
Unbindable Kemmy Schmidt: ML-KEM is

neither MAL-BIND-K-CT nor MAL-BIND-K-PK

Sophie Schmieg1

1Google, sschmieg@google.com

April 3, 2024

Abstract

In [CDM23] Cremers et al. introduced various binding models for
KEMs. The authors show that ML-KEM is LEAK-BIND-K-CT and
LEAK-BIND-K-PK, i.e. binding the ciphertext and the public key in the
case of an adversary having access, but not being able to manipulate
the key material. They further conjecture that ML-KEM also has MAL-
BIND-K-PK, but not MAL-BIND-K-CT, the binding of public key or
ciphertext to the shared secret in the case of an attacker with the ability
to manipulate the key material.

This short paper demonstrates that ML-KEM does neither have MAL-
BIND-K-CT nor MAL-BIND-K-PK, due to the attacker being able to
produce mal-formed private keys, giving concrete examples for both. We
also suggest mitigations, and sketch a proof for binding both ciphertext
and public key when the attacker is not able to manipulate the private
key as liberally.

1 Introduction

In the paper “Keeping Up With the KEMs” [CDM23], Cremers et al. defined the
notion of a KEM binding shared secret, ciphertext, and public key to each other.
These types of binding properties are of interest in protocols that implicitly rely
on stronger security guarantees than IND-CCA security, with some examples
listed in the paper. Similar problems have been discussed at some length in the
context of key committing AEADs, called “invisible salamanders”, for example
in [DGRW19] and [ADG+20].

Of interest for this short note is the scenario of a malicious attacker, i.e.
an attacker which can freely chose all key material, as well as encapsulation
entropy and decapsulation ciphertexts. In order to be MAL-BIND-K-CT in this
scenario, if two parties (each of which are either encapsulating or decapsulating),
are able to obtain the same shared secret, but either produce or were given
different ciphertexts, the ciphertext is not considered bound to the shared secret.

1



Similarly, if the parties are able to obtain the same shared secret while using
different public keys, the public key is not considered bound to the shared secret.

There are some trivial binding attacks on the attacker model in Figure 6 of
[CDM23], due to decapsulating parties not actually using the public key at all.
In order to repair this trivial attack, we need to slightly change the APIs.

That is instead of the API

KeyGen: 0
R→ S ×P

Encaps: P R→ B32 × C
Decaps: S × C → B32

which we refer to as the NIST API, we need to use

KeyGen: 0
R→ S

PrivateToPublic : S → P

Encaps: P R→ B32 × C
Decaps: S × C → B32

In the HONEST and LEAK attacker models, these APIs are trivially the same.
In the case of a malicious attacker, we do need to explicitly specify how a
public key is obtained from a (potentially malformed) private key. Note that
PrivateToPublic is non-trivial in the case of some KEMs. For example, in the
case of RSA-KEM, if the private key only consists of private exponent and
modulus, being able to compute the public exponent can be computationally
infeasible. In the case of ML-KEM, though, this is not a problem, as the private
key contains a copy of the public key, and we can define PrivateToPublic as
returning this copy.

With this API, we can formulate the attacker model of [CDM23] in the case
of a malicious attacker as such: In other words, in the case of decapsulating
parties, the attacker is only allowed to choose the private key to be used, and
the public key is generated honestly from this private key. This fixes the trivial
MAL-BIND-P-PK attack where an attacker choosing mode g = 1 or g = 2
otherwise can set the public key of the decapsulating party arbitrarily.

When discussing mitigations, we need to further refine this API to include

2



Algorithm 1 MAL-BIND-P-QKEM
A

g, st← A(st)
if g = 1 then

sk0, sk1, ct0, ct1 ← A(st)
pk0 ← PrivateToPublic(sk0)
pk1 ← PrivateToPublic(sk1)
k0 ← Decaps(sk0, ct0)
k1 ← Decaps(sk1, ct1)

else if g = 2 then
pk0, sk1, r0, ct1 ← A(st)
k0, ct0 ← Encaps(pk0; r0)
pk1 ← PrivateToPublic(sk1)
k1 ← Decaps(sk1, ct1)

else if g ̸∈ 1, 2 then
pk0, pk1, r0, r1 ← A(st)
k0, ct0 ← Encaps(pk0; r0)
k1, ct1 ← Encaps(pk1; r1)

end if
if k0 = ⊥ ∨ k1 = ⊥ then

return 0
end if
// A wins if ¬ ((∀x ∈ P.x0 = x1)⇒ (∀y ∈ Q.y0 = y1))
return ∀x ∈ P.x0 = x1 ∧ ∃y ∈ Q.y0 ̸= y1

3



explicit serialization:

KeyGen: 0
R→ S

PrivateToPublic : S → P

Encaps: P R→ B32 × C
Decaps: S × C → B32

MarshalPrivate : S → Blens

ParsePrivate : Blens → S
MarshalPublic : P → Blenp

ParsePublic : Blenp → P

In other words, in this API we assume that S and P are opaque types that
a caller cannot serialize without the help of the corresponding functions. This
kind of API can be seen in real world implementations of ML-KEM, as it allows
for better caching of intermediate values in case of repeated Encaps or Decaps
calls on the same key material.

2 Counterexamples

We can slightly simplify the attacker model in Algorithm 1, by observing that
the attack happens in two distinct phases. First the attacker selects the relevant
keys, ciphertexts, and encapsulation entropies for the corresponding scenario,
and then the honest parties perform the necessary encapsulation and decapsu-
lation operations. This means, in order to give a counterexample, it suffices to
just give concrete instantiations of the necessary values, without the attacker
having to perform any interactive operations.

2.1 Counterexamples for MAL-BIND-K-CT

We can construct a MAL-BIND-K-CT counterexample both in the case of one
party encapsulating and the other party decapsulating, as well as the case of
both parties decapsulating. Recall that an ML-KEM private key is the tuple
(s, t, ρ, h, z), with the corresponding public key being the tuple (t, ρ). In a well-
formed private key, H(t∥ρ) = h holds. Our attack focuses on violating this
property, and tricking the decapsulating party to use a different hash.

We will focus on the scenario of party 0 encapsulating and party 1 decap-
sulating (i.e. g = 2), with the construction for both parties decapsulating being
analogous. If the decapsulation does not hit the FO rejection flow, we have
K0, r0 = G(m0∥H(pk0)) and K1, r1 = G(m1∥h1). Since we need K0 = K1, this
implies that m0 = m1 and H(pk0) = h1. Party 1 obtains m1 via the decryp-
tion of c1, so we can obtain equality by setting c1 = Encrypt(pk1,m0, r1). This
ciphertext conveniently also will not trigger the FO rejection path, as we also
have r0 = r1 as a side effect of the shared key equality.

4



In summary, the attacker selects:

Algorithm 2 Attacker for MAL-BIND-K-CT

sk0 ← (s0, t0, ρ0, h0, z0)← KeyGen()
pk0 ← PrivateToPublic(sk0)
(s1, t1, ρ1, h1, z1)← KeyGen()
sk1 ← (s1, t1, ρ1, h0, z1)
m0 ← Rng(32)
r ← G(m0∥h0)
c1 ← Encrypt(pk1,m0; r)
return (pk0, sk1,m0, c1)

On the encapsulating side, the Algorithm 1 now sets

K0, r0 = G(m0∥H(pk0))

c0 = Encrypt(pk0,m0, r0)

On the decapsulating side, we get

m0 = Decrypt(s1, c1)

K1, r1 = G(m0∥h0)

c′1 = Encrypt(pk1,m0; r1)

Note that by definition of c1, we have c′1 = c1.
The main trick behind the attack is in the line K1, r1 = G(m1∥h0). Due to

the attackers preparation of the private key, we trick the honest decapsulating
party into using the hash corresponding to the encapsulating public key.

2.2 Counterexamples for MAL-BIND-K-PK

Algorithm 2 already provides a counterexample for MAL-BIND-K-PK as well
as pk1 = PrivateToPublic(sk1) ̸= pk0 in that scenario.

We can obtain a further MAL-BIND-K-PK counterexample in the case of
both parties decapsulating (g = 1). This attack focuses on the FO rejection
flow, and prepares mal-formed private keys that agree on their FO rejection
secret, but differ otherwise. The attacker can then choose a random ciphertext
c, equal for both parties, and abuse the fact that FO rejection does not include
the public key. In other words, the attacker sets:

One interesting observation about this counterexample is that the private
keys appear well-formed, since an auditor who is incapable of finding preimages
of random number generators is not able to tell that a single private key was
generated dishonestly.

3 Mitigations

There are several possible mitigations that can be used to address the lack of
binding in ML-KEM.

5



Algorithm 3 Attacker for MAL-BIND-K-PK

(s0, t0, ρ0, h0, z0)← KeyGen()
(s1, t1, ρ1, h1, z1)← KeyGen()
z ← Rng(32)
c← Rng(lenc)
sk0 ← (s0, t0, ρ0, h0, z)
sk1 ← (s1, t1, ρ1, h1, z)
return (sk0, sk1, c, c)

3.1 Omiting the hash in the private key serialization

As a simple mitigation of the lack of MAL-BIND-K-CT, the hash h can simply
be omitted from the serialized private key format. In other words, changing
the private key into a tuple (s, t, ρ, z). The main reason for implementations
to use explicit serialization APIs is the ability to compute the expansion of ρ
into the matrix A in ParsePrivate and ParsePublic with the computation of
H(pk) being another step in ParsePublic. Adding this step to ParsePrivate has
relatively minor performance overhead.

In the most performance critical scenario of using an ephemeral key pair,
both the matrix A and the public key hash H(pk) have to computed exactly
once for both encapsulating and generating/decapsulating side. The encap-
sulating side will usually compute this value in ParsePublic, while the gener-
ating/decapsulating side does so in KeyGen, never calling MarshalPrivate or
ParsePrivate.

In the case of this mitigation, one can prove MAL-BIND-K-CT for ML-KEM.

Proposition 1. ML-KEM without cached public key hashes is MAL-BIND-K-
CT.

Proof. We only give the proof for an attacker that cannot find collisions in hash
functions, and leave the usual procdedure of changing hash functions to random
oracles as an exercise to the reader. We also only give the proof for the scenario
of both parties decapsulating, with the other scenarios being analogous to the
subcases of this scenario.

We parse the two private keys sk0 and sk1 given by the attacker as the tuples
(s0, t0, ρ0, z0) and (s1, t1, ρ1, z1).

Case 1. Both parties rejecting. In this case the shared secrets Ki are com-
puted asKi = J(zi∥ci). As we assume our attacker cannot find collisions in hash
functions, this implies that z0 = z1 and c0 = c1. The latter was the required
property for MAL-BIND-K-CT, completing this case.

Case 2. Party 0 rejecting, Party 1 accepting. In this case we have K0 =
J(z0∥c0) andK1, r1 = G(m1∥H(pk1)), wherem1 was obtained by decrypting c1.
This means that achievingK0 = K1 is only possible by finding a collision accross
domain separated hash functions, which we assume our attacker is incapable off,
leading to a contradiction.

6



Case 3. Both parties accepting In this case we have Ki, ri = G(mi∥H(pki)).
Due to the attacker being unable to find collisions, K0 = K1 implies m0 = m1,
pk0 = pk1, and further r0 = r1. Both parties then compute the reconstructed
ciphertext c′i as Encrypt(pki,mi; ri). As Encrypt with defined entropy is a
deterministic function, and all arguments agree between parties, this means
c′0 = c′1. Since we assume that both parties are accepting, we know that ci = c′i,
and therefore c0 = c1 as required.

Note that the MAL-BIND-K-PK attack of Algorithm 3 remains, so care
must be taken that a given protocol is not relying on that property in the g = 1
case.

3.2 Validating private keys

The manipulation of the private key in Algorithm 2 is easy to detect, since it is
internally inconsistent. Another mitigation option is to check for this inconsis-
tency, by requiring that the implementor checks H(pk) = h when deserializing
the private key. This allows an implementation to conform to the ML-KEM
standard, without being vulnerable to MAL-BIND-K-CT attacks.

Note that, as before, the MAL-BIND-K-PK attack of Algorithm 3 remains,
so care must be taken that a given protocol is not relying on that property in
the g = 1 case.

3.3 Storing private keys as seeds

The serialization format of the private key can in general be seen as a cache of the
output of KeyGen under a given seed. If deserialization instead recomputed the
whole private key via the initial seed, computing a malformed private key would
be impossible. This option is also the only option to obtain MAL-BIND-K-PK,
as long as z is not drawn independently of the rest of the seed. Unfortunately,
this would require further modification of ML-KEM, computing σ, ρ, and z from
a single seed being used in a KDF instead of, as is currently done, using two
separate seeds.

In other words, this would modify KeyGen to be:

Algorithm 4 KeyGen for private keys serialized as seed

g ← Rng(32)
return g

and define ParsePrivate via

Algorithm 5 ParsePrivate when private keys are serialized as seed

σ, ρ, z ← KDF(g)
sk = KeyGenNIST (σ, ρ, z)
return sk

7



Proposition 2. ML-KEM with private keys being serialized as a single random
seed is MAL-BIND-K-PK.

Proof. We again only show a sketch of the proof without random oracles replac-
ing the hash functions, and only prove the scenario of both parties decapsulating,
with the other cases being analogous.

Case 1. Both parties rejecting. We have Ki = J(zi∥ci), so K0 = K1 implies
z0 = z1 and c0 = c1 due to the attacker not finding collisions. σi, ρi, zi =
KDF (gi) means that z0 = z1 implies g0 = g1. This in turn implies σ0 = σ1 and
ρ0 = ρ1, leading to the public keys being equal as well.

Case 2. Party 0 accepts, Party 1 rejects. We have K0 = J(z0∥c0) and
K1, r1 = G(m1, H(pk1)). Like in the case of MAL-BIND-K-CT, K0 = K1 leads
to a contradiction due to the domain separation bewtween the hash functions
J and G.

Case 3. Both parties accepting. We have Ki, ri = G(mi∥H(pki)). Due to
the attackers inability to find hash function collisions, K0 = K1 implies that
pk0 = pk1, as required for the non-trivial notion of MAL-BIND-K-PK.

3.4 Mitigations at the protocol layer

Binding properties were not required in the initial NIST competition and are
not usually seen as a required property of a secure KEM. An argument can be
made that binding properties already only matter in specific scenarios, and that
they are relatively straightforward to mitigate at the protocol layer, by making
sure that ciphertext and public key are always part of the key derivation of a key
agreement. This is best practice for key agreement protocols, but unfortunately
still a common oversight in protocol design.

Since all attacks on ML-KEM misbinding public key or ciphertext rely on
manipulated private keys, only protocols in which the private key for one reason
or another cannot be fully trusted are at risks. Protocols that receive the private
key from a third party, or that require revealing of the private key under certain
conditions, should use the seed of the private key as a representation of the key,
and rerun KeyGen instead of relying on cached representations of the private
key material.

4 Conclusions

The binding properties defined in [CDM23] depend very tightly with the formats
used for the private key serialization. Outside of attacks on this aspect of ML-
KEM, we obtain very strong binding properties for free. In particular, we do
not have to hash the ciphertext or the public key into the shared secret more
than the algorithms in ML-KEM already do, showing that the simplified key
derivation NIST chose for ML-KEM over Kyber Round 3 was a correct choice,
only improving performance without compromising security.

There are still misbinding problems left in ML-KEM, though, but they can
be fixed with a relatively minor change in how private keys are serialized. Any

8



protocol in which revealing a private key or accepting private keys from a third
party is part of the protocol flow, should use the seed used to generate the
private key to accomplish these tasks instead of the serialized private key format
of ML-KEM.

References

[ADG+20] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul
Luykx, and Sophie Schmieg. How to abuse and fix authenticated
encryption without key commitment. Cryptology ePrint Archive,
Paper 2020/1456, 2020. https://eprint.iacr.org/2020/1456.

[CDM23] Cas Cremers, Alexander Dax, and Niklas Medinger. Keeping up
with the kems: Stronger security notions for kems and automated
analysis of kem-based protocols. Cryptology ePrint Archive, Paper
2023/1933, 2023. https://eprint.iacr.org/2023/1933.

[DGRW19] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne
Woodage. Fast message franking: From invisible salamanders to
encryptment. Cryptology ePrint Archive, Paper 2019/016, 2019.
https://eprint.iacr.org/2019/016.

9

https://eprint.iacr.org/2020/1456
https://eprint.iacr.org/2023/1933
https://eprint.iacr.org/2019/016

	Introduction
	Counterexamples
	Counterexamples for MAL-BIND-K-CT
	Counterexamples for MAL-BIND-K-PK

	Mitigations
	Omiting the hash in the private key serialization
	Validating private keys
	Storing private keys as seeds
	Mitigations at the protocol layer

	Conclusions

