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ABSTRACT

With the growing adoption of cloud computing, the ability to store

data and delegate computations to powerful and affordable cloud

servers have become advantageous for both companies and individ-

ual users. However, the security of cloud computing has emerged as

a significant concern. Particularly, Cloud Service Providers (CSPs)

cannot assure data confidentiality and computations integrity in

mission-critical applications. In this paper, we propose a confiden-

tial and verifiable delegation scheme that advances and overcomes

major performance limitations of existing Secure Multiparty Com-

putation (MPC) and Zero Knowledge Proof (ZKP). Secret-shared

Data and delegated computations to multiple cloud servers remain

completely confidential as long as there is at least one honest MPC

server. Moreover, results are guaranteed to be valid even if all

the participating servers are malicious. Specifically, we design an

efficient protocol based on interactive proofs, such that most of

the computations generating the proof can be done locally on each

server. In addition, we propose a special protocol for matrix multipli-

cation where the overhead of generating the proof is asymptotically

smaller than the time to evaluate the result in MPC. Experimental

evaluation demonstrates that our scheme significantly outperforms

prior work, with the online prover time being 1-2 orders of magni-

tude faster. Notably, in the matrix multiplication protocol, only a

minimal 2% of the total time is spent on the proof generation. Fur-

thermore, we conducted tests on machine learning inference tasks.

We executed the protocol for a fully-connected neural network with

3 layers on the MNIST dataset and it takes 2.6 seconds to compute

the inference in MPC and generate the proof, 88× faster than prior

work. We also tested the convolutional neural network of Lenet

with 2 convolution layers and 3 dense layers and the running time

is less than 300 seconds across three servers.
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1 INTRODUCTION

Cloud computing has revolutionized the way organizations, busi-

nesses and individuals store, access, and process data. Rather than

relying on traditional data centers that are centralized, expensive

to setup, and costly to maintain and run, cloud computing offers a

remote access to unlimited resources available on demand over the

internet. Although cloud computing has numerous advantages, in-

cluding elasticity, scalability, and cost savings, it comes with major
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Figure 1: Confidential and Verifiable Delegation.

cybersecurity risks and concerns. Specifically, they require end-to-

end confidentiality of the data, meaning that the data should remain

confidential from Cloud Services Providers (CSPs) and the integrity

of the data and computations, meaning that the data and results

should be valid even if the cloud servers are compromised. For

example, governmental agencies procure cloud services based on

compliance with specified standards that must be established as a

trusted entity in providing secure services. Although the processes

for meeting these standards are costly and time-consuming, they

still cannot provide any mathematically-grounded assurances on

data and computation security. In this paper, we aim to leverage

widely available commercial CSPs without any dependence on their

trustworthiness or security measures.

We thus seek to address the limitations of the state of the art applied

cryptographic methods and to build the necessary building blocks

that enable the development of secure and efficient applications

such as Machine Learning (ML) evaluation. We primarily focus on

confidential and verifiable ML prediction outsourced to commercial

CSPs by combining primitives from secure multiparty computations

(MPC) with zero-knowledge proofs (ZKP). Figure 1 illustrates an

example of a user, with limited resources and energy, on a task that

needs to utilize a ML model. To ease the burden of performing local

data storing and processing, our scheme can delegate ML inference

to multiple CSPs via methods, such as additive secret-sharing [40],

to keep the model and data confidential. After the user secret-shares

the data, the cloud servers compute the ML inference using an MPC

protocol. In order to verify the correctness of the ML prediction,

the servers generate a ZKP via an MPC protocol. Finally, the user

reconstructs and verifies the results.

Attack model and security guarantees. In our setting, we con-

sider attackers that can compromise any number of cloud servers,

and which behave arbitrarily once compromised. First, we aim to

guarantee the confidentiality of both the data and ML model in the

presence of malicious attackers compromising all but one server
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Scheme Prover Prover Proof Verifier Setup

Time Communication Size Time Type

zkSNARK [35] 𝑂 (𝐶 log𝐶) 𝑂 (𝐶) 𝑂 (1) 𝑂 (1) per-circuit

Plonk [35] 𝑂 (𝐶 log𝐶) 𝑂 (𝐶) 𝑂 (1) 𝑂 (1) universal

Marlin [11] 𝑂 (𝐶 log𝐶) 𝑂 (𝐶) 𝑂 (1) 𝑂 (1) universal

[24] 𝑂 (𝐶) 𝑂 (𝐶) 𝑂 (log𝐶) 𝑂 (𝐶) transparent

[12] 𝑂 (𝐶 log𝐶) 𝑂 (𝐶 log𝐶) 𝑂 (log
2𝐶) 𝑂 (log

2𝐶) transparent

Ours (General) 𝑂 (𝐶) 𝑂 (𝐶) 𝑂 (𝑑 log𝐶) 𝑂 (𝑑 log𝐶) universal

Ours (Matrix) 𝑂 (𝑚2) 𝑂 (𝑚) 𝑂 (log𝑚) 𝑂 (log𝑚) universal

Table 1: Comparison to existing schemes. 𝐶 denotes the circuit size and 𝑑 is the depth of the circuit. The matrices are of size

𝑚 ×𝑚, and a circuit computing the matrix multiplication naively is of size 𝐶 = 𝑂 (𝑚3).

under MPC protocols [26]. Second, we want to ensure the integrity

of the ML inference results even if all servers are compromised.

This property is not satisfied when only using malicious MPC pro-

tocols. We will make the MPC servers generate a ZKP to convince

the verifier about the correctness of the result. Consequently, our

scheme guarantees both the confidentiality of data and ML model,

as long as there is at least one honest server, and the integrity of the

inference results even if all servers are malicious. See Section 3.1

for formal definitions.

Applications. One concrete use case of the proposed scheme is on

the ZKP generation of ML inferences for blockchain applications.

ZKP plays an important role to perform computations off-chain

and validate proofs on-chain, and has lead to massive adoptions

of zkRollups and active developments of zkEVMs. Recently, the

focus has shifted to ML functionalities allowing smart contracts to

interact with ML models and use the result of ML inferences, see [1]

and [3]. As generating ZKPs is very resource intensive, our scheme

can be used to delegate the generation of ZKP for ML to cloud

servers, while preserving the confidentiality of both the ML model

and the users’ data. A client with limited computing resource can

obtain a ZKP from the cloud servers and post it on the blockchain,

without revealing the sensitive information to the servers.

In this paper, we have made the following contributions:

• We proposed a confidential and verifiable outsourcing scheme for

secure computations that are modeled as arithmetic circuits. The

scheme is based on generic MPC protocols, such as SPDZ [26],

and a ZKP scheme based on interactive proofs (IP) [21]. We

designed a special MPC protocol to compute the messages of the

IPs, such that most of the computations are done locally on each

prover. This can greatly reduce the time to generate proof in a

low bandwidth setting.

• We introduced a novel ZKP protocol for efficiently verifying

matrix multiplication operations in ML. Given the result of the

matrix multiplication of two𝑚 ×𝑚 matrices computed via MPC,

the additional computation and communication complexities

to generate the proof are only 𝑂 (𝑚2) and 𝑂 (𝑚), respectively.
To the best of our knowledge, this is the first method that can

generate the ZKP with less overhead and response time than

those incurred when computing matrix multiplication over MPC.

• We implemented the system of confidential and verifiable ML

delegation and evaluated its performance. Experiments show

that our scheme improves the running time (the online prover

time of MPC) of existing collaborative ZKP [35] by one to two

orders of magnitude. Furthermore, for matrix multiplications,

the running time of our scheme is completely dominated by the

MPC evaluation. The additional time to ensure the integrity of

the result using ZKP is only 2% of the total time. On a fully-

connected neural network inference task with 3 layers, it only

takes 2.6 seconds to run the full protocol, which is 88× faster

than the prior work of [35]. On the convolutional neural network

of Lenet [28], it takes 288 seconds for one inference, which is

74.8× faster than the prior work of [35].

1.1 Related Work

Papers that are mostly related to our work include [11, 12, 19, 24, 35,

39]. Schoenmakers et al. proposed a privacy-preserving verifiable

computation scheme based on the SNARK [37] and an MPC proto-

col named Trinocchio [39]. Trinocchio assumes a circuit-specific

trusted setup, while our scheme only requires a universal trusted

setup. Another work, Kanjalkar et al. [24], introduced the concept

of auditable MPC which proves to a third party that the results

of an MPC protocol is correctly computed even if all the parties

are malicious by generating the proof of the zkSNARK [10] us-

ing MPC. Concurrently, Ozdemir and Boneh [35] presented the

notion of collaborative ZK based on Groth16 [22] and Plonk [18].

Later, Dayama et al. [12] considered the same setting and developed

schemes based on interactive oracle proofs (IOP). More recently,

Chiesa et al. [11] designed efficient schemes for zkSNARKs based

on polynomial IOPs. Garg et al. [19] further improved the total run-

ning time utilizing multiple provers and the packed secret sharing

techniques.

None of the above mentioned papers have studied schemes based

on interactive proofs. Moreover, all of them assume that the ex-
tended witness (i.e., all values in the circuit) has been computed,

secret-shared among parties, and only consider the step of proof

generation. By contrast, we take the circuit evaluation using MPC

into account and based on which we develop an end-to-end IP

scheme. We show that our approach yields a small overhead as the

time to compute the messages in IP is minimal compared to the

time to evaluate the circuit in MPC. Table 1 shows the comparison

among existing schemes excluding the communication overhead
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of MPC. It is clear that our scheme has the best prover time which

is linear in the size of the circuit. Moreover, the special protocol

for matrix multiplication improves both the prover time and the

communication by 𝑂 (𝑚).

Concurrent work. In [31], Liu et al. proposed a collaborative ZK

scheme based on the GKR protocol. The main protocol is similar to

our approach for general circuits. They used packed secret sharing

in order to achieve a faster running time, with a lower threshold on

the number of malicious provers, while we use the standard additive

sharing. Our main focus is on the machine learning delegations, and

we propose a special protocol for matrix multiplications where the

additional overhead to generate ZKP is small. Similar to [19, 35], the

experiments in [31] does not consider the phase of circuit evaluation

in MPC either.

Verifiable computation on encrypted data. An alternative so-

lution to ensure both confidentiality and integrity is via verifiable

computation on encrypted data by combining ZKPs with homo-

morphic encryptions [7, 15, 16, 20]. However, due to the heavy

mechanism, they mainly remain theoretical and cannot scale to the

ML computations considered in this paper.

There is a long line of work in the literature on privacy-preserving

ML [23, 27, 33, 34] and zero-knowledge proofs for ML [13, 30, 45].

Nonetheless, schemes for confidential and verifiable ML inference

based on special-purpose protocols to prove specific functions, like

matrix multiplications have not been considered yet.

2 PRELIMINARIES

Let F𝑝 be a finite field mod 𝑝 . In our paper, we use capital letters,

such as 𝐴 to represent matrices and bold lower-case letters, such as

a to represent vectors. We also use 𝑓 () to represent polynomial 𝑓 .

PPT stands for probabilistic polynomial time.

Bilinear pairings. Let G1,G2, and G𝑇 be cyclic groups of prime

order 𝑞. Let 𝑒 : G × G → G𝑇 denote a bilinear map which maps

two group elements from G1, G1 to target group from G𝑇 . Bilinear
pairing satisfies the following properties:

• Bilinearity: 𝑒 (𝑃𝑎, 𝑄𝑏 ) = 𝑒 (𝑃,𝑄)𝑎𝑏 for all 𝑃,𝑄 ∈ G and

𝑎, 𝑏 ∈ Z𝑝 .

• Non-degeneracy: 𝑒 (𝑔,𝑔) ≠ 1,𝑔 ∈ G1.

• Computability: There is an efficient algorithm to compute

𝑒 (𝑃,𝑄) for all 𝑃,𝑄 ∈ G.

2.1 Interactive Proofs

Our scheme is built upon ZKPs based on interactive proofs and

polynomial commitments, and we describe the protocols in this

section.

2.1.1 The Sumcheck Protocol. The sumcheck protocol is a funda-

mental interactive proof protocol in which the prover P tries to

convince the verifierV that the sum 𝐻 of a polynomial 𝑓 : Fℓ → F
on a binary hypercube is

𝐻 =
∑︁

𝑏1,𝑏2,...,𝑏ℓ ∈{0,1}
𝑓 (𝑏1, 𝑏2, . . . , 𝑏ℓ )

Protocol 1 (Sumcheck protocol). The protocol proceeds in ℓ

rounds.
• In the first round, P sendsV a univariate polynomial

𝑔1 (𝑥1)
def
=

∑︁
𝑏2,...,𝑏ℓ ∈{0,1}

𝑔(𝑥1, 𝑏2, . . . , 𝑏ℓ ) ,

V checks 𝐻 = 𝑔1 (0) + 𝑔1 (1). Then V sends P a random
challenge 𝑟1 ∈ F.

• In the 𝑖th round, P sendsV a univariate polynomial

𝑔𝑖 (𝑥𝑖 )
def
=

∑︁
𝑏𝑖+1,...,𝑏ℓ ∈{0,1}

𝑔(𝑟1, . . . , 𝑟𝑖−1, 𝑥𝑖 , 𝑏𝑖+1, . . . , 𝑏ℓ ) ,

V checks 𝑔𝑖−1 (𝑟𝑖−1) = 𝑔𝑖 (0) +𝑔𝑖 (1), and sends P a random
challenge 𝑟𝑖 ∈ F.

• In the ℓth round, P sends a univariate polynomial

𝑔ℓ (𝑥ℓ )
𝑑𝑒𝑓
= 𝑔(𝑟1, 𝑟2, . . . , 𝑟𝑙−1

, 𝑥ℓ ) ,
V checks 𝑔ℓ−1 (𝑟ℓ−1) = 𝑔ℓ (0) + 𝑔ℓ (1).

• In the final round,V generates a random challenge 𝑟ℓ ∈ F.
and accept if and only if 𝑔ℓ (𝑟ℓ ) = 𝑔(𝑟1, 𝑟2, . . . , 𝑟ℓ ).

Notice that computing this sum directly by V will take 2
ℓ
work.

The sumcheck protocol delegates this work to P and allows P to

generate the proof in ℓ rounds as shown in Protocol 1.

2.1.2 The GKR Protocol. The GKR protocol [21] is an interactive

proof protocol for layered circuits, which uses the sumcheck proto-

col as a building block. Let 𝐶 be an arithmetic circuit with depth 𝑑

over a finite field F. The circuit is layered in such a way that the

output wire from a gate at layer 𝑖 can only be an input wire to a

gate at layer 𝑖 − 1. The GKR protocol starts from the layer 0 (output

layer) and proves the correctness of the circuit computation one

layer at a time, until it reaches layer 𝑑 (input layer). Specifically, P
first sends a claim of the output toV . Then, P reduces the claim of

the output layer to a claim of wire value at the layer below using

sumcheck protocol. In the 𝑖-th round, P will generally reduce the

claim about the values of wires at the 𝑖th layer to a claim about

wire values at the (𝑖 + 1)-th layer.

Formally, we use 𝑆𝑖 to denote the number of gates at layer 𝑖 , and

𝑠𝑖 = ⌈𝑙𝑜𝑔(𝑆𝑖 )⌉ denotes the number of bits that can represent all the

gates in layer 𝑖 . We also define a function 𝑉𝑖 : {0, 1}𝑠𝑖 → F that
maps an input gate’s index to its wire value. We also define two

functions 𝑎𝑑𝑑𝑖 ,𝑚𝑢𝑙𝑡𝑖 : {0, 1}𝑠𝑖−1+2𝑠𝑖 → {0, 1} that are called wiring

predicates. For example, 𝑎𝑑𝑑𝑖 takes three gates (𝑎, 𝑏, 𝑐) such that 𝑎

is from layer 𝑖 − 1 and 𝑏, 𝑐 are from layer 𝑖 . 𝑎𝑑𝑑𝑖 outputs 1 if and

only if 𝑎 is an addition gate whose 2 inputs are outputs from gate 𝑏

and 𝑐 (𝑚𝑢𝑙𝑡𝑖 is defined similarly). With all these definitions, 𝑉𝑖 can

be written as:

𝑉𝑖 (𝑧) =
∑︁

𝑥,𝑦∈{0,1}𝑠𝑖+1 (𝑎𝑑𝑑𝑖+1 (𝑔, 𝑥,𝑦) (𝑉𝑖+1 (𝑥) +𝑉𝑖+1 (𝑦))

+𝑚𝑢𝑙𝑡𝑖+1 (𝑔, 𝑥,𝑦) (𝑉𝑖+1 (𝑥)𝑉𝑖+1 (𝑦)))
(1)

for any 𝑧 ∈ {0, 1}𝑠𝑖 .
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Since equation 𝑉𝑖 is written in a summation form, we can use

sumcheck protocol to verify its correctness. Therefore we need

to use the multilinear extension of the above equation, because

sumcheck only works on finite field F.

Definition 1 (Multi-linear Extension). Let 𝑉 : {0, 1}ℓ → F
be a function. We denote �̃� : Fℓ → 𝑉 as the multilinear extension of
V such that �̃� and𝑉 agree on the binary hypercube (𝑥1, 𝑥2, . . . , 𝑥ℓ ) ∈
{0, 1}ℓ .

The closed-form of �̃� is

�̃� (𝑔) =
∑︁

𝑦∈{0,1}ℓ 𝐼 (𝑔,𝑦)𝑉 (𝑦) (2)

for all 𝑔 ∈ Fℓ , where 𝐼 (𝑔,𝑦) is the identity function such that 𝐼 (𝑔,𝑦) =
1 if and only if 𝑔 = 𝑦 for all 𝑔 ∈ {0, 1}ℓ . In particular, 𝐼 (𝑔,𝑦) =∏ℓ

𝑖=1
(𝑔𝑖𝑦𝑖 + (1 − 𝑔𝑖 ) (1 − 𝑦𝑖 )).

With the definition of multi-linear extensions, we have

�̃�𝑖 (𝑔) =
∑︁

𝑥,𝑦∈{0,1}𝑠𝑖+1 𝑓𝑖 (𝑥,𝑦)

=
∑︁

𝑥,𝑦∈{0,1}𝑠𝑖+1 (
˜𝑎𝑑𝑑𝑖+1 (𝑔, 𝑥,𝑦) (�̃�𝑖+1 (𝑥) +˜�̃�𝑖+1 (𝑦))

+ ˜𝑚𝑢𝑙𝑡𝑖+1 (𝑔, 𝑥,𝑦) (�̃�𝑖+1 (𝑥)�̃�𝑖+1 (𝑦)))

(3)

where �̃�𝑖 , ˜𝑎𝑑𝑑𝑖 , and ˜𝑚𝑢𝑙𝑡𝑖 are multilinear extensions of 𝑉𝑖 , 𝑎𝑑𝑑𝑖 ,

and𝑚𝑢𝑙𝑡𝑖 respectively.

The GKR protocol works as follows. The prover P initially sends

the claimed output of the circuit toV . Specifically, P defines a poly-

nomial𝑉0 (𝑥) based on the output wires’ value. ThenV takes𝑉0 (𝑥)
and computes �̃�0 (𝑔) for 𝑔 ∈ F𝑠0

. Then, P andV engage in a sum-

check protocol to check this equation. The sumcheck in the 𝑖th layer

takes 𝑠𝑖 + 2𝑠𝑖+1 rounds of interaction due to the number of variables

in the polynomial. Recall at the end of each sumcheck,V needs to

evaluate the polynomial 𝑓𝑖 (𝑥,𝑦) with randomness𝑤1,𝑤2 ∈ F2𝑠𝑖+1
,

where 𝑤1,𝑤2 are randomness selected in the sumcheck protocol.

V can compute the wire predicate
˜𝑎𝑑𝑑𝑖 and ˜𝑚𝑢𝑙𝑡𝑖 given they are

public.V will need oracle access to values �̃�𝑖+1 (𝑤1) and �̃�𝑖+1 (𝑤2)
from P in order to compute 𝑓𝑖 (𝑤1,𝑤2).

Combining two claims randomly. In the above protocol, observe

that each sumcheck protocol reduces one claim into two claims.

If we keep this protocol as it is, every sumcheck in one layer will

induce two sumchecks in the following, resulting in an exponential

increase of the numbers of sumcheck uses in GKR. Hence, we need

to reduce these two claims into one before we proceed into the next

layer. In Chiesa et al. [9], the authors proposed an approach using

random linear combination to combine these two claims. After

receiving both claims �̃�𝑖 (𝑤1) and �̃�𝑖 (𝑤2),V picks two randomness

𝛼𝑖 , 𝛽𝑖 ∈ F and combine them as follows:

𝛼𝑖�̃�𝑖 (𝑤1) + 𝛽𝑖�̃�𝑖 (𝑣)

=𝛼𝑖

∑︁
𝑥,𝑦∈{0,1}𝑠𝑖+1

( ˜𝑎𝑑𝑑𝑖+1 (𝑤1, 𝑥,𝑦) (�̃�𝑖+1 (𝑥) + �̃�𝑖+1 (𝑦))

+ ˜𝑚𝑢𝑙𝑡𝑖+1 (𝑤1, 𝑥,𝑦) (�̃�𝑖+1 (𝑥)�̃�𝑖+1 (𝑦)))

+𝛽𝑖
∑︁

𝑥,𝑦∈{0,1}𝑠𝑖+1
( ˜𝑎𝑑𝑑𝑖+1 (𝑤2, 𝑥,𝑦) (�̃�𝑖+1 (𝑥) + �̃�𝑖+1 (𝑦))

+ ˜𝑚𝑢𝑙𝑡𝑖+1 (𝑤2, 𝑥,𝑦) (�̃�𝑖+1 (𝑥)�̃�𝑖+1 (𝑦)))

=
∑︁

𝑥,𝑦∈{0,1}𝑠𝑖+1
((𝛼𝑖 ˜𝑎𝑑𝑑𝑖+1 (𝑤1, 𝑥,𝑦) + 𝛽𝑖 ˜𝑎𝑑𝑑𝑖+1 (𝑤2, 𝑥,𝑦))

× (�̃�𝑖+1 (𝑥) + �̃�𝑖+1 (𝑦))

+(𝛼𝑖 ˜𝑚𝑢𝑙𝑡𝑖+1 (𝑤1, 𝑥,𝑦) + 𝛽𝑖 ˜𝑚𝑢𝑙𝑡𝑖+1 (𝑤2, 𝑥,𝑦)) (�̃�𝑖+1 (𝑥)�̃�𝑖+1 (𝑦))

(4)

The sumcheck protocol uses the combined Equation in 4 instead of

Equation 3. Therefore, we reduce one claim into another claim.

2.1.3 Polynomial commitments.

Definition 2. APolynomial commitment is a tuple (KeyGen,Commit,
Open,Verify) of PPT algorithms where:

• KeyGen(1𝜆, F ) → pp: The algorithm generates public pa-
rameters (pp);

• Commit(𝑓 , pp) → com𝑓 : The algorithm takes a secret poly-
nomial 𝑓 (X) where𝑋 = (𝑋0, . . . , 𝑋𝜇−1) and outputs a public
commitment com𝑓 ;

• Open(𝑓 , x, pp) → (𝑧, 𝜋𝑓 ): The algorithm evaluates the poly-
nomial 𝑦 = 𝑓 (X) on a point x and generate a proof 𝜋𝑓 ;

• Verify(com𝑓 , x, 𝑧, 𝜋𝑓 , pp) → 𝑏 ∈ {1, 0}: The algorithm veri-
fies whether 𝑓 (x) = 𝑧 using pp, com𝑓 and 𝜋𝑓 ;

which satisfies the following properties:

• Completeness. For any polynomial 𝑓 ∈ F and x ∈ F𝜇 , the fol-
lowing probability is 1.

Pr


pp← KeyGen(1𝜆, F )

Verify(com𝑓 , x, 𝑧, 𝜋ℎ, pp) = 1 : com𝑓 ← Commit(𝑓 , pp)
(𝑧, 𝜋𝑓 ) ← Open(𝑓 , x, pp)


• Knowledge soundness. For any PPT adversary P∗, there exists a

PPT extractor 𝜖 with access to P∗’s messages during the protocol,
the following probability is negl(𝜆).

Pr



Verify(com∗, x∗, 𝑧∗, 𝜋∗, pp) = 1 pp← KeyGen(1𝜆, F )

∧com∗ = Commit(𝑓 ∗, pp) : (𝑧∗, x∗) ← P∗ (1𝜆, pp)

∧𝑓 ∗ (x∗) ≠ 𝑧∗ (𝑐𝑜𝑚∗, 𝜋∗) ← P∗ (1𝜆, pp)

𝑓 ∗ ← 𝜖P
∗ ( ·) (1𝜆, pp)


• Zero-knowledge. For all efficient adversary A, there exists a sim-

ulator Sim such that for all KeyGen(1𝜆, F ) → pp and all efficient
4
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distinguisher 𝐷

Pr


A(pp) → 𝑓

Sim(pp) → com𝑓 : 𝐷 (𝑧, 𝜋𝑓 , com𝑓 ) = 1

A(com𝑓 , pp) → x

Sim(pp, 𝑧 = 𝑓 (x)) → (𝑧, 𝜋𝑓 )


− Pr


A(pp) → 𝑓

Commit(𝑓 , pp) → com𝑓 : 𝐷 (𝑧, 𝜋𝑓 , com𝑓 ) = 1

A(com𝑓 , pp) → x

Open(𝑓 , x, pp) → (𝑧, 𝜋𝑓 )


≤ negl(𝜆)

As shown in prior work [42, 43, 47], one can build a ZKP scheme

by combining the GKR protocol with a polynomial commitment

scheme. The prover commits to the witness of the circuit, executes

the GKR protocol with the verifier, and finally opens the polyno-

mial at a random point to check the correctness of the last claim

of the GKR protocol. In this paper, we use the KZG polynomial

commitment [25] and we present the protocol in Section 3.6. We

denote this scheme as (ZKP.P,ZKP.V).

2.2 Secure Multiparty Computation

Secure multiparty computation [32, 44] allows a set of parties

{𝑃1, . . . , 𝑃𝑛} to jointly compute a function 𝑓 over their inputs, and

reveals nothing other than the output. In this paper, we use MPC

protocols based on a linear secret sharing scheme and primarily

focus on additive sharing. In an additive secret sharing scheme, a

value 𝑎 is split into (⟨𝑎⟩1, ⟨𝑎⟩2, . . . , ⟨𝑎⟩𝑛) and distributed among all

𝑛 parties such that 𝑎 = ⟨𝑎⟩1 + ⟨𝑎⟩2 + . . . + ⟨𝑎⟩𝑛 mod 𝑝 in a field F𝑝 .

• MPC.Add(⟨𝑎⟩, ⟨𝑏⟩): Given the shares of two values ⟨𝑎⟩ and ⟨𝑏⟩,
their addition 𝑐 = 𝑎 + 𝑏 can be computed locally by the parties

as ⟨𝑐⟩ = ⟨𝑎⟩ + ⟨𝑏⟩ without any interaction because of the lin-

earity of the secret sharing scheme. Similarly, subtraction and

multiplication by a public value can also be computed locally.

• MPC.Mult(⟨𝑎⟩, ⟨𝑏⟩): To compute themultiplication of two shared

values, one can use Beaver’s multiplication triplets [6]. In the

offline phase, the parties precompute a multiplication triplet

⟨𝑢⟩, ⟨𝑣⟩, ⟨𝑤⟩ such that 𝑢 · 𝑣 = 𝑤 . Then in the online phase,

the parties exchange ⟨𝑎⟩ + ⟨𝑢⟩ and ⟨𝑏⟩ + ⟨𝑣⟩ and reconstruct

𝑒 = 𝑎+𝑢, 𝑓 = 𝑏+𝑣 . Finally, each party sets ⟨𝑐⟩ = 𝑒 ·⟨𝑏⟩−𝑓 ·⟨𝑢⟩+⟨𝑤⟩
locally, and it can be shown that 𝑐 = 𝑎 · 𝑏.

• MPC.InnerProduct(⟨a⟩, ⟨b⟩): The inner product of two shared

vectors can be computed by applyingMPC.Mult element-wise

and then adding the shares locally.

• MPC.ScalarProduct(⟨a⟩, ⟨𝑏⟩): The protocol multiplies every el-

ement of a shared vector by a shared value. It is realized using

MPC.Mult element-wise.

3 CONFIDENTIAL AND VERIFIABLE

DELEGATION

In this section, we present our confidential and verifiable delegation

scheme. Section 3.1 gives the security definition of the scheme, and

Section 3.2 gives an overview of our scheme combining MPC and

ZKP. Section 3.3 reviews the algorithms that generates the proofs

of GKR in linear time as in [43]. We present our scheme for general

circuits in Section 3.4, and for matrix multiplications in Section 3.5.

We describe the polynomial commitment scheme on shared data in

Section 3.6.

3.1 Security Definitions

We first propose the security definition of a confidential and verifi-

able delegation scheme. The definition is adapted from collaborative

zk-SNARKs proposed in [35].

Definition 3. A confidential and verifiable delegation scheme for 𝑛
provers, a verifier and a computation modeled as an arithmetic circuit
𝐶 consists of 4 algorithms (Setup, Share, Prove,Verify):

• Setup(1𝜆,𝐶) → pp: This algorithm outputs the public pa-
rameters.

• Share(𝑤) → ⟨𝑤⟩: This algorithm is called by the verifier to
share the witness with the provers.

• Prove(⟨𝑤⟩,𝐶, 𝑥, pp) → (𝑦, 𝜋): This algorithm allows the
provers to jointly evaluate the circuit 𝐶 and output the result
𝑦 and a proof 𝜋 .

• Verify(𝑦, 𝑥, 𝜋, pp) → {0, 1} This algorithm enables the veri-
fier to verify the result and outputs 1 or 0.

Completeness: For all provers,

Pr


Setup(1𝜆,𝐶) → pp

Share(𝑤) → ⟨𝑤⟩ : Verify(𝑦, 𝑥, 𝜋, pp) → 1

Prove(⟨𝑤⟩,𝐶, 𝑥, pp) → (𝑦, 𝜋)

 = 1

Knowledge Soundness: For all 𝑥 , for all sets of efficient algorithms
®𝑃 = {𝑃1, . . . , 𝑃𝑛}, there exists an efficient extractor 𝜀:

Pr


Setup(1𝜆,𝐶) → pp

®𝑃 (𝐶, 𝑥, pp) → (𝑦, 𝜋) : Verify(𝑦, 𝑥, 𝜋, pp) → 1

𝜀 (𝑥, 𝜋, pp) → 𝑤 ∧𝑦 ≠ 𝐶 (𝑥,𝑤)

 ≤ negl(𝜆)

t-Zero-Knowledge: For all efficient adversaryA corrupting 𝑘 ≤ 𝑡

provers 𝑃𝑖1 , . . . , 𝑃𝑖𝑘 , there exists a simulator Sim such that for all
𝑥,𝑤 and 𝐶 and all efficient distinguisher 𝐷

Pr

[
Setup(1𝜆,𝐶) → pp

Sim(𝑥,𝑦, ⟨𝑤⟩𝑖1 , . . . , ⟨𝑤⟩𝑖𝑘 , pp) → tr : 𝐷 (tr) = 1

]
− Pr

[
Setup(1𝜆,𝐶) → pp

ViewA (𝑥,𝑤) → tr : 𝐷 (tr) = 1

]
≤ negl(𝜆)

where tr is a transcript, ViewA (𝑥,𝑤) denotes the view ofA when
provers 𝑃1, ..., 𝑃𝑛 interact with input 𝑥 and witnesses𝑤 .

In Definition 3 above, the knowledge soundness guarantees that as

long as the provers can generate a valid proof passing the verifica-

tion, there exists an extractor that extracts the witness𝑤 such that

𝐶 (𝑤, 𝑥) = 𝑦 with an overwhelming probability. In other words, the

protocol guarantees the integrity of the result 𝑦 even if all provers

are malicious, which is beyond the capability of malicious MPC. The

5
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Protocol 2 (Confidential and Verifiable Delegation). Let
𝐶 be a layered arithmetic circuit. Let𝑤 be the witness and 𝑥 be the
public input of 𝐶 . The protocol is between a verifierV and 𝑛 provers
𝑃1, . . . , 𝑃𝑛 .
• Setup(1𝜆): run the KeyGen algorithm of the polynomial commit-

ment in and output pp.
• Share(𝑤):V shares𝑤 to all the provers 𝑃1, . . . , 𝑃𝑛 using a linear

secret sharing scheme.
• Commit(⟨𝑤⟩, 𝑥): each prover defines the multilinear exten-

sion of ⟨𝑤⟩ concatenated with ⟨𝑥⟩ as ⟨�̃�𝑑 ⟩. Each prover runs
Commit(⟨�̃�𝑑 ⟩, pp). Output the combined commitment com.

• Prove(⟨𝑤⟩,𝐶, 𝑥, pp)
(1) The provers execute an MPC protocol to evaluate the circuit to

obtain 𝑦 = 𝐶 (𝑥,𝑤) and the shares of each wire value in the
circuit.

(2) The provers run the GKR protocol on shares to generate the
proof.

(3) For the input layer, the provers runOpen(⟨�̃�𝑑 ⟩, 𝑟𝑑 , pp), where
𝑟𝑑 is the last random challenge for the input layer of the GKR
protocol.

(4) The provers output 𝑦 and all the proofs generated during the
protocol.

• Verify(com, 𝑦, 𝜋, pp):V verifies the proof of the GKR protocol and
the proof of the polynomial commitment protocol. If all checks
pass, output 1; otherwise, output 0.

t-zero-knowledge guarantees that the proof leaks no information

about the secret witness𝑤 even if the adversary corrupts up to 𝑡

provers. In the application of ML inference,𝑤 includes both the ML

model and the data sample.

3.2 Overview of Our Scheme

In order to build a confidential and verifiable delegation scheme,

we combine the cryptographic primitives of MPC and ZKP. As

shown in Protocol 2, the verifier first secret-shares the witness to

all the provers. The provers then commit to the witness using a

polynomial commitment on shared values. This step is necessary

to derive randomness using the Fiat-Shamir heuristic [14] to make

the protocol non-interactive, and also to allow the provers to have

additional witness. Later, to perform the computation and generate

a proof, the provers execute an MPC protocol to compute 𝑦 without

revealing𝑤 , and generate the proof using the shares of wire values

in the circuit. As we are using the ZKP based on GKR and polyno-

mial commitments, this step is divided into generating GKR proofs

and polynomial commitment proofs on shared values in MPC.

The framework is similar to the constructions in [19, 35], where

they use MPC to generate ZKPs based on zkSNARKs and Plonk.

However, we are the first to consider interactive proofs and achieve

better prover efficiency. Moreover, none of prior work considers the

MPC step to evaluate the circuit. In the following, we present our

protocols for GKR and polynomial commitments on shared values.

Algorithm 1 Phase 1

Input:Multilinear extensions �̃�𝑖+1 and randomness

𝑔 = 𝑔1, . . . , 𝑔𝑠𝑖+1 , 𝑢 = 𝑢1, . . . , 𝑢𝑠𝑖+1 ;

Output: Proofs of the sumcheck protocol 𝑎1, . . . , 𝑎𝑠𝑖+1 , where each

𝑎𝑖 contains 3 evaluations uniquely representing a degree 2

polynomial;

1: procedure g← Precompute(𝑔) ⊲ g is an array of size 2
𝑠𝑖+1

.

2: Set g[0] = 1

3: for 𝑖 = 0, . . . , 𝑠𝑖+1 − 1 do

4: for 𝑏 ∈ {0, 1}𝑖 do
5: g[𝑏, 0] = g[𝑏] · (1 − 𝑔𝑖+1)
6: g[𝑏, 1] = g[𝑏] · 𝑔𝑖+1
7: return g;

8: procedure h← Initialize_Phase1(�̃�𝑖+1, g))
9: ∀𝑥 ∈ {0, 1}𝑠𝑖+1 , set h[𝑥] = 0

10: for every multiplication gate (𝑧, 𝑥,𝑦) such that

˜𝑚𝑢𝑙𝑡𝑖+1 (𝑧, 𝑥,𝑦) = 1 do

11: h[𝑥] = h[𝑥] + g[𝑧] · �̃�𝑖+1 (𝑦)
12: return h;

13: procedure (𝑎1, . . . , 𝑎𝑠𝑖+1 ) ← Sumcheckproof(h, �̃�𝑖+1, 𝑢)
14: Set vector v[𝑏] = �̃�𝑖+1 (𝑏) for all 𝑏 ∈ {0, 1}𝑠𝑖+1
15: Set 𝑎𝑡,𝑖 = 0 for 𝑖 = 1, . . . , 𝑠𝑖+1 and 𝑡 = 0, 1, 2

16: for each round 𝑖 = 1, . . . , 𝑠𝑖+1 do

17: for 𝑏 ∈ {0, 1}𝑠𝑖+1−𝑖 do ⊲ we use 𝑏 as both a number

and its binary representation

18: for 𝑡 = 0, 1, 2 do

19: 𝑎𝑡,𝑖 =

𝑎𝑡,𝑖 + (h[𝑏] (1−𝑡) +h[𝑏 +2
𝑠𝑖+1−𝑖 ]𝑡) (v[𝑏] (1−𝑡) +v[𝑏 +2

𝑠𝑖+1−𝑖 ]𝑡)
20: h[𝑏] = h[𝑏] (1 − 𝑢𝑖 ) + h[𝑏 + 2

𝑠𝑖+1−𝑖 ]𝑢𝑖
21: v[𝑏] = v[𝑏] (1 − 𝑢𝑖 ) + v[𝑏 + 2

𝑠𝑖+1−𝑖 ]𝑢𝑖
22: return 𝑎1, . . . , 𝑎𝑠𝑖+1 .

3.3 GKR with a linear prover

We first describe the state-of-the-art algorithms to generate the

GKR proofs in the plain setting without MPC, as proposed by Xie

et al.in [43].

Recall that for each layer of the circuit, P andV needs to execute

the sumcheck protocol on Equation 3. It can be divided into the

sum of three terms
˜𝑎𝑑𝑑𝑖+1 (𝑔, 𝑥,𝑦)�̃�𝑖+1 (𝑥), ˜𝑎𝑑𝑑𝑖+1 (𝑔, 𝑥,𝑦)�̃�𝑖+1 (𝑦))

and
˜𝑚𝑢𝑙𝑡𝑖+1 (𝑔, 𝑥,𝑦)�̃�𝑖+1 (𝑥)�̃�𝑖+1 (𝑦). For simplicity, we describe the

algorithms for the third term consisting of the product of three

polynomials:∑︁
𝑥,𝑦∈{0,1}𝑠𝑖+1

˜𝑚𝑢𝑙𝑡𝑖+1 (𝑔, 𝑥,𝑦)�̃�𝑖+1 (𝑥)�̃�𝑖+1 (𝑦) , (5)

and the first two terms are special cases with only two polynomi-

als. Notice that directly executing the sumcheck protocol would

take quadratic time because
˜𝑚𝑢𝑙𝑡𝑖+1 (𝑔, 𝑥,𝑦) contains 2

2𝑠𝑖+1 = 𝑆2

𝑖+1
variables. In [43], the sumcheck was divided into two phases where
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Algorithm 2 Phase 2

Input: Multilinear extensions �̃�𝑖+1, evaluation �̃�𝑖+1 (𝑢) from Phase

1, and randomness

𝑔 = 𝑔1, . . . , 𝑔𝑠𝑖+1 , 𝑢 = 𝑢1, . . . , 𝑢𝑠𝑖+1 , 𝑣 = 𝑣1, . . . , 𝑣𝑠𝑖+1 ;

Output: Proofs of the sumcheck protocol 𝑎′
1
, . . . , 𝑎′𝑠𝑖+1 ;

1: g← Precompute(𝑔)
2: u← Precompute(𝑢)
3: procedure m← Initialize_Phase2(g,u))
4: ∀𝑦 ∈ {0, 1}𝑠𝑖+1 , setm[𝑦] = 0

5: for every multiplication gate (𝑧, 𝑥,𝑦) such that

˜𝑚𝑢𝑙𝑡𝑖+1 (𝑧, 𝑥,𝑦) = 1 do

6: m[𝑦] = m[𝑦] + g[𝑧] · u[𝑥]
7: return m;

8: Compute the scalar product �̃�𝑖+1 (𝑢) · �̃�𝑖+1 (𝑦) for all
𝑦 ∈ {0, 1}𝑠𝑖+1

9: (𝑎′
1
, . . . , 𝑎′𝑠𝑖+1 ) ← Sumcheckproof (�̃�𝑖+1 (𝑢) · �̃�𝑖+1,m), 𝑣)

10: return 𝑎′
1
, . . . , 𝑎′𝑠𝑖+1 .

Equation 5 can be written as:∑︁
𝑥∈{0,1}𝑠𝑖+1 �̃�𝑖+1 (𝑥)

∑︁
𝑦∈{0,1}𝑠𝑖+1

˜𝑚𝑢𝑙𝑡𝑖+1 (𝑔, 𝑥,𝑦)�̃�𝑖+1 (𝑦)

=
∑︁

𝑥∈{0,1}𝑠𝑖+1 �̃�𝑖+1 (𝑥)ℎ𝑖+1 (𝑥)
(6)

where ℎ𝑖+1 (𝑥) =
∑

𝑦∈{0,1}𝑠𝑖+1 ˜𝑚𝑢𝑙𝑡𝑖+1 (𝑔, 𝑥,𝑦)�̃�𝑖+1 (𝑦).

Phase 1. In this phase, P executes the sumcheck protocol on Equa-

tion 6 summing over 𝑥 ∈ {0, 1}𝑠𝑖+1 . It has been shown by Justin

Thaler in [41] that given the evaluations of two multilinear polyno-

mials on the Boolean hypercube (i.e., ∀𝑥 ∈ {0, 1}𝑠𝑖+1 ), the sumcheck

protocol can be executed with a linear prover time using a dynamic

programming algorithm. The evaluations of �̃�𝑖+1 are known by the

prover as the values of the circuit, but the evaluations of ℎ𝑖+1 (𝑥)
is not clear. Therefore, [43] proposed an initialization algorithm to

compute them in linear time, and the full algorithm is shown in

Algorithm 1. Procedure Precompute generates a vector of linear
size using the randomness of the sumcheck protocol. This is exactly

the evaluation of the identity polynomial 𝐼 such that g[𝑏] = 𝐼 (𝑔,𝑏)
for all 𝑏 ∈ {0, 1}𝑠𝑖+1 . It is then used together with �̃�𝑖+1 to compute

the evaluations of ℎ𝑖+1 on the Boolean hypercube as a vector h.
Finally, procedure Sumcheckproof is the dynamic programming

algorithm in [41] generating the proof in each round using the

vectors h and v and updating them using the randomness in the

next round. The running time of all three procedures is linear in the

size of the circuit𝑂 (𝑆𝑖+1), and therefore the prover time of Phase 1

is linear.

Phase 2. After Phase 1, "variable 𝑥 has been fixed to randomness 𝑢

and the remaining element in v is v[0] = �̃�𝑖+1 (𝑢). The remaining

task in phase 2 is to run the sumcheck protocol for the following

equation: ∑︁
𝑦∈{0,1}𝑠𝑖+1

˜𝑚𝑢𝑙𝑡𝑖+1 (𝑔,𝑢,𝑦)�̃�𝑖+1 (𝑢)�̃�𝑖+1 (𝑦) (7)

Note that �̃�𝑖+1 (𝑢) is a single value and Equation 7 is again the

product of two multilinear polynomials. [43] proposed another

algorithm to compute the evaluations of
˜𝑚𝑢𝑙𝑡𝑖+1 (𝑔,𝑢,𝑦) on the

Boolean hypercube ∀𝑦 ∈ {0, 1}𝑠𝑖+1 in linear time, and the proofs

can be then generated by the same dynamic programming algorithm

in [41]. The algorithm of Phase 2 is presented in Algorithm 2 using

the Precompute and Sumcheckproof procedures in Algorithm 1.

3.4 GKR in MPC for General Circuits

In this section,we present our protocol for the provers to compute

the proofs of GKR when the values are secret-shared. We follow

the two-phase approach in [43] and observe that most of the steps

in Algorithm 1 and 2 are linear. For example, as the randomness

is either sent by the verifier in the interactive setting or computed

using Fiat-Shamir [14] in the non-interactive setting, it is known

by all the provers. Therefore, Procedure Precompute(𝑔) in Algo-

rithm 1 can be computed locally by each server. Moreover, in the

initialization procedure, e.g., line 11 of Algorithm 1, the equation

is a linear function of �̃�𝑖+1 (𝑦) as g is a public vector. Similarly, the

equations to update the vectors in line 20 and 21 are linear as well.

The only place that requires an MPC protocol is line 19 multiplying

a value computed from h and a value computed from v, which are

both secret-shared. We use an MPC protocol for inner product to

perform this step. We present the protocol of Phase 1 for each server

in Algorithm 3. The shared values are indicated using ⟨⟩ and we

omit the subscript of the server in the algorithm. As shown in the

algorithm, only step 15 and 16 are executed using an MPC protocol

and all other steps are computed locally. At the end of this phase,

the provers hold the shares of ⟨�̃�𝑖+1 (𝑢)⟩ = ⟨v⟩[0].

After Phase 1, the provers execute Phase 2 on shared values and

the algorithm is shown in 4. Surprisingly, all the steps can be done

locally after a scalar multiplication in MPC. This is because in Phase

2, the initialization only depends on
˜𝑚𝑢𝑙𝑡𝑖+1, which is defined by the

circuit and is known to each prover. Thus the vector m is publicly

known by all the provers. After the scalar multiplication in Step 8,

the remaining Sumcheckproof procedure is executed on a shared

vector and a public vector, and thus no MPC protocol is involved at

all.

Combining two points randomly. Recall that as explained in

Section 2.1.2, at the end of the sumcheck,V needs to combine two

evaluations of �̃�𝑖+1 via a random linear combination. Upon receiving

the two claims �̃�𝑖 (𝑢) and �̃�𝑖 (𝑣),V selects 𝛼𝑖 , 𝛽𝑖 ∈ F randomly and

computes 𝛼𝑖�̃�𝑖 (𝑢) + 𝛽𝑖�̃�𝑖 (𝑣). Using random linear combination, the

equation can be written as

𝛼𝑖�̃�𝑖 (𝑢) + 𝛽𝑖�̃�𝑖 (𝑣)

=𝛼𝑖

∑︁
𝑥,𝑦∈{0,1}𝑠𝑖+1

( ˜𝑎𝑑𝑑𝑖+1 (𝑢, 𝑥,𝑦) (⟨�̃�𝑖+1⟩(𝑥) + ⟨�̃� ⟩𝑖+1 (𝑦))

+ ˜𝑚𝑢𝑙𝑡𝑖+1 (𝑢, 𝑥,𝑦) (⟨�̃�𝑖+1⟩(𝑥)⟨�̃�𝑖+1⟩(𝑦)))

+𝛽𝑖
∑︁

𝑥,𝑦∈{0,1}𝑠𝑖+1
( ˜𝑎𝑑𝑑𝑖+1 (𝑣, 𝑥,𝑦) (⟨�̃�𝑖+1⟩(𝑥) + ⟨�̃�𝑖+1⟩(𝑦))

+ ˜𝑚𝑢𝑙𝑡𝑖+1 (𝑣, 𝑥,𝑦) (⟨�̃�𝑖+1⟩(𝑥)⟨�̃�𝑖+1⟩(𝑦)))

(8)
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Algorithm 3 Phase 1 in MPC

Input: Shared multilinear extension ⟨�̃�𝑖+1⟩ and randomness

𝑔 = 𝑔1, . . . , 𝑔𝑠𝑖+1 , 𝑢 = 𝑢1, . . . , 𝑢𝑠𝑖+1 ;

Output: Proofs of the sumcheck protocol 𝑎1, . . . , 𝑎𝑠𝑖+1 , where each

𝑎𝑖 contains 3 evaluations uniquely representing a degree 2

polynomial;

1: g← Precompute(𝑔)
2: procedure ⟨h⟩ ← Initialize_Phase1(⟨�̃�𝑖+1⟩, g))
3: ∀𝑥 ∈ {0, 1}𝑠𝑖+1 , set ⟨h⟩[𝑥] = 0

4: for every multiplication gate (𝑧, 𝑥,𝑦) such that

˜𝑚𝑢𝑙𝑡𝑖+1 (𝑧, 𝑥,𝑦) = 1 do

5: ⟨h⟩[𝑥] = ⟨h⟩[𝑥] + g[𝑧] · ⟨�̃�𝑖+1 (𝑦)⟩
6: return ⟨h⟩;
7: procedure (𝑎1, . . . , 𝑎𝑠𝑖+1 ) ← Sumcheckproof(⟨h⟩, ⟨�̃�𝑖+1⟩, 𝑢)
8: Set vector ⟨v⟩[𝑏] = ⟨�̃�𝑖+1 (𝑏)⟩ for all 𝑏 ∈ {0, 1}𝑠𝑖+1
9: for each round 𝑖 = 1, . . . , 𝑠𝑖+1 do

10: for 𝑏 ∈ {0, 1}𝑠𝑖+1−𝑖 do //we use 𝑏 as both a number and

its binary representation

11: for 𝑡 = 0, 1, 2 do

12: Compute ⟨h⟩[𝑏] (1 − 𝑡) + ⟨h⟩[𝑏 + 2
𝑠𝑖+1−𝑖 ]𝑡 and

⟨v⟩[𝑏] (1 − 𝑡) + ⟨v⟩[𝑏 + 2
𝑠𝑖+1−𝑖 ]𝑡 . Store them in vectors ⟨h⟩𝑡

and ⟨v⟩𝑡 .
13: ⟨h⟩[𝑏] = ⟨h⟩[𝑏] (1 − 𝑢𝑖 ) + ⟨h⟩[𝑏 + 2

𝑠𝑖+1−𝑖 ]𝑢𝑖
14: ⟨v⟩[𝑏] = ⟨v⟩[𝑏] (1 − 𝑢𝑖 ) + ⟨v⟩[𝑏 + 2

𝑠𝑖+1−𝑖 ]𝑢𝑖
15: for 𝑡 = 0, 1, 2 do

16: 𝑎𝑡,𝑖 = MPC.InnerProduct(⟨h⟩𝑡 , ⟨v⟩𝑡 )
17: return 𝑎1, . . . , 𝑎𝑠𝑖+1 .

=
∑︁

𝑥,𝑦∈{0,1}𝑠𝑖+1 ((𝛼𝑖
˜𝑎𝑑𝑑𝑖+1 (𝑢, 𝑥,𝑦) + 𝛽𝑖 ˜𝑎𝑑𝑑𝑖+1 (𝑣, 𝑥,𝑦)))

(⟨�̃�𝑖+1⟩(𝑥) + ⟨�̃�𝑖+1⟩(𝑦))

+((𝛼𝑖 ˜𝑚𝑢𝑙𝑡𝑖+1 (𝑢, 𝑥,𝑦) + 𝛽𝑖 ˜𝑚𝑢𝑙𝑡𝑖+1 (𝑣, 𝑥,𝑦))) (⟨�̃�𝑖+1⟩(𝑥)⟨�̃�𝑖+1⟩(𝑦))

The polynomials
˜𝑎𝑑𝑑 and

˜𝑚𝑢𝑙𝑡 are defined by the circuit and known

by all provers. Hence, we can rewrite the Equation as:∑︁
𝑥,𝑦∈{0,1}𝑠𝑖+1 (

˜𝐴𝐷𝐷𝑖+1 (𝑣, 𝑥,𝑦) (⟨�̃�𝑖+1⟩(𝑥) + ⟨�̃�𝑖+1⟩(𝑦))

+ ˜𝑀𝑈𝐿𝑇 𝑖+1 (𝑣, 𝑥,𝑦)⟨�̃�𝑖+1⟩(𝑥)⟨�̃�𝑖+1⟩(𝑦))
(9)

Note that Equation 9 is of the same form as Equation 3 on shared

values of ⟨�̃�𝑖+1⟩ and our new algorithms can be applied with the

new public ˜𝐴𝐷𝐷𝑖+1 and ˜𝑀𝑈𝐿𝑇 𝑖+1.

Complexity Analysis. As most of the steps are computed locally,

the prover time of both Phase 1 and Phase 2 remains 𝑂 (𝐶), linear
in the size of the circuit. The additional MPC protocols in Step

15-16 of Algorithm 3 and Step 8 of Algorithm 4 do not introduce

any asymptotic overhead on the running time. The communication

complexity between the provers in Phase 1 is 𝑂 (𝐶) per prover if
these MPC protocols are implemented naively, and can be further

reduced to 𝑂 (1) per prover using Shamir’s packed secret sharing.

Excluding the scalar multiplication, there is no communication in

Algorithm 4 Phase 2 in MPC

Input: Shared multilinear extension ⟨�̃�𝑖+1⟩, shared evaluation

⟨�̃�𝑖+1 (𝑢)⟩ from Phase 1, and randomness

𝑔 = 𝑔1, . . . , 𝑔𝑠𝑖+1 , 𝑢 = 𝑢1, . . . , 𝑢𝑠𝑖+1 , 𝑣 = 𝑣1, . . . , 𝑣𝑠𝑖+1 ;

Output: Proofs of the sumcheck protocol 𝑎′
1
, . . . , 𝑎′𝑠𝑖+1 ;

1: g← Precompute(𝑔)
2: u← Precompute(𝑢)
3: procedure m← Initialize_Phase2(g,u))
4: ∀𝑦 ∈ {0, 1}𝑠𝑖+1 , setm[𝑦] = 0

5: for every multiplication gate (𝑧, 𝑥,𝑦) such that

˜𝑚𝑢𝑙𝑡𝑖+1 (𝑧, 𝑥,𝑦) = 1 do

6: m[𝑦] = m[𝑦] + g[𝑧] · u[𝑥]
7: return m;

8: ComputeMPC.ScalarProduct(⟨�̃�𝑖+1 (𝑢)⟩, ⟨𝑉𝑖+1⟩(𝑦)) for all
𝑦 ∈ {0, 1}𝑠𝑖+1 . Denote the result as ⟨v′⟩.

9: procedure (𝑎′
1
, . . . , 𝑎′𝑠𝑖+1 ) ← Sumcheckproof(⟨v′⟩,m, 𝑣)

10: Set ⟨𝑎𝑡,𝑖 ⟩ = 0 for 𝑖 = 1, . . . , 𝑠𝑖+1 and 𝑡 = 0, 1, 2

11: for each round 𝑖 = 1, . . . , 𝑠𝑖+1 do

12: for 𝑏 ∈ {0, 1}𝑠𝑖+1−𝑖 do ⊲ we use 𝑏 as both a number

and its binary representation

13: for 𝑡 = 0, 1, 2 do

14: ⟨𝑎′
𝑡,𝑖
⟩ = ⟨𝑎𝑡,𝑖 ⟩ + (⟨v′⟩[𝑏] (1 − 𝑡) + ⟨v′⟩[𝑏 +

2
𝑠𝑖+1−𝑖 ]𝑡) (m[𝑏] (1 − 𝑡) +m[𝑏 + 2

𝑠𝑖+1−𝑖 ]𝑡)
15: ⟨v′⟩[𝑏] = ⟨v′⟩[𝑏] (1 − 𝑣𝑖 ) + ⟨v′⟩[𝑏 + 2

𝑠𝑖+1−𝑖 ]𝑣𝑖
16: m[𝑏] = m[𝑏] (1 − 𝑣𝑖 ) +m[𝑏 + 2

𝑠𝑖+1−𝑖 ]𝑣𝑖
17: Reconstruct ⟨𝑎′

1
⟩, . . . , ⟨𝑎′𝑠𝑖+1 ⟩

18: return 𝑎′
1
, . . . , 𝑎′𝑠𝑖+1 .

Phase 2 other than sending the proofs and receiving the randomness.

The round complexity remains 𝑂 (𝑑 log𝐶) as in the original GKR

protocol.

The protocol can be made non-interactive via the Fiat-Shamir

heuristic [14]. Namely, in each round in Algorithm 3 (i.e., line

13 and 14), instead of receiving the randomness 𝑢𝑖 from the veri-

fier, it is computed non-interactively by hashing all the previous

messages computed by the provers. It can also be further modi-

fied to achieve zero-knowledge by adding masking polynomials

as proposed in [9, 46]. These modifications do not introduce any

overhead asymptotically to the computation and communication of

the provers, and we instantiate Step (2) in Protocol 2 with the non-

interactive and zero-knoweledge GKR protocol on shared values.

3.5 GKR in MPC for Matrix Multiplications

In this section, we further propose a confidential and verifiable

delegation scheme tailored for matrix multiplications. For simplic-

ity, we assume that 𝐴, 𝐵 and 𝐷 are all 𝑚 ×𝑚 matrices such that

𝐴 × 𝐵 = 𝐷 . 𝐴 and 𝐵 are secret-shared byV to the provers, or inter-

mediate shared values during a larger computation consisting of

the matrix multiplication as one step. The provers first execute an

MPC protocol to compute the shares of 𝐷 . Using the special MPC

8



Confidential and Verifiable
Machine Learning Delegations on the Cloud

Algorithm 5 Confidential and Verifiable Matrix Multiplication

Input: ⟨𝐴⟩, ⟨𝐵⟩, randomness

𝑔 = 𝑔1, . . . , 𝑔log𝑚, 𝑢 = 𝑢1, . . . , 𝑢log𝑚, 𝑣 = 𝑣1, . . . , 𝑣log𝑚 ;

Output: Proofs of the sumcheck protocol 𝑎1, . . . , 𝑎log𝑚 ;

1: g← Precompute(𝑔)
2: u← Precompute(𝑢)
3: procedure (⟨A⟩, ⟨B⟩) ← Initialize_MM(⟨𝐴⟩, ⟨𝐵⟩)
4: Initialize ⟨A⟩, ⟨B⟩ as all 0s
5: for ℓ ∈ [𝑚] do
6: for 𝑘 ∈ [𝑚] do
7: ⟨A⟩[ℓ] = ⟨A⟩[ℓ] + ⟨𝐴⟩𝑘,ℓ · g[𝑘]
8: ⟨B⟩[ℓ] = ⟨B⟩[ℓ] + ⟨𝐵⟩ℓ,𝑘 · u[𝑘]
9: procedure (𝑎1, . . . , 𝑎log𝑚) ← Sumcheckproof(⟨A⟩, ⟨B⟩, 𝑣)
10: for each round 𝑖 = 1, . . . , log𝑚 do

11: for 𝑏 ∈ {0, 1}log𝑚−𝑖
do ⊲ we use 𝑏 as both a number

and its binary representation

12: for 𝑡 = 0, 1, 2 do

13: Compute ⟨A⟩[𝑏] (1 − 𝑡) + ⟨A⟩[𝑏 + 2
𝑠𝑖+1−𝑖 ]𝑡 and

⟨B⟩[𝑏] (1 − 𝑡) + ⟨B⟩[𝑏 + 2
𝑠𝑖+1−𝑖 ]𝑡 . Store them in vectors ⟨A⟩𝑡

and ⟨B⟩𝑡 .
14: ⟨A⟩[𝑏] = ⟨A⟩[𝑏] (1 − 𝑣𝑖 ) + ⟨A⟩[𝑏 + 2

𝑠𝑖+1−𝑖 ]𝑣𝑖
15: ⟨B⟩[𝑏] = ⟨B⟩[𝑏] (1 − 𝑣𝑖 ) + ⟨B⟩[𝑏 + 2

𝑠𝑖+1−𝑖 ]𝑣𝑖
16: for 𝑡 = 0, 1, 2 do

17: 𝑎𝑡,𝑖 = MPC.InnerProduct(⟨A⟩𝑡 , ⟨B⟩𝑡 )
18: return 𝑎1, . . . , 𝑎log𝑚 .

protocol [26], the computation complexity on each server is𝑂 (𝑚3),
and the communication complexity is 𝑂 (𝑚2).

After computing 𝐷 , as observed by Justin Thaler in [41], the matrix

multiplication relationship can be modeled as a sumcheck equation:

�̃� (𝑥,𝑦) =
∑︁

𝑧∈{0,1} log𝑚
�̃�(𝑥, 𝑧)�̃�(𝑧,𝑦), (10)

where �̃�, �̃�, �̃� are multilinear extensions {0, 1}log𝑚 × {0, 1}log𝑚 →
F defined by the matrices 𝐴, 𝐵, 𝐷 . In particular, �̃�(𝑥,𝑦) = 𝐴𝑥,𝑦 ,

�̃�(𝑥,𝑦) = 𝐵𝑥,𝑦 and �̃� (𝑥,𝑦) = 𝐷𝑥,𝑦 for all 𝑥,𝑦 ∈ {0, 1}log𝑚
and

𝑥,𝑦 denote their corresponding value in [𝑚]. It is not hard to see

that Equation 10 holds for all 𝑥,𝑦 ∈ {0, 1}log𝑚
by the definition of

the polynomials, and thus the equation holds for the multilinear

extensions.

To verify the correctness of the matrix multiplication, the verifier

picks 𝑔,𝑢 ∈ Flog𝑚
and evaluates �̃� (𝑔,𝑢). Again this value can

also be sent by the prover during the GKR protocol in a larger

computation. The verifier then runs a sumcheck protocol with the

provers to check:

�̃� (𝑔,𝑢) =
∑︁

𝑧∈{0,1} log𝑚
�̃�(𝑔, 𝑧)�̃�(𝑧,𝑢) . (11)

We propose an efficient MPC protocol to execute this sumcheck

when the matrices 𝐴 and 𝐵 are secret-shared between 𝑛 provers.

Observe that Equation 11 is again a sumcheck protocol on the

product of two polynomials, and in the first step, we would like to

evaluate both polynomials on the Boolean hypercube, i.e., �̃�(𝑔, 𝑧)
and �̃�(𝑧,𝑢) for all 𝑧 ∈ {0, 1}log𝑚

. For each 𝑧, we have

�̃�(𝑔, 𝑧) =
∑︁

𝑡 ∈{0,1} log𝑚
𝐼 (𝑔, 𝑡)𝐴𝑡,𝑧 , (12)

where 𝐼 (𝑔, 𝑡) is the identity polynomial defined in Section 2. The

equation above holds for all 𝑔 ∈ {0, 1}log𝑚
by the definition of �̃�,

and thus holds for all 𝑔 ∈ Flog𝑚
because both sides are multilinear

extensions. This equation suggests that we can precompute 𝐼 (𝑔, 𝑡)
for all 𝑡 ∈ {0, 1}log𝑚

, and then sum up 𝐼 (𝑔, 𝑡)𝐴𝑡,𝑧 for each 𝑧, as

shown in Steps 1-8 in Algorithm 5. Crucially, as 𝑔 is known by

all the provers, this initialization is a linear function and can be

computed locally on each server. At the end of this step, each prover

ends up with a shared vector ⟨A⟩ of size𝑚. The same algorithm

applies to matrix 𝐵.

After the initialization, each prover holds the shares of two vec-

tors storing the evaluations of �̃�(𝑔, 𝑧) and �̃�(𝑧,𝑢) on the Boolean

hypercube. We then apply the dynamic programming technique

to compute the proofs of the sumcheck protocol. The algorithm is

presented in Steps 9-18 in Algorithm 5 and is similar to the protocol

in Algorithm 3. Only Steps 16 and 17 involve an MPC protocol to

compute the inner product.

Complexity Analysis. The main advantage of our scheme is that

the overhead to generate the proof is minimal compared to the

time of computing the matrix multiplication in MPC. The computa-

tion complexity on each prover is 𝑂 (𝑚2), dominated by Procedure

Initialize_MM. The communication complexity is only 𝑂 (𝑚) to
compute the inner products. These are smaller than the MPC pro-

tocol by a factor of𝑂 (𝑚). The proof size and the number of rounds

are both 𝑂 (log𝑚).

3.6 Polynomial Commitments in MPC

In the last round of the GKR protocol, V receives a claim about

the evaluation of a multilinear extension defined by the witness at

a random point from the provers. In order to complete the proto-

col, the provers further prove that the evaluation is correct using

a polynomial commitment scheme. We use multivariate polyno-

mial commitment proposed by Papamanthou et al. [36], which is

a generalization of the KZG polynomial commitment [25] to the

multivariate case.

Similar to [35], we also observe that all computations in the multi-

variate polynomial commitment are linear and can be computed

locally by each prover when the witness is secret-shared. The pro-

tocol of each prover is exactly the same as the original polynomial

commitment as long as we set the field of the arithmetic secret

sharing the same as the order of the base group of the bilinear map.

The protocol is presented in Protocol 3. The key generation remains

exactly the same as the original scheme. To commit to a shared

polynomial, it suffices to compute the shared commitent ⟨com⟩
on each prover by raising the public parameters to shares of the

multilinear extension evaluations. The final commitment is the

product of all shared commitments when using the additive sharing.

It can also be reconstructed via public Lagrange polynomials when

using the Shamir sharing.

9
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Protocol 3 (Confidential and Verifiable Multivariate Polynomial Commitment ). Let 𝑓 be a multilinear extension polynomial with
ℓ variables. Each prover holds the share of each evaluation of 𝑓 on the Boolean hypercube, denoted as ⟨𝑓 ⟩.

(1) KeyGen(1𝜆, ℓ) : Run bp ← BilGen(1𝜆). Select 𝑠1, · · · , 𝑠ℓ ∈ F randomly and compute pp = bp, {𝑔
∏𝑘

𝑖=1
(𝑏𝑖𝑠𝑖+(1−𝑏𝑖 ) (1−𝑠𝑖 ) ) } for all

𝑏 ∈ {0, 1}𝑘 , 𝑘 = 1, 2, . . . , ℓ .
(2) Commit(⟨𝑓 ⟩, pp): Compute ⟨com⟩ = 𝑔⟨𝑓 ⟩ (𝑠1,· · · ,𝑠ℓ ) . The commitment com is the product of the commitments ⟨com⟩ from all provers.
(3) Open(⟨𝑓 ⟩, 𝑡, pp): On input 𝑡 = (𝑡1, · · · , 𝑡ℓ ), compute ⟨𝑦⟩ = ⟨𝑓 ⟩(𝑡). Compute polynomials ⟨𝑞⟩𝑖 (𝑥) for 𝑖 = 1, · · · , ℓ such that

⟨𝑓 ⟩(𝑥1, · · · , 𝑥ℓ ) − ⟨𝑓 ⟩(𝑡1, · · · , 𝑡ℓ ) =
ℓ∑︁

𝑖=1

(𝑥𝑖 − 𝑡𝑖 ) · ⟨𝑞⟩𝑖 (𝑥)

Compute the shared proof as ⟨𝜋⟩ := (𝑔⟨𝑞⟩1 (𝑠 ) ), . . . , 𝑔⟨𝑞⟩ℓ (𝑠 ) ).
Reconstruct 𝑦 and output the final proof 𝜋 as the product of the shared proofs from all provers.

(4) Verify(com, 𝑦, 𝑡, 𝜋, pp): Parse the proof 𝜋 as (𝜋1, · · · , 𝜋ℓ ). If 𝑒 (com/𝑔𝑦, 𝑔) =
∏ℓ

𝑖=1
𝑒 (𝑔𝑠𝑖−𝑡𝑖 ),𝑝𝑖𝑖 ), output 1, otherwise, output 0.

F𝑓 (⟨𝑎⟩1, ⟨𝑎⟩2, . . . , ⟨𝑎⟩𝑛)
The functionality interacts with 𝑛 parties 𝑃1, . . . 𝑃𝑛 .

1: Upon receiving shares ⟨𝑎⟩1, ⟨𝑎⟩2, . . . , ⟨𝑎⟩𝑛 , reconstruct 𝑎 =

⟨𝑎⟩1 + ⟨𝑎⟩2 + . . . + ⟨𝑎⟩𝑛 mod 𝑝 , where 𝑎 can be a vector of

values.

2: Compute 𝑦 = 𝑓 (𝑎).
3: Sample random values ⟨𝑦⟩1, ⟨𝑦⟩2, . . . , ⟨𝑦⟩𝑛−1 from F𝑝 . Set
⟨𝑦⟩𝑛 = 𝑦 − (⟨𝑦⟩1 + ⟨𝑦⟩2 + . . . + ⟨𝑦⟩𝑛−1).

4: Send ⟨𝑦⟩𝑖 to 𝑃𝑖 .

Figure 2: Ideal functionality F of function 𝑓 .

After receiving the evaluation point 𝑡 from V , each prover com-

putes the partial quotient polynomials ⟨𝑞⟩𝑖 (𝑥) as shown in the

protocol using the long division by 𝑥𝑖 − 𝑡𝑖 for 𝑖 = 1, . . . , ℓ . As the di-

visor is the same, it is easy to see that 𝑓 (𝑥1, · · · , 𝑥ℓ )− 𝑓 (𝑡1, · · · , 𝑡ℓ ) =∑ℓ
𝑖=1
(𝑥𝑖−𝑡𝑖 ) ·𝑞𝑖 (𝑥) when reconstructed. Then the partial proofs can

be computed by raising pp to the corresponding multilinear evalu-

ations of ⟨𝑞𝑖 ⟩(𝑥). Finally, the Verify algorithm remains exactly the

same as the original polynomial commitment in the plain setting.

Complexity Analysis. Protocol 3 does not involve any MPC and

all the computations are done locally other than reconstructing

the commitment and the proof. The prover time of each prover is

𝑂 (2ℓ ). The proof size and the verifier time are both 𝑂 (ℓ).

3.7 Putting Everything Together

Theorem 1. Protocol 2 is a confidential and verifiable delegation
scheme under Definition 3.

Proof. We first define the security of the MPC protocols using the

framework of Universal Composition(UC) [8]. The ideal function-

ality F is defined in Figure 2. It receives the shares of the input

from all parties, reconstructs the values, evaluates the function and

shares the output to the parties. We consider a malicious adversary

A that can corrupt up to 𝑡 provers.

Security is defined by comparing a real interaction and an ideal

interaction. Let real[Z,A,Π] denote the output bit of the environ-
mentZ interacting with adversaryA and honest parties executing

protocol Π in the real world. Let ideal[Z,S, F ] denote the output
bit of the environmentZ interacting with a simulator S and the

ideal functionality F where all parties forward their inputs to F
and forwards the output to the environment. We say that a proto-

col Π securely realizes a functionality F if for every adversary A
attacking the real interaction, there exists a simulator S attacking

the ideal interaction, such that for all environmentsZ,

| Pr[real[Z,A,Π] = 1] − Pr[ideal[Z,S, F ] = 1] | ≤ negl(𝜆) .

As we are using maliciously secure MPC protocols as blackboxes,

we have the following lemma:

Lemma 2. ProtocolsMPC.Add,MPC.Mult,MPC.InnerProduct,

MPC.ScalarProduct securely realizes the ideal functionalities F with
𝑓 being addition, multiplication, inner product and scalar product.

Completeness. We show the completeness by comparing Algo-

rithm 1 with Algorithm 3. By the ideal functionality of

MPC.InnerProduct and MPC.Add (and subtraction as well), the

output of Algorithm 3 after reconstruction is the same as the

output of Algorithm 1. Similar arguments can be made for Algo-

rithm 4 and the polynomial commitment in Protocol 3. Therefore,

Pr[Verify(𝑦, 𝑥, 𝜋, pp) → 1] = 1.

Knowledge Soundness. The knowledge soundness follow from

the fact that the view of V is identical to the original protocol

between one verifier and one prover. All the algorithms and pro-

tocols proposed in this section are computing the same messages

in the proof when the witness is secret-shared. Therefore, we view

®𝑃 = {𝑃1, . . . , 𝑃𝑛} as a single prover P∗. As proven in [43], for any

malicious P∗, there exist an extractor 𝜀 to extract the witness from

the proof with an overwhelming probability in the algebraic group

model (AGM) [17] based on the 𝑞-strong bilinear Diffie-Hellman

assumption. Therefore, Protocol 2 is knowledge sound using the

same extractor 𝜀.

𝑡-zero-knowledge.
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Lemma 3. Prove() in Protocol 2 securely realizes ZKP.P, the prover
protocol of the ZKP scheme based on GKR and polynomial commit-
ments 2.1.

By Lemma 2, MPC.Add,MPC.Mult,MPC.InnerProduct,
MPC.ScalarProduct securely realizes the ideal functionalities F
with the corresponding computation 𝑓 . By the composition theorem

of the UC framework [8], Algorithm 3 securely realizes the ideal

functionality with 𝑓 defined by Algorithm 1. Similarly, Algorithm 4

securely realizes Algorithm 2, and Protocol 3 securely realizes the

KZG polynomial commitment. Therefore, Prove() securely realizes

ZKP.P.

Lemma 4 ([35]). If (Setup,P,Verify) in the plain setting is a zk-
SNARK, and Prove on shared values securely realizes P, then the
scheme is 𝑡-zero-knowledge.

Finally, by Lemma 4 shown in [35, Theorem 1], the scheme is 𝑡-

zero-knowledge, which completes the proof.

4 EXPERIMENTS

We have fully implemented our confidential and verifiable delega-

tion scheme for both general circuits and matrix multiplications,

and we present the experimental results in this section.

Implementation and Setting. The system is implemented in C++.

The sumcheck protocol and the GKR protocol are based on the

open-source code of Libra [2]. For MPC computations, we adopt

the MP-SPDZ library [4] to implement an additive secret-sharing

protocol with malicious security and all but one honest party. Our

implementation involves targeted modifications to the original

Libra code, specifically focusing on locations requiring MPC com-

putations. We integrate MP-SPDZ’s C++ interface for share com-

putations and merge proofs before transmission to the verifier. To

enhance circuit evaluation efficiency, we optimize by "grouping"

multiplication gates in a layer, enabling the use of MP-SPDZ’s inner

product interface.

We ran all experiments on an AWS c5.9xlarge instance with an Intel

Xeon Platinum 8000 processor and 72GB of RAM. We simulated

multiple provers in a LAN setting with 10 Gbps network bandwidth

using the tc command. We report the average running time over

10 executions.

4.1 Performance of Our System

We first benchmark our confidential and verifiable delegation sys-

tem in this section.

General circuits.We executed our system with 2 provers on cir-

cuits ranging from 2
17

to 2
20

gates.We break down prover’s runtime

and communication (column Comm.) and show each component

in Table 2. For a circuit size of 2
18
, our confidential and verifiable

delegation protocol’s end-to-end prover time is 163 seconds. Ap-

proximately 11% of this time is spent on evaluating the circuit in

MPC, while the majority (89%) is dedicated to the MPC protocol

for ZKP generation. This is because although most of the steps in

# of gates Prover Circ Eval ZKP (MPC) ZKP (local) Comm.

2
17

78.5 8.61 69.8 0.02 30.34

2
18

162.71 17.25 145.43 0.035 60.41

2
19

314.5 34.27 281.73 0.074 120.53

2
20

631.21 68.48 562.59 0.15 240.76

Table 2: Breakdown of prover time in seconds and communi-

cation in megabytes for general circuits.

Matrix Size Prover Matrix Mult ZKP (MPC) ZKP (Local) Comm.

64 × 64 0.139 0.101 0.0359 0.00017 1.605

128 × 128 0.254 0.18 0.074 0.0006 4.617

256 × 256 0.601 0.591 0.15 0.003 18.398

Table 3: Breakdown of prover time in seconds and communi-

cation in megabytes for matrix multiplications.

2 3 4 5
Number of Provers
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)

Prover Time vs Number of Provers

64x64
128x128
256x256
512x512

Figure 3: Prover time with various number of provers

Algorithm 3 and 4 are performed locally, the size of the MPC com-

putation is still linear in the size of the circuit. Note that the time

reported in the table includes both the offline phase and the online

phase of the MPC protocol. The time of the local computation to

generate the proofs is very small compared to the other two parts.

The proof size is from 13.8KB for 𝐶 = 2
17

to 14.9KB for 𝐶 = 2
20
,

which grows logarithmically with the size of the circuit. Similarly,

the verifier ranges from 13ms to 15ms.

Matrix Multiplications. In Table 3, we demonstrate the perfor-

mance of our specialized matrix multiplication protocol by varying

the matrix size from from 64 × 64 to 256 × 256. As shown in the ta-

ble, the breakdown is completely different from the case of general

circuits. In particular, for𝑚 = 256, 98.3% of the prover time is spent

on computing the matrix multiplication in MPC. The additional

overhead to generate the ZKP is minimal, thanks to our special

protocol that improves both the computation and the communi-

cation by 𝑂 (𝑚). Moreover, the special protocol is generally faster

than the protocol for general circuits in all aspects. For example,

implementing a 64×64 matrix multiplication would require a circuit

of size more than 2
18
, and the prover time of the special protocol

11
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Figure 4: Comparison to schemes in [35]. The time is for the

online phase of 2 provers.
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Figure 5: Neural network inference. The time is total time

ranging from 1 to 10 images.

is 1170× faster than the protocol in Table 2 for 𝐶 = 2
18
, and the

communication is 37× smaller. Finally, the proof size ranges from

0.15KB to 0.2KB, and the verifier time is from 0.02ms to 0.036ms,

both are succinct.

Scaling to multiple servers. We demonstrate the performance of

the matrix multiplication scheme with varying numbers of provers

(2 to 5) in Figure 3. The running time scales linearly with the number

of provers, remaining practical. For a 512×512 matrix multiplication

on 5 provers, even with all but one potentially malicious, it takes

only 3.77 seconds.

4.2 Comparison to Prior Work

In this section, we further compare the performance of our system

to the prior work of [35], which is implemented in the Github

repository at [5]. As [35] only reports the online time of MPC

assuming the multiplication triplets have been generated, we also

only show the online time of our scheme to get a fair comparison.

Figure 4 shows the comparison of the prover time to the three

schemes in [35]. As shown in the figure, our scheme improves the

1 2 3 4 5 6 7 8 9 10
Number of Images

102

103

104

105

106

Ti
m

e 
(s

)

Inference Time vs Number of Images
our matmul
our circuit
ozedemir circuit

Figure 6: Lenet inference. The time is total time ranging from

1 to 10 images.

prover time significantly. For a circuit with 2
20

gates
2
, our online

prover time is 10× faster than the scheme based on Groth16, 80×
faster than the one based on Marlin and 133× faster than the one

based on Plonk. The comparison demonstrates the lightweight use

of MPC in our confidential and verifiable delegation scheme to

generate the ZKP based on interactive proofs.

However, the proof size of our scheme is admittedly larger than

these schemes because of the underlying cryptographic techniques.

The proof size of these schemes is only several hundreds of bytes,

while it is tens of KBs in our scheme and it further grows with the

depth of the circuit.g

4.3 Machine Learning Inference

We implemented confidential and verifiable machine learning in-

ferences by secret-sharing a pre-trained neural network model to 3

provers via additive sharing. The experiment utilized the MNIST

dataset [29] comprising hand-written digit images with dimensions

28 × 28. The images, flattened to a vector of size 784, are secret-

shared to the servers. The neural network model, trained using

PyTorch, consists of three fully connected layers (128, 84, and 10

neurons) with ReLU activation functions.

In Figure 5, a single inference and its proof generation on three

provers take only 2.6 seconds. Comparing our protocol for general

circuits with the new matrix multiplication protocol, our scheme is

12.7× faster. Additionally, it is 88× faster than the prior work [35]

(Groth16). Our implementation supports multiple image inferences,

taking 26.9 seconds for 10 images.

We also tested our scheme on the convolutional neural network of

Lenet [28]. It consists of 2 convolution layers with 5 × 5 kernels

and 2 padding, 2 average pooling layers, and 3 fully connected

layers of size 120,84, and 10 respectively. We implement convolu-

tions as matrix multiplications and apply our special protocol, thus

the dimension is much larger than the fully connected neural net-

work above. There are special MPC protocols for convolutions with

convolution triples [38], but we were not able to obtain efficiency

2
Groth16 and Marlin use the rank-1-constraint-systems (R1CS) instead of circuits, and

we execute them on R1CS with the same number of constraints.
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improvement in our setting, and designing special protocols for

convolutions is left as a future work.

As shown in Figure 6, the running time for 1 inference is 288 sec-

onds on three provers. Likewise, we include the performance of

implementing the lenet inference as a circuit. A single convolution

on a 28 × 28 image with kernel size 5 will result in a 1024 × 1024

square matrix multiplication, which translate into 2
20

gates. The

running time of our scheme with the new protocol for matrix mul-

tiplication is 14.8 × faster than the protocol for general circuit, and

74.8 × faster than the prior work of [35]. Our implementation takes

2888 seconds to inference 10 images.

5 CONCLUSIONS

This paper introduces a confidential and verifiable delegation scheme

by integrating MPC and ZKP. We demonstrate efficient proof gener-

ation for interactive-proof-based protocols within MPC, emphasiz-

ing a specialized protocol for matrix multiplications with asymptot-

ically smaller proof generation time than MPC evaluation. Since we

observe that MPC is typically the dominant cost, future work could

explore enhancing ZKP generation in MPC by utilizing multiple

provers for improved running time.
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