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Abstract—The Gradient Boosting Decision Tree (GBDT) is a
well-known machine learning algorithm, which achieves high
performance and outstanding interpretability in real-world
scenes such as fraud detection, online marketing and risk
management. Meanwhile, two data owners can jointly train
a GBDT model without disclosing their private dataset by
executing secure Multi-Party Computation (MPC) protocols.
In this work, we propose NodeGuard, a highly efficient two-
party computation (2PC) framework for large-scale GBDT
training and inference. NodeGuard guarantees that no sensitive
intermediate results are leaked in the training and inference.
The efficiency advantage of NodeGuard is achieved by applying
a novel keyed bucket aggregation protocol, which optimizes the
communication and computation complexity globally in the
training. Additionally, we introduce a probabilistic approx-
imate division protocol with an optimization for re-scaling,
when the divisor is publicly known. Finally, we compare
NodeGuard to state-of-the-art frameworks, and we show that
NodeGuard is extremely efficient. It can improve the privacy-
preserving GBDT training performance by a factor of 5.0 to
131 in LAN and 2.7 to 457 in WAN.

Index Terms—MPC, Two-party computation, Gradient boost-
ing decision tree, Secure bucket aggregation

1. Introduction

As a well-known machine learning algorithm, Gradient
Boosting Decision Tree [1] and its variant XGBoost [2] are
widely used for regression and classification tasks. A lot
of works have successfully integrated the GBDT algorithm
to real-world scenarios such as fraud detection [3], recom-
mendation system [4], online marketing [5], [6] and risk
management [7]. To achieve a better performance, one can
imagine that a model owner collaborates with some other
data owners to train the model with an expanded dataset.
Due to the user privacy policies and laws such as GDPR [8],
it might be inappropriate for companies or organizations to
exchange data in plaintext.

The federated learning (FL) paradigm was proposed by
Google [9] where numerous data owners jointly train a
machine learning model without directly revealing their pri-
vate data. However, some works [10], [11], [12], [13] have
already showed that the leakage of intermediate results in FL
is problematic. This issue is addressed by secure multi-party
computation (MPC) [14], [15], [16], which allows multiple
parties to jointly compute a function and reveals only the
pre-defined function output. Recent works such as [17],
[18], [19], [20] use MPC protocols to construct a privacy-
preserving GBDT framework. While some cryptographic
operations are executed via plaintext in SecureBoost [17],
both Pivot [18] and Squirrel [20] avoid executing critical
plaintext computations by applying mixed cryptographic
primitives. However, they all rely on a computationally ex-
pensive homomorphic encryption (HE) scheme in exchange
for a communication efficiency. Meanwhile, [19] relies on
a trusted third party in the preprocessing stage in order to
generate correlated randomness for its online stage.

Our Contribution. In this work, we introduce
NodeGuard, a two-party computation framework for
privacy-preserving GBDT training on a distributed large-
scale dataset. We summarize our contribution as follows:

• A novel two-party bucket aggregation protocol. The pro-
tocol does not rely on a computationally inefficient HE-
based scheme, but achieves an even better communication
efficiency. We then provide the ideal functionality FKeyBuc

2PC
implemented by our protocol under the universally com-
posable framework [21].

• A probabilistic approximate division protocol. We extend
the truncation protocol proposed in [22] to a probabilistic
approximate division protocol and prove that it is also
valid for a (public) negative divisor. We further improve
the accuracy by applying a signed/unsigned conversion to
avoid bad events mentioned in [23].

• A comprehensive evaluation. We compare NodeGuard
with state-of-the-art secure GBDT frameworks and pro-
vide an in-depth evaluation in Section 7. We test the effi-
ciency of each framework in both LAN and WAN network



settings, and NodeGuard stands out with an improvement
by a factor of up to 131 in LAN and up to 457 in WAN.

2. Related Work

Federated learning. The concept of federated learning
(FL) was proposed by Google in 2016 [9]. Depending
on how the data is distributed, federated learning can be
categorized as horizontal (HFL), vertical (VFL) and transfer
learning (TFL) [24]. During a learning process [25], the
intermediate results such as gradients are exchanged among
parties instead of the private data holdings. Although the
private input remains local, recent works [10], [11], [12],
[13] showed that the leaked intermediate information can
be used to infer the private sensitive data.

Privacy-Preserving GBDT. The first privacy-preserving
tree was done by Lindell et al. [26] on a horizontally
partitioned dataset. The following works such as [27], [28]
continue this line of work. Recently, both Pivot [18] and
Squirrel [20] are designed to train GBDT on a vertically
partitioned dataset using mixed cryptographic primitives.
Some other works [29], [30], [31] also consider to make
use of a trusted execution environment (TEE) to accelerate
the training process. As already mentioned by [17], [18],
[19], [20] and some optimizations [32], [33], the secure
bucket aggregation is the most costly computation during
the privacy-preserving GBDT training process. While [26],
[34] choose to use sharing-based protocols, Fang et al. [19]
introduces a permutation-based approach, and other frame-
works such as SecureBoost [17], Pivot [18] and Squirrel
[20] implement the HE-based bucket aggregation protocol.

Differential Privacy. By using Differential Privacy (DP)
[35], [36] to protect the privacy of users, a calibrated noise
is added to the data so that any individual identity is
indistinguishable from others. However, SecureBoost [17]
has pointed out that applying DP can only protect private
user data to a certain degree. And Fletcher et al. [37] further
shows that the prediction accuracy will be significantly
affected by using DP.

For more details regarding privacy-preserving tree-based
model learning, we refer to a survey [38].

3. Preliminaries

Fixed-Point Computation. Suppose x̃ ∈ R, we let p
denote the fraction precision and ⌊·⌋ denote round down of
the fraction part. We define a fixed-point value x as a ℓ bit
integer using two’s complement, and let x be x̃’s fixed-point
representation on Z2ℓ , where x = ⌊x̃ · 2p⌋. Then x consists
of ℓ− p bits integer part and p bits fraction part.

Secret Sharing. In 2PC case, a secret value x ∈ Z2ℓ is
2-out-of-2 shared between parties, if x = x1 + x2 where
x1, x2 ∈ Z2ℓ . We denote such a sharing scheme as [·].
Addition and scalar-multiplication can be locally computed.
Given a Beaver’s Triple [16], [39], [40], multiplication of
two shared values [x] and [y] requires parties to interact. We
apply the Goldschmidt-Division algorithm [41] to compute

the reciprocal [1/y]. The secure argmax computation is
realized by executing multiple MPC comparison protocols
[40] over the inputs using a binomial tree. The nonlinear
sigmoid function is approximately computed by evaluating
a piece-wise linear function [42] using above operations.

Threat Model. Our protocol is secure against semi-
honest adversaries. We follow the universally composable
framework (UC) described in [21], and we introduce our
work based on the composition theorem provided in [21].

Review of Gradient Boosting Tree. Given a dataset
X ∈ RN×F , where N denotes the sample amount and F
denotes the feature amount, a GBDT model sequentially
trains T decision trees. We assume that all trees are perfect
binary trees. If D denotes the depth constraint, we have
nnon = 2D − 1 non-leaf nodes and nleaf = 2D leaf nodes
for each tree. By applying the approximate split finding
algorithm [2], [43], we let If,b denote the indices of samples
sorted into the b-th bucket of a certain feature f . Samples
are sorted into B buckets based on the split points of a
feature, which results overall F · (B − 1) split candidates.

We use the node split metric of XGBoost as an exam-
ple. 1 XGBoost uses first order and second order gradient
statistics of the chosen loss function (L) to split a tree node:

gi = ∂ŷi
(t−1)L(yi, ŷi

(t−1)), hi = ∂2
ŷi

(t−1)L(yi, ŷi
(t−1))

(1)
where ŷi

(t−1) represents the prediction result for a sample
xi at the previous tree building iteration, and yi denotes the
real label. ŷi0 is set to basescore at the beginning.

The gradient and hessian sums of one bucket are:

Gf,b =
∑

i∈If,b

gi, H
f,b =

∑
i∈If,b

hi. (2)

Then the gradient sum of i-th candidate in a feature is
defined as: GL =

∑
b≤i G

f,b, GR =
∑

i<b≤B Gf,b. The
same goes for the hessian sum.

Finally, the best split feature and the threshold value are
determined by comparing and finding the maximum gain
over all split candidates at each tree node:

Gain =
1

2
(

G2
L

HL + λ
+

G2
R

HR + λ
− (GL +GR)

2

HL +HR + λ
)−γ, (3)

where λ and γ are regularization parameters.
Once the best split information of a tree node is found,

samples are allocated into the child nodes, which updates
If,b at that child node. The above algorithm will be per-
formed repeatedly at each child node until the depth D is
reached. Then leaf weight is computed as:

ω = −

∑
i∈Ileaf

gi∑
i∈Ileaf

hi + λ
, (4)

where Ileaf denotes the indices of samples falling into one
leaf node.

1. Our work is also applicable in other tree variants such as the classi-
fication and regression tree (CART) [44].



Protocol ΠKeyBuc

Private inputs: For each bucket b of each feature f , Ph holds
If,b, where |If,b| ≤ N , 1 ≤ b ≤ B and 1 ≤ f ≤ Fh. At a node
j, parties hold [gj ], where gj = (gj,1, ..., gj,N ).
Public inputs: Public parameters.
Outputs: For each bucket b of each feature f , parties output [zf,bj ],
where zf,bj =

∑
i∈If,b

gj,i.

Preprocessing:
• Ph sends (BucSGen, j,Ph, sid) to FPre

2PC, for each bucket b of
each feature f :
– If j = 1, receives rf,b, where rf,b = (rf,b1 , ..., rf,bN ).
– Receives [mf,b

j ]h, where mf,b
j = kt,j · rf,b.

• P1−h sends (BucSGen, j,P1−h, sid) to FPre
2PC:

– Receives kj , where kj = (kj,1, ...kj,N ).
– For each bucket b of each feature f receives [mf,b

j ]1−h.
Protocol:

1. If j = 1, for each bucket b of each feature f :
– Ph computes a secret vector sf,b = (sf,b1 , ..., sf,bN ), where

sf,bi = 1 if i ∈ If,b and sf,bi = 0 otherwise.
– Ph computes vf,b = sf,b−rf,b, then sends vf,b to P1−h.

2. P1−h computes qt,j = [gj ]1−h − kj , sends qj to Ph.
3. Parties locally output for each bucket b of each feature f :

– Ph sets [zf,bj ]h =
∑

i∈If,b

qj,i+
∑

i∈If,b

[gj,i]h+ [mf,b
j ]h.

– P1−h sets [zf,bj ]1−h =kj · vf,b + [mf,b
j ]1−h.

Figure 1. Two-party keyed bucket aggregation protocol

Private GBDT Training. In this paper, we focus on
the vertical federated learning (VFL) setting, where P0

holds a dataset X0 ∈ RN×F0 and P1 holds the same
samples with different feature space X1 ∈ RN×F1 , such
that X = X0||X1. Without loss of generality, we let P0

hold the whole label vector Y ∈ RN . All resources (e.g.
X and Y) and sensitive intermediate values (e.g. bucket
distribution If,b, gradient, etc.) are not revealed. The node
split information is only visible to party Ph (h ∈ {0, 1}),
who holds the best split candidate. The other party P1−h

knows nothing more than the bit h. We achieve this using
the same method as others [18], [19], [20], [26]: given h,
parties reveal the split feature identifier to Ph. It is still an
open question whether we could even hide the h.

We use a shared indicator [u] to hide the node sample
space after splitting, where ui = 1 indicates that a sample
xi is allocated to left child node. In the private training
process, we update the shared gradient at each child node
by computing [g2j ] = [gj ]⊙ [u] and [g2j+1] = [gj ]− [g2j ]
instead of ”allocating” samples to the child node. Thus,
parties do not have to update the local indices If,b.

4. Keyed Bucket Aggregation

In this section, we formally describe the keyed bucket
aggregation protocol ΠKeyBuc in Fig. 1 and demonstrate the
protocol in Fig. 2.

At any node j, parties hold a freshly computed [gj ],
where gj = {gj,1, ..., gj,N}. They are willing to compute the
sum Gf,b of each bucket b of each feature f . The feature

 Offline Preprocessing

If :

Local Local 

Online Aggregation

Figure 2. A demonstration of keyed bucket aggregation protocol ΠKeyBuc

owner (say Ph ∈ {P0,P1}) who knows the distribution
of this feature holds indices If,b, where each n ∈ If,b
indicates that a sample xi belongs to the bucket b of feature
f . Such If,b can also be presented as an indicator vector
sf,b, where sf,b = (sf,b1 , ..., sf,bN ) and sf,bi = 1 if i ∈ If,b
and sf,bi = 0 otherwise.

Preprocessing Stage. For each bucket b of each feature
f , we let Ph hold rf,b to mask its secret sf,b, where rf,b =
(rf,b1 , ..., rf,bN ). At any node j (including the initial node),
we let P1−h hold kj to mask its secret share [gj ]1−h. We
call kj the key of the node j. Then for each bucket b of
each feature f at that node, both parties receive [mf,b

j ] where
mf,b

j = kj · rf,b, which is used to unmask the final result.
The functionality FPre

2PC in Appendix A can be implemented
by a trusted party which hands over all outputs. It can also
be realized by a two-party multiplication protocol.

Online Stage. At the initial node, Ph sends a masked
vector vf,b for each bucket b of each feature f to P1−h,
where vf,b = sf,b−rf,b. Note that this message is sent only
once in the entire GBDT training process regardless of the
number of non-leaf nodes and the number of trees. Then
at any node j (including the initial node), P1−h masks its
private input [gj ]1−h with kj by computing qj = [gj ]1−h−
kj and sends qj to Ph. Now, Ph is able to compute the sum
of the corresponding [gj,i]h and qj,i, where i ∈ If,b for each
bucket b of each feature f . Without knowing If,b, P1−h

simply computes kj ·vf,b. Finally, both parties unmask their
(local) shares by adding [mf,b

j ].

4.1. Complexity Analysis

An abbreviated summary is placed in Table 1. We ob-
serve that ΠKeyBuc already provides a solution with min-
imum communication rounds compared to all other pro-
tocols. Although the communication rounds required in
ΠIndiBuc (Indicator-based) is the same as in ΠKeyBuc, the
communication overhead in ΠKeyBuc is strictly less than
in ΠIndiBuc. Compared to ΠPermBuc (Permutation-based), a
communication advantage of the proposed ΠKeyBuc holds,
if T nnon > FB

2(F−1) and approximately T nnon > B
2 . Com-



TABLE 1. COMPARISON OF NodeGuard TO THE EXISTING SECURE
TWO-PARTY BUCKET AGGREGATION PROTOCOLS REGARDING

COMMUNICATION COST (BITS). IN [20], q IS SET TO 2109 FOR THE
SECURITY GUARANTEE IN LWE. ℓ IS SET TO 64.

Framework Protocol Rounds Overhead
Xie. et al. [34] Indicator T nnon 4TFBNℓnnon

Fang et al. [19] Permutation 2T nnon 2TFNℓnnon

Squirrel [20] LWE-HE 2T nnon > 2TN nnon log2 q
NodeGuard Sharing T nnon FBNℓ+ 2TNℓnnon

Ideal Functionality FKeyBuc
2PC

Private inputs: Let P = {Ph,P1−h}. For each bucket b of each
feature f , Ph holds indices If,b, where 1 ≤ b ≤ B and 1 ≤ f ≤
Fh. Additionally, at a node j of a tree t, Ph holds [gj ]h and P1−h
holds [gj ]1−h, where gj =(gj,1, ..., gj,N ).
Public inputs: Public parameters.
Internal state: ready ∈ {true, false}.
Outputs: For each bucket b of each feature f , Ph receives [zf,bj ]h

and P1−h receives [zf,bj ]1−h, where and zf,bj =
∑

i∈If,b

gj,i.

Initialization: Set ready = false.
Compute:
• Upon receiving If,b from Ph for each bucket b of each feature

f , check whether ready is set to false:
– If yes, record all If,b, set ready = true.
– Otherwise, send (failed,Ph, sid) to Ph.

• Upon receiving (Comp, [gj ]i,Pi, sid) from each Pi ∈ P at a
node j, and [zf,bj ]c for each bucket b of each feature f at that
node j from S corrupting Pc:
1. Compute gj = [gj ]h + [gj ]1−h.
2. For each bucket b of each feature f , compute zf,bj , where

zf,bj =
∑

i∈If,b

gj,i. Then compute [zf,bj ]1−c = zf,bj −

[zf,bj ]c.
3. For each bucket b of each feature f , send ([zf,bj ]i,Pi, sid)

to Pi ∈ P .

Figure 3. Two-party Functionality FKeyBuc
2PC

pared to ΠHEBuc (HE-based), we omit the communication
O(2TFB nnon log q) of ΠHEBuc for simplicity. The condition
becomes T nnon >

FB ℓ
2(log2 q−ℓ) . We end up with a conclusion

that ΠKeyBuc achieves a better communication performance,
when the convergence of a GBDT model requires numerous
large-depth trees. Due to default training parameters sug-
gested by [45], the above conditions are easily satisfied.

4.2. Theorem and Ideal Functionality

We provide the Theorem 1 and the ideal functionality
FKeyBuc

2PC in this section, and we place a proof sketch in
Appendix B:
Theorem 1. Protocol ΠKeyBuc shown in Fig. 1 UC-realizes
FKeyBuc

2PC described in Fig. 3 in the FPre
2PC-hybrid model, in

the presence of a semi-honest adversary who can corrupt
Pi where Pi ∈ {Ph,P1−h}, with static corruption.

5. Generalized Division by a Public Value

In this paper, we extend the truncation protocol in
[22] by replacing the public divisor with y, where y ∈

(0, 2ℓx ] ∪ [2ℓ − 2ℓx , 2ℓ) in the field Z2ℓ (y is considered
to be a power of two and positive in [22]). In short, we
prove that for a large enough field, the reconstructed result
after a local division, with high probability, is at most 1 off
from the correct result x/y. Note that if a decimal number
x is negative, we represent it in the field as 2ℓ − ⌊|x|⌋, and
the division result x/y becomes 2ℓ − ⌊|x|/y⌋ (in case y is
positive). We let Rec() denote the reconstruction function.
The proof of Theorem 2 can be found in Appendix C.
Theorem 2. In field Z2ℓ , let x ∈ [0, 2ℓx ] ∪ [2ℓ − 2ℓx , 2ℓ),

where l > ℓx+1 and given shares [x]1, [x]2 of a shared
[x]. Let z ∈ Z2ℓ , where z = ⌊x/y⌋. If y ∈ (0, 2ℓx ], let
[z]1 = [x]1/y and [z]2 = 2ℓ − (2ℓ − [x]2)/y. If y ∈
[2ℓ − 2ℓx , 2ℓ), let [z]1 = 2ℓ − [x]1/(2

ℓ − y) and [z]2 =
(2ℓ− [x]2)/(2

ℓ−y). Then with probability 1−2ℓx+1−ℓ,
Rec([z]1, [z]2) ∈ {z − 1, z, z + 1}.
Optimization. We take the above computations as pro-

tocol ΠProDivPub, it can be used for re-scaling if the divisor is
public (e.g. to avoid overflow in Equation 3). The accuracy
of ΠProDivPub relies on the fact that the most significant bit
(MSB) of share [x]1 is most likely not the same as [x]2,
if |x| < 2ℓx ≪ 2ℓ. As an example of the failure, we
suppose x = 8, y = 2, [x]1 = 4 and [x]2 = 4, where
ℓ = 8. By applying ΠProDivPub (without shifting p decimal
precision), P0 obtains [z]1 = [x]1/y = 2, and P1 obtains
[z]2 = 2ℓ − ((2ℓ − [x]2)/y) = 130. Obviously, the recon-
structed value z = [z]1+[z]2 is far from the desired x/y = 4.
To fix this issue, we extend ΠProDivPub with the signed and
unsigned integer conversion. Instead of directly dividing
their local shares by the public value, both parties firstly
convert their local shares from unsigned integers to signed
integers, then do the same computation as above. Thus, P1’s
signed local output becomes [z]2 = 0 − ((0 − 4)/2) = 2,
where P0 still has [z]1 = 4/2 = 2. And once both parties
convert their local shares back to the unsigned integer, this
yields a correct reconstructed result as [z]1 + [z]2 = 4 (or
approximately correct with an error magnitude of 1). Thus,
the bad event happens only if the MSBs of shares [x]1 and
[x]2 are both opposite to the MSB of the secret value x.

6. Optimizations on GPU

We implement NodeGuard by adding all GBDT-related
functions to the codebase of Piranha [46]. Please refer to
[46] for basic implementation details. In addition, we make
many improvements to make it more efficient. We showcase
the most significant ones in this section.

Carryout with Optimized Overhead. One of Piranha’s
main contribution is the iterator-based in-place carryout im-
plementation, which cuts the peak memory load in half. We
illustrate their procedure in the left part of Fig. 4. Notably,
when computing carryout for a 32-bit value, they decompose
it into 32 Bytes. Then perform the operation between even
bytes and odd bytes in a tree order. The total communication
volume is 16 + 8 + 4 + 2 + 1 = 31 Bytes.

To be more memory-efficient, we decompose the 32-bit
value into 4 Bytes, reducing the memory consumption by
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Figure 4. An illustration of Piranha’s (left) and our (right) in-place carryout
implementation for a 32-bit value. B denotes a Byte, b denotes a bit. A
bold border points to one byte memory

c.a. 87.5%. Different from Piranha, we perform the opera-
tion between higher bytes and lower bytes. When we reach
1 Byte or 8 bits, we use bit operation within that byte. The
process is shown in the right part of Fig. 4. The total commu-
nication volume of NodeGuard is 2+1+1+1+1 = 6Bytes,
which is only 20% of Piranha.

Reciprocal with Optimized Rounds. Reciprocal is an
important operation in GBDT, which is required to compute
gains (Equation 3) and leaf weights (Equation 4). Piranha
uses the second order Taylor approximation to calculate
reciprocal. The most expensive step in its implementation
is to find the least power of 2 that is greater than the input,
so as to determine the variable floating-point precision in the
Taylor polynomial computation. Piranha implements this in
a naı̈ve approach, which loops through all the powers of 2
and compares them with the input one by one. Still take the
32-bit input as an example, assuming a comparison costs
5 rounds as mentioned in the above Section 6. The total
communication rounds of this step are 32× 5 = 160.

NodeGuard employs the Goldschmidt-Division algo-
rithm [41] to approximate reciprocal, which leads to a higher
precision with the same number of iterations. A similar
preparation step to find the least power of 2 is also required
here, in order to identify a good initial estimate. Differently,
NodeGuard performs all the comparisons in a single round
and appends an adjacent xor after that. Note that xor is a
cheap local operation without any communication between
parties. The total communication rounds are only 5, which
is 1

32 of Piranha. The only sacrifice here is the peak memory
load, which is never an issue during our evaluations.

7. Evaluation

7.1. Evaluation Setup

Testbed Environment. We run all the experiments on
a server with 2 CPUs, Intel(R) Xeon(R) Platinum
8360Y CPU @ 2.40GHz, and 16 × 128GB of RAM.
The server is equipped with 4 GPUs, Nvidia RTX
A5000 including 24GB of dedicated VRAM. For network
settings, we consider LAN with 1Gbps bandwidth + 0.2ms
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Figure 5. Training loss on Energy and Breast Cancer

round-trip latency, and WAN with 100Mbps bandwidth +
40ms round-trip latency, both simulated with tc tool 2.

Baseline. To verify the accuracy, we compare
NodeGuard with the plaintext XGBoost library. To verify
the efficiency, we compare NodeGuard with following
state-of-the-art works (Squirrel [20] has not published the
source code yet):

• MP-XGB [34] 3, benchmarked natively on CPU.
• SecretFlow [19], [47] 4, benchmarked natively on GPU.
• Pivot [18] 5, benchmarked in the pre-built docker on

CPU.
Fixed-Point Computation. We set the arithmetic shar-

ing length ℓ = 64 and the fraction precision p = 20.

7.2. Accuracy Comparison

To validate the accuracy of NodeGuard, we train the
model with several public datasets and compare the training
results to the plaintext training results.

Model Hyperparameter and Dataset. We use the same
parameters for both plaintext and NodeGuard, such that the
tree number T = 20, depth D = 4 and bucket size B =
16. The datasets Concrete Compressive Strength [48] and
Energy [49] are selected for regression tasks, Breast Cancer
[50] and Credit [51] are used for classification tasks. As for
test set, we either use the original one if it is provided, or we
split 20% of the dataset. All features are evenly allocated.

Accuracy. We run each experiment 5 times and record
the average accuracy in Table 3. We further plot the de-
creased training loss when a GBDT model is trained with
Energy or with Breast Cancer dataset. As shown in both
Table 3 and Fig. 5, NodeGuard provides a very close training
accuracy compared to the plaintext model.

7.3. Efficiency Comparison

We use random synthetic datasets to evaluate the effi-
ciency, and we set sample size N = 10, 000, depth D = 4,
feature size F = 10 and bucket size B = 8 as default
parameters.

2. https://man7.org/linux/man-pages/man8/tc.8.html
3. https://github.com/HikariX/MP-FedXGB at commit 46807ea
4. https://github.com/secretflow/secretflow at commit d7bb1d1
5. https://hub.docker.com/repository/docker/lemonwyc/pivot at commit

942b66c



TABLE 2. END-TO-END TRAINING TIME (seconds per Tree)

N F B D LAN WAN
NodeGuard SecretFlow MP-XGB Pivot NodeGuard SecretFlow MP-XGB Pivot

10, 000 10 8 4 2.67 19.64 19.78 239 35.53 97.30 444.10 7,285
50, 000 10 8 4 4.58 33.05 174.52 499 44.61 156.99 1,309.65 7,781
10, 000 20 8 4 3.84 19.70 42.94 501 39.25 101.33 971.43 17,925
10, 000 10 16 4 3.92 19.59 38.81 434 39.65 102.26 745.56 15,473
10, 000 10 8 5 5.60 27.85 31.15 398 45.55 140.24 1,052.94 13,075

TABLE 3. ACCURACY COMPARISON FOR REGRESSION (REG.) AND
CLASSIFICATION (CLS.) TASKS. WE USE CONCRETE(N=1030, F =8),

ENERGY(N=19735, F =27), BREAST(N=683, F =30) AND
CREDIT(N=30000, F =23) TO BENCHMARK THE ACCURACY.

Type Dataset Metric Plain. NodeGuard

Reg. Concrete RMSE 5.91 5.20
Energy 85.46 85.14

Cls. Breast F1 0.97 0.98
Credit 0.47 0.46
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Figure 6. Benchmark of running time in each framework with increased
training size in LAN

End-to-End Training Comparison. Given a set of
training parameters, we measure the end-to-end training
time of existing works in Table 2. Regardless of the train-
ing parameters, NodeGuard outperforms all other existing
frameworks in both LAN and WAN settings. Such a perfor-
mance gain is derived from the optimized communication
cost and simpler local computation. Compared to the most
competitive framework SecretFlow, NodeGuard is 5.0 × to
7.3 × faster in LAN, 2.7 × to 3.5 × faster in WAN. Against
Pivot, NodeGuard is 71 × to 131 × faster in LAN, and 174
× to 457 × faster in WAN.

Impact of Training Size. We run experiments with
different training parameters and report the results in Fig. 6.
The plot of Pivot shows that its training time increases expo-
nentially as the training size grows. When the GBDT model
is trained with a larger sample size or a larger bucket size,
MP-XGB shows a similar performance as Pivot. SecretFlow
also tends to run with an exponentially increasing time,
when the sample size and the max depth explodes. Apart
from the dominance in all experiments, NodeGuard scales
the best among all the projects, with a smooth linear growth.
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Figure 7. Micro-benchmark of com-
putation modules on increased fea-
ture size in LAN
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Figure 8. Running time of ΠIndiBuc

and ΠKeyBuc on increased sample
size in LAN

Module Scalability Comparison. We decompose the
secure GBDT training process into several time-consuming
modules, including bucket aggregation, gain, argmax, update
sample space and leaf. We take the increased feature size
as an example and show our experiment result in Fig. 7.
As expected, the running time of ΠKeyBuc stays stable and
shares only a small portion of the entire training time. The
secure gain computation for each split candidate and the
argmax computation now become the most costly part.

Impact of other Improvements. To better analyze
the efficiency gain of ΠKeyBuc, we also implement another
sharing-based protocol ΠIndiBuc in NodeGuard to eliminate
the influence of other improvements we have made. As
shown in Fig. 8, NodeGuard improves the communication
time by 90% and reduces the local computation time by at
least 50%, which matches the theoretical analysis in Table 1.

Inference Efficiency. In NodeGuard, inference is com-
puted without disclosing any intermediate results. This is a
user-friendly approach (e.g. in cloud service), if a GBDT
model is trained jointly and the input sample must be kept
secret. NodeGuard performs inference parallelly on all input
shared samples. Given a shared GBDT model of D = 4 (16
leaves) per tree and a dataset of (N = 500, 000, F = 10), it
takes 18.6s to handle all samples in LAN.

8. Conclusion

In this work, we have proposed NodeGuard, a highly ef-
ficient two-party computation framework for training large-
scale gradient boosting decision tree. NodeGuard is secure
and accurate for both training and inference without disclos-
ing sensitive intermediate results. Benefiting from a novel
secure bucket aggregation protocol and other components,
NodeGuard outperforms the existing state-of-the-art secure
GBDT frameworks in both LAN and WAN settings.



Appendix A.
Preprocessing Ideal Functionality

See Fig. 9.

Appendix B.
Proof Sketch

We construct an adversary S interacting with FKeyBuc
2PC

such that no environment machine Z can tell with non-
negligible probability whether it is interacting with A and
ΠKeyBuc in the real world or with S in the ideal process
for FKeyBuc

2PC . For the following proofs, we always let parties
complete the computation for all 1 ≤ b ≤ B and 1 ≤ f ≤
Fh, and do not explicitly say that ”for each b of each feature
f”.

Suppose Ph is corrupted, we denote the input of Ph

as If,b and [gj ]h at a node j. Firstly, S plays the role of
FPre

2PC, samples rf,b = (rf,b1 , ..., rf,bN ) where rf,b
$← Z2ℓ ,

and [mf,b
j ]h where [mf,b

j ]h
$← Z2ℓ . S sends all rf,b and

[mf,b
j ]h to Ph. At the initial node, S plays the role of

an honest P1−h, receives vf,b from A. Then S sends all
If,b to FKeyBuc

2PC , which sets the internal state ready to
be true. At any node j, S samples qj = (qj,1, ..., qj,N )

where qj,i
$← Z2ℓ , sends qj to A. S computes [zf,bj ]h as

A will do during the execution of ΠKeyBuc, sends A’s input
[gj ]h and A’s output [zf,bj ]h to FKeyBuc

2PC . Note that A’s input
[gj ]h is received by S, when Ph switches the role with
P1−h. In the real protocol execution, qj is computed by

FPre
2PC

Private inputs: None.
Public inputs: Public parameters.
Internal State: ready ∈ {true, false}.
Initialization: Set ready = false.
Compute:
Let P = {Ph,P1−h}. Upon receiving
(BucSGen, j,Pi, sid) from Pi ∈ P:
• If j = 1: For each bucket b of each feature f ,

sample rf,b, where rf,bi
$← Z2ℓ . Record and send

all rf,b to Ph and set ready = true.
• If ready = true:

– Sample kj , where kj = (kj,1, ..., kj,N ) and
kj,i

$← Z2ℓ . Send kj to P1−h.
– For each bucket b of each feature f : Compute

mf,b
j = kj ·rf,b then sample [mf,b

j ]h
$← Z2ℓ and

compute [mf,b
j ]1−h = mf,b

j − [mf,b
j ]h. Send all

[mf,b
j ]i to Pi ∈ P .

• If ready = false, send (failed,Pi, sid) to Pi ∈ P .

Figure 9. Two-party Preprocessing Functionality FPre
2PC

P1−h as qj = [gj ]1−h − kj , where in the ideal execution,
qj is chosen by S randomly. We notice that since each
kj is distributed uniformly at random to the environment
machine Z in the real protocol execution, the computed qj is
distributed uniformly at random as well. Thus, the message
sent from S in the ideal execution is indistinguishable from
the one computed by P1−h in the real protocol execution.

Suppose P1−h is corrupted, we denote the input of
P1−h as [gj ]1−h at a node j. Firstly, S plays the role
of FPre

2PC, samples kj , where kj = (kj,1, ...kj,N ) and
kj,i

$← Z2ℓ , and [mf,b
j ]1−h where [mf,b

j ]1−h
$← Z2ℓ . S

sends both kj and [mf,b
j ]1−h to P1−h. At the initial node,

S plays the role of an honest Ph, samples vf,b where
vf,b = (vf,b1 ..., vf,bN ) and vf,bi

$← Z2ℓ , sends all vf,b to
A. Then at any node j, S receives qj from A, computes
[zf,bj ]1−h just as A will do. S sends A’s input [gj ]1−h and
A’s output [zf,bj ]1−h to FKeyBuc

2PC . In the real protocol execu-
tion, vf,b is computed by Ph as vf,b = sf,b − rf,b, where
in the ideal execution, vf,b is chosen by S randomly. Since
rf,b is distributed uniformly at random to the environment
machine Z , the computed vf,b is distributed uniformly at
random as well. Thus, the message sent from S in the ideal
execution is indistinguishable from the one computed by Ph

in the real protocol execution.

Appendix C.
Proof of Theorem 2

Proof: Let [x]1 = x+r mod 2ℓ, where r is uniformly
random in Z2ℓ , then [x]2 = 2ℓ − r. if y ∈ (0, 2ℓx ], we
decompose r as r1·y+r2, where r2 < y. If y ∈ [2ℓ−2ℓx , 2ℓ),
we decompose r as r1 · (2ℓ − y) + r2, where r2 < 2ℓ − y.
We prove that if 2ℓx ≤ r < 2ℓ − 2ℓx , Rec([z]1, [z]2) ∈
{z − 1, z, z + 1}. Consider the following four cases:

• Case 1: If x ∈ [0, 2ℓx ] and y ∈ (0, 2ℓx ], then 0 <
x + r < 2ℓ and [x]1 = x + r without modulo. Let
x = x1·y+x2, where 0 ≤ x1 ≤ ⌊x/y⌋ and 0 ≤ x2 < y.
Then we have x + r = (x1 + r1) · y + x2 + r2 =
(x1 + r1 + c) · y + (x2 + r2 − c · y), where c = 0 if
x2 + r2 < y and c = 1 otherwise. After the division,
[z]1 = x1 + r1 + c and [z]2 = 2ℓ − r1. Therefore,
Rec([z]1, [z]2) = 2ℓ + x1 + c = z + c.

• Case 2: If x ∈ [2ℓ − 2ℓx , 2ℓ) and y ∈ (0, 2ℓx ], then
x+r > 2ℓ and [x]1 = x+r−2ℓ. Let x = 2ℓ−x1 ·y−x2,
where 0 ≤ x1 ≤ ⌊(2ℓ−x)/y⌋ and 0 ≤ x2 < y. We have
x+r−2ℓ = (r1−x1)·y+r2−x2 = (r1−x1−c)·y+(r2−
x2+c·y), where c = 0 if r2 > x2 and c = 1 otherwise.
After the division, [z]1 = r1−x1−c and [z]2 = 2ℓ−r1.
Therefore, Rec([z]1, [z]2) = 2ℓ − x1 − c = z − c.

• Case 3: If x ∈ [0, 2ℓx ] and y ∈ [2ℓ − 2ℓx , 2ℓ), then
0 < x+ r < 2ℓ and [x]1 = x+ r without modulo. Let
x = x1 · (2ℓ − y) + x2, where 0 ≤ x1 ≤ ⌊x/(2ℓ − y)⌋
and 0 ≤ x2 < 2ℓ−y. Then we have x+r = (x1+r1) ·
(2ℓ−y)+x2+r2 = (x1+r1+c) ·(2ℓ−y)+(x2+r2−
c · (2ℓ−y)), where c = 0 if x2+r2 < 2ℓ−y and c = 1
otherwise. After the division, [z]1 = 2ℓ−x1−r1−c and



[z]2 = r1. Therefore, Rec([z]1, [z]2) = 2ℓ − x1 − c =
z − c.

• Case 4: If x ∈ [2ℓ−2ℓx , 2ℓ) and y ∈ [2ℓ−2ℓx , 2ℓ), then
x+r > 2ℓ and [x]1 = x+r−2ℓ. Let x = 2ℓ−x1 ·(2ℓ−
y)− x2, where 0 ≤ x1 ≤ ⌊(2ℓ− x)/(2ℓ− y)⌋ and 0 ≤
x2 < 2ℓ−y. We have x+r−2ℓ = (r1−x1) ·(2ℓ−y)+
r2−x2 = (r1−x1−c)·(2ℓ−y)+(r2−x2+c·(2ℓ−y)),
where c = 0 if r2 > x2 and c = 1 otherwise. After
the division, [z]1 = 2ℓ + x1 − r1 + c and [z]2 = r1.
Therefore, Rec([z]1, [z]2) = 2ℓ + x1 + c = z + c.

Finally, the probability that our assumption holds, i.e. the
probability that r being in range [2ℓx , 2ℓ), is 1 − 2ℓx+1−ℓ.
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