically,
it ensures that the servers do not leak any sensitive data when the client behaves
maliciously. In such cases, the client is given a random output.

We assume that the communication between the client and the servers, as
well as the inter-server communication during the precomputation stage, occurs
over a secure channel.

Lastly, the adversary is assumed to be static, meaning that the set of cor-
rupted parties is determined at the beginning of the protocol.

Technical framework: The Legendre PRF can be computed easily with field
arithmetic. Computing the Legendre PRF function Fk(x) is information-theoretically
equivalent to revealing a field value (x+k) ·s2 where s is a random non-zero field
element unknown to both parties. As such, the computation of the Legendre PRF
boils down to performing one addition, one squaring, and one multiplication.

Our first two protocols employ replicated secret sharing (RSS) to compute
this function. Each field element x, k, s is stored as an RSS share among the
servers. Given the scheme’s linearity, the computation of addition is inherently
straightforward. For the remaining operations, we provide two multiplication
algorithms: one to compute the product and another to compute the square.

In Section 3 we introduce doubly replicated secret sharing (DRSS), a secret
sharing scheme which realises the same access structure as RSS, but acts as a
useful tool for computing multiplications.

The product is computed with an online multiplication algorithm RSS, RSS
7→ DRSS by relying only on local operations. The DRSS output, together with
some auxiliary data is shared with the client who then verifies the correctness
of the computation. This procedure is presented in 3.1. The computation of the
square is facilitated by a semi-honest RSS, RSS 7→ RSS multiplication algorithm,
which uses the previous multiplication algorithm in a second stage to verify
the correctness of the semi-honest protocol. This algorithm is provided in the
Appendix A. Despite requiring a round of interaction, this algorithm does not
create an overhead in the online phase since it is only used offline.

Both multiplication algorithms provide post-quantum computational secu-
rity as the verification step relies on the use of a hash function. However, the
secrecy itself is information-theoretic. On top of this, we build two algorithms
that compute the Legendre OPRF in a semi-honest (Section 4.1) and malicious
(Section 4.2) setting respectively. The latter two protocols use optimised secret
sharing (OSS) and authenticated optimised secret sharing (AOSS) to compute
the Legendre PRF in the semi-honest and malicious setting respectively. The
algorithms are introduced in Sections 4.3 and 4.4.

Finally, in Section 5 we benchmark the first two protocols. We share our
implementation and provide the run-time of the protocols.

A post-quantum Distributed OPRF from the Legendre PRF 5

Protocol Threshold Input Output Communication rounds

Section 4.1 t < n/2 RSS ASS 1
Section 4.2 t < n/3 RSS DRSS 1
Section 4.3 t < n OSS OSS 1+1
Section 4.4 t < n AOSS AOSS 1+1

Fig. 2: Comparison of our proposed dOPRFs.

Related work: Oblivious PRFs have been systematically studied by Casacu-
berta et al. [CHL22]. The authors divide them into four main categories based
on the underlying assumptions – Naor-Reingold (NR), Hashed Diffie-Hellman
(HashDH and 2HashDH), and Dodis-Yampolskiy (DY), all of which are based
on classical security assumptions. In Table 1 we compare some popular OPRFs
against ours. Partially oblivious property means that the input provided by the
client is split into a private part xpriv which remains secret, and public part xpub
which is revealed to the server(s). Verifiabilty allows the client to be convinced
of the correctness of the received output. In our case, the verifiability stems from
the threshold assumption of a (super)majority of honest servers. A distributed
OPRF works in a multi-server setting (i.e., the secret key is distributed to mul-
tiple servers), and a threshold OPRF can be computed requiring a threshold τ
our of the total number n of servers.

OPRFs that do not rely on the previously mentioned primitives are scarce.
One such example is a lattice-based construction proposed by Albrecht et al.
[ADDS19]. While this construction offers verifiability, it is notably inefficient,
requiring more than 128GB of bandwidth for each evaluation. There are also
two existing constructions based on isogenies. The first, proposed by Boneh et
al. [BKW20], is built on the CSIDH [CLM+18] framework. The same paper
proposed an additional protocol based on SIDH [FJP11], [JAC+17], which was
found to be vulnerable to specific attacks. Basso [Bas23] proposed a countermea-
sure and an enhanced algorithm to address these vulnerabilities. This improved
construction also provides the advantage of verifiability.

Recently, Dodgson [Dod23] modeled and proved the security of the Legendre
OPRF in the Universal Composability (UC) model. They focused on the single
server case, leading to security assumptions that are different from those in our
scenario. The author implemented and benchmarked the OPRF using the MP-
SPDZ [Kel20] framework and the MASCOT [KOS16] protocol. However, it is
important to note that the implementations provided by the author only assure
security guarantees against classical and static adversaries, and they are designed
for a semi-honest setting. Furthermore they require more than 96 rounds of
interaction between the client and the server.

Recent work by Beullens et al. [BDFH24] provided a practical OPRF con-
struction based on the Legendre PRF, together with a proof of security in the
UC framework. Their construction relies on oblivious transfer and vector obliv-
ious linear evaluation. This approach makes the protocol somewhat practical,

6 Nan Cheng, Novak Kaluđerović, and Katerina Mitrokotsa

requiring 1MB of total communication and an estimated evaluation time of 0.57
seconds on a WAN network. However, the protocol requires sending 9 messages
between the server and client, with the communication itself being the bot-
tleneck. At the moment no distributed version of said protocol exists and the
authors pose it as an open challenge for future research.

Faller et al. [FOO23] show how to construct efficient, composable and quan-
tum secure OPRFS from generic techniques. They use garbled circuits (GC) to
construct and prove the security of an OPRF in the UC model with malicious
users and semi-honest servers. In addition to that they implement and bench-
mark two versions of their protocol, which we compare with in Table 1.

OPRF PRF
Pa

rt
ia
lly

ob
liv

io
us

Ve
rifi

ab
le

Dist
rib

ut
ed

Thr
es
ho

ld

Qua
nt
um

re
sis

ta
nt

[HL09, JKK14] NR ✗ ✓ ✗ ✗ ✗
[JL09] DY ✗ ✓ ✗ ✗ ✗
[JBSL10, JKKX17, BFH+19] 2HashDH ✓ ✗ ✓ ✗ ✗
[BKW20, ADDS19] Isogenies ✗ ✓ ✗ ✗ ✓
[FOO23] GC ✗ ✗ ✗ ✗ ✓
[Dod23, BDFH24] Legendre PRF ✗ ✓ ✗ ✗ ✓

Our work Legendre PRF ✓ ✓* ✓ ✓ ✓

Table 1: Comparison of some state of the art OPRFs.

On distributed security: We emphasise that our protocol offers different se-
curity properties in the distributed and threshold setting than previous classical
constructions. Other dOPRFs preserve the secrecy of the input x when an adver-
sary takes control of > t servers. In our scenario a weaker security assumption
holds – both the input x and the key k are revealed once a malicious party
breaches a threshold of the servers.

While this may seem like a strong security relaxation, we argue that the ben-
efits overweight the drawbacks. A malicious party that takes full (> t threshold)
control of the servers always learns the secret key k. This allows for a brute-force
dictionary attack which can be used to reveal user’s inputs. In general users’ in-
puts are passwords (or hashes thereof) which are not assumed to be high-entropy,
and this attack would reveal any such inputs. A quantum computer would speed
these attacks even further by means of a faster search algorithm such as Grover’s
search [Gro96].

A second important property to note is that in our protocol the users’ inputs
would be revealed only if the attacker takes control of the servers’ during the
protocol. The same is not true of the keys, which are long-term secrets stored
on the servers, and which would be revealed to an attacker in any case of server

A post-quantum Distributed OPRF from the Legendre PRF 7

breach. Even though our approach suffers from these drawbacks (which we de-
note with a yellow check-mark in Table 1), it allows us to make a trade-off and
create a very efficient protocol with only a single round of communication and
very fast evaluation times.

2 Preliminaries

In this paper, we describe the notation and recall some basic definitions that
will be used in the rest of the paper.

Notation. Let p be a prime. We assume that p is public and p ≈ 22λc or p ≈ 23λq

where λc and λq are classical and quantum security parameters respectively. We
denote with Fp the finite field of p elements. For any set S, we denote with
#S the cardinality of S. We use subscripts to distinguish the terms of a sum
(a =

∑
ai) or to index parties in a protocol (server Si), while we use superscripts

to denote values presumed to be equal and allocated to various parties (ai given
to party associated with index i).

Secret sharing: Secret sharing is a method for distributing a secret value
x ∈ Fp among multiple parties, so no single party, or a predefined group of
parties, holds any information about the secret. We call t a threshold, and a
corresponding secret sharing scheme a (t, n) scheme, if any group of at most
t colluding parties cannot extract any information about the secret, while any
group of ≥ t+ 1 parties can compute the secret x.

We denote with [[x]] a generic secret sharing of a field element x ∈ Fp, i.e.,
an n-tuple (x1, . . . , xn) such that each share xi is owned by party i.

Multi-Party Computation: Secure multi-party computation (or MPC) allows
two or more parties to compute any function on private inputs without revealing
anything but the output of the function. We consider only arithmetic MPC
protocols, where the parties hold (t, n) secret sharings of some field elements,
and their goal is to compute secret sharings of arithmetic functions of these
elements, while preserving all security properties under the same threshold t.

In our setting (Figure 1), in addition to the n computing parties, there is a
single client C which provides a part of the input to the computing parties, and
receives the output of the computation. We only concentrate on the protocols
which can efficiently compute field additions and multiplications. More precisely,
we develop MPC techniques which, given some secret sharings [[x]], [[y]] compute
[[x · y]] and reveal x·y to the client, while preserving security properties even with
malicious clients, and without the need for any inter-server communication.

Oblivious PRFs: A Pseudorandom Function (PRF) family is a collection of
functions {Fk}k∈K with the same domain and codomain, indexed by some key
set K, where a randomly sampled function from this family is difficult to be
distinguished from a truly random function with the same domain and codomain.

8 Nan Cheng, Novak Kaluđerović, and Katerina Mitrokotsa

An Oblivious Pseudorandom Function (OPRF) is a two-party protocol be-
tween a client and a server. It enables the server to evaluate a pseudorandom
function on an input chosen by the client using the server’s key. The protocol
ensures that the server cannot learn anything about the client’s input or output,
while also preventing the client from learning anything about the server’s key.

An OPRF is called distributed if there are multiple servers taking the role of
the PRF evaluator. The key is assumed to be distributed between the servers
by means of secret sharing. In this scenario, multiple servers evaluate a PRF
in a multi-party computation setting, ensuring the confidentiality of the key
and input/output values. A threshold (t,n) OPRF is a sub-type of a distributed
OPRF where a threshold t+1 out of the total n servers are required to evaluate
the OPRF on the client’s input and can withstand t malicious servers.

A Verifiable Oblivious Pseudorandom Function (VOPRF) is an OPRF where
the client can verify the correctness of the output they receive.

2.1 The Legendre PRF

The usage of Legendre symbols in a pseudorandom function is an idea originally
proposed by Damgård [Dam90]. Due to its impractical nature, being orders of
magnitude slower than generic PRF counterparts, it did not gain much attention
until a result by Grassi et al. [GRR+16] sparked an interest in the Legendre PRF
[Fei19] because it was found suitable as a multi-party computation friendly PRF.
This is mainly due to the homomorphic property of the Legendre symbol and the
possibility of evaluating it with only three modular multi-party multiplications,
which makes it a very efficient MPC friendly PRF candidate.

Definition 1 (Legendre symbol). We define the Legendre symbol by setting(
a

p

)
= a

p−1
2 =

{
1 if a ∈ Fp is a square mod p
−1 if a ∈ Fp is not a square mod p.

In general the Legendre symbol is defined by setting
(
0
p

)
= 0, which makes the

symbol multiplicative, but comes at a cost of increasing the size of the codomain.
We will assume that x ̸= 0 and that the symbol is multiplicative, which is a
reasonable assumption since for our use-case the inputs are random, and the
probability that the input is x = 0 is negligible. In particular, we assume(

a

p

)(
b

p

)
=

(
ab

p

)
for all a, b ∈ Fp. (1)

Definition 2 (Legendre PRF). We define the Legendre PRF to be the family
of functions {Fk}k∈K the key space being K = Fp, the functions parameterised
as Fk : Fp → {−1,+1} and defined as

Fk(x) ..=

(
x+ k

p

)
.

A post-quantum Distributed OPRF from the Legendre PRF 9

Under this definition, the Legendre PRF outputs only a single bit. These func-
tions can be expanded to a λ-bit output function by increasing the keyspace to
Kλ and for each (k1, . . . , kλ) ∈ Kλ defining

Fk1,...,kλ
(x) ..=

((
x+ k1
p

)
,

(
x+ k2
p

)
, . . . ,

(
x+ kλ
p

))
.

Multi-party Legendre symbol computation: The Legendre symbol
(
a
p

)
of

a secret shared input [[a]] can be computed in an MPC setting as shown in
Algorithm 1.

Algorithm 1 MPC Legendre symbol computation
1 Sample a random [[s]] and compute [[s2]]
2 Compute [[a]], [[s2]] 7→ [[as2]] and reveal the outcome
3 Compute the Legendre symbol

(
as2

p

)
=

(
a
p

)

Note that revealing as2 is equivalent to revealing
(
a
p

)
, since masking a with a

random non-zero square gives us the same information as the Legendre symbol
of a.

Multi-party Legendre PRF computation: Since the Legendre PRF is de-
fined as

(
x+k
p

)
where x is the client’s input and k the servers’ key. After the client

shares their input as [[x]], the servers compute [[a]] = [[x+ k]] and reveal the value
as2 only to the client.

For a λ-bit output Protocol 1 is repeated for each bit of the output. In
particular λ keys k1, . . . , kλ and λ random values s1, . . . , sλ are computed for
each of the λ output bits. This procedure can be parallelised, and a high level
overview presented in Protocol 2.

The actual protocol described in Section 4 differs from the high level overview,
described in Algorithm 2, in Steps 4. and 6. The multiplication in Step 6. yields a
secret sharing [[·]]′ of a different format then the input [[·]]. Both the semi-honest
and the malicious algorithm employ different types of secret sharings for [[·]]′.
Moreover, additional precomputed data (in particular secret shares of zero) is
used in order to compute that multiplication in a privacy preserving manner,
along with a hash computation. The result of this hash computation is provided
to the client for verification. In Step 6, besides reconstructing the output, the
client also carries out a verification step in the malicious algorithm.

The security of the Legendre PRF itself is not subject of this paper. This
topic has been explored in other studies [vDH00, Kho19, BBUV19, KKK20a,
KKK20b, SHB21, FS21]. The current consensus suggests that the Legendre PRF
is presumed to be secure against quantum adversaries who have classical access
to the PRF oracle. This assumption is consistent with our scenario.

10 Nan Cheng, Novak Kaluđerović, and Katerina Mitrokotsa

Algorithm 2 Distributed oblivious Legendre PRF
Client Input : x ∈ Fp

Servers Input : ([[ki]], [[s2i]])i=1,...,λ pre-computed and secret shared,
where ki, si ∈ Fp for each i = 1, . . . , λ.

Output : (
(
x+k1

p

)
, . . . ,

(
x+kλ

p

)
)

1 Client: Share [[x]] to servers

2 Servers: Compute [[a]] = [[x]] + [[ki]]
3 Servers: Compute [[b]] = [[s2]]
4 Servers: Compute [[a]], [[b]] 7→ [[a · b]]′
5 Servers: Send shares of [[a · b]]′ to the client

6 Client: Reconstruct ((x+ ki)s
2
i)i=1,...,λ

7 Client: Compute (
(
x+ki

p

)
)i=1,...,λ

3 Arithmetic MPC and Secret Sharing

In this section, we recall the definitions of some basic secret sharing methods
and arithmetic protocols. The parties possessing the shares of a secret shares are
referred to as servers. We use the terms server and server index interchangeably
to refer to a server S1, . . . , Sn or the specific index i = 1, . . . , n assigned to that
server. We also use the term share and share index interchangeably to refer to
a share of a secret sharing held by some server, and the index of the said share.
For more detailed information the reader is advised to refer to [CDI05, Mau06,
Esc22].

Additive secret sharing: Additive secret sharing (ASS) is a method to share
a field element x ∈ Fp among at least two servers indexed by some set I ⊆
{1, . . . , n}, with the security threshold t = #I − 1. Any ≤ t colluding parties
have no information about x.

Definition 3 (Additive secret sharing). For I ⊆ {1, . . . , n}, #I > 1, an
element x ∈ Fp is additively secret shared among servers Si for i ∈ I as follows:
Let T = I be the set of share indices. Select any share index T0 ∈ T and
then for each T ∈ T \ {T0} sample xT uniformly at random from Fp, and set
xT0 = x−

∑
T∈T \{T0} xT . Then

x =
∑
T∈T

xT ,

and the share of server Si is the term xT where T = i. We denote an ASS secret
sharing of x with [x].

Replicated secret sharing: Replicated secret sharing (RSS) [ss-87] is a gen-
eralisation of additive secret sharing, in which the same additive secret shares

A post-quantum Distributed OPRF from the Legendre PRF 11

of an element are provided to multiple involved parties. This approach provides
more freedom in choosing the threshold 1 ≤ t ≤ n − 1, which in its own part
allows for more functionality. We assume that t < n

2 which in particular allows
for communicationless multiplication. We follow the notation of [BBY20].

Definition 4 (Replicated secret sharing). The (t, n)-Replicated secret shar-
ing scheme among n servers is defined as follows: the set of share indices denoted
as T is

T ..= {A ⊆ {1, . . . , n} |#A = t},

and an element x ∈ Fp is secret shared by constructing an additive secret sharing
of size #T =

(
n
t

)
, i.e.

x =
∑
T∈T

xT

where all but one addends are sampled uniformly at random from Fp, and the
last one is selected so that the equation above is satisfied. The shares held by
server Si are exactly those xT of index T where i ̸∈ T .

An RSS secret sharing of a field element x is denoted with [[x]]R.

We define Ti ⊆ T to be the set of shares held by party Si, i.e.,

Ti ..= {T ∈ T | i ̸∈ T}.

We further define the shares held by any pair of servers Si, Sj as

Tij ..= Ti ∩ Tj .

Each server Si holds exactly
(
n−1
t

)
shares.

We define ST ⊆ {1, . . . , n} to be the set of indices of servers holding the
share T :

ST ..= {i ∈ {1, . . . , n} | T ∈ Ti} = {1, . . . , n} \ T.

We further define the set of servers holding any pair of shares T1, T2 as

ST1T2
..= ST1

∩ ST2
.

Each share T is held by exactly n− t servers.
By abuse of notation we denote with [[x]]R the set of shares distributed to

the servers by a (possibly corrupt) dealer.

[[x]]R = ((xiT)T∈Ti)i=1,...,n.

Each server Si receives (xiT)T∈Ti where xiT is the share associated to index T .
We call [[x]]R valid if xiT = xjT for all i, j ∈ ST and all T ∈ T . Then [[x]]R is a
replicated secret sharing [[x]]R of x =

∑
T∈T x

i
T . Otherwise the sharing is called

invalid, and it does not correspond to an RSS sharing of a field element.

12 Nan Cheng, Novak Kaluđerović, and Katerina Mitrokotsa

Theorem 1 (t-Privacy of Replicated Secret Sharing). Let [[x]]R be an
RSS of x distributed to n parties. For any subset of parties T , with |T | ≤ t, the
following conditions hold:

1. The view of the parties in T reveals no information about the secret x. For-
mally, for any secret x and any possible shares s1, s2, . . . , st held by the
parties in T ,

Pr[x|(x1T)T∈T1
, (x2T)T∈T2

, . . . , (xtT)T∈Tt
] = Pr[x].

2. The shares of the parties in x can be perfectly simulated using random num-
bers. That is, there exists a simulator Sim that generates shares (x̂1T)T∈T1 ,
(x̂2T)T∈T2

, . . ., (x̂tT)T∈Tt
indistinguishable from the actual shares, without

knowledge of the secret s.

Doubly replicated secret sharing: In this section, we introduce doubly repli-
cated secret sharing (DRSS), a variation of RSS with the same access structure
but a different distribution of the shares, so it naturally satisfies the same security
and privacy properties of RSS, in particular the (t, n)-DRSS satisfies t-privacy
and t-security just like RSS.

Definition 5 (Doubly replicated secret sharing). The (t, n)-Doubly repli-
cated secret sharing scheme among n servers is defined similarly to RSS, with
the exception that the set T 2 is used instead of T as the set of share indices.

An element x ∈ Fp is shared by constructing an additive secret sharing of
size #T 2 =

(
n
t

)2,
x =

∑
T1,T2∈T

xT1T2
,

where all but one addends are sampled uniformly at random from Fp, and the
last one is selected so that the equation above is satisfied. The shares held by
server Si are exactly those xT1T2

where i ̸∈ T1 ∪ T2.

Using the same notation from Section as in RSS we can see that each server Si

holds shares {T1T2 |T1 ∈ Ti, T2 ∈ Ti}, and that the share xT1T2
is held exactly by

servers ST1T2
. In particular each xT1T2

is held by at least 1 server when t < n/2.
Furthermore, as that n− 2t ≤ #ST1T2 so when t < n/3, each share is held by at
least t+ 1 servers, in particular by at least 1 honest server.

By abuse of notation we denote with [[x]]D the set of shares distributed to
the servers by a (possibly corrupt) dealer.

[[x]]D = ((xiT1T2
)T1,T2∈Ti

)i=1,...,n.

Each server Si receives (xiT1T2
)T1T2∈Ti

where xiT1T2
is the share associated to

index T1T2. We call [[x]]D valid if xiT1T2
= xjT1T2

for all i, j ∈ ST1T2 and all T1, T2 ∈
T . Then [[x]]D is a doubly replicated secret sharing [[x]]D of x =

∑
T1,T2∈T x

i
T1T2

.
Otherwise the sharing is called invalid, and it does not correspond to a DRSS
sharing of a field element.

A post-quantum Distributed OPRF from the Legendre PRF 13

Optimised secret sharing: For a given secret x ∈ Fp, denote the Optimised
secret sharing (OSS)[BENO19] of x as ⟨x⟩ which is defined by sampling an ASS
[rx] of a random field element rx ∈ Fp, computing δx = x+ rx and setting

⟨x⟩ = (δx, [rx])

where δx is a public value known to all parties, and [rx] is an ASS share of a
random value rx←$Fp; rx =

∑n
i=1 rx,i. The share of server Si is (δx, rx,i).

Authenticated optimised secret sharing: Using the idea from SPDZ [DPSZ11],
where an authenticated secret key α is negotiated among servers in the setup
phase, we define authenticated optimised secret sharing in a similar fashion. The
authenticated additive secret sharing (AASS) of a field element x ∈ Fp is defined
as

[[x]]A ..= ([x], [αx]),

where each server Si holds additive secret shares xi and (αx)i of [x] and [αx]
respectively. The authenticated optimised secret sharing (AOSS) of a field ele-
ment x ∈ Fp is defined by sampling rx←$Fp a random field element, setting
δx = x+ rx and defining

⟨⟨x⟩⟩ ..= (δx, [αx], [αrx]).

Each server Si holds shares (δx, (αx)i, (αrx)i).

3.1 Secret share functionalities

Secret share addition: All previously mentioned secret sharing schemes are
linear. The computation of [[a+ b]] from [[a]] and [[b]] can be computed with local
operations at each server by adding the corresponding shares of the addends to
obtain the share of the sum.

Secret share shares of zero: For any set of share indices Ṫ ⊆ {1, . . . , n}
(ASS), Ṫ = T (RSS) or Ṫ = T 2 (DRSS), and corresponding server set (I = Ṫ
for ASS or {1, . . . , n} for RSS/DRSS), we denote with (rṪ)Ṫ∈Ṫ an additive secret
sharing of zero. In particular we have

∑
Ṫ∈Ṫ rṪ = 0.

Secret share shares of constants: When a constant c is known to all the
involved parties, a secret sharing [[c]] can be computed from a secret sharing of
zero (rṪ)Ṫ∈Ṫ by setting

cṪ = rṪ + c
#T for all Ṫ ∈ Ṫ .

It follows that
∑

Ṫ∈Ṫ cṪ = c, and the secret sharing of the constant can be
computed from a secret sharing of zero with only local operations by each server.

Secret shares of zero are useful for re-randomising secret shares held by servers
by [[x]] + [[0]] = [[x]]. Secret shares of zero can be computed during the precompu-
tation stage and saved for later use, or computed on the go from secret shares
of some secret elements, as explained in Appendix A.3.

14 Nan Cheng, Novak Kaluđerović, and Katerina Mitrokotsa

Secret sharings of zero can be used to mask a reveal of a secret sharing. If
the servers wish to reveal x to the client, without revealing the shares xṪ , they
will compute an additive secret sharing of zero, and send rṪ + xṪ to the client,
who still obtains an additive secret sharing of x, but independent of the original
shares.

RSS and DRSS share verification: The RSS and DRSS can be verified at
opening under threshold assumptions. The only setting relevant to our construc-
tion is the one in which the servers reveal a (D)RSS by sending their shares
to the client. The client receives the shares, checks if they are valid by com-
paring shares with the same index received from different servers. If there is a
discrepancy, the client aborts. Otherwise, it accepts and reconstructs the secret
by adding all the shares.

In RSS, when the threshold is bounded by t < n/2, for each share T there
is an honest server holding that share. In particular, for t < n/2 the verification
process is secure.

In DRSS, when the threshold is bounded by t < n/3, for each share pair
T1, T2, there is an honest server holding that pair of shares. In particular, for
t < n/3 the verification process is sound.

Masked opening of product: Let I be a set of server indices, and assume that
the server Si holds the values ai and bi. The servers wish to reveal the values
oi = ai · bi to the client under the condition that all the ai are equal among
themselves and all the bi are equal among themselves. If they are not equal, the
client receives a random value.

To do that, the clients are assumed to have a precomputed (or computed
on-the-go) three additive secret sharing of 0:

(rai)i∈I ,
∑
i∈I

rai = 0; rai ∈ Si,

(rbi)i∈I ,
∑
i∈I

rbi = 0; rbi ∈ Si,

(ri)i∈I ,
∑
i∈I

ri = 0; ri ∈ Si,

as well as #I public hash functions Hashi. Server Si computes

vi = ai · bi + ai · rai + bi · rbi + ri,

and hi = Hashi(a
i ·bi), and sends Si → (vi, h

i) to the client. The client computes
v = 1

#I

∑
i∈I vi. They compare Hashi(v) to hi for all i ∈ I, and abort in case of

inconsistencies. Otherwise the client accepts v.

Multiplication of RSS secret shares: The Legendre PRF protocol is reduced
to computing a single addition and a single multiplication of RSS secret shares.
Due to the nature of our requirements, the multiplication algorithm does not

A post-quantum Distributed OPRF from the Legendre PRF 15

produce another RSS share, but instead a different type of secret share. We
propose two algorithms, one which multiplies two RSS secret shares to obtain
an ASS secret share, and the second which outputs a DRSS secret share.

We assume that n servers hold two RSS secret shares [[a]]R and [[b]]R. They
wish to compute

ab =
∑
T1∈T

aT1

∑
T2∈T

bT2
=

∑
T1,T2∈T

aT1
bT2

.

The servers will compute this by computing all terms of the product that they
have access to.

RSS to ASS multiplication algorithm Each server Si holds shares (aT , bT)T∈Ti
.

The protocol proceeds by the servers multiplying all terms of the product that
they have access to, normalised by an appropriate factor. In particular server Si

computes

oi ..=
∑

T1,T2∈Ti

1

#ST1T2

aT1
bT2

.

This procedure is denoted with [[a]], [[b]] 7→ [a · b].
The opening of the product proceeds by masking all the shares with a secret

sharing of zero (ri)
n
i=1 (oi 7→ oi + ri) and revealing the shares:
n∑

i=1

oi + ri =

n∑
i=1

∑
T1,T2∈Ti

1

#ST1T2

aT1
bT2

=
∑

T1,T2∈T

∑
i∈ST1T2

1

#ST1T2

aT1bT2

=
∑

T1,T2∈T
aT1bT2 = a · b.

RSS to DRSS multiplication algorithm Each server Si holds shares (aT , bT)T∈Ti .
The protocol proceeds by the servers multiplying all terms of the product that
they have access to.

oT1T2 = aT1bT2 for each T1, T2 ∈ Ti.

Then the (oT1T2
)T1,T2∈T form a DRSS of a · b. In fact oT1T2

are equal for each
i ∈ ST1T2

, and ∑
T1,T2∈T

oT1T2
=

∑
T1,T2∈T

aT1
bT2

= a · b.

We also denote this procedure with [[a]]R, [[b]]R 7→ [[a · b]]D.
An opening of a DRSS product proceeds by masking with a DRSS secret

sharing of zero each term of this product oT1T2
7→ oT1T2

+ rT1T2
. Then, each

term of the DRSS is revealed with a masked opening of product. This procedure
ensures that the product is revealed only if all the terms of the RSS shares [[a]]R
and [[b]]R are valid.

16 Nan Cheng, Novak Kaluđerović, and Katerina Mitrokotsa

OSS to OSS multiplication algorithm Assume that parties participating in
secret sharing hold ⟨x⟩ = (δx, [rx]), ⟨y⟩ = (δy, [ry]) as well as an additive secret
sharing of the product [rxry]. Then, they can compute the product ⟨xy⟩ by only
using local operations as follows:

δxy ..= δx · δy
rxy = xy − δxy = δxry + δyrx − rxry

[rxy] = δx[ry] + δy[rx]− [rxry],

⟨xy⟩ = (δxy, [rxy]).

In particular server Si computes (rxy)i = δx(ry)i + δy(rx)i − (rxry)i.

4 The Legendre dOPRF protocol

We provide four different protocols for computing the distributed Legendre
OPRF in two different adversarial settings. Two protocols are based on repli-
cated secret sharing, and the other two on optimised secret sharing. The RSS
protocols follow the communication structure presented in Figure 1. The OSS
protocols follow the same communication structure, with the addition of a client-
server communication round in the setup phase. Prior to starting the protocol,
the servers share a random OSS with the client which is then used for mask-
ing the client’s input in the on-line phase. The protocols are presented for a
single bit output. For a more general λ-bit output, the setup, evaluation and
reconstruction phase are executed in parallel λ times with the same input.

4.1 Semi-honest RSS protocol

In this subsection, we present the protocol which computes the Legendre OPRF
in a distributed setting without inter-server communication under a semi-honest
adversary assumption.

We assume t < n/2, at most t semi-honest servers and a semi-honest client
that may be colluding. The servers and clients follow the steps of the protocol,
but cannot gather any information apart from the output due to the use of secure
secret sharing and multiparty computation.

Let f : (x, k, s2) 7→ (x + k)s2 be the function we want to securely compute.
Before giving our detailed protocol description, we model the ideal functionalities
first. We define an ideal functionality FSetup in the following that interacts with
each server Si, i = 1, . . . , n in the pre-computation phase.

– Input: FSetup receives a start command from the servers.
– Computation: FSetup samples s, k←$Fp, computes [[k]]R, [[s

2]]R and an n-
party ASS [r] where r = 0.

– Output: FSetup distributes [[k]]R, [[s
2]]R and [r] to the servers.

The ideal functionality FRSS−OPRF, which interacts with the client and all n
servers is defined in the evaluation phase as follows:

A post-quantum Distributed OPRF from the Legendre PRF 17

– Input: FRSS−OPRF inputs x ∈ Fp from the client, and RSS [[k]]R, [[s
2]]R from

n servers where k, s ∈ Fp.
– Computation: FRSS−OPRF reconstructs x from [[x]]R, k from [[k]]R, s2 from

[[s2]]R, and computes y = f(x, k, s2).
– Output: FRSS−OPRF outputs y to the client.

We present our full protocol details in algorithm 3, which includes setup,
input, evaluation and reconstruction stages.

Setup stage Let T be the set of shares defined as in Section 3. In the setup
(precomputation) stage, the servers are assumed to hold shares of the following
values

– An RSS sharing of the key, [[k]]R,
– An RSS sharing of a random square, [[s2]]R,
– An n-party ASS sharing of 0, [r],

These values are assumed to be precomputed and verified for consistency by
the clients. While the key [[k]]R and the masking square [[s2]]R are always assumed
to have been precomputed, the secret sharing of 0 can also be computed in the
evaluation phase, as explained in the Appendix A.

In total, each server holds
(
n−1
t

)
field elements for k and s2 each, and a single

field element for the ASS share of 0, totaling to 2
(
n−1
t

)
+ 1 field elements.

Input stage In the input stage, the client shares an input x ∈ Fp as a (t, n)-RSS
to the servers. The client computes [[x]]R and sends the corresponding shares to
the servers:

x =
∑
T∈T

xT , Si given (xT)T∈Ti .

Evaluation stage After receiving the inputs, the servers compute RSS of a =
x+k and b = s2 by setting aiT = xiK +kT and biT = s2T , and proceed to compute
[[a]]R, [[b]]R 7→ [a · b]. The server Si computes the sum of all the term-wise products
of a · b they have access to, and masks it with the ASS of zero:

oi ..=
(∑

T1,T2∈Ti

1

#ST1T2

aiT1
biT2

)
+ ri.

The server Si returns oi to the client, in total sending a single field element.

Reconstruction stage The client computes o =
∑n

i=1 o
i = a · b.

18 Nan Cheng, Novak Kaluđerović, and Katerina Mitrokotsa

Algorithm 3 Legendre dOPRF in the semi-honest setting

Input stage: Client
Input : x ∈ Fp

1 Compute a RSS of x =
∑

T∈T xT
2 return (xT)T∈Ti to server Si

Evaluation stage: Server Si; i = 1, . . . , n
Input : (xiT)T∈Ti

⊆ Fp shares of input provided by the client
For each j = 1, . . . , λ:
(kjT)T∈Ti ⊆ Fp shares of the secret keys
(s2,jT)T∈Ti

⊆ Fp shares of the square terms
rji ∈ Fp share of ASS sharing of 0

3 for j = 1, . . . , λ do
4 for T ∈ Ti do
5 Set ajT = xiT + kjT for T ∈ Ti
6 Set bjT = s2,jT for T ∈ Ti
7 Compute oji = rji +

∑
T1,T2∈Ti

1
#ST1T2

ajT1
bjT2

8 return (oji)
λ
j=1 to client.

Reconstruction stage: Client
Input : (oji)

λ
j=1 ⊆ Fλ

p outputs from servers i = 1, . . . , n

9 for j = 1, . . . , λ do
10 vj =

∑n
i=1 o

j
i

11 return
((

vj

p

))λ

j=1
=

((
x+ki

p

))λ

j=1

Security in the semi-honest setting In the following proof as well as all
provided proofs in the paper, we consider that for all protocols, we have two sce-
narios: the real-world execution and the ideal-world execution. In both scenarios,
an adversary, denoted as A, may control certain participants - this could be the
client, some servers, or even a combination of the client and several servers. The
adversary A has access to the input/output information of the parties under its
control, potentially including intermediate random tapes or the ultimate output
of the protocol.

However, the ideal-world execution scenario is deemed perfectly secure even
in the presence of the adversary A. We characterize a protocol as perfectly (or
statistically) secure if, for any given adversary A, there exists a simulator capable
of generating an output distribution, using only the view transcripts available in
the ideal-world execution, that is perfectly (statistically) indistinguishable from
the real output distribution in the ideal-world execution.

A post-quantum Distributed OPRF from the Legendre PRF 19

Definition 6. (Security of algorithm 3) In the FSetup-hybrid model, a simulator
Sim exists for all x, k, s ∈ Fp and the function f : (x, k, s2) 7→ (x + k)s2, Sim
realizes FRSS−OPRF in a way that ensures the simulated view transcript is perfectly
indistinguishable from the real protocol execution in 3 when facing a semi-honest
adversary A. This adversary may control either a semi-honest client or up to t
semi-honest servers, or any collaborative arrangement between these entities.

Theorem 2. Algorithm 3 securely realizes FRSS−OPRF.

Proof. We distinguish three scenarios based on the adversary A’s control, each
requires a distinct simulator construction.

– A controls only the client: We construct a simulator Sim that inputs the
received output result y from the oracle FRSS−OPRF that can be queried by
A. To simulate the view transcript {oi}i=1n transmitted from the servers to
the client, it suffices for Sim to generate a random ASS of y, denoted as [y],
that is identical to {oi}i=1n as that in the real world. Thus, Sim perfectly
simulates the behaviors of the honest parties.

– A controls at most t servers: We construct a simulator Sim, which operates
without any external inputs. The primary objective of Sim is to simulate the
view transcript that is transmitted from the client to the t servers. According
to Theorem 1, all shares held by these t servers can be perfectly simulated.

– A controls at most t servers and the client: We construct a simulator Sim
that accepts x from A as input, as well as the received output result y from
the oracle FRSS−OPRF that can be queried by A, as well as all information
held by those t malicious servers. Firstly, to simulate the view transcript
transmitted from the client to these t servers, we generate the RSS of x, and
the simulator outputs the corresponding shares to t servers which are identical
to that in the real protocol execution; Secondly, to simulate the view transcript
{oi}i=1,...,n−t (assume these are the index of honest servers) transmitted from
the honest servers to the client, it suffices for Sim to generate a random
(n − t)-party ASS of r̄, denoted as [r̄], that is perfectly indistinguishable to
{oi}i=1,...,n−t in the real world.

4.2 Malicious RSS protocol

In this subsection, we present the main algorithm which computes the Legen-
dre OPRF in a distributed setting without inter-server communication under a
malicious adversary assumption.

We assume t < n/3, at most t malicious servers and a potentially malicious
client that may be colluding.

If the client acts maliciously and sends an invalid RSS of the input to the
honest clients, then they will receive a random output, and the adversary will
not be able to deduce any information from the received data.

If the client acts honestly, then they will be able to notice any malicious
activity by the adversary, and in that case abort. Otherwise, they receive the
correct output, and no secret information is leaked.

20 Nan Cheng, Novak Kaluđerović, and Katerina Mitrokotsa

Under this scenario, we model the ideal functionalities slightly differently.
We define an ideal functionality FSetup∗ in the following that interacts with each
server Si, i = 1, . . . , n in the pre-computation phase.

– Input: FSetup∗ receives a start command from the servers.
– Computation: F∗

Setup samples s, k←$Fp, computes [[k]]R and [[s2]]R, a DRSS
of [[r]]D where r = 0, and #ST1T2

-party ASS of [tT1T2], [t̄T1T2], [t̂T1T2] for each
T1, T2 ∈ T where tT1T2 = t̄T1T2 = t̂T1T2 = 0.

– Output: FSetup∗ distributes the RSS [[k]]R and [[s2]]R, along with the n-party
ASS [r], to the servers. Additionally, for each pair of thresholds T1, T2 in
the set T , it provides every party in ST1T2

with the ASS [tT1T2], [t̄T1T2], and
[t̂T1T2].

In cases where an adversary A manipulates the entire computation, either by
supplying invalid RSS or deviating from the specified protocol, we modify the
ideal functionality FRSS−OPRF, originally designed for the semi-honest setting, to
FRSS−OPRF∗ as detailed below.

– Input: FRSS−OPRF∗ inputs [[x]]R from the client where x ∈ Fp, and [[k]]R, [[s
2]]R

from each server Si, i = 1, . . . , n.
– Computation: FRSS−OPRF∗ checks the validity of all three RSSs, in the

case all RSSs are valid FRSS−OPRF∗ reconstructs x, k, s2 and then computes
y = f(x, k, s2).

– Output: In the case all three RSSs are valid, FRSS−OPRF∗ outputs y to the
client; otherwise it outputs (⊥, r) to the client where r←$Fp.

FRSS−OPRF∗ interacts with the client and each server Si, i = 1, . . . , n in the
online phase, and the adversary A is parameterized by a public known function
f : (x, k, s2) 7→ (x+ k)s2.

We present the protocol for a single bit output. For a more general λ-bit
output, the setup, evaluation and reconstruction phase are executed in parallel
λ times with the same input.

Setup stage Let T be the set of shares defined as in Section 3. In the setup
(precomputation) stage, the servers are assumed to hold the following values:

– An RSS sharing of the key, [[k]]R,
– An RSS sharing of a random square, [[s2]]R,
– A DRSS sharing of 0, [[r]]D,
– An ASS sharing of 0, [tT1T2] shared among ST1T2

, for each T1, T2 ∈ T .
– An ASS sharing of 0, [t̄T1T2] shared among ST1T2 , for each T1, T2 ∈ T .
– An ASS sharing of 0, [t̂T1T2] shared among ST1T2

, for each T1, T2 ∈ T .

These values are assumed to be precomputed and verified for consistency by
the clients. While the key [[k]]R and the masking square [[s2]]R are always assumed
to have been precomputed, the secret sharings of 0 can also be computed in the
evaluation phase, as explained in Appendix A.3.

A post-quantum Distributed OPRF from the Legendre PRF 21

In total, each server holds
(
n−1
t

)
field elements for k and s2 each,

(
n−1
t

)2
field

elements for the DRSS share of 0, and three field element for each of the
(
n−1
t

)2
ASS shares of 0, totaling to 4

(
n−1
t

)2
+ 2

(
n−1
t

)
field elements.

Input stage In the input stage the client shares an input x ∈ Fp as a (t, n)-RSS
to the servers. The client computes [[x]]R and sends the corresponding shares to
the servers:

x =
∑
T∈T

xT , Si given (xiT)T∈Ti
where xiT = xT .

We use notation xiT to cover the case in which a malicious client might send
inconsistent shares to the servers.

Evaluation stage After receiving the inputs, the servers compute RSS of a =
x + k and b = s2 by setting aiT = xiT + kiT and biT = (s2)iT , and proceed to
compute [[a]]R, [[b]]R 7→ [[a · b]]D.

The server Si computes all the term-wise products of a · b they have access
to, and masks them with the DRSS of zero:

oiT1T2

..= aiT1
biT2

+ rT1T2
.

At this point all servers indexed in ST1T2 should have the same values oiT1T2
,

assuming they received a valid input from the client. They proceed by revealing
each of the oiT1T2

with the masked opening method from Section 3.1.
For each T1, T2 ∈ Ti, each server uses three precomputed secret shares of 0

shared among ST1T2
, (tT1T2

i)i∈ST1T2
, (t̄T1T2

i)i∈ST1T2
, (t̂T1T2

i)i∈ST1T2
to compute

vT1T2
i

..= 1
ST1T2

oiT1T2
+ aiT1

tT1T2
i + biT2

t̄T1T2
i + t̂T1T2

i ,

as well as hiT1T2

..= Hashi(o
T1T2
i), where Hashi is a different public hash function

for each i = 1, . . . , n. They send the following values to the client:

Si → (vT1T2
i , hiT1T2

)T1,T2∈Ti,

In total, being
(
n−1
t

)2
field and hash values.

Reconstruction stage The client can verify the computation was done cor-
rectly by firstly computing vT1T2 =

∑
i∈ST1T2

vT1T2
i for each T1, T2 ∈ T . Then,

the client compares Hashi(v
T1T2
i) with hiT1T2

for all i ∈ ST1T2
and aborts in case

of inequality. Otherwise, they finish the protocol by computing:∑
T1,T2∈T

vT1T2 =
∑

T1,T2∈T
aT1bT2 + rT1T2 = ab.

The pseudocode for the full protocol for a λ-bit output is given in algorithm 4.

22 Nan Cheng, Novak Kaluđerović, and Katerina Mitrokotsa

Algorithm 4 Legendre dOPRF in the malicious setting

Input stage: Client
Input : x ∈ Fp

1 Compute a RSS of x =
∑

T∈T xT
2 return (xT)T∈Ti

to server Si

Evaluation stage: Server Si; i = 1, . . . , n
Input : (xiT)T∈Ti

⊆ Fp shares of input provided by the client
For each j = 1, . . . , λ:
(kjT)T∈Ti

⊆ Fp shares of the secret keys
(s2,jT)T∈Ti ⊆ Fp shares of the square terms
(rjT1T2

)T1,T2∈Ti
⊆ Fp shares of the DRSS sharings of 0

tT1T2,j
i ∈ Fp share of ASS sharing of 0 (for each T1, T2 ∈ Ti)
t̄T1T2,j
i ∈ Fp share of ASS sharing of 0 (for each T1, T2 ∈ Ti)
t̂T1T2,j
i ∈ Fp share of ASS sharing of 0 (for each T1, T2 ∈ Ti)

3 for j = 1, . . . , λ do
4 for T ∈ Ti do
5 Set ajT = xiT + kjT for T ∈ Ti
6 Set bjT = s2,jT for T ∈ Ti
7 for T1, T2 ∈ Ti do
8 Compute ojT1T2

= ajT1
bjT2

+ rjT1T2

9 Compute vT1T2,j
i = ojT1T2

+ ajT1
· tT1T2,j

i + bjT2
· t̄T1T2,j

i + t̂T1T2,j
i

10 Compute hi,jT1T2
= Hashi(o

j
T1T2

)

11 return ((vT1T2,j
i , hi,jT1T2

)T1,T2∈Ti
)λj=1 to client.

Reconstruction stage: Client
Input : ((vT1T2,j

i , hi,jT1T2
)T1,T2∈Ti)

λ
j=1 ⊆ F2

p outputs from Si, i = 1, . . . , n

12 for j = 1, . . . , λ do
13 for T1, T2 ∈ T do
14 vjT1T2

= 1
#ST1T2

∑
i∈ST1T2

vT1T2,j
i

15 for i ∈ PT1T2 do
16 if Hashi(v

j
T1T2

) ̸= hi,jT1T2
then ⊥;

17 Compute vj =
∑

T1,T2∈T v
j
T1T2

18 return
((

vj

p

))λ

j=1
=

((
x+ki

p

))λ

j=1

A post-quantum Distributed OPRF from the Legendre PRF 23

Client Verifiability Consider a scenario where an honest client interacts with
up to t may be controlled by an adversary A. In this setting, we assert the
verification algorithm described in the reconstruction stage of algorithm 4 is an
efficient verification algorithm such that:

– It outputs an correct computation of (x+ k) · s2 only if all servers, including
those potentially under adversarial control, adhere strictly to the protocol
specifications.

– Otherwise, it outputs ⊥ if any of the servers, up to a maximum of t, deviate
or disrupt the protocol procedure.

This verifiability ensures that an honest client can reliably verify whether the
protocol execution was free from disruptions, in the presence of up to t adver-
sarial servers.

Algorithm 5 Designing a Simulator for Handling valid RSS Provided
by a Malicious Client

Input : A valid [[x]]R from the client, y from FRSS−OPRF∗ .
Output: {(v̂T1T2

i , ĥiT1T2
)T1,T2∈Ti

}ni=1

1 Samples ôT1T2 ←$Fp for every T1, T2 ∈ T except for ôTMaxTMax
n , here TMax

denotes the last share index in T .
2 Denote ô as the sum of these I − 1 randomly generated values, then

computes ôTMaxTMax = y − ô.
3 Computes ĥiT1T2

= Hashi(ô
T1T2) for every T1, T2 ∈ Ti, i = 1, . . . , n.

4 Generates a random ASS sharing [ôT1T2] for every T1, T2 ∈ T , denote
v̂T1T2
i as the share of [ôT1T2] held by server Si where i ∈ ST1T2 .

5 return
{(v̂T1T2

i , ĥiT1T2
)T1,T2∈Ti

}ni=1.

Security in the malicious setting

Definition 7. (Security of algorithm 4) In the F∗
Setup-hybrid model, there exists

a simulator Sim that ∀x, k, s ∈ Fp and function f : (x, k, s2) 7→ (x + k)s2, it
realizes the ideal functionality FRSS−OPRF∗ such that its simulated view transcript
is computationally indistinguishable from a real world execution in algorithm 4
in the presence of a malicious adversary A, which controls either a semi-honest
client or at most t semi-honest servers, or any collusive arrangement between
these two entities.

Theorem 3. The algorithm 4 securely realizes the ideal functionality FRSS−OPRF∗ .

24 Nan Cheng, Novak Kaluđerović, and Katerina Mitrokotsa

Proof. From the definition of DRSS, we know there are in total I =
(
n
t

)2 shares
constituting a DRSS sharing, where I − 1 is exactly the amount of indepen-
dent random numbers needed for generating the DRSS sharing of a secret. And∑

T1,T2∈T (#ST1T2 − 1) is exactly the amount of independent random numbers
needed when generating the ASS sharing of 1 in the algorithm 4. Thus, in total,
Î independent random numbers are needed in algorithm 4, where:

Î = I − 1 +
∑

T1,T2∈T
(#ST1T2

− 1)

= I − 1 +
∑

T1,T2∈T
(#ST1T2

)− I

= n ·
(
n− 1

t

)2

− 1

We define three scenarios based on the adversary A’s control. Each scenario
requires a distinct simulator construction.

– A controls the client: We construct a simulator Sim that inputs [[x]]R from
the client, as well as the output y or (⊥, r) from the oracle queried by A,
and aim to simulate the view transcript (vT1T2

i , hiT1T2
)T1,T2∈Ti sent from each

Si in the execution of Protocol 2 (detailed in algorithm 4). Here, we further
differentiate between two scenarios based on the validity of the input [[x]]R:
• If [[x]]R is valid, let Sim samples ôT1T2 ←$Fp for every T1, T2 ∈ T where
T1 ̸= TMax, T2 ̸= TMax, here TMax is defined as the last one in T . Let ô be
the sum of those I − 1 randomly generated values. Then, the simulator
Sim computes ôTMaxTMax = y − ô. Further, let Sim generate a random
additive secret sharing for each ôT1T2 , T1, T2 ∈ T , which is denoted as
v̂T1T2
i , i ∈ ST1T2 . Meanwhile, let Sim compute ĥiT1T2

= Hashi(ô
T1T2) for

every T1, T2 ∈ Ti, i = 1, . . . , n. Finally, Sim outputs:

{(v̂T1T2
i , ĥiT1T2

)T1,T2∈Ti
}ni=1.

The construction of Sim is also formally presented in Algorithm 5.
When comparing the simulated view above to the execution of Proto-
col 2 (outlined in algorithm 4), we define View as the aggregated view
of all Si, i = 1, . . . , n. This view encompasses Viewv and Viewh, where
Viewv is a list of size Î + 1 that combines the first element of each term
received from the servers, and Viewh the list that combines every second
element. We derive similar definitions View∗,Viewv∗ ,Viewh∗ from our
simulated transcripts. Thus, Sim perfectly simulates the behaviors of the
honest parties.
We see that both Viewv and Viewv∗ are determined by Î uniformly random
independent numbers and the value y. Thus, Viewv

d
= Viewv∗ . With the

fact that Viewh/Viewh∗ are derived from Viewv/Viewv∗ , further we have
Viewh

d
= Viewh∗ .

A post-quantum Distributed OPRF from the Legendre PRF 25

• Otherwise, assume a submitted [[x]]R from the client is valid except for
one share index T ∗, i.e., there are inconsistent values of share xT∗ held
by servers ST∗ . Formally, we define x̄iT∗

= ei+xT∗ where ∃, i, j ∈ SeT∗
that

ei ̸= ej, i.e., ei denotes the error on x̄iT∗
. Here x̄iT∗

denotes a potential
invalid share distributed to server Si with share index T ∗ from the client.
Let us analyse the final output distribution in algorithm 4 under this case.
Given a pair of share indices T∗, T2 ∈ T , for every T2 ∈ T the client is
able to reconstruct oT∗T2 = aT∗bT2

+ rT∗T2
+ eT∗T2

for i ∈ ST∗T2
where

eT∗T2
= bT2

·
∑

i∈ST∗T2
ei +

∑
i∈ST∗T2

(eitT∗T2
i), observe that eT∗T2

≃ U .
Thus, the final value oT∗T2 is independent to aT∗bT2

+rT∗T2
, and with the

masking of t̂T1T2,j
i from the evaluation stage (detailed in Algorithm 4),

{viT∗T2
}i∈ST∗T2

constitutes a random ASS of oT∗T2 .
Note that every Si ∈ ST1T2

computes hiT1T2
= Hashi(o

i
T1T2

), where oiT1T2
=

aT∗bT2
+ rT∗T2

+ ei · bT2
is masked by a random number rT∗T2

. Thus, in
the random oracle model, if we draw a random element denoted as ĥiT1T2

from the output domain of Hashi, we argue that any PPT A cannot
distinguish between ĥiT1T2

and the real execution output hiT1T2
.

Finally, the client is able to recover y∗ = (x + k) · s2 + E, where E =∑
T2∈T eT∗T2

is the final error that equals the sum of #T random inde-
pendent numbers. Thus, y∗ ≃ U . And the distribution of the final real
world protocol output y∗ doesn’t change when the client submits multiple
invalid shares to the servers.
From above analysis, we present the final simulator construction in algo-
rithm 6, wherever the simulated view is indistinguishable to that in the
corresponding real world execution.

– A controls at most t servers: We need to simulate the view transcript from
the honest client to these t servers. Following 1, let A randomly selecting(
n
t

)
− 1 elements from Fp, which we argue are identical to all those

(
n
t

)
− 1

shares of x send by the client in the real protocol execution.
For any RSS share xT∗ , kT∗ , s2T∗

held by A where T∗ ∈ T , suppose there is
an addition of non-constant error to at least one of xT∗ , kT∗ , or s2T∗

which
is subsequently utilized in the evaluation phase of Algorithm 4.
In this scenario, we argue that the final real-world output distribution will be
identical to the one of real-world output distribution observed in the earlier
case, where the client submits an invalid RSS of x to honest servers, i.e., this
is a distribution determined by a random number from Fp. Moreover, using
simulator description in algorithm 6, we could output a simulated real-world
output distribution. This means the real-world output distribution is identical
to what in the ideal functionality FRSS−OPRF∗ .
Thus, we argue by using only invalid RSS that A couldn’t disrupt the final
output distribution to make it related with any input x, k, or s2.

– A controls at most t servers and the client: We construct a simulator Sim
that accepts [[x]]R from A as input, the received output result y or (⊥, r) from
the oracle queried by A, as well as all information held by those t malicious
servers. We denote SHon as the set of those n− t honest servers, SMal as the

26 Nan Cheng, Novak Kaluđerović, and Katerina Mitrokotsa

set of those t servers controlled by A. We aim to simulate view transcript
from the SHon to the client.
Under this scenario, with the information y = (x + k) · s2, the A is able to
compute u = y −

∑
T1,T2∈TSMal

aT1
bT2

and provide it to the simulator.
We construct a simulator that works similarly as described in Algorithm 6.
To argue about the privacy of the secret inputs k or s2, it is sufficient for the
simulator to simulate only the transcript view {(v̂T̄ T2

i , ĥi
T̄T2

)T2∈Ti
}i∈SHon

and

{(v̂T1T̄
i , ĥi

T1T̄
)T1∈Ti

}i∈SHon
where T̄ refers to the special share index held only

by each of the server in SHon. Let Y = {(v̂T̄ T2)T2∈Ti
}i∈SHon

⋃
(v̂T1T̄)T1∈Ti

}i∈SHon
,

if we generate a random (2
(
n
t

)
− 1)-party ASS of u and obtain [u], we argue

that this [u] is perfectly indistinguishable to Y .

Algorithm 6 Designing a Simulator for Handling invalid RSS Provided
by a Malicious Client

Input : An invalid [[x]]R from the client, (⊥, r) from FRSS−OPRF∗ .
Output: {(v̂T1T2

i , ĥT1T2)T1,T2∈Ti}ni=1.

1 Samples v̂T1T2
i ←$U for every i ∈ ST1T2

and every T1, T2 ∈ T .
2 Computes ôT1T2 =

∑
i∈ST1T2

v̂T1T2
i for every T1, T2 ∈ T where T1 ̸= T∗.

3 Computes ĥiT1T2
= Hashi(ô

T1T2) for every T1, T2 ∈ T , T1 ̸= T∗.
4 For every T2 ∈ T , samples a random element ĥiT∗T2

from the output
domain of Hashi for every i ∈ ST∗T2 .

5 return
{(v̂T1T2

i , ĥT1T2
)T1,T2∈Ti

}ni=1.

4.3 Semi-honest OSS protocol

In this section, we describe one more protocol (algorithm 7) for a distributed
OPRF based on optimised secret sharing (OSS). It provides an improvement
in terms of threshold - i.e., it allows for a threshold t < n. However, it comes
at a cost of requiring another round of communication between the servers and
the client, which we set in the setup phase. In particular, the servers need to
share a random value with the client before the client shares their input, which
is rx as shown in algorithm 7. In algorithm 7, for the setup stage we rely on
the ideal functionality FOSS−Setup that provide required correlated randomness
to enable our protocol design, particularly FOSS−Setup can be realized using any
post-quantum crypto primitive that generate beaver’s triple.

Round Efficiency Algorithm 7 takes two client-server communication rounds.
No communication required among servers in the online phase.

A post-quantum Distributed OPRF from the Legendre PRF 27

Algorithm 7 OSS-based Legendre dOPRF in the semi-honest setting

Setup stage: Client; ServerSi, i = 1, . . . , n.
Input : Servers input [k] where k ∈ Fp.

1 Servers run FOSS−Setup and obtain [rx], [rx], [r̂], [s2], [(rk + rx)r̂] where
rk, rx, s, r̂ are randomly selected from Fp.

2 Servers reconstruct [k + rk] and [s2 + r̂], hence obtain

⟨k⟩ = (k + rk, [rk]), [rx], ⟨s2⟩ = (s2 + r̂, [r̂]), [(rk + rx)r̂].

3 Servers distributes [rx] to the client.

Input stage: Client
Input : x ∈ Fp

4 Computes δx = x+
∑n

i=1[rx]i
5 return δx to server Si, i = 1, . . . , n

Evaluation stage: Server Si; i = 1, . . . , n

6 Computes
⟨x⟩+ ⟨k⟩ = (x+ rx + k + rk, [rx + rk])

7 Let δx+k = x+ rx + k + rk and δs2 = s2 + r̂, computes

[(x+ k) · s2] = (δx+k − [rx + rk]) · (δs2 − [r̂])

= δx+kδs2 − δs2 [rx + rk]− δx+k[r̂] + [(rk + rx)r̂]

8 return [(x+ k) · s2] to client.

Reconstruction stage: Client

9 return (x+ k) · s2 =
∑n

i=1[(x+ k) · s2]i

Security Let FOSS−OPRF be the ideal functionality that inputs x from the client,
s2 and k from the server; outputs (x+k)s2 to the client. In algorithm 7, note that
either the client’s transcript view δx or the additive secret shares of (x + k)s2,
obtained from up to n− 1 servers, adhere to a uniform distribution. This means
a simulator can easily draw a random element from the corresponding domain,
which would be perfectly indistinguishable to what in the real world execution.
Thus, we claim in the FOSS−Setup-hybrid model, a simulator Sim exists for all
x, k, s ∈ Fp and the function f : (x, k, s2) 7→ (x + k)s2, Sim realizes FOSS−OPRF

in a way that ensures the simulated view transcript is perfectly indistinguish-
able from the real protocol execution in algorithm 7, when facing a semi-honest
adversary A that controls up to n− 1 servers and the client.

28 Nan Cheng, Novak Kaluđerović, and Katerina Mitrokotsa

4.4 Malicious OSS protocol

In a setting with up to n−1 malicious servers, which might not follow the protocol
description, in order to be able to verify the correctness of the final protocol
output, we need a different ideal functionality. We define FOSS−OPRF∗ as the
ideal functionality that inputs x from the client, s2, k and auxiliary data z ∈ ZN

from the server. Here z indicates the servers’ additional input in the real world
protocol. We denote by W a PPT algorithm that gives an output depending on
z and (x+k)s2. The functionality FOSS−OPRF∗ outputs ((x+k)s2, ψ = 0) if z = 0
and (W (z, (x+ k)s2), ψ = 1) otherwise when z > 0.

We employ the idea from the SPDZ framework [DPSZ11] that uses an ASS
of an authenticated secret key α to authenticate every secret sharing managed
by the servers, along with the authenticated optimized secret sharing that we
have designed algorithm 8 for computing F∗

OSS−OPRF. In algorithm 8, for the
setup stage we rely on the ideal functionality FOSS−Setup∗ that provides more
correlated randomness compared to FOSS−Setup, however it can also be realized
using only any post-quantum crypto primitive that generate beaver’s triple.

Here, we clarify the notations used in algorithm 8. We define [[x]]A of a secret
x for which it holds:

[[x]]A := ([x], [αx]),

⟨⟨x⟩⟩ denotes the authenticated optimized SS of a secret x for which it holds:

⟨⟨x⟩⟩ := (x+ rx, [αx], [αrx]).

In a scenario where each server Si holds [[y]]A,i = ([y]i, [αy]i) for i = 1, . . . , n,
and the authenticated secret y is revealed either to one of the servers or a third-
party client, the output receiver could verify the correctness of y by verifying if
it holds: ∑

[α]i ·
∑

[y]i =
∑

[αy]i (2)

This requires each server Si to return [α]i, [y]i, [αy]i to the output receiver.
In a slight different scenario, where if the servers hold multiple authenticated

optimized SS ⟨⟨x1⟩⟩, ⟨⟨x2⟩⟩, · · · , ⟨⟨xm⟩⟩, to verify the correctness of the public part
within each ⟨⟨xj⟩⟩, j ∈ 1, · · · ,m, each server Si could locally track the secret
sharing of a proof ∆i.

∆i = [α]i

m∑
j=1

Rj · δj −
m∑
j=1

Rj · [α · δj] (3)

where R1, · · · , Rm are publicly random integers negotiated among servers.

Round Efficiency The communication pattern in 8 follows exactly the same
structure as in algorithm 7, though more computations are required.

A post-quantum Distributed OPRF from the Legendre PRF 29

Algorithm 8 OSS-based Legendre dOPRF in the semi-honest client
but malicious server setting

Setup stage: Client; ServerSi, i = 1, . . . , n.
Input : Servers input [k], [α] where k, α ∈ Fp.

1 Servers run FOSS−Setup∗ with input [k] and [α], and obtain

[[k]]A, [[rk]]A, [[s
2]]A, [[r̂]]A, [[r0]]A, [[rx]]A, [[(rk + rx)r̂]]A

where r0, rk, rx, s, r̂ are randomly selected from Fp.
2 Servers reconstruct [k + rk] and [s2 + r̂], hence obtain

⟨⟨k⟩⟩ = (k + rk, [αk], [αrk]), ⟨⟨s2⟩⟩ = (s2 + r̂, [αs2], [αr̂]),

3 Servers distributes [r0], [rx] to the client.

Input stage: Client
Input : x ∈ Fp

4 Computes δ0 = x+
∑

[r0]i, δx = x+
∑n

i=1[rx]i
5 return δ0, δx to server Si, i = 1, . . . , n

Evaluation stage: Server Si; i = 1, . . . , n

6 Computes [αx] = δ0[α]− [αr0]
7 Let ⟨⟨x⟩⟩ = (x+ rx, [αx], [αrx]), then computes ⟨⟨x+ k⟩⟩ = ⟨⟨x⟩⟩+ ⟨⟨k⟩⟩.
8 Computes

[∆] = [α](R0(x+k+rx+rk)+R1(s
2+r̂))−R0([α(x+ k + rx + rk)])−R1([s

2 + r̂])

9 Let δx+k = x+ rx + k + rk and δs2 = s2 + r̂, computes

[(x+ k)s2] = (δx+k − [rx + rk]) · (δs2 − [r̂])

= δx+kδs2 − δs2 [rx + rk]− δx+k[r̂] + [(rk + rx)r̂],

[α(x+ k)s2] = δx+kδs2 [α]− δs2 [α(rx + rk)]− δx+k[αr̂] + [α(rk + rx)r̂].

10 return [(x+ k)s2], [α(x+ k)s2 +∆], [α] to client.

Reconstruction stage: Client

11 Computes y =
∑n

i=1[(x+ k)s2]i, α =
∑n

i=1[α]i, and
ψ =

∑n
i=1[α((x+ k)s2) +∆]i.

12 return y if yα = ψ, otherwise returns ⊥.

30 Nan Cheng, Novak Kaluđerović, and Katerina Mitrokotsa

Client Verifiability In algorithm 8, if all involved parties honestly follow the
protocol description, the correctness is obvious; However, in case of up to n− 1
malicious servers controlled by an adversary A, when A returns manipulated [r0]
to the client, this error would finally result in a wrong computation of [αx] in
the online phase; when A returns manipulated [rx] to the client or mishandles
any computation in the evaluation phase, the final protocol output cannot be
verified by the client except with probability 1 − 1/q where q is the size of Fp.
This is shown by the combination of equations 2, 3.

Security We claim that algorithm 8 securely realizes FOSS−OPRF∗ in the FOSS−Setup∗ -
hybrid model. This is equivalent to say there exists an simulator which inputs
what provided by A and possibly ideal functionality output, that outputs a view
transcript which is indistinguishable to that in real world execution. For this end,
note that in algorithm 8, in each run of the protocol a new independent secret
key α is used, thus, statistically, with protocol output (x+k)s2 as the simulator
input, if the simulator generates a random simulated α̂←$Fp and then generates
a n-party ASS [(x+ k)s2]∗, subsequentially compute [α∗(x+ k)s2], we argue the
simulated view ([(x+ k)s2]∗, [α∗(x+ k)s2]) is perfectly indistinguishable to the
real world protocol output. On the other hand, notice that a honest client dis-
tributes δ0, δx to the servers in the real world protocol, which are both masked
values of same secret x, thus, this real world view transcript is perfect indistin-
guishable to a simulated view including two random numbers δ∗0 , δ∗x←$Fp.

4.5 On partial obliviousness

A partially oblivious PRF is an OPRF whose input is divided into a private
and a public part x = (xpub, xpriv). There are generic transformations ([CHL22],
Section 3.1) to construct a partially oblivious PRF (pOPRF) from an OPRF and
could also be employed to transform also our proposed dOPRF constructions.
Let {Fk} be an OPRF, let {Gk} be a PRF. Then, the function:

F ′
k(xpub, xpriv) ..= FGk(xpub)(xpriv),

is a pOPRF. Given a fixed RSS secret sharing of a key k =
∑

T∈T kT , we define:

k′ =
∑
T∈T

GkT
(xpub)

to be an updated OPRF key, which we can also denote as G′(k) = k′. Here G′

is a PRF function, which is not only a function on k, but on the randomness
involved in splitting k into RSS shares. The new key k′ can be computed from
the public PRF G, the local shares kT and the public part of the input xpub. The
partially oblivious Legendre PRF is defined to be the Legendre OPRF computed
with the updated key k′.

The drawbacks of this approach is that it is dependent on the secret sharing
of the long-term key k, and a different secret sharing [[k]]R + [[0]]R leads to a
different function.

A post-quantum Distributed OPRF from the Legendre PRF 31

5 Evaluation

We implemented and benchmarked protocols from Section 4.1 and Section 4.2.
Our implementation can be found on

https://github.com/For-anonymous-submissions/Legendre-dOPRF.
Our tests were conducted on an Apple M2 ARM processor with a clock speed

of 3.49 GHz. The protocol was developed in C language and compiled using gcc
with the -O3 optimization level. We offer two versions of the implementation:
a standard one in C and a high-speed version with field arithmetic coded in
assembly. The implementation ensures constant time and memory access, and it
does not involve any branching.

Our results are listed in Table 2, where the upper half is the result for
the semi-honest protocol in Algorithm 3 and the bottom half for the malicious
protocol in Algorithm 4. The procedure of calculating the Legendre symbol,
denoted as leg_symbols, was benchmarked separately from the reconstruction
stage. Both implementations fare well for post-quantum standards, but scale
exponentially in t and therefore n when the memory use becomes a bottleneck.

p t n input evaluation reconstruction leg_symbols

128 bits
1 3 0,001 ms 0,011 ms 0,001 ms

0,20 ms2 5 0,005 ms 0,112 ms 0,002 ms
3 7 0,020 ms 1,500 ms 0,003 ms

192 bits
1 3 0,001 ms 0,033 ms 0,002 ms

0,75 ms2 5 0,005 ms 0,300 ms 0,006 ms
3 7 0,020 ms 3,300 ms 0,010 ms

256 bits
1 3 0,001 ms 0,075 ms 0,005 ms

2,22 ms2 5 0,005 ms 0,650 ms 0,011 ms
3 7 0,020 ms 7,280 ms 0,017 ms

p t n input evaluation reconstruction leg_symbols

128 bits
1 4 0,003 ms 0,047 ms 0,042 ms

0,20 ms2 7 0,012 ms 0,960 ms 1,700 ms
3 10 0,068 ms 29,312 ms 90,88 ms

192 bits
1 4 0,002 ms 0,106 ms 0,120 ms

0,75 ms2 7 0,013 ms 2,592 ms 4,400 ms
3 10 0,069 ms 85,248 ms 211,77 ms

256 bits
1 4 0,002 ms 0,259 ms 0,238 ms

2,20 ms2 7 0,013 ms 6,688 ms 8,304 ms
3 10 0,70 ms 202,496 ms 366,33 ms

Table 2: Benchmarks for Legendre dOPRF, Algorithm 3 and 4.

https://github.com/For-anonymous-submissions/Legendre-dOPRF

Bibliography

[ADDG23] Martin R. Albrecht, Alex Davidson, Amit Deo, and Daniel Gard-
ham. Crypto dark matter on the torus: Oblivious prfs from shallow
prfs and fhe. Cryptology ePrint Archive, Paper 2023/232, 2023.
https://eprint.iacr.org/2023/232. (page 2)

[ADDS19] Martin R. Albrecht, Alex Davidson, Amit Deo, and Nigel P. Smart.
Round-optimal verifiable oblivious pseudorandom functions from
ideal lattices. Cryptology ePrint Archive, Paper 2019/1271, 2019.
https://eprint.iacr.org/2019/1271. (page 2, 5, 6)

[AMMM18] Shashank Agrawal, Peihan Miao, Payman Mohassel, and Pratyay
Mukherjee. Pasta: Password-based threshold authentication. Cryp-
tology ePrint Archive, Paper 2018/885, 2018. https://eprint.
iacr.org/2018/885. (page 2)

[art07] Unapproved IEEE Draft Standard for Specifications for Password
Based Public Key Cryptographic Techniques. IEEE Unapproved
Std P1363.2 /D27, 2007. (page 2)

[art17] ISO: Information technology — security techniques — key manage-
ment — part 4: Mechanisms based on weak secrets. ISO/IEC, In-
ternational Organization for Standardization, 2017. https://www.
iso.org/standard/67933.html16. (page 2)

[Bas23] Andrea Basso. A post-quantum round-optimal oblivious prf from
isogenies. Cryptology ePrint Archive, Paper 2023/225, 2023.
https://eprint.iacr.org/2023/225. (page 2, 5)

[BBUV19] Ward Beullens, Tim Beyne, Aleksei Udovenko, and Giuseppe Vitto.
Cryptanalysis of the legendre prf and generalizations. Cryptology
ePrint Archive, Report 2019/1357, 2019. https://eprint.iacr.
org/2019/1357. (page 9)

[BBY20] Alessandro Baccarini, Marina Blanton, and Chen Yuan. Multi-party
replicated secret sharing over a ring with applications to privacy-
preserving machine learning. Cryptology ePrint Archive, Paper
2020/1577, 2020. https://eprint.iacr.org/2020/1577. (page
11, 36)

[BDFH24] Ward Beullens, Lucas Dodgson, Sebastian Faller, and Julia Hesse.
The 2hash oprf framework and efficient post-quantum instantia-
tions. Cryptology ePrint Archive, Paper 2024/450, 2024. https:
//eprint.iacr.org/2024/450. (page 2, 5, 6)

[BENO19] Aner Ben-Efraim, Michael Nielsen, and Eran Omri. Turbospeedz:
double your online spdz! improving spdz using function dependent
preprocessing. In International Conference on Applied Cryptogra-
phy and Network Security, pages 530–549. Springer, 2019. (page
13)

[BFH+19] Carsten Baum, Tore K. Frederiksen, Julia Hesse, Anja Lehmann,
and Avishay Yanai. Pesto: Proactively secure distributed single sign-

https://eprint.iacr.org/2023/232
https://eprint.iacr.org/2019/1271
https://eprint.iacr.org/2018/885
https://eprint.iacr.org/2018/885
https://www.iso.org/standard/67933.html16
https://www.iso.org/standard/67933.html16
https://eprint.iacr.org/2023/225
https://eprint.iacr.org/2019/1357
https://eprint.iacr.org/2019/1357
https://eprint.iacr.org/2020/1577
https://eprint.iacr.org/2024/450
https://eprint.iacr.org/2024/450

A post-quantum Distributed OPRF from the Legendre PRF 33

on, or how to trust a hacked server. Cryptology ePrint Archive,
Paper 2019/1470, 2019. https://eprint.iacr.org/2019/1470.
(page 2, 6)

[BKM+] Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit,
and Antonio Sanso. Cryptanalysis of an oblivious prf from super-
singular isogenies. In Advances in Cryptology – ASIACRYPT 2021.
(page 2)

[BKW20] Dan Boneh, Dmitry Kogan, and Katharine Woo. Oblivious pseudo-
random functions from isogenies. Cryptology ePrint Archive, Paper
2020/1532, 2020. https://eprint.iacr.org/2020/1532. (page 2,
5, 6)

[CDI05] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conver-
sion, pseudorandom secret-sharing and applications to secure com-
putation. In Theory of Cryptography, Second Theory of Cryptogra-
phy Conference, TCC 2005, Cambridge, MA, USA, February 10-12,
2005, Proceedings, volume 3378 of Lecture Notes in Computer Sci-
ence, pages 342–362. Springer, 2005. (page 10)

[CHL22] Sílvia Casacuberta, Julia Hesse, and Anja Lehmann. Sok: Obliv-
ious pseudorandom functions. Cryptology ePrint Archive, Paper
2022/302, 2022. https://eprint.iacr.org/2022/302. (page 5,
30)

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny,
and Joost Renes. Csidh: An efficient post-quantum commutative
group action. Cryptology ePrint Archive, Paper 2018/383, 2018.
https://eprint.iacr.org/2018/383. (page 5)

[Dam90] Ivan Damgård. On the randomness of Legendre and Jacobi se-
quences. In Proceedings of the 8th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’88, pages 163–
172, London, UK, UK, 1990. Springer-Verlag. (page 8)

[DGH+] Itai Dinur, Steven Goldfeder, Tzipora Halevi, Yuval Ishai, Mahimna
Kelkar, Vivek Sharma, and Greg Zaverucha. Mpc-friendly symmet-
ric cryptography from alternating moduli: Candidates, protocols,
and applications. In Tal Malkin and Chris Peikert, editors, Ad-
vances in Cryptology – CRYPTO 2021. (page 2)

[DHL20] Poulami Das, Julia Hesse, and Anja Lehmann. Dpase: Distributed
password-authenticated symmetric encryption. Cryptology ePrint
Archive, Paper 2020/1443, 2020. https://eprint.iacr.org/
2020/1443. (page 2)

[Dod23] Lucas Dodgson, 2023. https://ethz.ch/content/dam/
ethz/special-interest/infk/inst-infsec/appliedcrypto/
education/theses/Master_Thesis_Post_Quantum_Building_
blocks_for_secure_computation.pdf. (page 2, 5, 6)

[DPSZ11] I. Damgard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty
computation from somewhat homomorphic encryption. Cryptol-
ogy ePrint Archive, Paper 2011/535, 2011. https://eprint.iacr.
org/2011/535. (page 13, 28)

https://eprint.iacr.org/2019/1470
https://eprint.iacr.org/2020/1532
https://eprint.iacr.org/2022/302
https://eprint.iacr.org/2018/383
https://eprint.iacr.org/2020/1443
https://eprint.iacr.org/2020/1443
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/appliedcrypto/education/theses/Master_Thesis_Post_Quantum_Building_blocks_for_secure_computation.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/appliedcrypto/education/theses/Master_Thesis_Post_Quantum_Building_blocks_for_secure_computation.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/appliedcrypto/education/theses/Master_Thesis_Post_Quantum_Building_blocks_for_secure_computation.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/appliedcrypto/education/theses/Master_Thesis_Post_Quantum_Building_blocks_for_secure_computation.pdf
https://eprint.iacr.org/2011/535
https://eprint.iacr.org/2011/535

34 Nan Cheng, Novak Kaluđerović, and Katerina Mitrokotsa

[Esc22] Daniel Escudero. An introduction to secret-sharing-based se-
cure multiparty computation. Cryptology ePrint Archive, Paper
2022/062, 2022. https://eprint.iacr.org/2022/062. (page 10)

[Fei19] Dankard Feist. Legendre pseudo-random function, 2019. https:
//legendreprf.org/bounties. (page 8)

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Rein-
gold. Keyword search and oblivious pseudorandom functions. In
Joe Kilian, editor, Theory of Cryptography, pages 303–324, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg. (page 1)

[FJP11] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-
resistant cryptosystems from supersingular elliptic curve isoge-
nies. Cryptology ePrint Archive, Paper 2011/506, 2011. https:
//eprint.iacr.org/2011/506. (page 5)

[FOO23] Sebastian Faller, Astrid Ottenhues, and Johannes Ottenhues. Com-
posable oblivious pseudo-random functions via garbled circuits.
Cryptology ePrint Archive, Paper 2023/1176, 2023. https://
eprint.iacr.org/2023/1176. (page 2, 6)

[FS21] Paul Frixons and André Schrottenloher. Quantum security of the
legendre prf. Cryptology ePrint Archive, Paper 2021/149, 2021.
https://eprint.iacr.org/2021/149. (page 9)

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database
search, 1996. (page 6)

[GRR+16] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl,
and Nigel P. Smart. MPC-friendly symmetric key primitives. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, pages 430–443, New York,
NY, USA, 2016. ACM. (page 8)

[HL09] Carmit Hazay and Yehuda Lindell. Efficient protocols for set inter-
section and pattern matching with security against malicious and
covert adversaries. Cryptology ePrint Archive, Paper 2009/045,
2009. https://eprint.iacr.org/2009/045. (page 2, 6)

[JAC+17] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig
Costello, Luca De Feo, Basil Hess, Aaron Hutchinson, Amir
Jalali, Koray Karabina, Brian Koziel, Brian LaMacchia, Patrick
Longa, Michael Naehrig, Geovandro Pereira, Joost Renes, Vladimir
Soukharev, and David Urbanik. Supersingular isogeny key encap-
sulation, 2017. https://sike.org/. (page 5)

[JBSL10] Stanislaw Jarecki, Ali Bagherzandi, Nitesh Saxena, and Yanbin Lu.
Password-protected secret sharing. Cryptology ePrint Archive, Pa-
per 2010/561, 2010. https://eprint.iacr.org/2010/561. (page
2, 6)

[JKK14] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-
optimal password-protected secret sharing and t-pake in the
password-only model. Cryptology ePrint Archive, Paper 2014/650,
2014. https://eprint.iacr.org/2014/650. (page 2, 6)

https://eprint.iacr.org/2022/062
https://legendreprf.org/bounties
https://legendreprf.org/bounties
https://eprint.iacr.org/2011/506
https://eprint.iacr.org/2011/506
https://eprint.iacr.org/2023/1176
https://eprint.iacr.org/2023/1176
https://eprint.iacr.org/2021/149
https://eprint.iacr.org/2009/045
https://sike.org/
https://eprint.iacr.org/2010/561
https://eprint.iacr.org/2014/650

A post-quantum Distributed OPRF from the Legendre PRF 35

[JKKX17] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu.
Toppss: Cost-minimal password-protected secret sharing based on
threshold oprf. Cryptology ePrint Archive, Paper 2017/363, 2017.
https://eprint.iacr.org/2017/363. (page 2, 6)

[JL09] Stanisław Jarecki and Xiaomin Liu. Efficient oblivious pseudoran-
dom function with applications to adaptive ot and secure compu-
tation of set intersection. 2009. (page 2, 6)

[JL10] Stanisław Jarecki and Xiaomin Liu. Fast secure computation of set
intersection. 2010. (page 2)

[Kel20] Marcel Keller. Mp-spdz: A versatile framework for multi-party
computation. Cryptology ePrint Archive, Paper 2020/521, 2020.
https://eprint.iacr.org/2020/521. (page 5)

[Kho19] Dmitry Khovratovich. Key recovery attacks on the legendre prfs
within the birthday bound. Cryptology ePrint Archive, Paper
2019/862, 2019. https://eprint.iacr.org/2019/862. (page 9)

[KKK20a] Novak Kaluđerović, Thorsten Kleinjung, and Dusan Kostic. Im-
proved key recovery on the legendre prf. Cryptology ePrint
Archive, Paper 2020/098, 2020. https://eprint.iacr.org/2020/
098. (page 9)

[KKK20b] Novak Kaluđerović, Thorsten Kleinjung, and Dušan Kostić. Crypt-
analysis of the generalised Legendre pseudorandom function. ANTS
XIV, 2020. https://msp.org/obs/2020/4-1/p17.xhtml. (page 9)

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and
Ni Trieu. Efficient batched oblivious prf with applications to private
set intersection. Cryptology ePrint Archive, Paper 2016/799, 2016.
https://eprint.iacr.org/2016/799. (page 2)

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: Faster
malicious arithmetic secure computation with oblivious transfer.
Cryptology ePrint Archive, Paper 2016/505, 2016. https://
eprint.iacr.org/2016/505. (page 5)

[Mau06] Ueli Maurer. Secure multi-party computation made simple. Discrete
Applied Mathematics, 154:370–381, 2006. (page 10)

[SHB21] István András Seres, Máté Horváth, and Péter Burcsi. The legen-
dre pseudorandom function as a multivariate quadratic cryptosys-
tem: Security and applications. Cryptology ePrint Archive, Paper
2021/182, 2021. https://eprint.iacr.org/2021/182. (page 9)

[ss-87] Secret sharing schemes realizing general access structures. In Proc.
IEEE Global Telecommunication Conf., Globecom 87, Lecture Notes
in Computer Science, 1987. https://archiv.infsec.ethz.ch/
education/as09/secsem/papers/ItSaNi87.pdf. (page 10)

[vDH00] Wim van Dam and Sean Hallgren. Efficient quantum algorithms
for shifted quadratic character problems, 2000. (page 9)

[Wu00] Thomas Wu. The SRP authentication and key exchange sys-
tem. RFC, Internet Engineering Task Force, 2000. https://www.
rfc-editor.org/rfc/rfc2945. (page 2)

https://eprint.iacr.org/2017/363
https://eprint.iacr.org/2020/521
https://eprint.iacr.org/2019/862
https://eprint.iacr.org/2020/098
https://eprint.iacr.org/2020/098
https://msp.org/obs/2020/4-1/p17.xhtml
https://eprint.iacr.org/2016/799
https://eprint.iacr.org/2016/505
https://eprint.iacr.org/2016/505
https://eprint.iacr.org/2021/182
https://archiv.infsec.ethz.ch/education/as09/secsem/papers/ItSaNi87.pdf
https://archiv.infsec.ethz.ch/education/as09/secsem/papers/ItSaNi87.pdf
https://www.rfc-editor.org/rfc/rfc2945
https://www.rfc-editor.org/rfc/rfc2945

36 Nan Cheng, Novak Kaluđerović, and Katerina Mitrokotsa

A The setup phase for protocol 3 and 4

In the setup phase of the protocol, the servers compute values that are used later
on in the online phase. We show how these values are computed. In particular
the servers need to compute

– A random RSS key [[k]]R,
– A random RSS square [[s2]]R,
– Various secret sharings of zero [r], [[r]]R, [[r]]D.

A.1 Generating random values

A random additive secret share [s] can be generated by each party generating a
random value locally. For RSS (DRSS) the setting is a bit different because shares
sT have to be equal for all parties in ST (respectively for DRSS). This can be
achieved either through communication, or on-the-go by using a pseudorandom
function.

Assume that the parties hold a pre-computed (D)RSS key KT and agree on
a PRF F . Then, they can compute (D)RSS shares by evaluating F on the same
input

sT = FKT
(x),

where x is some input known by all servers. In particular, from a single shared
value x the parties can generate as many random RSS shares [[ri]]R as they wish
by computing (siT)T∈T = (FKT

(x||i))T∈T .

A.2 Generating an RSS square

The usage of the square term s2 in hiding the output of the Legendre PRF is
essential because it masks the value of the output. The term s2 is always used
as an RSS sharing, and to that end we show how to compute a multiplication of
two RSS values in a secure and verifiable manner.

Let [[a]]R, [[b]]R be two RSS shares. This protocol is done in two steps. First,
the parties compute an RSS share [[c]]R of a · b with a protocol which only
provides semi-honest security ([BBY20], Protocol 1), and confirm the validity
of the share. Then they show that c = a · b by generating an RSS share of
1, computing [[c]]R, [[1]]R 7→ [[c · 1]]D and [[a]]R, [[b]]R 7→ [[a · b]]D. They verify that
[[c− ab]]D = [[c · 1]]D − [[a · b]]D is indeed the DRSS share of zero by opening.

A.3 Computing secret sharings of zero

For completeness recall methods for computing ASS/RSS/DRSS secret sharings
of zero. Let Ṫ ⊆ {1, . . . , n} (ASS) or Ṫ = T (RSS) or Ṫ = T 2 (DRSS) be a set
of share indices.

A post-quantum Distributed OPRF from the Legendre PRF 37

Lemma 1 (Secret sharings of 0 from a random element). Assume that
for each pair of shares Ṫ1 ̸= Ṫ2 ∈ Ṫ the servers holding Ṫ1 or Ṫ2 hold a 2-party
additive secret share of zero known only to them, rṪ1Ṫ2

, rṪ2Ṫ1
∈ Fp such that

rṪ1Ṫ2
+ rṪ2Ṫ1

= 0.

Then they can compute a valid secret sharing of zero.

Proof. The servers compute

rṪ
..=

∑
Ṫ2∈Ṫ \{Ṫ}

rṪ Ṫ2
.

Furthermore∑
Ṫ∈Ṫ

rṪ =
∑
Ṫ∈Ṫ

∑
Ṫ2∈Ṫ \{Ṫ}

rṪ Ṫ2
= 1

2

∑
Ṫ ̸=T2∈Ṫ

rṪ Ṫ2
+ rṪ Ṫ2

= 0.

Therefore the secret sharing (rṪ)Ṫ∈Ṫ is a secret sharing of 0.

The servers that wish to compute a secret sharing of zero on-the-go in a co-
municationless manner can do so assuming that they hold a pre-shared random
string s{Ṫ1,Ṫ2} for each Ṫ1 ̸= Ṫ2 ∈ Ṫ , known by each server holding Ṫ1 or Ṫ2.
These strings can be obtained via public key infrastructure from distributed
public-secret keypairs (pkṪ , skṪ)Ṫ∈Ṫ (again relying on a shared random string
and broadcasted public keys) distributed as a secret sharing to the servers. Once
a set of pre-shared random strings is established, the servers can agree on a pub-
lic pseudorandom function Fk(·) and use it to generate random elements (equiv.
random 2-party additive secret sharings) as

rṪ1Ṫ2
= (−1)(Ṫ1<Ṫ2)Fs{Ṫ1,Ṫ2}

(a),

where a is any input, and “<” any strict total order on Ṫ . This approach, while
communicationless, reduces the security from information theoretic to computa-
tional due to the use of the pseudorandom function.

	A post-quantum Distributed OPRF from the Legendre PRF

