
Supersingular Hashing using Lattès Maps

Daniel Larsson

Abstract

In this note we propose a variant (with four sub-variants) of the Charles–
Goren–Lauter (CGL) hash function using Lattès maps over finite fields. These
maps define dynamical systems on the projective line. The underlying idea is
that these maps “hide” the j-invariants in each step in the isogeny chain, similar
to the Merkle–Damg̊ard construction. This might circumvent the problem con-
cerning the knowledge of the starting (or ending) curve’s endomorphism ring,
which is known to create collisions in the CGL hash function.

Let us, already in the abstract, preface this note by remarking that we have
not done any explicit computer experiments and benchmarks (apart from a small
test on the speed of computing the orbits), nor do we make any security claims.
Part of the reason for this is the author’s lack of competence in complexity
theory and evaluation of security claims. Instead this note is only meant as a
presentation of the main idea, the hope being that someone more competent
will find it interesting enough to pursue further.

1 Introduction

In 2006 Charles and Lauter (published in 2009 together with Goren) proposed a
hash function (colloquially referred to as the CGL hash function) based on walks
in supersingular isogeny graphs. These graphs are known to be Ramanujan
graphs by [Piz98] and as a consequence have good mixing property with, for all
practical purposes, uniform distribution of isogenies.

However, recently proposed attacks (see for instance [EHL+18, EHL+20,
PL17], using the endomorphism rings of the starting (or ending) curve have
somewhat lowered the confidence that the CGL-function is pre-image and col-
lision resistant. On the other hand, computing the endomorphism ring for a
supersingular curve is believed to be a hard problem that is exponential in com-
plexity for a “random” curve, so, under this hardness assumption, only knowing
the endomorphism ring from the start is a problem.

In this note we propose a variant (with four sub-variants) of the CGL hash
function that uses the dynamics of so called Lattès maps on the projective line
P to “hide” the information of the isogeny walk. This is done by using an
analogue to the Merkle–Damg̊ard construction by viewing the Lattès map as
a “compression” function. This could possibly avoid the problems with the
endomorphism rings and thereby avoiding the pre-image and collision attacks.

However, as indicated in the abstract, it is important to emphasise that
there might be attacks on our Lattès map approach (possibly easily spotted by

e-mail: daniel.larsson@usn.no

1

mailto:daniel.larsson@usn.no

an expert) that will render our proposal, at least in the present form, useless.
The security and complexity of the suggestions made are not discussed in this
note, thereby questioning the viability of the overall idea. Nevertheless, we have
chosen to present the idea with this shortcoming, to hopefully inspire some more
knowledgeable people to take up the thread.

The organisation of the paper is as follows. In section 2 we recall the nec-
essary notions pertinent to elliptic curves. However, we assume that the reader
is already familiar with basics. This section is mostly concerned with fixing
notation and making a few recollections. The section then proceeds by pre-
senting the construction of Lattès maps. We use a recent result in proven in
[BCC+22] to show that the Lattès maps are permutations when the curves are
supersingular. As a consequence all points are periodic (i.e., there are no purely
pre-periodic points).

Next, for completeness, we present in section 3 a short description of the
CGL hash function, and then in section 4 the proposals for the family of hash
functions using Lattès maps is presented. Included here is also a (very) brief
discussion on some heuristic concerning the proposals and some ideas for future
research (besides the security and complexity issues).

2 Elliptic curves and Lattès maps

2.1 Elliptic curves and supersingular isogeny graphs

We will assume the reader is familiar with the basics of elliptic curves over finite
fields as presented in [Sil09], but for the reader’s convenience we recall some of
the necessary notions. Let ∞ denote the unit element on all curves.

Let p be a prime and E/Fpn
an elliptic curve defined over an extension Fpn

of Fp. We will normally work with short Weierstrass models

y2 = x3 + ax+ b, a, b ∈ Fpn .

Let K be an arbitrary extension of Fp. Then the K-rational points (i.e., the
points whith coordinates in K) is denoted E(K) as usual.

The N -torsion points are the points

E[N] := {P ∈ E(Fal
p) | N · P =∞}.

Recall that E[N] ' Z/N × Z/N , when gcd(p,N) = 1 and E[pk] ' Z/pk if and
only if E is ordinary and E[pk] ' {∞} if and only if E is supersingular.

An isogeny between two elliptic curves E and E′ is a scheme-theoretic map
that is also a morphism of abelian groups. The basic example is N : E→ E,
where we notice that kerN = E[N]. The degree of a separable1 isogeny φ is
kerφ. The group of all isogenies E→ E defined over Fal

p is denoted End(E) =
EndFal

p
(E). A curve is supersingular if and only if End(E) is an order in the

quaternion algebra Bp,∞, ramified only at p and ∞.
Let ` be a prime different from p. We denote by Iso` the graph where the

nodes are the Fal
p -isomorphism classes of supersingular curves over p and where

the edges are isogenies of degree ` (up to conjugation). The number of nodes is
roughly p/12. Recall that the j-invariant of a supersingular curve is an element

1We won’t define this here. All isogenies appearing in this note are separable.

2

of Fp2 . The nodes in Iso` are therefore normally enumerated by the j-invariants.
It is well-known that Iso` is a connected Ramanujan graph and there are `+ 1
edges emanating from each node, corresponding to cyclic subgroups of E0[`].
The fact that Iso` is Ramanujan has as a consequence that, given two curves,
it is presumably hard to find a path of length `n (for some “large” n) between
these curves in Iso`. This presumption is the underlying hardness assumption
for all cryptographic primitives using isogeny graphs.

2.2 Lattès maps and their dynamics

We begin this section by remarking that the definition of Lattès maps is inde-
pendent of the ground field. However, we will continue assuming that everything
is defined over an extension of Fp for simplicity. For the basics of Lattès maps
(of arbitrary fields) we refer to [Sil07, Chapter 6].

Let ψ : E → E be a rational map (not necessarily an isogeny) and let
π : E → P be a morphism of varieties. Then a Lattès map associated with
(ψ, π) is a rational map φ : P→ P making the diagram

E
ψ //

π

��

E

π

��
P

φ
// P

commutative. The Lattès map is flexible if ψ = N for some N ∈ Z and the
degree of π is 2. The definition given in [Sil07] is slightly more general. The
degree of φ is N2 (see [Sil07, Prop. 6.51a]).

Let S be a set, α : S → S a map and x ∈ S. Then the orbit of x under α is
the set ∫

x · α = {s ∈ S | s = αn(x), for some n ∈ Z}.

The set of all orbits is denoted ∫
S

x · α

and is the dynamical system associated with (S, α). The reason for the uncon-
ventional notation is to convey the idea that computing orbits under a map α,
is akin to integrating the elements in the set under the “measure” α.

A point s ∈ S is called periodic (of period n) if αn(s) = s and αm(s) 6= s
for all m < n. The point is pre-periodic if αm(s) is periodic for some m ≥ 0.
Notice that every periodic point is pre-periodic.

If φ is a Lattès map, Proposition 6.44 in [Sil07] shows that PrePer(φ) =
π(Etor), where, of course, PrePer(φ) is the set of pre-periodic points of P under
φ. Clearly, over a finite field, every point of E is a torsion point so PrePer(φ) = P.

A natural question is what the density is of the periodic points is in P under
φ. This question is difficult to answer in general, but fortunately for the case of
interest to us, this can be answered.

3

From now on we assume that we have a Lattès map defined by the diagram

E0
[`] //

x

��

E0

x

��
P

φ
// P,

where ` is a prime distinct from p. Notice that, given `, the map φ is uniquely
determined2 by φ(a) = x(` · a), a ∈ P.

The number of Fpn -rational points on E is #E(Fpn) = pn + 1 − t, where t
is the trace of the pn-power Frobenius. Then Corollary 2.6 of [BCC+22] shows
that φ is a permutation on P(Fpn) if and only if (pn + 1)2 − t is coprime to p.
In particular, Per(φ) = P(Fpn).

A curve E/Fpn
is supersingular if and only if t ≡ 0 modulo p. Hence, in this

case (pn + 1)2 − t is certainly coprime to p and therefore φ : P(Fpn) → P(Fpn)
is a permutation.

We say that the Lattès map is supersingular if E is supersingular.

3 The Charles–Goren–Lauter hash function

In [CLG09] a hash function based on walks in supersingular isogeny graphs was
introduced. Their idea was the following.

Let M = (m0,m2, . . . ,mk) be a message where each mi ∈ {0, 1, . . . , ` − 1}.
Choose a “good” (avoiding the j-invariants 0 and 1728) supersingular curve E0

over Fp2 and a basis {P, Q} for the `-torsion group E0[`]. We choose P and Q

with the smallest x-coordinates. As mentioned above there are ` + 1 outgoing
cyclic `-isogenies corresponding to cyclic subgroups of E0[`].

We order the the cyclic subgroups as

G0 := 〈Q〉, Gi := 〈P + (i− 1) · Q〉, 1 ≤ i ≤ `.

Now, starting at E0, we choose the subgroup Gm0
and the associated isogeny

ψ : E0 → E1 := E0/Gm0
is computed. In the next step we choose the group

Gm1
, taking Gm1+1 (say) if Gm1

corresponds to the dual isogeny ψ̂ : E1 → E0.
On E2 := E1/Gm1

, we take Gm2
, or Gm2+1 if Gm2

corresponds to the dual
isogeny. We continue like this up to mk, and the j-invariant of the last curve is
the hash of M .

Obviously, the basis elements P, Q changes in every step. The backtracking
issue can be avoided if p ≡ 1 (mod 12) since then the curves with j = 0, 1728
are ordinary and backtracking is only possible when there are non-trivial auto-
morphisms.

It is quite clear that the CGL hash function is pre-image resistant if and only
if it is hard to compute an isogeny between two given (supersingular) curves. In
[EHL+18, Prop. 7 and Prop. 8] it is proved that the hash function is pre-image
and collision resistant if and only if it is hard to compute the endomorphism
ring of the starting curve (or the ending curve).

2This claim is independent on ` being a prime.

4

It should be noted that there are polynomial collision attacks on the CGL
hash function for some special curves corresponding to specific maximal orders
in Bp,∞ (see [PL17]).

4 Hashing using supersingular Lattès maps

Choose a “good” supersingular curve3 E0 over Fp2 and a basis {P0, Q0} for the
`-torsion group E0[`], where ` is a prime (typically 2 or 3). Put E[`] = 〈P0, Q0〉
and choose a cyclic subgroup G0 := 〈P0 + [N]Q0〉, for some N (this choice will
be discussed below).

We consider the Lattès map fitting into the diagram

E0
[`] //

x

��

E0

x

��
P

φ0

// P

We now use G0 to construct the isogeny ψ0 : E0 → E0/G0 and extend the
diagram as (put E1 := E0/G0)

E0

[`] //

x

��

E0

x

��

ψ0 // E1

[`] //

x

��

E1

x

��
P

φ0

// P P
φ1

// P

We now continue like this:

E0

[`] //

x

��

E0

x

��

ψ0 // E1

[`] //

x

��

E1

x

��

ψ1 // · · ·
[`] // Ek−1

x

��

ψk−1 //// Ek

x

��
P

φ0

// P P
φ1

// P · · ·
φk−1

// P P.

Now, how can the chain in the top row constructed? We use the construction
described in the next paragraph. Other constructions, including the method in
CGL described above, are obviously possible. The choice made here is only for
the sake of illustration.

Let v be the value to be hashed, expressed in binary as v := vk−1 · · · v1v0,
vi ∈ {0, 1}. Let G0 be the cyclic group G0 := 〈P0 + [` − 1 + v0]Q0〉. Then we

3It should be noted that this is not as easy as it sounds. Since the number of supersingular
curves in the moduli space of elliptic curves over finite fields is roughly p/12, the density is
essentially zero. Combing through all elliptic curves for a supersingular curve when p is a
prime of 1024 bits or more is extremely difficult. Furthermore, finding a supersingular curve
with an endomorphism ring that is hard to compute obviously adds to the difficulty. This
problem is discussed in [BCC+23], [MMP22] and [Wes22]. We refer to these for more details.

5

have the diagram

E1 E1

E0
[`] //

x

��

ψ0

&&
E0

x

��

E0/G0
[`] //

x

��

E0/G0

x

��
P

φ0

// P P
φ1

// P.

Then in E1 choose G1 := 〈P1 + [`− 1 + v1]Q1〉 and extend the above diagram as

E2 E2

E0
[`] //

x

��

ψ0

$$
E0

x

��

E1
[`] //

ψ1

&&

x

��

E1 E1/G1
[`] //

x

��

E1/G1

x

��
P

φ0

// P P
φ1

// P P
φ2

// P.

We continue like this, choosing in each step the group Gi := 〈Pi+ [`−1 +vi]Qi〉,
to get the desired isogeny chain.

Notice that it is important to choose Gi such that ψi−1 is not equal to the
dual ψ̂i in order to avoid backtracking. As remarked above this can be achieved
by choosing p such that p ≡ 1 (mod 12). Also, in each step it is important to
have a canonical way to pick the torsion basis (to ensure the uniqueness of the
hash value). This can be done as in the CGL hash function, by taking the ones
with the smallest x-coordinates.

Remark 4.1. It is a possibility to change the value of ` during the construction
of the chain. For instance, alternating between ` = 2 and ` = 3.

4.1 Non-keyed hashing

Put ji := j(Ei). We compute the following z0 := φ0(j0), and recursively

zi := φi(zi−1 + ji), 1 ≤ i ≤ k.

The hash value is then zk. Notice the vague similarity to the Merkle–Damg̊ard
construction.

4.2 Keyed hashing

Let κ := κn−1 · · ·κ1κ0 be a key with each κi ∈ {0, 1} and n ≥ k. Then we can
use the groups Gi := 〈Pi + [`− 1 + vi ⊕ κi]Qi〉 and the proceed as before.

4.3 Dynamic hashing

Let, as in the previous section, κ := κn−1 · · ·κ1κ0 be a key with each κi ∈
{0, 1} and n ≥ k. Split κ into blocks, not necessarily of the same size, κ =

6

κ̃t−1 · · · κ̃1κ̃0, with t ≥ 1. Let σi be the integer representation of the binary
number κ̃i.

Now, we define z0 := φσ0
0 (j0) (i.e., φ0 is iterated σ0 times), and recursively

zi := φσi
i (zi−1 + ji), 0 ≤ i ≤ k,

and when (or if) i exceeds k, we start again from σ0 and proceed cyclically.

4.4 Dynamic hashing, again

As a final proposal, we present two other dynamical hash functions. The set-up
is as in the previous set up but now we only use the first Lattès map, φ0 and
propose the recursions defined by z0 := φ0(j0),

zi := φi0(zi−1 + ji), 1 ≤ i ≤ k,

and
zi := φσi

0 (zi−1 + ji), 0 ≤ i ≤ k.
Notice the difference between these two: the first is non-keyed while the second
is keyed.

Due to the number of iterations needed, these proposals seems unlikely to
be of any practical use in the present form.

4.5 Some simple heuristics and computer experiments

First notice that the construction of the isogeny chain follows the same heuristics
as the CGL-function [CLG09].

Next, we observe that the computation of φi is already done in the compu-
tation of [`] and the chosen subgroups, so no extra work constructing these are
required. Therefore, the cost of the non-keyed hash function is essentially the
same as the cost of the CGL-hash function. The same applies to the keyed-hash
function.

The possibly expensive version are thus the dynamic hash functions due to
the computation of the orbits in each step. Clearly this is dependent on the
block sizes in the key κ. We did some initial computer experiments with Sage
[The21] with p = 23723239− 1, ` = 2, and curve, given in short Weierstrass form
as

y2 = x3 + 34398498374987238967492834234243534534534242352x

+ 68743598734509720983928402983428798398798728798273984795.

We note that this curve is not a supersingular curve, but this is inconsequential
for the illustration. Also, the 2-torsion is only defined over Fp2 .

If the block size (i.e., the number of iterations in the orbits) is 10000 and
the (randomly chosen) starting value is

x = 8758987875985456789854567890234567876543456567890987654\
321234567893298765432345634567898790234568765434565678\
9098765432123456985456789023456787654345656789098765432\
1234567893298765432345634567898778932987654323456345678\

98765432123456789876587654789,

7

the Lattès map is iterated in roughly 0.2s. Reducing the block size to 100 the
computation takes about 5µs. On the other hand, taking 100000 iterations
yields a computing time of around 1.7s. In fact, the size of the curve coefficients
and starting value doesn’t seem to have much impact on the speed. We did the
computations on a MacBook Pro with an M1 processor.

Obviously this has to be scaled up o allow for computation of all steps in the
chain. On the other hand, the implementation is obviously far from optimised
and should ideally be implemented in C/C++ or assembler. In addition, the
choice of block size is certainly not obvious. Furthermore, using a Montgomery
curve and the associated addition formulas should reduce the computation time
even further.

4.6 Future work

As mentioned repeatedly, a more thorough study of the security and complex-
ity of our proposals is necessary for determining the viability of the presented
families of hash functions.

The initial idea in the use of Lattès maps to hashing was to use the Deuring
lifting theorem [Lan87, Thm. 13.12] to construct Lattès maps over number fields.
However this presented a lot of problems, primarily related to uniqueness. To
give a short version of that idea, consider an isogeny walk as in the CGL hash
function. Using the Deuring lifting theorem in each step we can lift the isogeny
to an isogeny over a number field between two CM-curves. Now, in a sense,
Lattès maps over number fields has a richer theory, in particular the Julia set
can be non-empty in which case there is “chaotic” behaviour in the dynamics
(see [Sil07]). Then one could use these Lattès maps over the number fields
to study the orbits of the j-invariants of the curves in the CGL-walk, thereby
possibly constructing a more “chaotic” hash function.

A more thorough study along those lines is perhaps a worthy effort in the
future.

Acknowledgements

I would like to thank Joe Silverman for directing me to using Lattès maps over
finite fields directly, allowing me to avoid certain problematic issues related
to lifting curves from characteristic p to characteristic zero. As a by-product
I found the very useful paper [BCC+22]. As mentioned above, my first idea
was to use Deuring’s lifting theorem and Lattès maps in characteristic zero to
dynamically iterate the j-invariants as in the proposals above.

References

[BCC+22] Zoë Bell, Jasmine Camero, Karina Cho, Trevor Hyde, Chieh-Mi Lu,
Bianca Thompson, and Eric Zhu. Density of periodic points for
Lattès maps over finite field. J. Number Theory, 238:951–966, 2022.

[BCC+23] Andrea Basso, Giulio Codogni, Deirdre Connolly, Luca De Feo,
Tako Boris Fouotsa, Guido Maria Lido, Travis Morrison, Lorenz
Panny, Sikhar Patranabis, and Benjamin Wesolowski. Supersingu-
lar curves you can trust. In Advances in cryptology—EUROCRYPT

8

2023. Part II, volume 14005 of Lecture Notes in Comput. Sci., pages
405–437. Springer, Cham, [2023] ©2023.

[CLG09] Denis X. Charles, Kristin E. Lauter, and Eyal Z. Goren. Cryp-
tographic hash functions from expander graphs. J. Cryptology,
22(1):93–113, 2009.

[EHL+18] Kirsten Eisenträger, Sean Hallgren, Kristin Lauter, Travis Morrison,
and Christophe Petit. Supersingular isogeny graphs and endomor-
phism rings: reductions and solutions. In Advances in cryptology—
EUROCRYPT 2018. Part III, volume 10822 of Lecture Notes in
Comput. Sci., pages 329–368. Springer, Cham, 2018.

[EHL+20] Kirsten Eisenträger, Sean Hallgren, Chris Leonardi, Travis Morrison,
and Jennifer Park. Computing endomorphism rings of supersingular
elliptic curves and connections to path-finding in isogeny graphs.
In ANTS XIV—Proceedings of the Fourteenth Algorithmic Number
Theory Symposium, volume 4 of Open Book Ser., pages 215–232.
Math. Sci. Publ., Berkeley, CA, 2020.

[Lan87] Serge Lang. Elliptic functions, volume 112 of Graduate Texts in
Mathematics. Springer-Verlag, New York, second edition, 1987. With
an appendix by J. Tate.

[MMP22] Marzio Mula, Nadir Murru, and Federico Pintore. On random sam-
pling of supersingular elliptic curves. Cryptology ePrint Archive,
Paper 2022/528, 2022. https://eprint.iacr.org/2022/528.

[Piz98] Arnold K. Pizer. Ramanujan graphs. In Computational perspectives
on number theory (Chicago, IL, 1995), volume 7 of AMS/IP Stud.
Adv. Math., pages 159–178. Amer. Math. Soc., Providence, RI, 1998.

[PL17] Christophe Petit and Kristin Lauter. Hard and easy problems for
supersingular isogeny graphs. Cryptology ePrint Archive, Paper
2017/962, 2017. https://eprint.iacr.org/2017/962.

[Sil07] Joseph H. Silverman. The arithmetic of dynamical systems, volume
241 of Graduate Texts in Mathematics. Springer, New York, 2007.

[Sil09] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of
Graduate Texts in Mathematics. Springer, Dordrecht, second edition,
2009.

[The21] The Sage Developers. SageMath, the Sage Mathematics Software
System (Version 9.4), 2021. https://www.sagemath.org.

[Wes22] B. Wesolowski. The supersingular isogeny path and endomorphism
ring problems are equivalent. In 2021 IEEE 62nd Annual Symposium
on Foundations of Computer Science (FOCS), pages 1100–1111, Los
Alamitos, CA, USA, feb 2022. IEEE Computer Society.

9

https://eprint.iacr.org/2022/528
https://eprint.iacr.org/2017/962

	Introduction
	Elliptic curves and Lattès maps
	Elliptic curves and supersingular isogeny graphs
	Lattès maps and their dynamics

	The Charles–Goren–Lauter hash function
	Hashing using supersingular Lattès maps
	Non-keyed hashing
	Keyed hashing
	Dynamic hashing
	Dynamic hashing, again
	Some simple heuristics and computer experiments
	Future work

