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Abstract. At S&P 2023, a family of secure three-party computing pro-
tocols called Bicoptor was proposed by Zhou et al., which is used to
compute non-linear functions in privacy preserving machine learning. In
these protocols, two parties P0, P1 respectively hold the corresponding
shares of the secret, while a third party P2 acts as an assistant. The
authors claimed that neither party in the Bicoptor can independently
compromise the confidentiality of the input, intermediate, or output. In
this paper, we point out that this claim is incorrect. The assistant P2 can
recover the secret in the DReLU protocol, which is the basis of Bicoptor.
The restoration of its secret will result in the security of the remaining
protocols in Bicoptor being compromised. Specifically, we provide two
secret recovery attacks regarding the DReLU protocol. The first attack
method belongs to a clever enumeration method, which is mainly due to
the derivation of the modular equation about the secret and its share.
The key of the second attack lies in solving the small integer root problem
of a modular equation, as the lattices involved are only 3 or 4 dimen-
sions, the LLL algorithm can effectively work. For the system settings
selected by Bicoptor, our experiment shows that the desired secret in
the DReLU protocol can be restored within one second on a personal
computer. Therefore, when using cryptographic protocols in the field of
privacy preserving machine learning, it is not only important to pay at-
tention to design overhead, but also to be particularly careful of potential
security threats.

Keywords: Secure multiparty computation, privacy-preserving machine
learning, secret recovery attack, lattice, the LLL algorithm.

1 Introduction

1.1 Background

Secure Multiparty Computation (MPC) is an important cryptographic proto-
col that allows multiple parties to compute a function on their private inputs
without disclosing any individual input to other parties. Based on this char-
acteristic, MPC has a wide range of applications in many fields, such as in



privacy-preserving machine learning (PPML). Recently, PPML based on MPC
has received widespread attention from researchers because it combines the util-
ity of machine learning (ML) with the privacy-preserving properties of MPC.
However, MPC will cause extra overhead, which is a major constraint on the
development of MPC-based PPML. Therefore, finding an MPC protocol with
excellent performance is very important. There are already some works aimed at
reducing this extra overhead. According to different settings, these works can be
divided into three different types: two-party protocols, such as [4,15,13,12,14],
three-party protocols, for example, [17,18,16,9,1,6], and four-party protocols, in-
cluding [5,2].

In the field of MPC-based PPML, a large number of non-linear functions are
involved. The basis of the non-linear functions is a sign determination function.
Once the sign determination function is constructed, other non-linear functions
can be easily implemented. The overhead of evaluating non-linear functions dom-
inates the total overhead. Most existing protocols use preprocessing to improve
the online performance. Specifically, after running the input-independent pre-
processing phase that typically uses heavy cryptographic mechanisms, once the
input is ready, the parties could complete PPML tasks relatively quickly in
the online phase. It is worth noting that the total overhead (preprocessing and
online) remains unchanged. Although the performance of the online phase is im-
proved, the overhead of the preprocessing phase is usually heavy. For example,
at CRYPTO 2020, Escudero et al. put forward a method that could improve on-
line comparison performance through preprocessed materials called “Edabits”
[3]. However, the generation of Edabits relies on homomorphic encryption or
oblivious transfer, which incurs significant performance overhead.

At S&P 2023, Zhou et al. proposed a family of novel secure three-party
computation protocols, called Bicoptor [20], to optimize the overall performance
of different non-linear functions used in PPML. The basis of Bicoptor is the
Derivative Rectified Linear Unit (DReLU) protocol, which is a sign determina-
tion protocol, to determine the sign of the input value, that is, to determine
whether the input value is greater than or equal to 0 or less than 0. The DReLU
protocol in Bicoptor only requires two commnication rounds, and does not need
any preprocessing. Based on this DReLU protocol, Zhou et al. developed other
protocols suitable for calculating non-linear functions in PPML. These protocols
constitute the so-called Bicoptor. Compared to state-of-the-art works, Edabits
at CRYPTO 2020 [3] or Falcon [18] at PETS 2021, Bicoptor performs better in
the same settings and enviroment.

The protocols involved in Bicoptor are all scenarios of three-party computa-
tion. Briefly speaking, two parties P0, P1 hold 2-out-of-2 secret sharing shares,
and the third party P2 is an assistant. Three parties P0, P1, P2 are all static and
semi-honest. It is assumed that there are no collusion between any two of three
parties. Zhou et al. claimed in [20, Section 2.1] that no party can individually
break the input, intermediate or output secrecy. The overview of the DReLU
protocol in Bicoptor is as follows. 1). The participants P0, P1 locally perform
repeated truncations on shares and obtain an array of outcomes [ui]. 2). P0, P1
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perform some linear operations on array [ui] to obtain [wi]. 3). P0, P1 send array
[wi] to the participant P2. 4). P2 reconstructs wi’s and check the existence of
the target value.

1.2 Our contributions

In this article, we propose two secret recovery attacks on the DReLU protocol
in Bicoptor, with the first attack being an exponential time algorithm for ℓx and
the second attack being a heuristic polynomial time algorithm for ℓx, where ℓx
is the parameter related to the bit-length of the secret. Once the secret in the
DReLU protocol is restored, the security of the remaining protocols in Bicoptor
is compromised, as the construction of these protocols is based on DReLU. In
these attacks, we assume that the participant P2 is always a passive adversary.
This assumption is reasonable because Bicoptor mentioned that P0, P1, and
P2 can be static and semi-honest. Our experiment supports the corresponding
theoretical analysis. For the system setting q = 264 and ℓx=13 given by Bicoptor,
the experimental results show that the secret can be recovered on a personal
computer within one second if the second attack is carried out. In addition, we
also test some other types of parameter values, and effectively obtain the desired
secret.

The essence of the above two attacks lies in the fact that the adversary P2

is able to derive modular equations related to the secret from the tuples [wi]’s
he possesses, and then recover the secret based on a clever enumeration in the
first attack and using lattice methods in the second attack. The enumeration
operation causes the complexity of the first attack to be exponential with respect
to ℓx, while the lattice attack method based on LLL is the reason why the
complexity of the second attack is polynomial with respect to ℓx.

In the first attack, P2 could obtain a modular equation between the secret and
its secret share. It is worth noting that the secret comes from a small interval, i.e.
[0, 2ℓx)∪(q−2ℓx , q), however, its share will fill the entire interval [0, q), i.e. the ring
Zq. Once the modular equation mentioned earlier is derived, P2 can determine
the corresponding share value that originally belongs to the entire interval by
enumerating the secret from the small interval. This strategy can greatly reduce
the number of candidates of the tuple related to the secret and its shares. Then
we provide a filtering method for existing candidate tuples. The idea behind this
filtering method is very simple. That is to take the candidate tuples as input for
the truncation function in the DReLU protocol, and then observe whether the
checking equations are satisfied. For the system setting q = 264 and ℓx=13 in
Bicoptor, our experiment shows that after two rounds of detection, the desired
secret in the DReLU protocol can be uniquely determined.

In the second attack, P2 first constructs modular equations including partial
information about two secret sharing shares of the secret. In order to get these
partial information, the properties of the truncation function in the DReLU
protocol are utilized. Furthermore, P2 can also use the array [wi] to obtain a
modular equation between these two secret shares. Once the obtained partial
information is imported into this modular equation, a modular equation with
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a small integer root is generated. If such a small root is found out, then the
corresponding secret shares are obtained, which means the secret in the DReLU
protocol is restored. In order to identify such small roots, two lattice methods
are presented, where the dimensions of the first and second lattices are 4 or
3, respectively. Under the corresponding success conditions, the LLL algorithm
can heuristically find the desired result. The success condition required for lattice
method II is better than that in lattice method I. It is worth noting that for
the parameter values q = 264 and ℓx=13 in the DReLU algorithm, the success
condition of lattice method I can also be satisfied. It implies that lattice method
I works well for such parameter values. Our experimental results also validate
this analysis.

1.3 Organization

The rest of this paper is organized as follows. We introduce the preliminaries in
Section 2. Section 3 recalls the DReLU protocol in Bicoptor. We present a secret
recovery attack against DReLU in Section 4. Section 5 provides an improved
secret recovery attack. In Section 6, we show that the security of the remaining
protocols in Bicoptor is also broken. Section 7 gives the experimental results.
In Section 8, we conclude the paper and provide a future work that can be
considered.

2 Preliminary

In subsequent attacks, the following expressions or relationships are often used.
For non-negative integers A,B and a positive integer q, the congruence relation
A ≡ B mod q represents that q divides integer A−B, and the relation A = B
mod q means that A is the remainder of B divided by q, where 0 ≤ A < q. For
two integer vectors α, β with the same dimension, the congruence relation α ≡ β
mod q represents that q divides vector α − β. In other words, q divides every
component of vector α−β. Similarly, the relationship α = β mod q means that
the component of α is equal to the remainder after q divides the component at
the corresponding position of β. It implies that each component of α is greater
than or equal to 0 and less than q.

2.1 Lattice

A lattice L is a discrete subgroup of Rm. Given n linearly independent (row)
vectors b1,b2, · · · ,bn ∈ Rm, the lattice spanned by these vectors is defined as

L(b1,b2, · · · ,bn) =

{
n∑

i=1

cibi|ci ∈ Z

}
.

The vector set {b1,b2, · · · ,bn} is called a basis of the lattice L. That is, define
B as the n × m basis matrix whose rows are the basis vectors b1,b2, · · · ,bn
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which can be written as B = [bT
1 , · · · ,bT

n ]
T . The dimension and determinant of

L when n ≤ m are respectively

dimL = n,detL =
√
detBBT .

For the case of n = m, the lattice is called full rank and detL = |detB|. The cel-
ebrated LLL lattice reduction algorithm [7] can output a reduced vector whose
Euclidean length satisfies the following condition (see e.g. [8] for the correspond-
ing proof).

Lemma 1 (LLL). Let L be an n-dimensional lattice. Within polynomial time,
the LLL algorithm outputs the first reduced basis vector v1 that satisfies

∥v1∥ ≤ 2
n−1
4 (detL) 1

n .

The lattice dimension involved in subsequent attacks is equal to 3 or 4, that

is, n=3 or 4. In this case, the relationship 2
n−1
4 <

√
n always holds. This means

that the Euclidean length of v1 is always smaller than Minkowski’s bound, i.e.
∥v1∥ <

√
n(detL) 1

n . Therefore, v1 is a sufficiently short vector. In practice,
the LLL algorithm tends to output the vector whose Euclidean length is much
smaller than theoretically predicted. For very low lattice dimensions, such as 3
and 4 dimensions, the LLL algorithm is often able to find the shortest nonzero
vector. The Gaussian heuristic gives an approximate Euclidean length of the
shortest non-zero vector in L.

Assumption 1 (Gaussian heuristic). Let L be a random n-dimensional lat-
tice of Zm. Then, with overwhelming probability, the Euclidean length of the
shortest non-zero vectors in L is asymptotically close to:

GH(L) =
√

n

2πe
det(L) 1

n .

2.2 Bicoptor and related scheme/functions

In this subsection, we recall the security model and system setting of Bicoptor,
the involved secret sharing scheme and the truncation function with errors as
well as non-linear functions in PPML. Please refer to the papers [10,20] for more
details.

Security model. A three-party computation (3PC) setting is involved in Bi-
coptor. The two parties P0, P1 hold 2-out-of-2 secret shares, and the third party
P2 acts as an assistant. Three participants P0, P1, P2 are static (that is, non-
adaptive) and semi-honest (namely, honest-but-curious). It is assumed that there
are no collusion between any two of three participants. The authors in Bicoptor
claimed that no participant can individually break the input, intermediate or
output secrecy.

System settings. In Bicoptor, all arithmetic operations are worked in an integer
ring Zq, where the bit-length of modulus q is ℓ := log2 q. Considering a secret
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input x ∈ [0, 2ℓx) ∪ (q − 2ℓx , q), where ℓx the precision bit length of x satisfying
ℓx < ℓ−1. If x ∈ [0, 2ℓx), then x is positive. If x ∈ (q−2ℓx , q), then x is negative.
For the above x, the value ξ is defined as follows:

ξ :=

{
x if x ∈ [0, 2ℓx),
q − x if x ∈ (q − 2ℓx , q).

(1)

It is easy to see that ξ ∈ [0, 2ℓx), that is, ξ is positive.
In [20, Section 5.2], Zhou et al. selected q = 264 and ℓx = 13 as the system

setting for Bicoptor.

Secret sharing scheme. In Bicoptor, an additive secret sharing scheme with
an unbalanced setting is involved. A secret input x ∈ Zq is shared between
participants P0 and P1, which satisfies the relation

x = [x]0 + [x]1 mod q. (2)

Here, [x]0 = x + R mod q and [x]1 = −R mod q, where R ∈ Zq is a random
number. The participants P0 and P1 hold the shares [x]0 and [x]1, respectively.
Let the tuple [x] := ([x]0, [x]1) represent a two-party secret sharing of x. The
secret sharing with an unbalancing model means that the third party P2 does
not obtain any information about the secret x.

For a constant value c in Zq, the participants P0 and P1 hold the shares [c]0
and [c]1, respectively. Here, one of [c]0 and [c]1 is equal to the constant c, and the
other is equal to 0. Without loss of generality, we can take [c]0 = c and [c]1 = 0
in the subsequent analysis. For this case, we could write [c] = ([c]0, [c]1) = (c, 0).

The secret sharing has the linear homomorphic property. To be specific, there
is the following relations:

[x] + [c] ≡ [x+ c] mod q, (3)

[x1] + [x2] ≡ [x1 + x2] mod q, (4)

c · [x] ≡ [c · x] mod q, (5)

where c is a constant value in Zq.

The truncation function with errors. The participants P0 and P1 have
shares [x]0 and [x]1, respectively. Then, P0 right shifts [x]0 for k bits; and P1

takes the input negation and then does another negation after k-bit shifting.
The above two operations can be rewritten separately as follows.

[TRC(x, k)]0 :=rShift([x]0, k), (6)

[TRC(x, k)]1 :=q − rShift(q − [x]1, k). (7)

Here rShift(y, k) means to shift y in Zq by k bits to the right, without padding
zero in the left hand. From the perspective of division with residues, if we write
y = y′′ · 2k + y′, where 0 ≤ y < q, 0 ≤ y′ < 2k and 0 ≤ y′′ < q

2k
, then

rShift(y, k) = y′′. Equivalently, we have rShift(y, k) =
⌊

y
2k

⌋
.
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Define TRC(x, k) ∈ Zq as the k-bit truncation function satisfying

TRC(x, k) = [TRC(x, k)]0 + [TRC(x, k)]1 mod q, (8)

where P0 and P1 hold the shares [TRC(x, k)]0 and [TRC(x, k)]1, respectively.
However, the truncation function TRC(x, k) introduces one-bit error at the

least significant bit. The corresponding result is summarized as follows.

Lemma 2 ([20]). In an integer ring Zq, let x ∈ [0, 2ℓx) ∪ (q − 2ℓx , q), where
ℓx + 1 < ℓ = log2 q. Define ξ as in (1). Then we have the following results with
probability 1− 2ℓx+1−ℓ:

• If x ∈ [0, 2ℓx), then TRC(x, k) = rShift(ξ, k) + bit, where bit = 0 or 1.
• If x ∈ (q − 2ℓx , q), then TRC(x, k) = q − rShift(ξ, k)− bit, where bit = 0 or
1.

Non-linear functions in PPML. A function satisfying F (x) = a · x + b is
called a linear function, where a, b are constants. Otherwise, it is called a non-
linear function. The common non-linear function used in machine learning is the
Rectified Linear Unit (ReLU) function, which can be obtained from the DReLU
function. The definitions of these two functions are as follows:

ReLU(x) =

{
x if x ≥ 0,
0 if x < 0,

and

DReLU(x) =

{
1 if x ≥ 0,
0 if x < 0.

It is easy to see that ReLU(x) = DReLU(x) · x. The definitions for other non-
linear functions were given in [20, Appendix B] (also see Section 6).

3 The DReLU protocol in Bicoptor

In this section, we recall the DReLU protocol in Bicoptor, which is the basis of the
Bicoptor family [20]. The specific steps of DReLU are given in Algorithm 1. We
provide a detailed explanation for these steps. It is worth noting that subsequent
attacks only rely on Steps 1 to 7. Furthermore, why can this protocol be used
to determine the sign of input is independent of subsequent attacks. Therefore,
we ignore this analysis process. Please refer to [20] for more details.

– In Step 1, the participants P0 and P1 jointly generate non-zero random ele-
ments r∗, r0, r1, · · · , rℓx in the integer ring Zq. It implies that these elements
satisfy 0 < r∗, r0, r1, · · · , rℓx < q.

– In Step 2, P0 and P1 set [x′] = (−1)t · [x], where x ∈ [0, 2ℓx) ∪ (q − 2ℓx , q)
is a secret input, and t ∈ {0, 1} is a random bit3. According to the property

3 In Step 2 of Algorithm 1, the authors wrote [x] := (−1)t · [x]. The use of two identical
symbols x here can easily cause confusion. Therefore, we modify the x on the left
side of the expression to x′.
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(5) in the secret sharing scheme, we have

x′ = (−1)t · x mod q.

It implies that x′ ∈ [0, 2ℓx) ∪ (q − 2ℓx , q). If we write [x] = ([x]0, [x]1) and
[x′] = ([x′]0, [x

′]1), then we get

[x′]0 = (−1)t · [x]0 mod q, and [x′]1 = (−1)t · [x]1 mod q.

– In Step 3, P0 and P1 set u∗, u0, u1, · · · , uℓx satisfying u∗ = (−1)t, u0 = x′

and ui is the output of the i-bit truncation function, i.e.

ui = TRC(x′, i), 1 ≤ i ≤ ℓx. (9)

A two-party secret sharing of ui is [ui] = ([ui]0, [ui]1) for i ∈ {∗, 0, 1, · · · , ℓx},
where ui = [ui]0+[ui]1 mod q. The participants P0 and P1 hold shares [ui]0
and [ui]1 for i = ∗, 0, 1, · · · , ℓx, respectively.

– In Step 4, P0 and P1 set4

[v∗] =[u∗] + 3 · [u0]− [1] mod q, (10)

[vi] =(

ℓx∑
k=i

[uk])− [1] mod q, 0 ≤ i ≤ ℓx, (11)

where the tuple [1] = (1, 0). A two-party secret sharing of vi is [vi] =
([vi]0, [vi]1) for i ∈ {∗, 0, 1, · · · , ℓx}, where vi = [vi]0 + [vi]1 mod q. The
participants P0 and P1 hold shares [vi]0 and [vi]1 for i = ∗, 0, 1, · · · , ℓx,
respectively.

– In Step 5, the participants P0 and P1 first mask [vi] using non-zero random
number ri in Step 1, where i = ∗, 0, 1, · · · , ℓx, and obtain the array r∗ ·
[v∗], r1 · [v0], · · · , rℓx · [vℓx ]. Then P0 and P1 choose a random permutation Π,
and permutate the above array, and get a new array [w∗], [w0], · · · , [wℓx ]. A
two-party secret sharing of wi is [wi] = ([wi]0, [wi]1) for i ∈ {∗, 0, 1, · · · , ℓx},
where wi = [wi]0 + [wi]1 mod q. P0 and P1 hold shares [wi]0 and [wi]1 for
i = ∗, 0, 1, · · · , ℓx, respectively.

– In Step 6, P0 and P1 send shares [wi]0 and [wi]1 to P2 for i = ∗, 0, 1, · · · , ℓx,
respectively.

– In Step 7, the participant reconstructs wi’s based on the obtained tuples
([wi]0, [wi]1). Specifically,

wi = [wi]0 + [wi]1 mod q for i = ∗, 0, 1, · · · , ℓx.

If there is a wi that is equal to 0, set DReLU(x)′ = 1. Otherwise, DReLU(x)′ =
0.

– In Step 8, P2 sends the shares [DReLU(x)′]0 and [DReLU(x)′]1 to P0 and
P1, respectively, where [DReLU(x)′] = ([DReLU(x)′]0, [DReLU(x)′]1).

– In Step 9, P0 and P1 execute an XOR operation to obtain the shares of the
output DReLU(x) := DReLU(x)′ ⊕ t.
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Algorithm 1 DReLU protocol.

Input: The shares of x.
Output: The shares of DReLU(x).

// P0 and P1 initialization.
1: P0 and P1 generate ℓx + 2 numbers of non-zero random ring elements

{r∗, r0, r1, · · · , rℓx} from seed01.
2: P0 and P1 set [x] := (−1)t · [x].
3: P0 and P1 set [u∗] := [(−1)t], [u0] := [x], and [ui] := [TRC(x, i)], ∀i ∈ [1, ℓx].
4: P0 and P1 set [v∗] := [u∗] + 3 · [u0]− 1, [vi] := (

∑ℓx
k=i[uk])− 1, ∀i ∈ [0, ℓx].

5: P0 and P1 set [{wi}] := [
∏
{ri · vi}], using the shuffle-seed from seed01.

6: P0 and P1 send the shares [{wi}] to P2.
// P2 processes.

7: P2 reconstructs {wi} and sets DReLU(x)′ = 1 if there exists zero(s) in {wi};
otherwise DReLU(x)′ = 0.

8: P2 shares DReLU(x)′ to P0 and P1.
9: P0 and P1 output the shares of t⊕DReLU(x)′.

In order to illustrate the following attack approaches more clearly, we give
Fig. 1 for Steps 1-7 of the DReLU protocol from the perspective of participants
P0, P1 and P2.

Fig. 1. The description for Steps 1-7 of the DReLU protocol from the perspective of
participants.

4 In Step 4 of Algorithm 1, the authors write briefly [v∗] = [u∗] + 3 · [u0] − 1 and
[vi] = (

∑ℓx
k=i[uk])−1. In fact, this writing style is not standard, so we modify 1 here

to [1].
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In the next two secret recovery attacks, we always assume that the participant
P2 is a passive adversary. According to Step 7 in Algorithm 1, P2 can obtain these
tuples [wi] for i = ∗, 0, 1, · · · , ℓx. Based on Step 5, the array [w∗], [w0], · · · , [wℓx ]
is a random permutation of the array r∗ · [v∗], r0 · [v0], · · · , rℓx · [vℓx ]. That is,
there is the following relation

{[w∗], [w0], · · · , [wℓx ]} = {r∗ · [v∗], r0 · [v0], · · · , rℓx · [vℓx ]} , (12)

where [wi] = ([wi]0, [wi]1) and [vi] = ([vi]0, [vi]1). In the following analysis, we
not only consider the case where q is a power of 2 in the system settings of
Bicoptor, i.e. q = 264, but also consider the case where q is a random 64-bit
prime number.

4 The secret recovery attack on DReLU protocol

In this section, we present an attack to restore the secret in the DReLU protocol.

4.1 Obtaining equations related to x′ and [x′]0

Based on the expression (12), there is k ∈ {∗, 0, 1, · · · , ℓx} that makes the relation
[wk] = r∗ · [v∗] hold. That is,

[wk]0 ≡ r∗ · [v∗]0 mod q, (13)

[wk]1 ≡ r∗ · [v∗]1 mod q, (14)

Hence, P2 can search up to ℓx + 2 times to find the desired k.

After multiplying both sides of the relation (13) by [v∗]1 and both sides of
the relation (14) by [v∗]0, and subtracting the two equations obtained, P2 gets
a new relation

[wk]0 · [v∗]1 ≡ [wk]1 · [v∗]0 mod q. (15)

Now we present the following result for the tuple [v∗] = ([v∗]0, [v∗]1).

Lemma 3. Define x′ ∈ [0, 2ℓx) ∪ (q − 2ℓx , q) and t ∈ {0, 1} as in Step 2 of the
DReLU protocol. Define [v∗] = ([v∗]0, [v∗]1) as in Step 4 of the DReLU protocol.
Then we get

[v∗]0 =(−1)t + 3 · [x′]0 − 1 mod q, (16)

[v∗]1 =3 · [x′]1 mod q. (17)

Furthermore, we obtain

v∗ = 3x′ + (−1)t − 1 mod q. (18)
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Proof. From the expression (10), we have [v∗] ≡ [u∗]+3 · [u0]− [1] mod q. Based
on the property (3), (4) and (5) of secret sharing, we deduce that

[v∗]0 = [u∗]0 + 3 · [u0]0 − 1 mod q,
[v∗]1 = [u∗]1 + 3 · [u0]1 mod q.

(19)

Note that u∗ = (−1)t. Hence, u∗ equals ±1. According to the knowledge of secret
sharing, we obtain that [u∗] = ([u∗]0, [u∗]1), where

[u∗]0 = (−1)t, and [u∗]1 = 0. (20)

From u0 = x′, [u0] = ([u0]0, [u0]1) and [x′] = ([x′]0, [x
′]1), we get

[u0]0 = [x′]0, and [u0]1 = [x′]1. (21)

Plugging (20) and (21) into the above relation (19), we have [v∗]0 = (−1)t + 3 ·
[x′]0 − 1 mod q, and [v∗]1 = 3 · [x′]1 mod q. It means that

[v∗]0 + [v∗]1 ≡ 3 · ([x′]0 + [x′]1) + (−1)t − 1 mod q.

Note that v∗ = [v∗]0 + [v∗]1 mod q and x′ = [x′]0 + [x′]1 mod q. Hence, we
deduce the relation (18), that is, v∗ = 3x′ + (−1)t − 1 mod q.

Plugging (16) and (17) into the relation (15), P2 gets

[wk]0 · (3 · [x′]1) ≡ [wk]1 · ((−1)t + 3 · [x′]0 − 1) mod q. (22)

After adding [wk]0 · (3 · [x′]0) to both sides of the relation (22), P2 obtains the
following equation

3[wk]0 · ([x′]0+[x′]1) ≡ [wk]1 · ((−1)t−1)+3([wk]0+[wk]1) · [x′]0 mod q. (23)

Plugging the relations

x′ = [x′]0 + [x′]1 mod q and wk = [wk]0 + [wk]1 mod q

into the relation (23), P2 obtains

3[wk]0 · x′ ≡ [wk]1 · ((−1)t − 1) + 3wk · [x′]0 mod q.

Based on t = 0 or 1, the above relation can be rewritten as3wk · [x′]0 ≡ 3[wk]0 · x′ mod q if t = 0,

3wk · [x′]0 ≡ 3[wk]0 · x′ + 2[wk]1 mod q if t = 1.
(24)

Let the integer K be the greatest common divisor of integers 3wk and q. That
is, K = gcd(3wk, q). Because the participant P2 already knows wk and q, P2 can
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publicly compute K. For the modulus equations in relation (24), after dividing
by the above K, P2 can obtain the following modulus equations

3wk

K · [x′]0 ≡ 3[wk]0·x′

K mod q
K if t = 0,

3wk

K · [x′]0 ≡ 3[wk]0·x′+2[wk]1
K mod q

K if t = 1.

Note that gcd( 3wk

K , q
K ) = 1. According to the above equations, P2 obtains the

relation: 
[x′]0 ≡ ( 3wk

K )−1 · 3[wk]0·x′

K mod q
K if t = 0,

[x′]0 ≡ ( 3wk

K )−1 · 3[wk]0·x′+2[wk]1
K mod q

K if t = 1.

(25)

In fact, x′ ∈ [0, 2ℓx) ∪ (q − 2ℓx , q). It is because that x′ = (−1)t · x ∈ Zq, where
t ∈ {0, 1} and x ∈ [0, 2ℓx) ∪ (q − 2ℓx , q). Therefore, P2 can obtain all candidates
of [x′]0 by enumerating the value of x′ from (25). In the next subsection, we will
give a detailed explanation.

4.2 Obtaining candidate tuples of (x′, [x′]0, [x
′]1)

Let the integer

rt :=


( 3wk

K )−1 · 3[wk]0·x′

K mod q
K if t = 0,

( 3wk

K )−1 · 3[wk]0·x′+2[wk]1
K mod q

K if t = 1.

The integer rt is the involved remainder after modulo q
K . Clearly, 0 ≤ rt <

q
K .

For any fixed candidate of x′, the corresponding value of rt is given. Note that
x′ ∈ [0, 2ℓx)∪ (q− 2ℓx , q) and t ∈ {0, 1}. Hence, there are at most 2ℓx+1 different
candidate values for rt.

Note that [x′]0 is a random number in Zq. According to the expression (25),
P2 can rewrite [x′]0 as

[x′]0 = rt + st ·
q

K
.

Here st is an unknown integer satisfying 0 ≤ st ≤ K − 1. P2 gets all candidates
of [x′]0 by enumerating the candidates of integers rt and st. Because there are a
maximum of 2ℓx+1 candidate values for rt, and 0 ≤ st ≤ K − 1, the maximum
number of candidate values for [x′]0 is 2ℓx+1 ·K. Based on the relation [x′]1 =
[x′]− [x′]0 mod q, the value of [x′]1 is determined by the values of x′ and [x′]0.
It means that the number of the different candidate tuples of (x′, [x′]0, [x

′]1) is
at most 2ℓx+1 ·K.

Finally, let us analyze the size of K = gcd(3wk, q). We first discuss the case
of wk. From (13) and (14), we get [wk]0 + [wk]1 ≡ r∗ · ([v∗]0 + [v∗]1) mod q.

12



Plugging the relations wk = [wk]0 + [wk]1 mod q and v∗ = [v∗]0 + [v∗]1 mod q
into the above relation, we obtain

wk = r∗ · v∗ mod q, (26)

where r∗ is a non-zero random number in Zq. For a prime q, the greatest common
divisor K equals 1 with overwhelming probability. For q = 2ℓ, K is a small
positive integer with a high probability. The detailed analysis is presented in
Appendix A.

4.3 Filtering out the correct tuple

The goal in this subsection is to filter out the correct tuple (x′, [x′]0, [x
′]1) from

multiple candidates. This process may include multiple rounds of filtering.
For any given candidate (x̃, [x̃]0, [x̃]1), where x̃ ∈ Zq is a candidate of x′, the

participant P2 executes Steps 2 and 3 in Algorithm 1, and calculates

[ṽℓx ] := [ũℓx ]− [1] mod q,

where [ũℓx ] := [TRC(x̃, ℓx)] and [1] = (1, 0). Note that x̃ is a candidate of x′.
Hence [ṽℓx ] is the corresponding candidate of [vℓx ]. Then P2 checks whether there
exists j1 ∈ {∗, 0, 1, · · · , ℓx} \ {k} such that the corresponding [wj1 ] satisfies the
condition

[wj1 ]0 · [ṽℓx ]1 ≡ [wj1 ]1 · [ṽℓx ]0 mod q, (27)

where [wj1 ] = ([wj1 ]0, [wj1 ]1) and [ṽℓx ] = ([ṽℓx ]0, [ṽℓx ]1). It is worth noting that
the k here is the integer satisfying (13) and (14). In other words, the involved
tuple [wk] = ([wk]0, [wk]1) is already satisfied with the following relationship

[wk]0 · [v∗]1 ≡ [wk]1 · [v∗]0 mod q,

where [v∗] = ([v∗]0, [v∗]1). In the case, P2 needs to search for such j1 up to ℓx+1
times to verify whether the relationship (27) is valid.

If the relation (27) is satisfied, then the candidate (x̃, [x̃]0, [x̃]1) is kept. Other-
wise, it is removed. After the above filtering process, if the remaining candidates
are not unique. P2 will continue filtering in the following way.

Let (x̃, [x̃]0, [x̃]1) be one of the remaining candidates. P2 computes

[ṽℓx−1] := ([ũℓx−1] + [ũℓx ])− [1] mod q,

where [ũt] := [TRC(x̃, t)] for ℓx−1 ≤ t ≤ ℓx. Clearly, [ṽℓx−1] is the corresponding
candidate of [vℓx−1]. Then P2 checks whether there exists j2 ∈ {∗, 0, 1, · · · , ℓx} \
{k, j1} such that the corresponding [wj2 ] satisfies the condition

[wj2 ]0 · [ṽℓx−1]1 ≡ [wj2 ]1 · [ṽℓx−1]0 mod q, (28)

where [wj2 ] = ([wj2 ]0, [wj2 ]1) and [ṽℓx−1] = ([ṽℓx−1]0, [ṽℓx−1]1). In this case,
P2 needs to search for such j2 up to ℓx times to verify whether the relation
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(28) is valid. If the relation (28) holds, then the candidate (x̃, [x̃]0, [x̃]1) is kept.
Otherwise, the candidate is removed.

The above is the case of two rounds of filtering. Next, we will describe the
general situation. We assume that a total of m rounds of filtering are required.
Clearly, 1 ≤ m ≤ ℓx + 1. In this process, P2 needs to check whether there exists
js ∈ {∗, 0, 1, · · · , ℓx} \ {k, j1, · · · , js−1} such that the following condition holds:

[wjs ]0 · [ṽℓx+1−s]1 ≡ [wjs ]1 · [ṽℓx+1−s]0 mod q, (29)

where s takes 1, 2, · · · ,m in sequence, [wjs ] = ([wjs ]0, [wjs ]1) and [ṽℓx+1−s] =
([ṽℓx+1−s]0, [ṽℓx+1−s]1). It is easy to see that the relations (27) and (28) are two
cases of (29) for s = 1 and 2, respectively. If the relation (29) is satisfied, then
the candidate (x̃, [x̃]0, [x̃]1) is kept. Otherwise, the candidate is removed. For this
general case, if the number of remaining candidates is equal to 1, then we claim
that the candidate is the the desired tuple (x′, [x′]0, [x

′]1) we are looking for.
This claim can be analyzed as follows.

If the candidate (x̃, [x̃]0, [x̃]1) = (x′, [x′]0, [x
′]1), then the corresponding can-

didate [ṽℓx+1−s] = [vℓx+1−s] for 1 ≤ s ≤ m. Note that the array [wi] for
i = ∗, 0, 1, · · · , ℓx is obtaining by randomly per-mutating the array ri · [vi] for
i = ∗, 0, 1, · · · , ℓx. In other words, the relationship (12) holds. Therefore, the ex-
pression (29) is always satisfied when [ṽℓx+1−s] = [vℓx+1−s]. It means that the de-
sired tuple ([x′], [x′]0, [x

′]1) is not removed from the candidate set. Hence, if there
is only one candidate in the end, then this candidate must be (x′, [x′]0, [x

′]1).
Let Cs be the candidate set before the s-th round of filtering, where 1 ≤ s ≤

m ≤ ℓx+1. Let |Cs| be the number of elements in the candidate set Cs. Clearly,
the number of elements in the corresponding candidate sets is monotonically
decreasing, i.e., 1 ≤ |Cm| ≤ |Cm−1| ≤ · · · ≤ |C1| ≤ 2ℓx+1 · K. For this general
situation, P2 needs to compute the relationship (29) up to

|C1| · (ℓx + 1) + |C2| · ℓx + · · ·+ |Cm| · (ℓx −m+ 2) = O(ℓx2
ℓx)

times to determine whether it is met, where the times of calculations is mainly
determined by the exponent of ℓx.

Remark 1. For the specific parameters ℓ = 64, ℓx = 13 in the DReLU proto-
col, our experiment shows that, after two rounds of filtration, i.e. m = 2, it is
sufficient to restore the desired tuple (x′, [x′]0, [x

′]1).

Once the tuple (x′, [x′]0, [x
′]1) is found out, the involved rt is also determined

in this process. It implies that the corresponding t ∈ {0, 1} is obtained. Therefore,
the secret x is revealed by computing x = (−1)t · x′ mod q.

5 The improved attack on DReLU protocol

In this section, we present an improved attack on the DReLU protocol to recover
the secret x, the computational complexity of which is a polynomial on ℓx. This
attack uses a lattice reduction algorithm instead of enumeration, which can
be used in general cases. We still assume that the participant P2 is a passive
adversary.
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5.1 Generating modular linear equation with small root

According to the expression (12), there is j ∈ {∗, 0, 1, · · · , ℓx} satisfying the
following relation {

[wj ]0 ≡ rℓx · [vℓx ]0 mod q,
[wj ]1 ≡ rℓx · [vℓx ]1 mod q,

(30)

where [wj ] = ([wj ]0, [wj ]1) and [vℓx ] = ([vℓx ]0, [vℓx ]1). Therefore, P2 needs to
search up to ℓx +2 times to get the desired j. Once such j is obtained, based on
the above two relations, P2 will get the following equation

[wj ]0 · [vℓx ]1 ≡ [wj ]1 · [vℓx ]0 mod q. (31)

In order to transform (31) into a modular equation with small roots, the following
lemma is utilized.

Lemma 4. Define x′ ∈ [0, 2ℓx)∪(q−2ℓx , q) as in Step 2 of the DReLU protocol.

Let integers y :=
⌊
[x′]0
2ℓx

⌋
and z :=

⌊
q−[x′]1
2ℓx

⌋
. Then there is the following relation

[vℓx ]0 = y − 1, and [vℓx ]1 = q − z. (32)

Proof. Based on the expression (11), we get [vℓx ] = [uℓx ]− [1]. According to the
property of secret sharing, we obtain that [vℓx ]0 = [uℓx ]0 − 1 and [vℓx ]1 = [uℓx ]1.
From the expression (9), we have that [uℓx ]0 = [TRC(x′, ℓx)]0 and [uℓx ]1 =
[TRC(x′, ℓx)]1. It implies that

[vℓx ]0 = [TRC(x′, ℓx)]0 − 1, and [vℓx ]1 = [TRC(x′, ℓx)]1. (33)

According to (6) and (7), there are the following two relations

[TRC(x′, ℓx)]0 = rShift([x′]0, ℓx), and [TRC(x′, ℓx)]1 = q − rShift(q − [x′]1, ℓx),

where rShift([x′]0, ℓx) = ⌊ [x′]0
2ℓx

⌋ = y and rShift(q − [x′]1, ℓx) = ⌊ q−[x′]1
2ℓx

⌋ = z.
Hence,

[TRC(x′, ℓx)]0 = y and [TRC(x′, ℓx)]1 = q − z. (34)

Plugging (34) into (33), we deduce that the relation (32) is satisfied.

Note that 0 ≤ [x′]0, [x
′]1 < q. Thus 0 ≤ y =

⌊
[x′]0
2ℓx

⌋
< q

2ℓx
and 0 ≤ z =⌊

q−[x′]1
2ℓx

⌋
< q

2ℓx
. For the case that ℓ = 64 and ℓx = 13 in the DReLU algorithm,

the integers y and z are small compared to the modulus q.
Plugging the relation (32) into (31) and rearranging the obtained equation,

P2 yields
[wj ]1 · y + [wj ]0 · z ≡ [wj ]1 mod q. (35)

Once [wj ]0 and [wj ]1 are given, the equation (35) is a modular linear equation
with small root (y, z).
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5.2 Obtaining candidate tuples of (y, z)

We first present the following lemma.

Lemma 5. Define x′ ∈ [0, 2ℓx) ∪ (q − 2ℓx , q) as in Step 2 of the DReLU proto-
col. Define y and z as in Lemma 4. Then we have the following relation with
probability 1− 2ℓx+1−ℓ:

y = z + ϵ mod q, (36)

where ϵ ∈ {−1, 0, 1}. If x′ ∈ [0, 2ℓx), then ϵ= 0 or 1. If x′ ∈ (q − 2ℓx , q), then ϵ
= 0 or -1.

Proof. According to (34), i.e. [TRC(x′, ℓx)]0 = y and [TRC(x′, ℓx)]1 = q−z, and
the relation TRC(x′, ℓx) = [TRC(x′, ℓx)]0 + [TRC(x′, ℓx)]1 mod q, we have

TRC(x′, ℓx) = y − z mod q. (37)

By Lemma 2, we get that

TRC(x′, ℓx) =

{
rShift(ξ, ℓx) + bit if x′ ∈ [0, 2ℓx),
q − rShift(ξ, ℓx)− bit if x′ ∈ (q − 2ℓx , q),

where bit = 0 or 1, and

ξ =

{
x′ if x′ ∈ [0, 2ℓx),
q − x′ if x′ ∈ (q − 2ℓx , q).

It implies that 0 ≤ ξ < 2ℓx . Hence, rShift(ξ, ℓx) = ⌊ ξ
2ℓx

⌋ = 0. Based on this
relation, we get that

TRC(x′, ℓx) =

{
bit if x′ ∈ [0, 2ℓx),
q − bit if x′ ∈ (q − 2ℓx , q).

(38)

Plugging (37) into (38), we obtain the relation (36), that is, y = z + ϵ mod q,
where ϵ ∈ {−1, 0, 1}. To be specific, ϵ = bit ∈ {0, 1} if x′ ∈ [0, 2ℓx) and ϵ =
(−1) · bit ∈ {0,−1} if x′ ∈ (q − 2ℓx , q).

Plugging the relation (36) into (35) and reorganizing the obtained equation,
P2 has

([wj ]0 + [wj ]1) · z ≡ [wj ]1 · (1− ϵ) mod q. (39)

For the sake of discussion, let W := gcd([wj ]0 + [wj ]1, q). Since [wj ]0, [wj ]1 and
q are known, the integer W can be publicly computed. According to (30), (32)
and (36), there is the equation [wj ]0+[wj ]1 ≡ rℓx · (ϵ−1) mod q. It implies that
the great common divisor W = gcd(rℓx · (ϵ − 1), q), where ϵ ∈ {−1, 0, 1}. Next,
we will analyze based on the situation of ϵ.

The case of ϵ = 0 or -1. For a prime q, we have that gcd(rℓx , q) = 1 for a
non-zero random number rℓx ∈ Zq, and gcd(ϵ−1, q) = 1 for ϵ = 0 or 1. It implies
that gcd(rℓx · (ϵ−1), q) = 1. That is, the greatest common divisor W = 1. When
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q is a power of 2, i.e. q = 2ℓ, we obtain that gcd(ϵ − 1, q) = 1 for ϵ = 0 and
gcd(ϵ− 1, q) = 2 for ϵ = −1. Notice that rℓx ∈ Zq is a non-zero random number.
Without loss of generality, we can write rℓx = 2r ·δ, where 0 ≤ r ≤ ℓx and δ is an
odd number satisfying 0 < δ < 2ℓ−r. Thus the probability that gcd(rℓx , q) = 2r

is equal to 2ℓ−r−1

q−1 ≈ 1
2r+1 , where q = 2ℓ. Specifically, if r is greater than ℓx − 1,

then the corresponding probability is less than 1
2ℓx

, which is negligible for the
parameter ℓx = 13 in the DReLU algorithm. When gcd(rℓx , q) = 2r, the great
common divisor W = 2r or 2r+1 for ϵ = 0 or -1, respectively. According to the
above analysis, the probability that q

W ≥ q
2ℓx

is very close to 1.
For the modulus equation in (39), after dividing by the great common divisor

W , the participant P2 obtains the following equation

[wj ]0 + [wj ]1
W

· z ≡ [wj ]1 · (1− ϵ)

W
mod

q

W
.

From gcd(
[wj ]0+[wj ]1

W , q
W ) = 1, P2 produces

z ≡ (
[wj ]0 + [wj ]1

W
)−1 · [wj ]1 · (1− ϵ)

W
mod

q

W
.

Note that 0 ≤ z < q
2ℓx

and q
2ℓx

≤ q
W with an overwhelming probability. In this

case, the relation z < q
W is satisfied. It implies that

z = (
[wj ]0 + [wj ]1

W
)−1 · [wj ]1 · (1− ϵ)

W
mod

q

W
.

Once z is computed, P2 can recover y by computing y = z + ϵ mod q, which is
based on the relation (36).

In the case of ϵ = 0 or -1, a maximum of 2 · (ℓx + 2) tuples (y, z) will be
generated. It is worth noting that we can use the relationship of 0 ≤ y, z <
q

2ℓx
to filter candidate tuples. Simply put, if the candidate y and z satisfy this

relationship, we keep this tuple, otherwise we discard it.

The case of ϵ = 1. Notice that W = gcd(rℓx ·(ϵ−1), q). Hence W = q. It means
that P2 cannot get any information on y from (39). For this case, P2 can utilize
the following way to determine the values of y and z.

Based on the expression (12), there is l ∈ {∗, 0, 1, · · · , ℓx} \ {j} satisfying{
[wl]0 ≡ rℓx−1 · [vℓx−1]0 mod q,
[wl]1 ≡ rℓx−1 · [vℓx−1]1 mod q,

(40)

where [wl] = ([wl]0, [wl]1) and [vℓx−1] = ([vℓx−1]0, [vℓx−1]1). Hence, P2 needs to
search at most ℓx+1 times to get the wanted l. From the relation (40), P2 yields

[wl]0 · [vℓx−1]1 ≡ [wl]1 · [vℓx−1]0 mod q. (41)

Lemma 6. Define y and z as in Lemma 4. Then we have

[vℓx−1]0 = 3y − 1 + ε0 mod q,
[vℓx−1]1 = −3z − ε1 mod q,

(42)

where ε0, ε1 ∈ {0, 1} are unknown integers.
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Proof. According to (11), there is the relation

[vℓx−1]0 = [uℓx−1]0 + [uℓx ]0 − 1 mod q,
[vℓx−1]1 = [uℓx−1]1 + [uℓx ]1 mod q,

(43)

where [uℓx ]0 =
⌊
[x′]0
2ℓx

⌋
, [uℓx ]1 = q−

⌊
q−[x′]1
2ℓx

⌋
, [uℓx−1]0 =

⌊
[x′]0
2ℓx−1

⌋
, and [uℓx−1]1 =

q −
⌊
q−[x′]1
2ℓx−1

⌋
. Note that y =

⌊
[x′]0
2ℓx

⌋
and z :=

⌊
q−[x′]1
2ℓx

⌋
. Hence we have

[uℓx ]0 = y, and [uℓx ]1 = q − z. (44)

Next, we reorganize [uℓx−1]0 and [uℓx−1]1. It is not hard to deduce that there are

some integers ε0, ε1 ∈ {0, 1} such that
⌊

[x′]0
2ℓx−1

⌋
= 2 ·

⌊
[x′]0
2ℓx

⌋
+ ε0, and

⌊
q−[x′]1
2ℓx−1

⌋
=

2 ·
⌊
q−[x′]1
2ℓx

⌋
+ ε1. It implies that

[uℓx−1]0 = 2y + ε0, and [uℓx−1]1 = q − (2z + ε1). (45)

Then we deduce the relation (42) by plugging (44) and (45) into (43).

Plugging (42) and (36) into (41) and organizing the resulting equation, where
the involved ϵ = 1, P2 obtains the following relation

3 · ([wl]0 + [wl]1) · z ≡ −[wl]0 · ε1 − [wl]1 · (ε0 + 2) mod q. (46)

For the sake of discussion, let the great common divisor V := gcd(3 · ([wl]0 +
[wl]1), q). When q is a prime or a power of 2, it is easy to see gcd(3, q) = 1.
Therefore V = gcd([wl]0 + [wl]1, q). Now we analyze the case of [wl]0 + [wl]1
modulo q. Combining the relations (40), (42) and (36), P2 gets the relation

[wl]0 + [wl]1 ≡ rℓx−1 · (2 + ε0 − ε1) mod q.

It implies that V = gcd(rℓx−1 ·(2+ε0−ε1), q), where rℓx−1 is a non-zero random
number in Zq, and ε0, ε1 ∈ {0, 1}. Hence, 2+ε0−ε1 can only take one value from
1, 2, or 3. Similar to the analysis of W mentioned above, we can deduce that,
for a prime q, the greatest common divisor V = 1; for the situation of q = 2ℓ,
the probability of q

V ≥ q
2ℓx

is very close to 1, where the involved ℓx ≥ 13.
After dividing by the above V for the modulus equation in (46), P2 obtains

the following equation

3 · ([wl]0 + [wl]1)

V
· z ≡ − [wl]0 · ε1 + [wl]1 · (ε0 + 2)

V
mod

q

V
.

Due to gcd( 3·([wl]0+[wl]1)
V , q

V ) = 1, P2 yields

z ≡ −(
3 · ([wl]0 + [wl]1)

V
)−1 · [wl]0 · ε1 + [wl]1 · (ε0 + 2)

V
mod

q

V
.
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Note that 0 ≤ z < q
2ℓx

≤ q
V with an overwhelming probability. Hence

z = −(
3 · ([wl]0 + [wl]1)

V
)−1 · [wl]0 · ε1 + [wl]1 · (ε0 + 2)

V
mod

q

V
,

where ε0, ε1 = 0 or 1. Finally, According to the relation (36), i.e., y = z + ϵ
mod q, P2 can compute all candidates of y.

In case of ϵ = 1, a maximum of 4 · (ℓx + 1) tuples (y, z) will be obtained.
Similar to the case of ϵ = 0 or -1, we can also use the relationship 0 ≤ y, z < q

2ℓx

to filter candidate values.

5.3 Recovering the secret x using lattice methods

In this subsection, the goal of P2 is to recover the secret x. According to the
expression (12), P2 gets the following equation

[wk]0 · [v∗]1 ≡ [wk]1 · [v∗]0 mod q, (47)

where k ∈ {∗, 0, 1, · · · , ℓx} \ {j, l}. The integers j, l satisfy relationships (30) and
(40), respectively. According to Lemma 3, there are two relations (16) and (17)
on [v∗]0 and [v∗]1, i.e.,

[v∗]0 = 3[x′]0 + (−1)t − 1 mod q, and [v∗]1 = 3[x′]1 mod q.

Plugging these two relations into (47), and reorganizing the obtained equation,
P2 gets

3[wk]1 · [x′]0 − 3[wk]0 · [x′]1 = [wk]1 · (1 + (−1)t+1) mod q. (48)

Recall that z =
⌊
q−[x′]1
2ℓx

⌋
and y =

⌊
[x′]0
2ℓx

⌋
. Hence P2 can rewrite [x′]0 and q−[x′]1

as

[x′]0 = 2ℓx · y + c1, and q − [x′]1 = 2ℓx · z + c2, (49)

where c1 and c2 are unknown integers satisfying 0 ≤ c1, c2 < 2ℓx . Plugging the
relation (49) into (48), and rearranging the obtained equation, P2 deduces that

O1 · c1 +O2 · c2 +O3 = 0 mod q. (50)

Here, O1, O2 and O3 are known integers satisfying

O1 =3 · [wk]1 mod q,

O2 =3 · [wk]0 mod q,

O3 =3z · 2ℓx · [wk]0 + (3y · 2ℓx + (−1)t − 1) · [wk]1 mod q.

Note that the corresponding expressions for O1, O2, O3 depend on tuples [wk],
(y, z), and a random bit t. Based on the above analysis, we conclude that there
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are a maximum of 2 · ℓx · (2(ℓx + 2) + 4(ℓx + 1)) candidate values for tuples
(O1, O2, O3).

Lattice method I. For any fixed tuple (O1, O2, O3), the participant P2 can
build a lattice LO1,O2,O3

which is spanned by the row vectors of the matrix
1 0 0 O1

0 1 0 O2

0 0 2ℓx O3

0 0 0 q

 .

It is not hard to see that the vector v := (c1, c2, 2
ℓx , 0) ∈ LO1,O2,O3 from (50).

Since 0 ≤ c1, c2 < 2ℓx , P2 gets that the Euclidean length of v satisfies ∥v∥ ≤√
3 · 2ℓx .
Note that the determinant of LO1,O2,O3 is 2ℓxq, and the dimension is 4.

According to Gaussian heuristics, the Euclidean length of the shortest non-zero

vector is GH(LO1,O2,O3
) =

√
2πe
4 ·(2ℓxq) 1

4 ≥
√

πe
2 ·2

ℓx+ℓ
4 , where ℓ is the bit-length

of q. If the condition

ℓ > 3ℓx (51)

holds5, then ∥v∥ < GH(LO1,O2,O3
), i.e., the Euclidean length of v is smaller than

the length of the shortest non-zero vector estimated by Gaussian heuristics. In
this case, the vector v is likely to be the shortest nonzero vector in 4-dimensional
lattice LO1,O2,O3

. For a very low dimensional lattice, the LLL algorithm can
heuristically find out the shortest non-zero vector. Once the shortest nonzero
vector v is found, c1, c2 will be obtained based on the relation v = (c1, c2, 2

ℓx , 0).
Furthermore, the values [x′]0, [x

′]1 are recovered according to the expression (49).

When the tuple (O1, O2, O3) runs through all possibilities, P2 can obtain
candidates including the wanted tuple ([x′]0, [x

′]1) through the above method.

The method of filtering out the desired tuple ([x′]0, [x
′]1) from the can-

didate set is similar to that in Section 4.3. Simply put, for any given can-
didate ([x]0, [x]1), P2 calculates [v0]0 = (

∑ℓx
i=0[ui]0) − 1, [v0]1 =

∑ℓx
i=0[ui]1,

where ui = TRC(x, i), 0 ≤ i ≤ ℓx. Then P2 finds a pair ([wu]0, [wu]1), where
u ∈ {∗, 0, 1, · · · , ℓx} \ {j, k}, which should meet that [wu]0 · [v0]1 = [wu]1 · [v0]0
mod q. During this process, P2 needs to search up to ℓx times to obtain the
desired u. If such ([wu]0, [wu]1) is obtained, then the candidate has a high prob-
ability of being correct. The experimental results show that this check method
can make the probability of success reach 100% for specific parameters in the
DReLU protocol.

Once the tuple ([x′]0, [x
′]1) is obtained, the corresponding O3 is also deter-

mined in this process. It means that the involved t ∈ {0, 1} is known. Therefore,
the secret x is recovered by computing x = (−1)t ·x′ mod q and x′ = [x′]0+[x′]1
mod q.

5 The condition (51) is met for the DReLU protocol, where the involved ℓ = 64 and
ℓx = 13.
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Lattice method II. Let the great common divisor O := gcd(O1, O2, q). Ac-
cording to (50), we have O3 ≡ −O1 ·c1−O2 ·c2 mod q. It implies that O divides
the integer O3. For the equation in (50), after dividing by the integer O, the
participant P2 gets the equation

O1

O
· c1 +

O2

O
· c2 +

O3

O
≡ 0 mod

q

O
, (52)

where O1

O , O2

O , O3

O and q
O are integers satisfying gcd(O1

O , O2

O , q
O ) = 1.

Without loss of generality, we assume that the relation gcd(O1

O , q
O ) = 1 is

satisfied.6 In this case, P2 can rewrite (52) as

c1 +O′
2 · c2 +O′

3 = 0 mod
q

O
, (53)

where O′
2 = (O1

O )−1(O2

O ) mod q
O and O′

3 = (O1

O )−1(O3

O ) mod q
O are known in-

tegers. For any fixed tuple (O′
2, O

′
3), P2 can build lattice LO′

2,O
′
3
which is spanned

by the row vectors of the 3-dimensional matrix1 0 −O′
2

0 2ℓx −O′
3

0 0 q
O

 .

It is easy to see that the vector v′ := (c2, 2
ℓx , c1) ∈ LO′

2,O
′
3
due to (53). Since

0 ≤ c1, c2 < 2ℓx , P2 gets that the Euclidean length of v′ satisfies ∥v′∥ ≤
√
3 ·2ℓx .

Since that the determinant of LO′
2,O

′
3
is 2ℓx · q

O , and the dimension is 3. According
to Gaussian heuristics, the Euclidean length of the shortest non-zero vector is

GH(LO′
2,O

′
3
) =

√
2πe
3 · (2ℓx · q

O )
1
3 ≥

√
2πe
3 · 2

ℓx+ℓ
3

O1/3 . If the condition

ℓ > 2ℓx + log2 O (54)

is satisfied, then ∥v′∥ < GH(LO′
2,O

′
3
). In other words, the Euclidean length of v′

is smaller than the length estimated by Gaussian heuristics. Hence v′ is likely to
be the shortest non-zero vector in the 3-dimensional lattice LO′

2,O
′
3
, which can be

heuristically found out by the LLL algorithm. The remaining analysis is similar
to that in the lattice method I.

To compare the condition (51) in lattice method I and the condition (54) in
lattice method II, we need to consider the size of O. For a prime q, the integer
O = 1 with an overwhelming probability. For the case of q = 2ℓ, the integer O
is a small positive integer with a high probability. The detailed analysis is given
in Appendix B. To sum up, the condition (54) is better than (51).

6 For a prime q, if O = q, then gcd(O1
O
, q
O
) = 1 and gcd(O2

O
, q
O
) = 1. If O = 1,

then gcd(O1
O
, q
O
) = 1 or gcd(O2

O
, q
O
) = 1. Otherwise, we have q | O1 and q | O2. It

implies that gcd(O1, O2, q) = O = q. This is contradictory. For q = 2ℓ, we get that
gcd(O1

O
, q
O
) = 1 or gcd(O2

O
, q
O
) = 1. Otherwise, we obtain that O1

O
, O2

O
and q

O
are all

powers of 2, and O1
O
, O2

O
, q
O

≥ 2. Therefore, gcd(O1
O
, O2

O
, q
O
) ̸= 1. It is contradictory.
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Finally, let us analyze the computational complexity required for the attack
method proposed in this section. This problem can be reduced to how many
calculations are needed for the LLL algorithm. Whether it is the 4-dimensional
lattice in Method I or the 3-dimensional lattice in Method II, the number of
candidate lattices depends on the number of tuples (O1, O2, O3). Hence, there
are at most 2 · ℓx · (2(ℓx+2)+4(ℓx+1)) candidates for the desired lattice. Based
on the time complexity n5(n+log2 B) log2 B of the LLL algorithm [11], where n
is the dimension of lattice and logB is the maximal bit-length of entries in the
input lattice matrix, we conclude that the complexity of the LLL algorithm in
both Method I and Method II is O(ℓ2), where ℓ = log2 q. Therefore, the overall
time complexity in the worst-case scenario is 2·ℓx ·(2(ℓx+2)+4(ℓx+1)) ·O(ℓ2) =
O(ℓ2 · ℓ2x) which is a polynomial on ℓx.

6 Attack on the remaining protocols

In this section, we present that the security of other protocols can be also broken.

The case of the Equality protocol. The Equality protocol uses the DReLU
protocol to determine whether two input values are equal while maintaining
privacy. To be specific, for two inputs x and y, the Equality protocol can be
written as the piecewise function:

Equality(x, y) =

{
1, if x = y,
0, if x ̸= y.

(55)

Equivalently, there is the following relation:

Equality(x, y) = 1− (DReLU(x− y)⊕DReLU(y − x)). (56)

The participant P2 should only perform calculations and does not have access to
secret information. However, as mentioned in Sections 4 and 5, the adversary P2

is capable of recovering the input value of the function DReLU. Therefore, for
the Equality protocol, P2 will recover the input x− y of DReLU(x− y). Based
on (55) or (56), P2 also knows the value of Equality(x, y). In fact, these values
should be hidden from P2.

The case of the ReLU protocol. The ReLU protocol requiring two rounds of
communication was proposed, and the relationship between the ReLU protocol
and DReLU protocol is that

ReLU(x) = DReLU(x) · x =

{
x if x ≥ 0,
0 if x < 0.

Based on the attack methods in Sections 4 and 5, P2 can recover the values of
x and DReLU(x). Therefore, P2 knows the value of ReLU(x). However, these
values should be hidden from P2.

The case of ABS protocol. The ABS(x) protocol function can be written as

ABS(x) =

{
x, if x ≥ 0,
−x, if x ≤ 0.
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Equivalently, ABS(x) = DReLU(x) ·x+(DReLU(x)− 1) ·x. Note that P2 could
get the values of x and DReLU(x). Hence the value of ABS(x) is obtained by
P2.

The case of Dynamic ReLU protocol. The Dynamic ReLU protocol can
be viewed as

Dynamic ReLU(x) =

{
α1 · x, if x ≥ 0,
α0 · x, if x ≤ 0,

where α0 and α1 are two constants. The Leaky ReLU, PReLU, and RReLU
protocols are the special cases of Dynamic ReLU protocol. For Leaky ReLU,
α0 = 0.001, α1 = 1. For PReLU, α0 is a pre-trained constant and α1 = 1. For
RReLU, α0 is a random constant and α1 = 1. The Dynamic ReLU function can
be rewritten as

Dynamic ReLU(x) = α1 ·DReLU(x) + α0 · (1−DReLU(x)) · x.

Using the attack approaches in Sections 4 and 5, P2 will get the values of x and
DReLU(x). It implies that the value of Dynamic ReLU(x) is revealed by P2, in
other words, none of these protocols are secure anymore.

The case of Piecewise Linear Unit (PLU). Note that the above protocols
can be viewed as piecewise functions with two segments. In general, for the m+2
segments, the PLU protocol is as follows.

PLU(x) =



αm+1 · x+ βm+1, if γm ≤ x,
αm · x+ βm, if γm−1 ≤ x ≤ γm,
· · ·
αj · x+ βj , if γj−1 ≤ x ≤ γj ,
· · ·
α1 · x+ β1, if γ0 ≤ x ≤ γ1,
α0 · x+ β0, if x ≤ γ0,

where PLU(x) hasm+2 segments, αi and βi (∀i ∈ [0,m+1]) and γj (∀j ∈ [0,m])
are constants. The PLU function can be written as

PLU(x) = (DReLU(x− γm)⊕ 0) · (αm+1 · x+ βm+1)
+ · · ·
+(DReLU(x− γj−1)⊕DReLU(x− γj)) · (αj · x+ βj)
+ · · ·
+(1⊕DReLU(x− γ0)) · (α0 · x+ β0).

Based on the attack approaches in Sections 4 and 5, P2 will get the values of
x−γi and DReLU(x−γi), for ∀i ∈ [0,m]. Since the values γ0, · · · , γm are public,
P2 could recover the secret x.

Note that Pr(gcd(O1, O2, q) = 1) ≥ Pr(gcd(O1, q) = 1). Note that O1 =
9 · [x′]1 mod q. For a prime q, we get gcd(O1, q) = gcd([x′]1, q). Since [x′]1 is a
random number in Zq, we obtain that Pr(gcd([x′]1, q)) = 1/q.

ReLU6 protocol is a special case for PLU protocol. For ReLU6 protocol, the
parameters are m = 1, α0 = β0 = β1 = α2 = γ0 = 0, α1 = 1, β2 = γ1 = 6.
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ReLU6(x) =

6, if 6 ≤ x,
x, if 0 ≤ x < 6.
0, if x < 0.

Equivalently,

ReLU6(x) = (DReLU(x− 6)⊕ 0) · 6
+(DReLU(x)⊕DReLU(x− 6)) · x
+(1⊕DReLU(x)) · 0.

For ReLU6 protocol, P2 recovers the input x of DReLU(x). Then P2 can calculate
the value of ReLU6(x). In fact, these values should not be exposed to P2 who
only plays a computational role.

MAX2 and MIN2 protocols. For MAX2 and MIN2 protocols, these functions
are that:

MAX2(x, y) =

{
x, if x ≥ y,
y, if x ≤ y,

and MIN2(x, y) =

{
y, if x ≥ y,
x, if x ≤ y.

Here MAX2(x, y) = DReLU(x−y)·(x−y)+y and MIN2(x, y) = x−DReLU(x−
y) ·(x−y). For these two protocols, P2 could recover the value of x−y. Although
P2 does not know the specific values of x and y from x− y. However, P2 knows
x− y, which will pose a threat to the security of these two protocols.

MAX protocol. As a general protocol, the MAX protocol is used to find the
maximum value from multiple inputs (ϕ1, · · · , ϕn), and it utilize the uCMP(ϕi,ϕj)
protocol, which is defined as uCMP(ϕi,ϕj):= uDReLU(ϕi−ϕj), for ∀i, j ∈ [1, n]
and i ̸= j. Note that the uDReLU(x) protocol omits Steps 2 and 9 of the DReLu
algorithm (see Alg. 1). Therefore, uCMP(ϕi, ϕj) can be rewritten as

uCMP(ϕi, ϕj) = uDReLU(ϕi − ϕj) =

{
1, if ϕi ≥ ϕj ,
0, if ϕi < ϕj .

Using the attack mathods in Sections 4 and 5, P2 will know the values of ϕi−ϕj ,
for ∀i, j ∈ [1, n] and i ̸= j. In fact, P2 does not get the specific values of ϕi and
ϕj from these values of ϕi − ϕj . It is worth noting that the values of ϕi − ϕj

should not be exposed to P2.

7 Experiments

In this section, we provide the experimental results. The experimental environ-
ment is running on a personal computer with 2.40GHz Intel(R) Core(TM) I5-
10200h CPU and 16GB RAM, and the operating system is Ubuntu 18.04.6LTS.
We use Python and Sage to simulate the running process of the DReLU proto-
col. Our toolkit is open-source, available at https://github.com/Halowooder/
BBBPSRA.
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In Table 1, we present the specific performance of attack methods in Sec-
tion 4 and Section 5, where four sets of parameters are tested. The first set of
parameters is that q is a random 64-bit prime, and ℓx = 13. The second set of
parameters is that q = 264 and ℓx = 13, which is the parameters set used in
Bicoptor. The third set of parameters is q = 264 and ℓx = 26, where the value
of ℓx is twice that of the one in the second parameter set. The last one is that
q = 2640 and ℓx = 130, where the bit-length of q is ten times that of q in the
other sets, and the value of ℓx is ten times that of the one in the second param-
eter set. For different settings, we respectively test the DReLU protocol 10000
times, and then provide the average time required to complete the attack.

Table 1. Comparison of the attack mathods in Sections 4 and 5. The column labeled
”Time” means the running time of the attack algorithm in seconds, The column labeled
”Success rate” represents success rate of the attack algorithm. The symbol “-” means
that no result is given.

Attacks of DReLU q ℓx Time Success rate

The attack in Section 4
64-bit prime 13 8.98 100%

264 13 67.95 100%
264 26 - -
2640 130 - -

The attack in Section 5 using lattice method I
64-bit prime 13 1.52 100%

264 13 0.87 100%
264 26 - -
2640 130 10.10 100%

The attack in Section 5 using lattice method II
64-bit prime 13 1.65 100%

264 13 0.84 100%
264 26 0.46 99.78%
2640 130 2.19 100%

We first explain the attack in Section 4. For the first and second sets of
parameters, the experiment shows that it is sufficient to recover the secret in the
DReLU algorithm after two rounds of filtration. Note that there is an integer K
involved in this attack, which is the greatest common divisor of integers 3wk and
q. If q is a 64-bit prime, thenK = 1 with an overwhelming probability. Therefore,
we get the value of [x′]0 directly. However, if q = 264, then K ̸= 1 with a certain
probability. In this case, the lifting operation is required to restore [x′]0 from the
remainder [x′]0 mod q

K . Thus, the involved running time for q = 264 is higher
than the situation for a 64-bit prime q. For the third parameter set, where ℓx = 26
is involved. In this case, it is necessary to enumerate 226 times on x′ instead of
213 times for the second parameter set. This means that the enumeration time
will become relatively long. Therefore, we do not provide relevant experimental
results on a personal computer. For the fourth set of parameters, the attack
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method in Section 4 cannot work effectively because the involved ℓx = 130 is
too large.

For the attack in Section 5 using lattice method I, the running time for the
first and second parameter sets is roughly the same, because the modulus q
is some element in the basis matrices, and its prime or power of 2 does not
affect the efficiency of the attack. For the third parameter set, the relationship
between ℓ and ℓx is that 2 · ℓx < ℓ < 3 · ℓx, therefore, the lattice method II
could successfully recover the secret, while the lattice method I cannot recover
the secret. It means that the lattice method II can work on larger values of ℓx
compared to the lattice method I. This is consistent with theoretical analysis.
For the last parameter set, it is easy to see that the attack time using lattice
method I is slightly longer than using lattice method II. The reason here is that
the lattice dimension in lattice method I and the size of elements in the lattice
basis matrix are slightly larger.

Compared to the approach in Section 4, the approaches in Section 5 take less
time to complete the attack, which is because that the attack in Section 4 uses
enumeration rather than lattices. The reason why the success rate of attacks
using lattice methods does not reach 100% is due to the heuristic nature of the
lattice method.

8 Conclusion and future work

Two effective attacks have been proposed to recover the secret in the DReLU
protocol. The secret of this protocol was obtained, which also compromised the
security of other protocols in the Bicoptor family. In September 2023, Zhou et
al. announced a new family called Bicoptor 2.0 in ArXiv [19], which improved
the probabilistic truncation function used in Bicoptor (see Lemma 2) to a de-
terministic truncation function. The core member DReLU of Bicoptor 2.0 was
designed differently from the one in Bicoptor [20]. The main difference lies in
the involvement of the modulo-switch technique and different linear operations.
This results in the attack methods proposed in this article not being directly ap-
plicable. How to analyze the security of this new family is a future work worth
researching.
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A Analysis of the greatest common divisor K

In this section, we analyze the case of K = gcd(3wk, q). For the case that q is
a prime or a power of 2, integers 3 and q are coprime. Hence K = gcd(wk, q).
Based on (26), K = gcd(r∗ · v∗, q), where r∗ is a non-zero random number in Zq.

For a prime q, we have K = 0 or 1. The probability of K = 0 is equal to the
probability of v∗ = 0. By total probability theorem, we get that

Pr(v∗ = 0) = Pr(t = 0) · Pr(v∗ = 0 | t = 0) + Pr(t = 1) · Pr(v∗ = 0 | t = 1),

where Pr(·) represents the probability of an event and Pr(· | ·) means conditional
probability. Due to t is a random bit, Pr(t = 0) = Pr(t = 1) = 1/2. According to
(18), we deduce that Pr(v∗ = 0 | t = 0) = Pr(x′ = 0) and Pr(v∗ = 0 | t = 1) =
Pr(x′ = 3−1 · 2 mod q). Furthermore, Pr(x′ = 0) = 1/2ℓx+1 and Pr(x′ = 3−1 · 2
mod q) ≤ 1/2ℓx+1, based on x′ ∈ [0, 2ℓx) ∪ (q − 2ℓx , q). Therefore, Pr(v∗ = 0) ≤
1/2ℓx . For example, for the parameter ℓx = 13 in the DReLU algorithm, the
term 1/2ℓx is negligible. In other words, Pr(K = 1) > 1− 1/2ℓx . It implies that,
for a prime q, K = 1 with overwhelming probability.

For q = 2ℓ, based on K = gcd(r∗v∗, q), we get that K is also a power
of 2. For the sake of discussion, we write K = 2γ , where 0 ≤ γ ≤ ℓ. Note
that gcd(r∗v∗, q) = 2γ if and only if gcd(v∗, q) = 2i and gcd(r∗, q) = 2γ−i for
i = 0, 1, 2, · · · , γ. Hence, we have that

Pr(gcd(r∗v∗, q) = 2γ) =

γ∑
i=0

Pr(gcd(v∗, q) = 2i) · Pr(gcd(r∗, q) = 2γ−i). (57)

First, we discuss the probability of gcd(v∗, q) = 2i. From (18), we have

v∗ =

{
3x′ mod q if t = 0,
3x′ − 2 mod q if t = 1.

Therefore,

gcd(v∗, q) =

{
gcd(x′, q) if t = 0,
gcd(3x′ − 2, q) if t = 1,

where x′ ∈ [0, 2ℓx) ∪ (q − 2ℓx , q). Observe that Pr(gcd(x′, q) = 2i) = 2ℓx−i

2ℓx+1−1
≈

2−(i+1) for 0 ≤ i ≤ ℓx, and Pr(gcd(x′, q) = 2i) = 0 for i > ℓx. Similarly, we
can also deduce that Pr(gcd(3x′ − 2, q) = 2i) ≈ 2−(i+1) for 0 ≤ i ≤ ℓx and
Pr(gcd(3x′ − 2, q) = 2i) = 0 for i > ℓx. By total probability theorem, we obtain
that Pr(gcd(v∗, q) = 2i) equals

Pr(t = 0) · Pr(gcd(x′, q) = 2i) + Pr(t = 1) · Pr(gcd(3x′ − 2, q) = 2i),
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where Pr(t = 0) = Pr(t = 1) = 1
2 . It implies that{

Pr(gcd(v∗, q) = 2i) ≈ 2−(i+1) if 0 ≤ i ≤ ℓx,
Pr(gcd(v∗, q) = 2i) = 0 if i > ℓx.

(58)

Next, we discuss the probability of gcd(r∗, q) = 2γ−i, where 0 ≤ i ≤ γ. Note
that r∗ is non-zero random number in Zq and q = 2ℓ. Hence,

Pr(gcd(r∗, q) = 2γ−i) =
2ℓ+i−γ

q − 1
≈ 2i−γ . (59)

Plugging (58) and (59) into (57), we have

Pr(K = 2γ) =

{ γ
2γ+1 (1 + o(1)) if 0 ≤ γ ≤ ℓx,
ℓx

2γ+1 (1 + o(1)) if γ > ℓx.

From the above relation, we get that, for the case of q = 2ℓx , the great common
divisor K is a small positive integer with a high probability.

B Analysis of the greatest common divisor O

In this section, we analyze the case of O = gcd(O1, O2, q), where O1 = 3 · [wk]1
mod q and O2 = 3 · [wk]0 mod q. From ([wk]0, [wk]1) = r∗ · ([v∗]0, [v∗]1) mod q,
[v∗]0 = 3[x′]0 + (−1)t − 1 mod q, and [v∗]1 = 3[x′]1 mod q, we deduce O1 =
9r∗ · [x′]1 mod q. When q is a prime number or a power of 2, we always have
gcd(O1, q) = gcd(r∗ · [x′]1, q).

For a prime q, note that r∗ is a non-zero number in Zq, we have gcd(O1, q) =
gcd([x′]1, q). Further, gcd(O1, q) = 0 if [x′]1 = 0, and gcd(O1, q) = 1 if [x′]1 ̸= 0.
Because [x′]1 is a random number in Zq, we get that Pr(gcd(O1, q) = 1) =
1 − 1

q . We observe Pr(gcd(O1, O2, q) = 1) ≥ Pr(gcd(O1, q) = 1). Therefore, the

probability that gcd(O1, O2, q) = 1 is at least 1 − 1
q . For a sufficiently large q,

1 − 1
q is negligible. It means that O = 1 for a prime q with an overwhelming

probability.
For q = 2ℓ, we have O = gcd(O1, O2, q) is a power of 2. For the sake of

discussion, we write O = 2∆, where 0 ≤ ∆ ≤ ℓ. Observe that Pr(gcd(O1, O2, q) =
2∆) ≤ Pr(gcd(O1, q) ≥ 2∆). From gcd(O1, q) = gcd(r∗ · [x′]1, q) and q is a power
of 2, we deduce that gcd(O1, q) = 2s if and only if gcd(r∗, q) = 2i as well as
gcd([x′]1, q) = 2s−i for i = 0, 1, · · · , s, where ∆ ≤ s ≤ ℓ. Note that r∗ and [x′]1
are independent of each other. Hence, we derive

Pr((gcd(O1, q) = 2s) =

s∑
i=0

Pr((gcd(r∗, q) = 2i) · Pr((gcd([x′]1, q) = 2s−i)

=

s∑
i=0

2ℓ−i − 1

2ℓ+1 − 2
· 2

ℓ−(s−i)

2ℓ+1
=

1

4
· s+ 1

2s
(1 + o(1)).
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It is not hard to see that Pr(gcd(O1, q) ≥ 2∆) =
ℓ∑

s=∆

Pr((gcd(O1, q) = 2s) which

is equivalent to 1
4 · (1 + o(1)) ·

ℓ∑
s=∆

s+1
2s . Next, we compute

ℓ∑
s=∆

s+1
2s . For the sake

of discussion, let A :=
ℓ∑

s=∆

s
2s . Based on 1

2 · (A+
ℓ∑

s=∆

1
2s ) = A+ ℓ+1

2ℓ+1 − ∆
2∆

, we get

A =
ℓ∑

s=∆

1
2s +

∆
2∆−1 − ℓ+1

2ℓ
. Further,

ℓ∑
s=∆

s+1
2s = A+

ℓ∑
s=∆

1
2s = 2

ℓ∑
s=∆

1
2s +

∆
2∆−1 − ℓ+1

2ℓ
,

which equals ∆+2
2∆−1 − ℓ+3

2ℓ−1 . Therefore, we deduce Pr(gcd(O1, q) ≥ 2∆) = ( ∆+2
2∆+1 −

ℓ+3
2ℓ+1 )(1 + o(1)). For a large ℓ, for example, ℓ = 64, the term ℓ+3

2ℓ+1 is is negligible.

For a small ∆, for example, ∆ = 6, the term ∆+2
2∆+1 is sufficiently small (it is

approximately 0.06 for∆ = 6). From Pr(gcd(O1, O2, q) = 2∆) ≤ Pr(gcd(O1, q) ≥
2∆), we obtain that the probability of gcd(O1, O2, q) = 2∆ is sufficiently small
for a small ∆. In other words, for the case of q = 2ℓ, the greatest common divisor
O is a small positive integer with a high probability.
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