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Abstract

This paper introduces a new method for training decision trees and random forests using
CKKS homomorphic encryption (HE) in cloud environments, enhancing data privacy from multiple
sources. The innovative Homomorphic Binary Decision Tree (HBDT) method utilizes a modified
Gini Impurity index (MGI) for node splitting in encrypted data scenarios. Notably, the proposed
training approach operates in a single cloud security domain without the need for decryption,
addressing key challenges in privacy-preserving machine learning. We also propose an efficient
method for inference utilizing only addition for path evaluation even when both models and inputs
are encrypted, achieving O(1) multiplicative depth. Experiments demonstrate that this method
surpasses the previous study by Akavia et al.’s by at least 3.7 times in the speed of inference. The
study also expands to privacy-preserving random forests, with GPU acceleration ensuring feasibly
efficient performance in both training and inference.
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1 Introduction

Decision trees excel in machine learning for their simplicity and ease of interpretation, effectively
organizing data for regression and classification. Random Forests (RF), an evolution of decision
trees, leverage multiple data subsets to build various trees, enhancing generalization and reducing
overfitting, thus boosting effectiveness and reliability.

The focus of this paper is on training binary decision trees and random forests using CKKS ho-
momorphic encryption (HE) in a outsourced cloud server environment. This approach is particularly
crucial in maintaining the privacy and security of data when it is sourced from multiple institutions.
By encrypting the data using HE, the study addresses the challenges of combining sensitive infor-
mation from different sources without exposing it to potential security risks. The Homomorphic
Binary Decision Tree (HBDT) method introduced in this paper employs a modified Gini Impurity
index (MGI) for node splitting. Additionally, by utilizing the SIMD capabilities of CKKS, HBDT
was able to calculate multiple instances of MGI simultaneously, and based on this, efficiently identify
the split condition, enabling training without decryption. This modification speeds up the training
process.

Moreover, this study showcases an efficient inference algorithm that operates on the outcomes
obtained from the proposed training method. This algorithm, drawing parallels to the approach
in Mahdavi et al’s study [3], uses addition for tree evaluation to maintain a constant number of
multiplication depths. A critical distinction of the proposed method is that it derives model data
from encrypted sources, forming an encrypted model. This aspect is vital for efficient inference within
encrypted environments, as it changes how inference inputs are handled and split conditions are
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processed at each tree node. This nuanced approach differentiates it from prior research, highlighting
its comprehensive consideration of these aspects.

In situations where data from multiple institutions is combined for cloud-based training, the
paper emphasizes the importance of preserving privacy through HE encryption. The risk of decryp-
tion during training poses significant concerns, such as potential data breaches by entities holding
decryption keys and performance bottlenecks if a third party is involved. Additionally, due to the
value of the data or legal regulations, decrypting original data, intermediate results, or models dur-
ing or after training might be prohibited. This study marks a pioneering achievement in creating an
encrypted binary decision tree model. It uniquely processes encrypted training data using only HE op-
erations within a single security domain of an outsourced server environment, effectively eliminating
the dependence on multiple, non-collaborative servers.

We also propose a method that allows efficient inference when both the model and input are
encrypted in terms of the required wall clock time by reducing the amount of the required compu-
tation. The proposed method effectively utilizes the SIMD feature of CKKS to efficiently determine
whether the input satisfies the split condition of each node. Moreover, we have achieved efficient
inference by performing the tree evaluation with only O(1) multiplication, even when both the input
and model are encrypted. Notably, in the same environments where only CPU is used for compu-
tation and with similar parameters, we show the proposed method’s inference performance was over
3.7 times higher than that in Akavia et al.’s study [2], which also protects the model using CKKS.

This research also extends to efficient RFs for both training and inference, proposing new sam-
pling techniques for training encrypted data and an efficient way to collect the inference results for
many individual trees into a single ciphertext.

2 Backgrounds

2.1 Notation

The notations used are listed in Table 1. We assume the size of vectors used as inputs for
encryption is always M . If the length of a vector included in a ciphertext is less than M , we assume
zeros are appended to the end of that vector to make its size M .

2.2 Binary Decision Tree

We consider a binary decision tree (BDT) algorithm as CART [9]. We suppose the independent
variables associated with the BDT are ordinal categorical variables represented as X1, X2, X3,...,
Xd, whose categories are represented as a set of positive integers [1, ni] (i ∈ [1, d]), respectively.
Fig. 1 illustrates an example of a BDT and an inference with the BDT. We assume that the split
conditions in non-leaf nodes are represented as Xj ≤ k (k ∈ [1, nj−1]) for each node Ni. During the
inference stage, the path progresses to the left child node from a parent node if the split condition
is satisfied; otherwise, it moves to the right child node.

As shown in the figure, if the input for inference is (X1,X2,X3) = (2,1,5), the result of evaluating
the tree is Y = 1 where Y represents the target variable, which is expressed as a set of possible
categories [1, t]. Additionally, in this paper, unlike conventional methods, during inference in the
proposed HBDT, where both the model and the inference input are encrypted by CKKS HE, we
represent the chosen edges selected in the inference process as 0, contributing to enhancing the
inference speed. This approach can be used when the data is numeric by binning the data to make
it a ordinal categorical variable.

RF utilizes multiple BDTs trained independently. Their predictions are aggregated to achieve
a more accurate final prediction. Thus, RF can be treated as an ensemble model employing BTSs
[22]. Section 6 discusses the extension of BDT to Homomoprhic RF.

2.3 CKKS (Cheon-Kim-Kim-Song) Scheme

CKKS is a homomorphic encryption algorithm that efficiently handles polynomial operations
on encrypted real numbers and is widely applied in fields requiring real number computations for
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Table 1: Notations and Conventions
Symbol Meaning

[a, b] The set of the integers between a and b, including the boundary.

d,t d=# of independent variables, t=# of categories of target variable

ni, nmax ni=# of categories in Xi, nmax=Max(n1, · · · , nd).

tn, sz tn= total # of rows in training data, sz = 2⌈log2(tn)⌉

M , w M=the total number of slots in a single ciphertext, w = ⌈tn/M⌉
Xi, Y Xi=an independent variable (i ∈ [1, d]) and Y=the target variable

xi(y) a category in Xi(Y )

v If v⃗ is a vector of real numbers, v is an encryption containing v⃗. If
|v⃗| > M , it may represent multiple ciphertexts. The notation v⃗ is used
interchangeably to represent the encryption of a vector v⃗.

v[i] i-th slot of ciphertext v, i ∈ [0,M − 1]

evk, sk, pk evaluation key, secret key, public key

1⃗a(⃗0a) A vector filled with as many 1s(0s) as a slots. If it is a vector with no a,
this means that a is 1.

(⃗1a||⃗0b)g A vector that is filled with a 1s and b 0s, starting at the front and
repeating g times. The 1s and 0s can be reversed. ((a+ b) ∗ g ≤ M)

dep The depth of the decision tree.

⊕,⊖,⊙ Add(), Sub(), Mult() operations (Refer to Section 2.3). ⊙ is the hadamard
product operator when used between plaintext vectors.

−→xi,j ,
−→yk, ci,j,k Refer to Section 5.

Ni Ni is a node at position i(∈ N) in a tree. N1 is the root node and
N2i, N2i+1 are left and right child of Ni, respectively.

Traini The training data used for training Ni.

𝑋! ≤ 3

𝑋" ≤ 4𝑋# ≤ 4

𝑌 = 2 𝑌 = 1 𝑌 = 1 𝑌 = 2

Inference	Input:	 𝑋", 𝑋!, 𝑋# = 2,1,5
(d=3 case)

0 1

01

Chosen paths are 
marked as 0

Depth(dep) = 2

Inference output     
(target variable Y) = 1

𝑁!

𝑁" 𝑁#

𝑁$ 𝑁% 𝑁& 𝑁'

𝑁(: node ID
(𝑁!: root node
𝑁"(: left child of 𝑁(
𝑁"()!:right child of 𝑁()

Figure 1: An example of a Binary Decision Tree and an Inference example

privacy-preserving machine learning [14]. It leaves the error for encryption thus, the computation
result is approximate. CKKS supports the following algorithms given in Fig. 2 [27, 29].

The rescaling algorithm [14] is integrated into theMult() algorithm. Following each multiplication
and rotation, key switching occurs. For simplicity, detailed key-related information is omitted in
this description. Our implementation utilizes both GPU versions of RNS-CKKS [24, 21, 11, 28] and
the CPU version [17].

We use ApproxSign(x) [13, 17], which receives one ciphertext x and returns an encryption of a
vector (a0, · · · , aM−1) where ai = 1 if x[i] > 0; or ai = −1 if x[i] < 0 (i ∈ [0,M − 1]). We also use
the ApproxInv(x) [29, 17]: it returns an encryption of the multiplicative inverse of the values in x. It
is implemented using the newton approximation method.

The CKKS parameters are as follows: M is 32768 for GPU and 16384 for CPU. The maximum
modulus bit size of the ciphertext is 1555 for GPU and 777 for CPU, and the quantization bit size
is 42 bits for GPU and 28 bits for CPU. The multiplication level provided after bootstrapping is 9
for GPU and 5 for CPU.
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• KeyGen(1λ) takes a security parameter λ as input and returns pk, sk, and evk.

• Encpk(
−→x ) outputs x that maintains the vector structure as −→x .

• Decsk(x) outputs −→x if x is a valid encryption from −→x Else it returns ⊥.

• Add(x, y)(Sub(x, y)) outputs a new ciphertext −→x +−→y (−→x −−→y ). We use ⊕(⊖) to simplify the description. y can be

replaced to a real number k in this case k is treated as a vector of M where every slot is set to k.

• Level(x) returns x’s level, the number of further possible multiplication with x.

•Multevk(x, y) returns an (approximate) encryption of (x0∗y0 , · · · , xM−1∗yM−1) whose level is Min(Level(x), Level(y))−
1. y can be replaced to a real number k in this case k is treated as a vector of M where every slot is set to k, and the

output ciphertext’s level is Level(x)− 1. We use ⊙ to simplify the description of this operation.

• Rotevk(x, i) returns an encryption of (xi, xi+1, · · · , xM−1, x0, · · · , xi−1), if i ∈ [0,M − 1]. If i is negative, it refers to

M + i. We use the notation ’¡¡’ to simplify the description of it.

• Bootevk(x) returns a fresh ciphertext x′ that has approximation of −→x if Level(x) ≥ lminboot
, the number of required

multiplication level to perform Boot. lminboot
depends on what bootstrapping algorithm is used and parameter.

CKKS algorithms

Figure 2: CKKS algorithms

Table 2: Summary of Related Work (1: Inference privacy is out of scope. 2: No cloud server exists in their

settings.)
Requirements (refer to Sec.

4.2)
1) 2) 3) 4) 5)

[18, 19, 20, 1, 41, 42] O X N/A1 X N/A2

[33],[31] O O O X X
[2] O O O X O

[7], [8], [10], [4], [23], [26], [38], [43],
[40], [35], [39], [45], [16], [5], [32], [3]

No training algorithm

3 Related Work

Table 2 provides the summary of related work. The requirements 1) ∼ 5) are described in
Section 4.2. A recent study comparable to our research is [2], which offers almost the same level of
functionality as our proposed method, except for the use of decryption during the training process.
We show that our HBDT has superior inference performance compared to [2]. Furthermore, the
difference from the recent paper [3] is that, while [3] efficiently performs tree evaluation in situations
where threshold and variable information are exposed, our HBDT provides efficient inference even
when such information is encrypted.

There exist some research on utilizing multi-party computation (MPC) for privacy preserving
tree-based models [34, 40, 44]. In their work, using MPC requires a lot of communication among mul-
tiple participants, and the communication complexity increases exponentially with the tree depth.
Thus, it is difficult to be used when high network cost should be avoided or only poor communi-
cation is supported. However, the proposed approach utilizing homomorphic encryption performs
all operations in ciphertext space, requiring minimal communication. Therefore, it is difficult to
compare the performance between the proposed method and those with MPC. Therefore, in this
study, the performance of the proposed method is compared only with privacy preserving decision
tree training/inference methods that utilize homomorphic encryption with minimal communication.

4 Models

4.1 System Setting and Protocol Overview

Our system, based on configurations from existing literature (referenced as [29, 27]), is engineered
to amalgamate training data across various security domains, aiming to develop superior quality
models. In line with the legal standards of the authors’ country, the system incorporates a Key
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Manager (KM) tasked with scrutinizing inference results to ensure privacy compliance. The system’s
architecture involves three principal entities: Users, KM, and a Cloud Server (CS). Users, serving as
data proprietors, contribute encrypted training data and also function as clients who receive inference
outcomes from the CS. They provide encrypted input for inference, which is then processed by the
CS. The CS is responsible for generating encrypted models using data from multiple users and
conducting inferences using these models with the encrypted input supplied by users. Prior to
dispatching these inference results to the users, they are thoroughly vetted by the KM to confirm
legal compliance. An illustrative overview of all the participants and their operational protocols is
provided in Fig. 3. During the key distribution phase in Fig. 3-(a), each user generates his/her own
public and secret key pair. He/she sends his/her ID and public key to KM. KM sends each user the
system public key(pks), after generating the system evaluation key (evks) and the public/secret key
pair (pks, sks) for homomorphic encryption. Then, the system evaluation key (evks) and public key
(pks) are sent to CS.

Figure 3: System Setting and Protocol Overview [27]

Security Model : Analogous to many previous studies, each participant can play the role of an
adversary except KM, and their behavior is defined as an honest-but-curious (HBC) model. To
avoid issues regarding the security of CKKS [30], we suppose that CKKS is CPA-secure [14, 12].

4.2 Problem Definition

We present the goals of this study, excluding efficiency issues. We designed HBDT to preserve
the following requirements:

1. Training data privacy: The training data of a user should not be exposed to the other par-
ticipants.

2. Model privacy: No participant should be able to obtain information about the model.

3. Inference privacy: The CS should not be able to obtain information about the inputs of the
independent variables sent by users for inference.

4. Non-interactive training: Once the encrypted training data is passed to the CS, the subse-
quent training process is performed solely by the CS without the help of other entities.

5. Single security domain for CS: CSs might maliciously cooperate with each other because they
exist in a single security domain, and no decryption keys are allowed to be used during training
or inference, except for the final inference result.

5 Homomorphic Binary Decision Tree (HBDT)

Data representation: The format and representation of the training data and the input for inference
are addressed. As both are generated as CKKS ciphertexts, they need to be representable in the
ciphertext domain.
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Fundamentally, all variables are represented using one-hot encoding in both training and infer-
ence. The length of each variable’s vector representation is denoted by nmax. This allows for natural
expansion by introducing additional vector elements containing 0 values. This representation en-
ables expressing a single row of training data (x1, · · · , xd, y) as a vector containing d × nmax + t
elements. We optimize efficiency by handling the training data on a column-wise basis. To illus-
trate, if the training data were in plaintext, each variable Xi would be represented as a set of vectors
(−→xi,1, · · · ,−−−−→xi,nmax). Here, −→xi,j denotes the set of all j-th bits across the one-hot encoded values of Xi

in the training data, with each containing tn elements. Similarly, the data corresponding to Y as
(−→y1, · · · ,−→yt ), where |−→yj | = tn. This is suitable when the users provide vertically partitioned training
data to CS.

During the training process, all this data is transmitted to CS in an encrypted state. When
encrypted, these variables are stored in ciphertexts in slots of M units each. Therefore, a column
vector of a variable −→xi,j is stored in a total of w ciphertexts, denoted as ci,j,1, · · · , ci,j,w. The cipher-
texts for −→yj are represented as c

(y)
j,1 , · · · , c

(y)
j,w. Ultimately, the initial data used for training is defined

as Train1= {ci,j,k|(i, j, k) ∈ [1, d]× [1, nmax]× [1, w]}
⋃
{c(y)j,k |(j, k) ∈ [1, t]× [1, w]}.

Tree representation: In a BDT, as introduced in Section 2.2, non-leaf nodes maintain (j, k) to
represent the splitting condition Xj ≤ k, while leaf nodes have the inference result, denoted as
o(∈ [1, t]). However, in the proposed HBDT, the values j, k, and o are all maintained in an encrypted
state. Moreover, even non-leaf nodes store the o value corresponding to the most frequent Y label
present in that node during training. This is later used in special cases to determine the o value
for leaf nodes. Another difference of HBDT from BDT is that to apply SIMD (Single Instruction,
Multiple Data) for inference on encrypted inputs, the encrypted j, k, and o values for each node are
collectively managed at the same level using the slots in the ciphertext, allowing for bulk storage
and management. For more details, refer to Section 5.2.

5.1 HBDT-Training algorithm

The training algorithm in HBDT is depicted in the following Fig. 4. It first performs training
N1 with the initial data Train1 then repeats training the descendant nodes until Queue is empty.

1. Queue.enqueue((N1,Train1))
2. While (Queue is not empty) do
2.1 (Ni,Traini)← Queue.dequeue()
2.2 o, s← FindMaxY(Traini) %% most frequent Y label = o

2.3 b← CheckEmpty(Traini, s)%% b = 0 if Traini has no row otherwise b = 1

2.4 If (i == 1) then Set Ni.y ← o else Ni.y ← o ∗ b+ (1− b) ∗N⌊i/2⌋.y

2.5 If (i ≥ 2dep) then go to Step 2 %% Ni is leaf node

2.6 (Ni.j,Ni.k) ← FindSplitCond(Ni,Traini) %% Representing condition Xj ≤ k

2.7 (N2i,Train2i),(N2i+1,Train2i+1)← UpdateData(Ni,Traini)
2.8. Queue.enqueue((N2i,Train2i),(N2i+1,Train2i+1))
3. Return model ={N1, · · · , N2dep−1}

Training(Train1,dep)

Figure 4: Training algorithm with encrypted data

In Step 2.2, FindMaxY() counts the rows corresponding to each Y label in Traini to find the Y
label with the highest frequency. If we assume the data is of plaintext, finding the Y label o with
the largest ||−→yo|| (o ∈ [1, t]) suffices. To execute this on encrypted data Traini, FindMaxY() computes

c
(sum)
j ←

∑w
k=1 c

(y)
j,k for each Y label j, then uses log2(M) rotations and addition operations on

c
(sum)
j to position the sum of values in all slots of c

(sum)
j into the first slot. Combining the first slot

values of all c
(sum)
j (j ∈ [1, t]) creates a single ciphertext cacc where the combined values are spread

across slots #1 to #t, followed by applying the FindMaxPosGroup() function (referenced in Appendix
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A), which sets the slot with the highest value in cacc to 1 and the rest to 0, then multiplies it to
a ciphertext where an integer i is encoded in the ith slot. Then, we perform addition of every slot
value and put the result in the 1st slot as before to obtain the resulting ciphertext o.

Additionally, it computes cty ←
∑t

j=1 c
(sum)
j and creates an encrypted ciphertext s containing

the sum of all slot values of cty in its first slot, following similar procedures. s[0] has the number of
valid labels in Traini.

CheckEmpty() checks if there is a valid data row in Traini by checking s[0] > 0 in Step 2.3. It
performs b← s · ApproxInv(s) to return b. Based on the characteristics of the ApproxInv() in [29], if
s[0] = 0, b[0] becomes 0. If s[0] is non-zero, b[0] becomes 1.

We examine the pivotal step 2.6 of the training process. Unlike [2], this step does not require
decryption at all. The goal of Step 2.6 is to find the split condition Xj ≤ k that minimizes the
MGI at Ni. For every possible split condition Xj ≤ k, we separate Traini into Train2i and Train2i+1,
calculating the frequency of each Y label value in both dataset. Viewing it as a plaintext, the rows
represented by the one value in the vector −−−→xj,k(ℓ) ← −−→xj,1 + · · · + −−→xj,k corresponds to Train2i, while−−−→xj,k(r) ← −−−→xj,k+1 + · · · + −−−−→xj,nmax corresponds to Train2i+1, because the positions of ones in −−−→xj,k(ℓ)

indicates the rows whose Xj value is at most k. Thus, the rows indicated by −−−→xj,k(ℓ) become the
training data used by Ni’s left child(=N2i). Similar argument holds for −−−→xj,k(r) as well.

Using this, we compute the frequency of each Y label q in Train2i as sj,k,q(ℓ) = −−−→xj,k(ℓ) · −→yq and

calculate Ginij,k(ℓ) = (
∑t

q=1 sj,k,q(ℓ))
2 −

∑t
q=1(sj,k,q(ℓ))

2 and Ginij,k(r) similarly as well. Finally,
perform Ginij,k ← Ginij,k(ℓ) + Ginij,k(r) to obtain the computation result. This value functions
as a reference point for comparing the MGI calculated under the condition Xj ≤ k with the MGI
from other split conditions, and it is directly proportional to the MGI value. For details of MGI,
see Appendix B.

By conducting this process in an encrypted state, we calculate all Ginij,ks for every (j, k) ∈
[1, d] × [1, nmax − 1]. For this, we create a pair of ciphertexts cq(ℓ) and cq(r) where each pair of
sj,k,q(ℓ) and sj,k,q(r) are stored in the same slot position in ciphertexts cq(ℓ) and cq(r), respectively.
Then, we utilize SIMD to compute the Ginij,ks of all variables and thresholds at the same time
in parallel using cq(ℓ) and cq(r). Upon performing the aforementioned process, we can obtain a
ciphertext cGini as depicted in Fig. 5. After executing the FindMinPos() algorithm1 on cGini and
following the appropriate steps, we can obtain Ni.j and Ni.k in a format as the last part in Fig. 5.

Gini1,1 Gini1,2 Gini1,3 Gini2,1 Gini2,2 Gini2,3 Gini3,1 Gini3,2 Gini3,3

𝑛!"# = 3, 𝑑 = 3, 𝑡 = 2

	𝑐!"#"

(Suppose Gini2,2 is the minimum value)

FindMinPos()

0 0 0 0 1 0 0 0 0

1 1 0 0 0 0 0 0 0

Ciphertext

0 1 0 0 0 0 0 0 0

𝑁".. 𝑘

𝑁".. 𝑗

Representing (≤ 2)

Representing (X2)

2nd slot in the 2nd block 
of three slots

Figure 5: A part of FindSplitCond(): after finding the MGIs of all possible cases.

We proceed to the UpdateData() function in Step 2.7 of Fig. 4. The plaintext version of this
function can be implemented as shown in the Alg. 5.1. The key aspect lies in Step 4, in the creation
of −−−→x[1,k] (also

−−−−−−−→x[k+1,nmax] in Step 7). Subsequently, by performing component-wise multiplication on
these vectors for all data, we generate the data to be used for training in the children nodes.

UpdateData() - plaintext version [1] UpdateDataNi,Traini {−−→xp,q|(p, q) ∈ [1, d]× [1, nmax]}, {−→yp|p ∈
[1, t]} ← Traini,k ← Ni.k, j ← Ni.j

−−−→x[1,k] ←
∑k

i=1
−→xj,i
−−→xp,q ← −−→xp,q ⊙ −−−→x[1,k] for all (p, q) ∈ [1, d] ×

[1, nmax]
−→yp ← −→yp ⊙ −−−→x[1,k] for all p ∈ [1, t] Train2i ←{−−→xp,q|(p, q) ∈ [1, d] × [1, nmax]}, {−→yp|p ∈ [1, t]}

Repeat Steps 4-5 with −−−−−−−→x[k+1,nmax] ←
∑nmax

i=k+1
−→xj,i after replacing −−−→x[1,k] to

−−−−−−−→x[k+1,nmax] ; then create
Train2i+1 as Step 6. (N2i,Train2i),(N2i+1,Train2i+1)

1This is FindMinPosGroup() where # of group is 1 and group size is M . It can be implemented easily with
FindMaxPosGroup(), explained in Appendix A.
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The proposed training algorithm performs the above process using the encrypted Traini, Ni.j,
and Ni.k. The most challenging part lies in line 3 of Alg. 5.1, as it involves information encrypted
representing j and k. To handle this, we utilize the following expression:

((Ni.j << r)⊙ 1⃗1)[0] = 1 only if j = r + 1 (1)

((Ni.k << s)⊙ 1⃗1)[0] = 1 only if k > s(≥ 0) (2)

We calculate c′r ← ((Ni.j << r) ⊙ 1⃗1) for every r ∈ [0, d − 1] as the equation (1), then copy
the value of the first slot of c′r to the rest of the slots in the same ciphertext. Then, we obtain
c′r,p,q ← c′r ⊙ cr,p,q for every (r, p, q) (∈ [1, d]× [1, nmax]× [1, w]). We eventually obtain only cj,p,q ←∑d

r=1 c
′
r,p,q as every c′r,p,q contains only zero values except when r+1 = j. We suppose that we have

cj,p,q for every pair of (p, q). Then, we create c′′p ← ((Ni.k << p)⊙ 1⃗1) for every p ∈ [1, nmax] then
copy the value in the first slot in c′′p to all the other slots as well. Then, we perform c′′j,p,q ← c′′p⊙cj,p,q
for every p ∈ [1, nmax] and make the summation of c′′′j,q ←

∑nmax

p=1 c′′j,p,q for every q ∈ [1, w]. Then,

we can obtain the desired outcome, −−−→x[1,k] = {c′′′j,q}q=1,2,··· ,w.

5.2 HBDT-Inference algorithm

For efficient inference, Ni.j and Ni.k for every Ni are further processed to be represented in
nmax × d slots, as depicted in Fig. 6-(1)-(A). This representation allows us to check if the inference
input being processed at node Ni satisfies the condition Xj ≤ k through the process shown in Fig.
6-(1)-(B).

The input for inference is also represented using one-hot encoding across nmax×d slots as shown
in Fig. 6-(1)-(B). By performing operations in Fig. 6-(1)-(B), multiplying the model value with the
input and moving the sum of all slot values to the first slot, regardless of where the inference result
is, we can move the result into the first slot. By subtracting this value from 1, we can achieve the
intended outcome as in Fig. 1, returning 0 when the split condition is satisfied and 1 otherwise when
the path evaluation is performed in a tree.
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Figure 6: (1) Evaluation of a node with input in Inference (2) Path evaluation and block assignment
in a ciphertext

The process for evaluating whether each node meets the split condition, as above, can be ef-
ficiently parallelized using SIMD capabilities. This is particularly effective when the number of
available slots in the ciphertext, represented as M , is much greater than the size of the input, which
is nmax × d. To enable this, models for multiple nodes at the same level in the tree are placed in a
single ciphertext. This is called the pre-processing step, and it is all conducted during the training
process. Also, in the actual inference process, the inference input is replicated in such a way that its
position aligns with these models, allowing for operations to be carried out on a slot-by-slot basis.
The positions where the input is replicated is shown at 6-(2)-(C) and the description of the operation
conducted is given in Fig. 6-(1)-(B).

Next, we discuss the method of evaluating the entire tree’s path using the evaluation results
for each node discussed above. Let’s denote the evaluation process and its results at Ni as Ii, and
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consider the complement of the bit in the result of Ii as Ii. Additionally, let’s refer to these individual
Ii and Ii as blocks.

Fig. 6-(2)-(B) illustrates how the tree described in Fig. 6-(2)-(A) evaluates the red path in the
proposed method. The yellow-colored blocks in Fig. 6-(2)-(B) indicate the places where the actual
computations are performed to obtain the evaluation results in each of the nodes of the tree, while
the rest are obtained by copying calculated results through rotation and addition operations. In
Fig. 6-(2)-(B), blocks I1, I2, and I3 are computed as 0 while the rest are set to 1, because X2 ≤ 3
(X2 = 1), X3 ̸≤ 4 (X3 = 5), and X1 ≤ 4 (X1 = 2). Therefore, adding the upper two ciphertexts of
the blocks in Fig. 6-(2)-(B) results in only the block corresponding to the leaf nodes highlighted in
red in Fig. 6-(2)-(A) having a value of 0, while the others have non zero values. After multiplying
this result by a randomly sampled plaintext polynomial and adding to the ciphertext containing the
target variable’s label for each position corresponding to each leaf node (the fourth ciphertext in
Fig. 6-(2)-(B)), only the label corresponding to the final leaf node along the red path of the tree
(N5.y in Fig. 6-(2)-(B)) is stored in the respective slot position in the ciphertext, while the rest of
the slots are filled with random values. Subsequently, to obfuscate the positions of the leaf nodes
containing the resulting values, a random rotation is performed once, which produces the result of
the inference.

In the proposed inference method, the client transmits her input of a single ciphertext where
independent variables’ one-hot encoded values are contained in the first nmax × d slots and nothing
else. Thus, any information regarding the decision tree is not revealed to the client. Therefore
the proposed method supports very high level of privacy regrading the model, which could not be
achieved in the recent work so far [3].

For efficient inference process, CS needs to swiftly copy the inference input to the positions
indicated by the yellow regions in Fig. 6-(2)-(B). To achieve this, we limit the number of blocks
used in the ciphertext to 2⌈log2(M/(nmax×d))⌉ only. For instance, even if the ciphertext allows for
five blocks, as depicted in Fig. 6-(2)-(C), we create and utilize the model with only the initial four
blocks. This approach ensures fast alignment of the yellow blocks across multiple ciphertexts, as
shown in the second and third ciphertexts of Fig. 6-(2)-(C), even if the model employs multiple
ciphertexts.

Fig. 7 summarizes the overview of the proposed inference algorithm. model refers to ciphertexts
that have undergone all the processes in Fig. 6-(1)-(A) and contain model values positioned only
within the yellow blocks as in Fig. 6-(2)-(B). dep signifies the depth of the tree, determining the
number of ciphertexts required to generate the model for a level of tree and the intervals between
these yellow blocks within such model ciphertexts.

1. For the input containing input values in the first nmax × d slots, some rotation and addition
operations are performed to generate ciphertexts aligning the positions of the input blocks with
the yellow blocks in Fig. 6-(2)-(B).
2. Using the resulting ciphertexts from Step 1, some computations are executed at the positions
of the yellow blocks as in Fig. 6-(2)-(B), computing the Ii values existing at those positions
(i ∈ N) as in Fig. 6-(1)-(B).
3. Leveraging the outcomes from the yellow blocks, cryptographic operations involving appropri-
ate copying and subtraction from constants are conducted for the remaining block positions of
the ciphertexts in order to fill up the values Ii and Īi (i ∈ [1, 2dep+1− 1]) in the rest of the blocks
for tree evaluation, as in Fig. 6-(2)-(B).
4. The path evaluation is carried out as illustrated in Fig. 6-(2)-(B), and the resulting outcomes
are transmitted to KM for further processing.

Inference(input,model,dep)

Figure 7: Inference algorithm with encrypted input
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6 Extending to Homomoprhic Random Forests (HRF)

Training involves applying HBDT’s process to numerous trees with two key differences. First, on
the sampling over training data for each tree, to avoid heavy replacement sampling, it is performed
selecting 63.2% of the data randomly and regarding 30% of these as chosen twice, resulting in rows
selected twice having a value of 2 instead of 1 in the one-hot encoding. This ensures that rows are
effectively sampled twice. This approximates the bootstrap sampling where the sampling size is the
same as that of the training data. Second, for split condition setup at each node, only a subset of
variables (⌊

√
d⌋) is considered, with large MGI values assigned to unsampled variables to prevent

their selection.
Inference involves repeating the inference process of HBDT for multiple trees and consolidating
results. The next step performs the majority voting among the inference results from multiple
trees. However, majority voting over the encrypted data by HE requires significant computational
resources. Therefore, the results from all trees are gathered into separate slots and transmitted to
the user for manual majority voting. To address the challenge of transmitting results of several trees,
an approach depicted in Fig. 8-(B) is followed. This involves using a function fdep() to compute
the inference value and position it in a specific slot of the ciphertext. Also, by making the inference
result using one-hot encoding, we can collect the inference results from multiple trees very quickly
using only addition. In Fig. 8, if N5.y is one-hot encoded, after summing up all the results into
a single ciphertext, no further operation including a rotation is necessary and just the resultant
ciphertext is returned. This makes only one ciphertext needed to contain all trees’ inference result.
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Figure 8: Path evaluation in a ciphertext for random forest

7 Experimental Results

We evaluated both GPU and CPU versions of our implementation in an AMD RYZEN 5950X
CPU, NVIDIA Quadro RTX A6000 48GB GPU, and 128GB RAM environment. The results show-
case the efficiency of training and inference performance, highlighting the outcomes from the version
assisted by GPU to demonstrate the efficiency in both training and inference. Additionally, for
comparing the inference algorithm with another study [2], we evaluated its performance using only
one core of CPU, without GPU assistance.

For performance evaluation, we utilized the following datasets in Table 3. Scott refers to the
binning method used to transform numerical variables into ordinal categorical variables [37]. Among
these, the “sepsis” dataset was specifically intended to demonstrate the potential for training on
large-scale data. All measurements were averaged over five training runs, ten inference runs, and a
minimum of 33 CKKS operations per run to record the mean values.
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Table 3: Dataset parameter (t,d,nmax,tn)
iris (Scott) [36] wine (Scott) [36] cancer (Scott) [36] sepsis [15]

3,4,9,100 3,13,11,119 2,30,18,380 2,3,101,110341

7.1 CKKS and Subroutines

Table 4 lists the performance of CKKS unit operations and subroutines. In the GPU version,
The relative error of ApproxInv() is measured to 9.052E−04%. Other unit operations’ relative errors
are less than 1E−06%. The error attached to the plaintext due to encryption in the CPU and GPU
versions are approximately 1.408E − 02% and 1.702E − 06%, respectively, exhibiting a difference
of about 8270 times. This discrepancy arises due to the different parameters used in the CPU and
GPU versions of implementations, resulting in larger errors in the CPU version due to its shorter
precision bit with smaller parameter values.

Table 4: Avg. Time (ms) of CKKS operations and subroutines (1st row: GPU, 2nd row: CPU)
Add Mult(max. lv.) Mult(min. lv) Rot Boot ApproxSign ApproxInv SumGroup
0.017 0.72 0.26 0.60 149.0 1362 331 8.37
0.865 17.2 5.52 11.5 1403 16995 4513 189

Fig. 9 analyzes the training execution time. It describes the proportion of time taken for each
step in Fig. 4, the time required for the model pre-processing stage as described in Fig. 6 for
improving inference performance, and the total execution time in relation to depth. It is observed
that the time taken is approximately double in proportion to the depth, and Step 2.6, which involves
finding the split condition for nodes, takes the majority of time. Additionally, the pre-processing
stage in Fig. 6 accounts for about 2 – 4% of the total execution time. As seen in the sepsis data,
as the size of the data increases, the time taken to find the split condition and update the training
data accordingly becomes a dominant factor.

We do not compare the required time for training between the proposed work and others because
it is unfair. Prior works involve decryption during the training process. In [2], for instance, the client
decrypts and computes the Gini impurity in the middle of the training process. However, our protocol
performs the entire training process in CS with the encrypted training data. Thus, for example, the
time taken to compute the homomorphic Gini impurity for Iris data with at the level 4 of the HBDT
is approximately 117 seconds, whereas it only takes about 0.18 seconds to calculate the same one
when they are of plaintexts.

Table 5 below displays the number of ciphertexts required for model storage. This refers to the
case of the implementation on GPU. When the depth of the tree exceeds a certain number, it is
observed that the number of required ciphertexts increases exponentially: the number of slots in
the ciphertext required to store model information is proportional to the number of nodes at that
level of the tree. Thus, as the number of nodes increases, more slots are required. Thus, if the level
of three is over a certain threshold, the number of slots needed will exceed the capacity of a single
ciphertext. As the level increases, the number of nodes doubles each time, leading to a doubling in
the number of ciphertext slots required to store the model.

Table 5: The number of ciphertexts required to store model in training
Dataset iris (Scott) wine (Scott) cancer (Scott) sepsis
Depth 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4
# of Ctxt 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 17 2 3 4 5 6 13 27 56 2 3 4 5

7.2 Performance of Inference

Fig. 10-(A) presents a comparison between the inference times of the proposed method and
Akavia et al.’s approach [2]2. To ensure fairness, the implementation of [2] used a 32-degree poly-
nomial for the ApproxSign() function, while the proposed method utilized a 64-degree polynomial.

2https://github.com/intuit/Decision-Trees-over-FHE.git.
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Figure 10: Inference: (A) execution time and (B) accuracy comparison

Additionally, both implementations used the ring of the polynomials whose maximum degrees are
32,768.

The results clearly demonstrate that the proposed method outperforms [2] across all datasets,
being at least 3.7 times faster. In cases where the depth is 4 (with 16 leaf nodes), the proposed
method showcases roughly eight times faster inference times. Fig. 10-(A) shows a graph comparing
the inference execution times, showing that our inference times measured on CPU are at least 3.73
times (Cancer data, depth1) and up to 14.36 times (Iris data, depth4) faster than Akavia et al [2].
As a result, we can say that our CPU version implementation shows at least 3.7 times faster speed
than Akavia et al.’s [2]. We evaluated the performance of Akavia et al.’s method [2] under the same
computation environment as our CPU version. Furthermore, GPU-assisted inference times ranged
from 0.03 seconds (depth 1, iris data) to 1.69 seconds (depth 8, cancer data). Notably, when using
GPU acceleration, the inference performance was found to be less than 200 times slower compared
to plaintext inference using a single CPU core for depths up to 4 in the same environment.

Fig. 10-(B) compares the accuracy of the inference results with the models created using the
proposed method with encrypted data and the plaintext version of the data separately trained with
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MGI and the standard Gini Impurity index (GI). As depicted in the graph, there is little difference
in accuracy between the model trained using the proposed method and the plaintext-based model
trained with GI, indicating comparable accuracy.

7.3 Performance of HRF

We evaluated the performance using 64 estimators in the random forest. The red lines in Fig.
11-(A) presents the training time of HRF. The black lines presents the comparison between the
accuracy of the proposed method (HRF) and the plaintext version (RF). It’s observed that the
proposed method slightly lags behind but it is not noticeably high.

Fig. 11-(B) illustrates the inference performance achieved through GPU implementation. It
demonstrates an inference time of approximately 6.5 – 8.5 seconds for all trees at a depth of 4. We
can improve this with various methods, such as leveraging multiple GPUs. Please note that Steps 1
∼ 3 depicted in Fig. 11-(B) align with Steps 1 ∼ 3 in Fig. 7. Step 4 begins from the execution of
the fdep() function in Fig. 8-(B), and Step 5 involves assembling encrypted results from individual
trees to generate the final encrypted output. Notably, Step 4 consumes much time as the evaluating
fdep for 64 trees require heavy computation.
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8 Discussion

8.1 System Model without KM

Figure 12: System model without KM Overview [25]

In this subsection, we discuss two system models that do not involve the use of KM. Before
proceeding, it is important to clarify the term “Users”as employed in the proposed system model in
Section 4.1. In the model, “Users” actually fulfill two roles: a data owner who supplies the training
data to construct the machine learning models, and a service provider who offers the service to the
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client. The proposed system model assumes that the inference result obtained by “Users” is relayed
to their respective clients. However, this process is not explicitly depicted in the paper. To avoid
confusion arising from the multiple meanings of the term “Users,” we will refrain from using it in
this section. Instead, we will employ the terms “data owner”, “service provider,” and “client” to
clearly distinguish the different roles and entities involved in the system models.

The first model we introduce is from Kim et al’s work [25], shown in Fig. 12-(A). This service
supports safety by detecting emergency situations, such as falls of elderly people, in real-time, with
preserving the privacy of the elderly people. For this, the client, who is an elderly person, sends a
video encrypted with a system public key to the CS, which detects the elderly person’s emergency
situation through a machine learning model encrypted with the system evaluation key and notifies
the service provider the detection result. The service provider decrypts the result with the system
secret key and takes the necessary action for the client. In this model, CS can use the random forest
model proposed in this paper.

The second is the model for tele-health services and personalized healthcare information analysis
shown in Fig. 12-(B). In this model, the data owners provide training data encrypted with the
system public key to CS, which generates a model through fusion and training. During the inference
process, a client sends his/her encrypted data by system public key to CS, then it performs the
inference with encrypted model and his/her encrypted data. CS sends the service provider the
inference result. Finally, the service provider decrypts the result with the system secret key and
explains the decryption result to the client.

The key feature of this protocol is that the service provider holds the system secret key, which
allows it to decrypt the results returned from the CS and provide the explanation on the analysis
result to the client. In situations where the data owner and service provider are different and there
is only one service provider, KM is not needed.

Why is the problem hard without KM: the system model in Section 4.1 is similar to the second
instance in that it includes multiple data owners, but differs in that every data owner also serves as
a service provider. In this structure, every service provider must have the system secret key. When
the system secret key is shared with multiple entities, malicious co-operation with CS can expose
training data, as it becomes difficult to find out who gives the system decryption key to CS. This
risk can be reduced in our system model due to KM.

8.2 Discussion on meeting the privacy requirements

This subsection discusses why the proposed method meets the privacy requirements provided in
Section 4.2. The system setting in this paper considers the privacy of training data, models, inference
inputs, and outputs. The training data and inference inputs are encrypted with the system public
key and sent to CS, and CS cannot decrypt this information because it does not have the system
secret key. This ensures that only the owner of the data knows his/her training data, and CS
cannot access the actual content of the data during processing, thus maintaining the privacy of the
training data (requirements #1, #3 in Section 4.2). Also, the training results, i.e. models, are
encrypted with system public keys. The models are only used inside CS and are not exposed to the
outside from CS, which protects the privacy of the models (requirements #2 in Section 4.2). This
paper presents a system where a trusted KM exclusively manages the system secret key. Inference
results are decrypted with the system secret key by KM and re-encrypted with the recipient’s public
key before being transmitted, which prevents access by third parties. (requirements #3 in Section
4.2) From the arguments above, we can see that the proposed method comprehensively ensures the
privacy of training data, models, inference inputs, and results. In addition, the number of rounds
of commmuinication between participants is minized in the proposed method. The training data
is processed in a single unidirectional transfer from users to CS, and inference is also done in a
single round of communication. This means the proposed method supports non-interactive training
and inference, minimizing the communication cost of the system (requirements #4 in Section 4.2).
Finally, by using a single CS to perform all processing, the model avoids multiple CSs and operates
within a single security domain (requirements #5 in Section 4.2). Therefore, the proposed system
satisfies all the requirements presented in Section 4.2, and effectively protects the privacy of training
data, models, inference inputs, and results.
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9 Conclusion

In this study, we introduced a novel HBDT (Homomorphic Encryption-based Decision Tree) and
HRF (Homomorphic Encryption-based Random Forest) machine learning approach. We assessed
their effectiveness through experiments using widely-used datasets. Previous research on privacy-
preserving decision trees with homomorphic encryption faced challenges where certain aspects of
the training process, such as calculating the Gini impurity, required decryption for computation,
potentially exposing sensitive data. Our proposed method overcomes this limitation by enabling the
generation of the machine learning model (HBDT) without the need for decryption. Furthermore,
the inference process can be carried out without decryption until the encrypted inference result is
obtained by the client-side (CS). Moreover, the inference process necessitates only O(1) multiplica-
tion, allowing for efficient inference regardless of the tree’s depth. Lastly, we extended this approach
to develop a privacy-preserving random forest. We approximated replacement sampling for train-
ing data without decryption during the training phase. Additionally, by compressing the inference
results from each tree in the forest, we achieved a reduction in inference time.
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A Appendix

A.1 Subroutines

This section introduces the subroutines used to build up the proposed method.
FindMaxGroup(input,ns,gs,gn) returns a ciphertext where the first slot of each group has the

maximum number among all the values in each group of gs slots in input. ns specifies the number
of slots that have the values to be compared. Thus, ns ≤ gs and for an operational purpose,
gs is even. gn specifies the number of groups in input. To speed up the operation, we suppose
gs× gn ≤ 2M/3.

The number of invocation of ApproxSign() is ⌈log4(ns)⌉. The details of the description is given in
Fig. 13. The process of the FindMax() function, responsible for finding the maximum value among
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the data in each slot of a single ciphertext, is outlined in Fig. 13-(A). To minimize the number
of ApproxSign() operations, the data is partitioned into four groups, A through D. Operations are
performed within each group by comparing slots at identical positions to identify the slot with the
highest value, keeping only that slot alive. This process continues until only one value remains. In
Fig. 13-(B), the extended process of FindMaxGroup() is described. The crux lies in determining the
maximum within each group. For instance, to identify the maximum value for two data groups,
G1 and G2 (as detailed in Fig. 13-(C)), the data is distributed into four subgroups per group, as
shown in the first illustration of Fig. 13-(B). After performing computations, the final illustration
demonstrates the result, where only the highest values from the same slot positions among the
subgroups within each group are retained. Repeating this process enables consolidating to only one
ciphertext per group. Fig. 13-(C) illustrates the output of FindMaxGroupPos(). It takes as input
a ciphertext containing data from multiple groups, marking slots where the maximum value within
each group is located as 1, while setting the rest to 0. FindMaxGroupPos(c,ns,gs,gn) is executed as
follows. First, it finds the biggest value among the values per each group in the input by executing
FindMaxGroup(c,ns, gs, gn), and then creates a ciphertext (cmax) that fills all the slots solely with
that the biggest value in each group. After that, cmax is subtracted from the input ciphertext,
which is followed by adding a very small ϵ value to every slot in the subtraction result (cin). Then,
ApproxSign(cin) function is executed to obtain cout. Finally, we can obtain the final result by adding
1 then multiply 0.5 to every slot in cout, where the slots of the biggest value are set to 1 in each
group.

A B C D

A ciphertext of M slots

(A) FindMax(): Finding max over the input in the 2M/3 slots

⟦Input⟧

A-B B-C C-D D-A A-C B-D

Sign(A-B) Sign(B-C) Sign(C-D) Sign(D-A) Sign(A-C) Sign(B-D)

ApproxSign()

Max(A,B,C,D) ? ? ? ? ?

If (Sign(A-B)>0 and Sign(B-C)>0 Sign(C-D)>0) Then Max=A
If (Sign(B-C)>0 and Sign(C-D)>0 Sign(D-A)>0) Then Max=B
If (Sign(C-D)>0 and Sign(D-A)>0 Sign(A-B)>0) Then Max=C
If (Sign(D-A)>0 and Sign(A-B)>0 Sign(B-C)>0) Then Max=D

A, B, C, D: A group of numbers in 
M/6 slots at maximum

(B) FindMaxGroup(): Groupwise max. operation

AG1 AG2 BG1 BG2 CG1 CG2 DG1 DG2

Max(A,B,C,D) ? ? ? ? ?MaxG1 MaxG2

(C)FindMaxGroupPos(): Set 1 at the slot 
where the max element is per each group

(No data) (No data)G1 G2

(No data) (No data)1 1

The slots of the 
maximum element in 
each group G1 and G2 
are set to 1 

Figure 13: FindMaxGroup() and FindMaxGroupPos() algorithm

A.2 Modified Gini Impurity Index (MGI)

This study utilizes MGI to reduce the computation cost. MGI is a variation of the stadard Gini
impurity [6], defined as follows:

MG(S|A) =
∑
t∈T

p(t)2G(t) =
∑
t∈T

|St|2

|S|2

(
1−

∑
c∈C

|St,c|2

|St|2

)

=
1

|S|2
∑
t∈T

(|St|2 −
∑
c∈C

|St,c|2) (3)

where C represents the set of target classes in S and p(·) indicates the probability of the specific
sample set in S (e.g., p(i) denotes the probability of target class i, which can be defined as the
proportion of the class i in S), G(t) is the Gini impurity of samples at child node t, | · | denotes
the cardinality of the set, T denotes the set of child nodes, St and St,c represent the set of samples
classified as child node t and the set of samples classified as child node t in class c. Because |S| is
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the common factor for all split rules, the best split rule based on the gain of the MGI is to minimize
|St|2 −

∑
c∈C |St,c|2, which does not require division operations.
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