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Abstract. In this paper, we propose a novel isogeny-based public key
encryption (PKE) scheme named LIT-SiGamal. This is based on a LIT
diagram and SiGamal. SiGamal is an isogeny-based PKE scheme that
uses a commutative diagram with an auxiliary point. LIT-SiGamal uses a
LIT diagram which is a commutative diagram consisting of large-degree
horizontal isogenies and relatively small-degree vertical isogenies, while
the original SiGamal uses a CSIDH diagram.
A strength of LIT-SiGamal is efficient encryption and decryption. QFESTA
is an isogeny-based PKE scheme proposed by Nakagawa and Onuki,
which is a relatively efficient scheme in isogeny-based PKE schemes.
In our experimentation with our proof-of-concept implementation, the
computational time of the encryption of LIT-SiGamal is as efficient as
that of QFESTA, and that of the decryption of LIT-SiGamal is about
5x faster than that of QFESTA.

Keywords: isogeny-based cryptography; Kani’s theorem; public key encryp-
tion;

1 Introduction

Isogeny-based cryptography is one of the candidates for post-quantum cryptog-
raphy, which is based on the Isogeny problem of supersingular elliptic curves.
The strength of isogeny-based cryptosystems is that their key sizes are short.
An isogeny-based digital signature SQISign [11] is considered the most compact
post-quantum digital signature. However, isogeny-based cryptosystems generally
take longer to execute than other post-quantum cryptosystems.

SIDH [15] was a promising efficient isogeny-based key exchange scheme. How-
ever, several researchers showed that SIDH can be broken in polynomial time
in 2022 [6,17,24]. The core of these attacks is to use Kani’s theorem [16], which
describes a relationship between isogenies of elliptic curves and those of abelian
varieties of dimension 2.

After breaking SIDH, several isogeny-based schemes have been proposed,
which are possible alternatives to SIDH. M-SIDH [13] and bin-SIDH [4] are
isogeny-based key exchange schemes constructed by making SIDH more complex
and resistant to the SIDH attacks. FESTA proposed by Basso, Maino, and Pope
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[5] is constructed in another direction from M-SIDH and bin-SIDH, which is the
first isogeny-based public key encryption (PKE) scheme that uses Kani’s theorem
as a trapdoor. QFESTA [21] is an improvement to FESTA, and IS-CUBE [18] is
a key encapsulation mechanism (KEM) constructed by using a technique in
FESTA. Thus, various schemes have already been proposed. However, these
schemes are still less efficient than SIDH. Therefore, it is worthwhile to attempt
to construct more efficient isogeny-based schemes.

1.1 Contribution

We propose a novel isogeny-based PKE scheme named LIT-SiGamal. This scheme
is constructed by merging already known isogeny-based schemes SiGamal [20]
and IS-CUBE. More precisely, SiGamal is an ElGamal-like PKE scheme that is
constructed by a commutative diagram with an auxiliary point of smooth order.
The outline of SiGamal is as follows:

(E,R)
ϕ1 //

ϕ2

��

(E1, ϕ1(R))

ϕ′
2

��
(E2, ϕ2(R))

ϕ′
1

// (E3, ϕ
′
2(ϕ1(R)))

1. Suppose that the above diagram is commutative, and R is a point of smooth
order in E.

2. Alice computes (E,R,E1, ϕ1(R)) as her public key.
3. Bob computes (E2, ϕ2(R), E3,µϕ

′
2(ϕ1(R))) as a ciphertext. The value µ is

his plaintext.
4. Alice computes ϕ′1 : E2 → E3 and obtains µ by solving the Discrete Loga-

rithm problem for µϕ′2(ϕ1(R))) and ϕ
′
1(ϕ2(R))).

LIT-SiGamal is a SiGamal-based PKE scheme that uses a LIT diagram as the
base commutative diagram. A LIT diagram is a commutative diagram with
deg ϕ1 ≫ deg ϕ2 = deg ϕ′2 introduced for constructing IS-CUBE, and the over-
head of the prime required to construct a LIT diagram is relatively small.

One beneficial property of LIT-SiGamal is that the encryption and decryp-
tion are efficient. In our experimentation with our PoC implementation, the
encryption of LIT-SiGamal is as efficient as that of QFESTA, and the decryp-
tion of LIT-SiGamal is about 5x faster than that of QFESTA. Moreover, the
total time of the encryption and decryption of LIT-SiGamal is the shortest for
the security parameters 192 and 256 among isogeny-based schemes compared in
this study. Our comparison is summarized in Table 5.

Organization.

We first introduce some background knowledge associated with our study in Sec-
tion 2. In Section 3, we introduce some isogeny-based schemes that are strongly
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related to LIT-SiGamal. Section 4 provides the scheme of LIT-SiGamal. In par-
ticular, Section 4.1 gives an overview of LIT-SiGamal, Section 4.2 provides the
precise scheme of LIT-SiGamal, Section 4.3 explains the method to generate
the public key of LIT-SiGamal, and Section 4.4 provides the compressed LIT-
SiGamal. We discuss the security of LIT-SiGamal in Section 5. We define security
assumptions and prove that LIT-SiGamal is IND-CPA secure in Section 5.1 and
estimate the size of the prime for LIT-SiGamal in Section 5.2. Section 5.3 pro-
vides an adaptive attack for LIT-SiGamal. Section 6 shows the results related
to our PoC implementation. Section 6.1 provides actual primes for LIT-SiGamal
and Section 6.2 shows our experimental results of the PoC implementation. We
finally conclude our study in Section 7.

2 Preliminaries

2.1 Isogenies

In this subsection, we introduce some mathematical backgrounds related to this
study. In particular, we introduce basic knowledge about elliptic curves. See [25]
for more details of elliptic curves.

Let p be a prime, and let k be a field of characteristic p. An elliptic curve
defined over k is an abelian variety defined over k of dimension 1. Let n be an
integer, and let k be an algebraic closure of k. The n-torsion subgroup of E is
the subgroup of E defined by

E[n] = {P ∈ E(k) | nP = 0}.

If n is coprime to p, it holds that E[n] ∼= (Z/nZ)2. If E[p] = {0}, we call E a
supersinglar elliptic curve.

Let E and E1 be elliptic curves defined over k. An isogeny ϕ : E → E1 is a
surjective morphism between algebraic varieties E and E1 that is also a group
morphism and whose kernel is a finite subgroup of E. If ϕ is separable as a
morphism of algebraic varieties, we call ϕ a separable isogeny. If ϕ is a separable
isogeny, then it holds that deg ϕ = #kerϕ. An ℓ-isogeny is a separable isogeny
whose kernel is a cyclic group of order ℓ. For an isogeny ϕ : E → E′, there is the
isogeny ϕ̂ : E′ → E such that ϕ ◦ ϕ̂ = [deg ϕ] and ϕ̂ ◦ ϕ = [deg ϕ], where [n] is

the multiplication-by-n map. We call ϕ̂ the dual isogeny of ϕ. Let G be a finite
subgroup of E. Then, there is a separable isogeny ϕ : E → E′ with kerϕ = G.
The codomain curve E′ of ϕ is unique up to the isomorphism, and we denote a
representative by E/G. From an elliptic curve E and its finite subgroup G, we
can compute a separable isogeny ϕ : E → E/G with kerϕ = G [27]. Generally,
from a principally polarized abelian variety A and its finite subgroup G, we can
compute a separable isogeny ϕ : A→ A/G with kerϕ = G. If dimA = 2, we can
use formulas provided by [26] or [10]. An isogeny diamond or SIDH diagram is
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the following commutative diagram

E
ϕ1 //

ϕ2

��

E1

ϕ′
2

��
E2

ϕ′
1

// E3

that satisfies gcd (deg ϕ1,deg ϕ2) = 1, deg ϕ1 = deg ϕ′1, and deg ϕ2 = deg ϕ′2.

Proposition 1 (Kani’s theorem [16]). Let the following diagram be an isogeny
diamond:

E
ϕ1 //

ϕ2

��

E1

ϕ′
2

��
E2

ϕ′
1

// E3

Then the isogeny Ψ : E × E3 → E1 × E2 defined by

Ψ =

(
ϕ̂1 ϕ̂2
−ϕ′2 ϕ′1

)
satisfies kerΨ = ⟨(ϕ1(P ), ϕ2(P )) | P ∈ E[deg ϕ1 + deg ϕ2]⟩.

2.2 Isogeny problems with torsion points information

In this subsection, we introduce basic mathematical problems related to our
study. In particular, we define the Isogeny problem and its some variations with
torsion points information.

Definition 1 ((Supersingular) Isogeny problem). Let E1 and E2 be random
supersingular elliptic curves.

We call the following problem the Isogeny problem:

Find an isogeny ϕ1 : E1 → E2 from (E1, E2).

Definition 2 (CSSI problem [15]). Let d1 and d2 be coprime smooth integers.
Let E1 and E2 be random supersingular elliptic curves such that there is a
separable isogeny ϕ1 : E1 → E2 of degree d1, and let {P,Q} be a random basis
of E1[d2].

We call the following problem the CSSI problem:

Compute ϕ1 from (d1, d2, E1, E2, P,Q, ϕ1(P ), ϕ1(Q)).

The hardness of this problem guaranteed the security of SIDH [15]; however,
it can be solved in polynomial time if d22 ≥ d1 by the SIDH attacks based on
Kani’s theorem [6,17,24]. Although the Isogeny problem is still considered as
hard to solve, it is not easy to construct a cryptosystem based on this problem
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because it is too simple. Therefore, to construct isogeny-based schemes, some
variants of the Isogeny problem have been proposed. We now introduce the
CIST and LIT problem.

The CIST problem is one variant of the Isogeny problem proposed in [5],
which is a problem to compute an isogeny from given two elliptic curves and
torsion points that are masked by an appropriate matrix.

Definition 3 (CIST problem [5]). Let d1 and d2 be coprime integers. LetM is
a sufficient large abelian subgroup of GL2(Z/d2Z). Let E1 and E2 be random su-
persingular elliptic curves such that there is an isogeny ϕ1 : E1 → E2 of degree d1,
and let {P,Q} be a random basis of E1[d2]. Put

t(P ′, Q′) := A · t(ϕ1(P ), ϕ1(Q)),
where A is a random matrix inM.

We call the following problem the CIST problem:

Compute ϕ1 from (d1, d2, E1, E2, P,Q, P
′, Q′,M).

As the subgroupM of GL2(Z/d2Z), the group of diagonal matrices and that
of circulant matrices are suggested in [5].

The LIT problem is another variant of the Isogeny problem. In the setting of
the LIT problem, torsion points are revealed, while in the CIST problem setting,
torsion points are masked by a matrix. Instead, we assume that the degree of
the isogeny ϕ1 is much larger than the order of the torsion points in the setting
of the LIT problem.

Definition 4 (LIT problem [18]). Let d1 and d2 be coprime integers such that
d1 ≫ d2. Let E1 and E2 be random supersingular elliptic curves such that there
is a separable isogeny ϕ1 : E1 → E2 of degree d1, and let {P,Q} be a random
basis of E1[d2].

We call the following problem the LIT problem:

Compute ϕ1 from (d1, d2, E1, E2, P,Q, ϕ1(P ), ϕ1(Q)).

From the discussion in [18, Section 4.2], if d1 > d22 · 22λ for the security
parameter λ, then the LIT problem may be hard to solve. A LIT diagram is a
SIDH diagram satisfying the degree inequality d1 > d22 · 22λ.

3 Related schemes

In this section, we explain some isogeny-based schemes related to the construc-
tion of LIT-SiGamal.

3.1 FESTA

FESTA [5] is the first isogeny-based PKE scheme that uses Kani’s theorem in the
construction. The security of FESTA relies on the hardness of the CIST problem.
Notably, they introduced the method of sending a SIDH diagram without reveal-
ing isogenies by masking torsion points by appropriate matrices. We provide a
brief explanation of an outline of FESTA.
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Assume that Bob tries to send a message to Alice by FESTA. The outline
of FESTA proceeds as follows. Let ℓA be a small prime, let dA,1, dA,2, d1, d2
be integers such that dA,1d1 + dA,2d2 = ℓaA for some a ∈ Z≥1, let E0 be a
supersingular elliptic curve, let {PA, QA} be a basis of E0[ℓ

a
A], and letMa be a

commutative subgroup of GL2(Z/ℓaAZ) of sufficiently large order.

Public key / Secret key: Alice first computes an isogeny ϕA : E0 → EA of
degree dA,1dA,2 and computes ϕA(PA), ϕA(QA). Alice takes a random matrix
A fromMa and computes t(P ′

A, Q
′
A) := A·t(ϕA(PA), ϕA(QA)). She publishes

EA and (P ′
A, Q

′
A) as her public key. Let A be her secret key.

Encryption: Bob computes an isogeny ϕ1 : E0 → E2 of order d1 and an isogeny
ϕ2 : EA → E2 of degree d2. Here, he embeds his plaintext to ϕ1 appropri-
ately. He takes a random matrix B from Ma and computes t(P1, Q1) :=
B · t(ϕ1(PA), ϕ1(QA)) and t(P2, Q2) := B · t(ϕ2(P ′

A), ϕ2(Q
′
A)). He publishes

(E1, P1, Q1, E2, P2, Q2) as the ciphertext.
Decryption: Alice computes t(P ′

2, Q
′
2) := A−1 · t(P2, Q2). Note that it follows

from the commutativity of A and B that

(d1P
′
2, d1Q

′
2) = ((ϕ2 ◦ ϕA ◦ ϕ̂1)(P1), (ϕ2 ◦ ϕA ◦ ϕ̂1)(Q1)).

Alice computes a (ℓaA, ℓ
a
A)-isogeny Φ from E0 × E1 with

kerΦ = ⟨(dA,1P1, P
′
2), (dA,1Q1, Q

′
2)⟩.

It follows from Kani’s theorem and dA,1d1 + dA,2d2 = ℓaA that

Φ =

(
ϕA,1 ◦ ϕ̂1 ϕ̂A,2 ◦ ϕ̂2
∗ ∗

)
,

where ϕA,1 and ϕA,2 are isogenies satisfying ϕA,2 ◦ ϕA,1 = ϕA, deg ϕA,1 =
dA,1, and deg ϕA,2 = dA,2. Alice finally obtains ϕ1 from Φ.

3.2 IS-CUBE

IS-CUBE is an isogeny-based KEM proposed in [18]. The security of IS-CUBE
relies on both the LIT and CIST problems. One feature of IS-CUBE is to con-
struct a novel SIDH diagram by constructing random LIT diagrams from the
public SIDH diagram. To send the novel SIDH diagram, the user of IS-CUBE
uses a technique provided in FESTA (i.e., masking torsion points by appropriate
matrices). In this subsection, we explain an outline of IS-CUBE.

Assume that Bob tries to share a key with Alice. The procedure of IS-CUBE
proceeds as follows. Let ℓA, ℓB , ℓC be small distinct primes, let a, b, c be integers
such that ℓaA > ℓbB ≫ ℓcC , and letMa be a commutative subgroup of GL2(Z/ℓaAZ)
of sufficiently large order. Let E0 be a random supersingular elliptic curve, and
let {PA, QA} be a basis of E0[ℓ

a
A], and let {PC , QC} be a basis of E0[ℓ

c
C ]. Let

ψ : E0 → Ẽ0 be an isogeny of degree ℓaA − ℓbB .
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Public key / Secret key: Alice first computes an ℓbB-isogeny ϕ1 : E0 → E1

at random. Moreover, she computes ϕ1(PA), ϕ1(QA) and ϕ1(PC), ϕ1(QC).
Alice takes a random matrix A from Ma and computes t(P1, Q1) := A ·
t(ϕ1(PA), ϕ1(QA)). She publishes (E1, P1, Q1, ϕ1(PC), ϕ1(QC)) as her public
key and lets A be her secret key.

Encapsulation: Bob takes a random element s from (Z/ℓcCZ)×. Then, he com-
putes three isogenies:

ϕ0,B : Ẽ0 → Ẽ′
0 := Ẽ0/⟨ψ(PC) + sψ(QC)⟩,

ϕB : Ẽ0 → E := E0/⟨PC + sQC⟩,
ϕ1,B : E1 → E′

1 := E1/⟨ϕ1(PC) + sϕ1(QC)⟩.

Let E be Bob’s shared key. He takes a random matrix B from Ma and
computes(

P ′
0

Q′
0

)
:= B ·

(
ϕ0,B(ψ(PA))
ϕ0,B(ψ(QA))

)
,

(
P ′
1

Q′
1

)
:= B ·

(
ϕ1,B(P1)
ϕ1,B(Q1)

)
.

He publishes (Ẽ′
0, P

′
0, Q

′
0, E

′
1, P

′
1, Q

′
1) as the ciphertext.

Decapsulation: Alice first computes t(P ′′
1 , Q

′′
1) := A−1 · t(P ′

1, Q
′
1). Note that

there are isogenies ψ′ : E → Ẽ′
0 of degree ℓaA− ℓbB and ϕ′1 : E → E′

1 of degree
ℓbB such that

((ℓaA − ℓbB)P ′′
1 , (ℓ

a
A − ℓbB)Q′′

1) = ((ϕ′1 ◦ ψ̂′)(P ′
0), (ϕ

′
1 ◦ ψ̂′)(Q′

0))

because Bob constructs LIT diagrams to compute Ẽ′
0 and E′

1. Alice com-
putes an (ℓaA, ℓ

a
A)-isogeny Φ with kerΦ = ⟨(P ′

0, P
′′
1 ), (Q

′
0, Q

′′
1)⟩. It follows from

Kani’s theorem that

Φ =

(
ψ̂′ ϕ̂′1
∗ ∗

)
: Ẽ′

0 × E′
1 −→ E × ∗.

Therefore, Alice can obtain E from Φ.

3.3 SiGamal

SiGamal is an isogeny-based PKE proposed in [20]. We provide a brief explana-
tion of SiGamal in this subsection.

SiGamal is constructed by adding information on points to a commutative
diagram. The following diagram shows the basic structure of SiGamal. Here, we
let E0, E1, E2, E3 be elliptic curves, and let R be a point of E0. Let ϕ1 : E0 → E1,
ϕ2 : E0 → E2, ϕ

′
1 : E2 → E3, ϕ

′
2 : E1 → E3 be isogenies satisfying ϕ

′
1◦ϕ2 = ϕ′2◦ϕ1.

We suppose that anyone who knows ϕ1 and E2 can compute ϕ′1.

(E0, R)
ϕ1 //

ϕ2

��

(E1, ϕ1(R))

ϕ′
2

��
(E2, ϕ2(R))

ϕ′
1

// (E3, ϕ
′
2(ϕ1(R)))
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Assume that Bob tries to send a message to Alice by using SiGamal. The
whole process of SiGamal is as follows:

Public key / Secret key: First, Alice computes the top isogeny ϕ1 and ob-
tains (E0, R) and (E1, ϕ1(R)). She publishes (E0, R,E1, ϕ1(R)) and lets ϕ1
be her secret key.

Encryption: Bob computes vertical isogenies ϕ2 and ϕ
′
2 and obtains (E2, ϕ2(R))

and (E3, ϕ
′
2(ϕ1(R))). Denote Bob’s message by µ. Bob computes µϕ′2(ϕ1(R))

and sends (E2, ϕ2(R), E3, µϕ
′
2(ϕ1(R))) to Alice.

Decryption: Finally, Alice computes ϕ′1 by using her secret key ϕ. She also
computes ϕ′1(ϕ2(R)) = ϕ′2(ϕ1(R)). The message µ is recovered by solving the
Discrete Logarithm Problem for ϕ′2(ϕ1(R)) and µϕ

′
2(ϕ1(R)) via the Pohlig-

Hellman algorithm [22].

The above construction is the core of SiGamal; however, this construction
does not work in general. It is because it is hard to compute ϕ′1 from ϕ1 and E2

without knowing ϕ2 and ϕ′2 generally. In other words, it is not true that anyone
who knows ϕ1 and E2 can compute ϕ′1. To solve this problem, the original SiGa-
mal uses a CSIDH diagram. CSIDH is an isogeny-based key exchange scheme
proposed in [7], which is based on a group action of a specific commutative group
(an ideal class group) on a set of supersingular elliptic curves. The action of a
group element [a] on an elliptic curve E0 is computed by E0/E0[a], where E0[a] is
a finite subgroup of E0 derived from [a]; therefore, we can obtain a commutative
diagram of isogenies by considering the group action as follows:

E0
ϕ1 //

ϕ2

��

[a]E0 = E0/E0[a]

ϕ′
2

��
[b]E0 = E0/E0[b]

ϕ′
1

// [a][b]E0

The isogenies ϕ1 and ϕ′1 correspond to the same element of the ideal class group;
hence, anyone who knows ϕ1 and E2 can compute ϕ′1 by considering the group
action on E2 of the element related to ϕ1.

4 LIT-SiGamal

In this section, we provide the precise construction of LIT-SiGamal.

4.1 Overview

We provide a brief explanation of LIT-SiGamal in this subsection.
LIT-SiGamal is a SiGamal-based public key encryption scheme based on a

LIT diagram, while the original SiGamal is based on a CSIDH diagram. The
following diagrams show CSIDH and LIT diagrams.
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A CSIDH diagram

(SiGamal)

Es [a]Es

[a]

A LIT diagram

(LIT-SiGamal)

(Es, PB , QB) (E1, ϕ1(PB), ϕ1(QB))
ϕ1

[b]Es [a][b]Es

[b] [b]

[a]
Es/G E1/ϕ1(G)

ϕ′
1 (!)

ϕ2 ϕ′
2

The use of a LIT diagram instead of a CSIDH diagram offers the advantage
of reducing the size of the prime p and making the scheme more efficient. In the
setting of the LIT problem, anyone can compute two parallel vertical isogenies
without revealing the isogeny ϕ1 as the CSIDH setting; therefore, it seems to be
able to construct a SiGamal-based PKE by using a LIT diagram. However, we
generally cannot compute the bottom isogeny ϕ′1 of the LIT diagram from the
top isogeny ϕ1 without revealing ϕ2 and ϕ′2 because the diagram does not rely
on a group structure. This computation is needed for the decryption process of
SiGamal. Therefore, it is not trivial to construct a SiGamal-based PKE scheme
from a LIT diagram.

To construct LIT-SiGamal, we use the technique used in FESTA and IS-
CUBE, which is to add auxiliary points masked by a matrix to the diagram. To
be more precise, Alice and Bob perform the following steps:

1. Let N be a sufficiently large integer. Alice takes points PA, QA that form a
basis of Es[N ] and a matrix A in GL2(Z/NZ).

2. Alice publishes PA, QA and t(P1, Q1) := A · t(ϕ1(PA), ϕ1(QA)) in addition to
the top of the LIT diagram.

3. Bob computes G = ⟨PB + sQB⟩ and ϕ1(G) = ⟨ϕ1(PB) + sϕ1(QB)⟩, and the
vertical isogenies ϕ2 and ϕ′2.

4. Bob takes a matrix B in GL2(Z/NZ) and computes

t(P2, Q2) := B · t(ϕ2(PA), ϕ2(QA)),
t(P3, Q3) := B · t(ϕ′2(P1), ϕ

′
2(Q1)).

He publishes these points with Es/G and E1/ϕ1(G).
5. Suppose that AB = BA. Note that it holds that

t(P3, Q3) = A · t(ϕ′1(P2), ϕ
′
1(Q2)).

Alice obtains the images of P2, Q2 under ϕ′1 by using A−1. Finally, by using
the SIDH attacks, Alice computes ϕ′1.

From the above steps, Alice can compute ϕ′1 without knowing the vertical iso-
genies ϕ2 and ϕ′2.

We use the SIDH attacks in the final step of the above computations. We use
isogenies of abelian varieties of dimension 4 or 8 in general cases [24]; however,
it is inefficient to compute such high-dimensional isogenies in practice. To use
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isogenies of dimension 2 in the decryption process of LIT-SiGamal, we use the
following technique. Let n be a small positive integer, and let ϕ1 be an isogeny of
degree N2−n2, where N is the order of PA and QA. Then, we have the following
isogeny diamond:

Es/G
ϕ′
1 //

[n]

��

E1/ϕ1(G)

[n]

��
Es/G

ϕ′
1 // E1/ϕ1(G)

We can use the same trick appearing in [24] for the above diagram via isogenies
of dimension 2. To be precise, we construct two isogenies Ψ0 and Ψ1 of dimension
2 mapping from Es/G× E1/ϕ1(G) to an abelian variety V with

kerΨ0 = ⟨(nP2, P
′
3), (nQ2, Q

′
3)⟩, and kerΨ1 = ⟨(nP2,−P ′

3), (nQ2,−Q′
3)⟩,

where t(P ′
3, Q

′
3) = A−1 · t(P3, Q3). It holds that

Ψ̂1 ◦ Ψ0 =

(
[n] ϕ̂′1
−ϕ′1 [n]

)
;

therefore, Alice can compute ϕ′1 by using Ψ0 and Ψ1.
In summary, the following figure shows the outline of LIT-SiGamal:

Public key: (Es, PA, QA, PB , QB , R), (E1, P1, Q1, ϕ1(PB), ϕ1(QB), αϕ1(R))

Secret key: (A, α)

Plaintext: µ

Ciphertext: (E′
s, P2, Q2, βϕ2(R)), (E′

1, P3, Q3, µβϕ
′
2(αϕ1(R)))

Es E1(
PB

QB

)
, R,

(
PA

QA

) (
ϕ1(PB)
ϕ1(QB)

)
, αϕ1(R)(

P1

Q1

)
:= A

(
ϕ1(PA)
ϕ1(QA)

)
ϕ1

deg ϕ1=N2−n2

E′
s := Es/⟨PB + sQB⟩ E′

1 := E1/⟨ϕ1(PB) + sϕ1(QB)⟩(
P2

Q2

)
:= B

(
ϕ2(PA)
ϕ2(QA)

)
βϕ2(R)

(
P3

Q3

)
:= B

(
ϕ′2(P1)
ϕ′2(Q1)

)
µβϕ′2(αϕ1(R))

ϕ2

ϕ′
2

αϕ′1(βϕ2(R))

Pohlig-Hellmanϕ′
1

A−1

(
P3

Q3

)
=

(
ϕ′1(P2)
ϕ′1(Q2)

)
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4.2 Scheme of LIT-SiGamal

In this subsection, we explain the PKE scheme of LIT-SiGamal. We assume that
Bob tries to send a secret message µ to Alice.

Public parameters: Let p be a prime defined by p = ℓaAℓ
b
Bℓ

c
C · f − 1, where

ℓA, ℓB , ℓC are pairwise coprime integers and f is a small integer. Denote by
Ma the subgroup consisting of diagonal matrices in the general linear group
of degree 2 over Z/ℓaAZ.1 Let the plaintext space P be the unit group of
Z/ℓcCZ.

Public key / Secret key: Alice first constructs a pair of supersingular ellip-
tic curves over Fp2 denoted by (Es, E1) such that there is a cyclic isogeny
ϕ1 : Es → E1 of degree ℓ2aA − n2 for some integer n. Let {PA, QA} be a ba-
sis of Es[ℓ

a
A], and let {PB , QB} be a basis of Es[ℓ

b
B ]. Let R be a random

point in Es of order ℓcC . Take a random matrix A ∈ Ma and a random
element α ∈ (Z/ℓcCZ)×. Compute t(P1, Q1) := A · t(ϕ1(PA), ϕ1(QA)) and
R1 := αϕ(R). Alice publishes

(Es, PA, QA, PB , QB , R), (E1, P1, Q1, ϕ(PB), ϕ(QB), R1)

as her public key. Alice keeps (A, α) as her secret key.
Encryption: Bob takes the plaintext µ from the plaintext space (Z/ℓcCZ)×.

Bob takes random elements s ∈ (Z/ℓbBZ)×, B ∈ Ma, and β ∈ (Z/ℓcCZ)×.
He next computes two ℓB-isogenies:

ϕ2 : Es −→ E′
s := Es/⟨PB + sQB⟩,

ϕ′2 : E1 −→ E′
1 := E1/⟨ϕ(PB) + sϕ(QB)⟩

and points

t(P2, Q2) := B · t(ϕ2(PA), ϕ2(QA)),
t(P3, Q3) := B · t(ϕ′2(P1), ϕ

′
2(Q1)),

R′ := βϕ2(R), R′
1 := µβϕ′2(R1).

Bob sends to Alice

(E′
s, P2, Q2, R

′), (E′
1, P3, Q3, R

′
1)

as a ciphertext.
Decryption: Alice computes t(P ′

2, Q
′
2) := A · t(P2, Q2) and R

′′ := αR′. She next
computes two isogenies

Ψ0 : E
′
s × E′

1 −→ V with kerΨ0 = ⟨(nP ′
2, P3), (nQ

′
2, Q3)⟩,

Ψ1 : E
′
s × E′

1 −→ V with kerΨ1 = ⟨(nP ′
2,−P3), (nQ

′
2,−Q3))⟩,

where V is an abelian variety of dimension 2. Put R′′
1 = pr2◦Ψ̂1◦Ψ0((−R′′, 0)),

where pr2 is the projection E
′
s×E′

1 → E′
1. By solving the Discrete Logarithm

Problem for R′
1 and R′′

1 , Alice obtains the value µ′ such that R′
1 = µ′R′′

1 .
Output µ′ as the plaintext.

1 We can also use circulant matrices for the construction of LIT-SiGamal; however,
we choose to use diagonal matrices to simplify the implementation and its security
analysis.
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Theorem 1. LIT-SiGamal is correct.

Proof. Let ϕ′1 be an isogeny of degree ℓ2aA −n2 from E′
s to E

′
1 satisfying ϕ′1 ◦ϕ2 =

ϕ′2 ◦ ϕ1. The kernel of an isogeny Φ : E′
s × E′

1 → E′
s × E′

1 represented by

Φ =

(
n ϕ̂′1
−ϕ′1 n

)
is ⟨(nP, ϕ′1(P )) | P ∈ E′

s[ℓ
2a
A ]⟩. Since the kernel of Φ̂ is

Φ(⟨(nP, 0) | P ∈ E′
s[ℓ

2a
A ]⟩) = ⟨(nP,−ϕ′1(P )) | P ∈ E′

s[ℓ
2a
A ]⟩,

we have Φ = Ψ̂1 ◦ Ψ0. Therefore, the point R′′
1 is an image of R′′ = αβϕ0(R)

under ϕ′. Since it holds that R′
1 = µαβϕ1 ◦ ϕ(R), it is clear that µ = µ′.

Remark 1. To reduce the computational cost of the scheme, we often represent
points in elliptic curves by their x-coordinates. In this case, we cannot distinguish
R′

1 and −R′
1 because we forget their y-coordinates. Therefore, at the end of the

decryption process of LIT-SiGamal, Alice may obtain −µ instead of µ. We do
not care about this error in practice since this error is easily corrected.

4.3 Construction of the public key of LIT-SiGamal

In general, it is not easy to construct the public key of LIT-SiGamal. It is be-
cause we need to compute an isogeny of degree ℓ2aA − n2 that is generally not
smooth. This subsection introduces the method to generate the public key of
LIT-SiGamal. The above problem also occurs in generating the public parame-
ters of IS-CUBE; therefore, we can use similar techniques to that for generating
the public parameters of IS-CUBE appearing in [18, Section 3.2 and 3.3]. I.e.,
we compute a desired isogeny by using the structure of the endomorphism ring
of the curve of j-invariant 1728 over Fp2 .

From the discussion in Section 5.2, we have p ≈ 26λ, ℓaA ≈ 23λ, and ℓbB ≈ 22λ;
therefore, we can assume that p < (ℓ2aA − n2)ℓbB . Then, we can compute four
integers x, y, z, w satisfying

x2 + y2 + p(z2 + w2) = (ℓ2aA − n2)ℓbB

by using the Cornacchia algorithm (see [11, Algorithm 1] for more details). Let
E0 be the curve of j-invariant 1728, let πp be the p-Frobenius map of E0, and
let ι be an endomorphism of E0 such that ι2 = [−1]. Define γ0 : E0 → E0 by

γ0 := [x] + [y]ι+ πp([z] + [w]ι).

Then, it holds that deg γ0 = (ℓ2aA −n2)ℓbB . Let γ′0 be a separable isogeny mapping
from E0 with ker γ′0 = ker γ0∩E0[ℓ

b
B ], and let Es,0 be the codomain of γ′0. There



LIT-SiGamal 13

is an isogeny ϕ1,0 : Es,0 → E0 of degree ℓ2aA − n2 such that γ0 = ϕ1,0 ◦ γ′0 as the
following diagram shows.

E0 γ0

''
γ′
0

��
Es,0

ϕ1,0

// E0

We need to compute the images of points of order ℓaA, ℓ
b
B , and ℓ

c
C under ϕ1,0 for

the public key of LIT-SiGamal. Let P be a point in Es,0 of order coprime to ℓB . In

this case, we can compute ϕ1,0(P ) easily because it holds that γ0◦γ̂′0 = [ℓbB ]◦ϕ1,0.
In particular, we can compute the images of points of order ℓaA and ℓcC . If P is of
order divided by ℓB , we can compute ϕ1,0(P ) by using the same method as the
decryption. Note that we can compute {ϕ1,0(PA), ϕ1,0(QA)}, where {PA, QA} is
a basis of Es,0[ℓ

a
A]. Therefore, we can compute the image point under ϕ1,0 of a

point of order divided by ℓB from {PA, QA} and {ϕ1,0(PA), ϕ1,0(QA)} and the
SIDH attacks.

From the above method, we can construct the public key of LIT-SiGamal;
however, this construction has security concerns. One of the concerns is that we
use the curve of j-invariant 1728. Castryck and Vercauteren showed in [8] that
FESTA using the curve of j-invariant 1728 is broken if the public points satisfy
the special property. Another security concern is the distribution of Es,0. The
number of γ0 is less than 22λ because we have

#{(x, y, z, w) ∈ Z4 | x2 + y2 + p(z2 + w2) = ℓbB(ℓ
2a
A − n2)}

≤ #{(z, w) ∈ Z2 | z2 + w2 ≤ ℓbB(ℓ2aA − n2)/p}

<

2

√
ℓbB(ℓ

2a
A − n2)
p

2

≈ 22λ.

Since the number of isogenies of degree ℓ2aA − n2 from E0 is about 26λ, we take
Es,0 from a tiny subset of the set of possible elliptic curves. Therefore, it is
recommended to use random elliptic curves for the public key.

We now explain the method to construct the public key with random elliptic
curves. The idea is the same as in [18, Section 3.3] and shown in the following
diagram.

E0

γ′
0 //

γ0 ))

Es,0

ϕB,1 //

ϕ1,0

��

Es,1

ϕB,2 //

ϕ1,1

��

· · ·
ϕB,L // Es := Es,L

ϕ1:=ϕ1,L

��
E0

ϕ′
B,1

// E0,1
ϕ′
B,2

// · · ·
ϕ′
B,L

// E1 := E1,L

Precisely, we perform the following procedure:
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Step 0: By computing γ0 and γ′0, construct Es,0, ϕ1,0, and the auxiliary points
PA,0, QA,0, PB,0, QB,0, RC,0, ϕ1,0(PA,0), ϕ1,0(QA,0), ϕ1,0(PB,0), ϕ1,0(QB,0),
and ϕ1,0(RC,0), where {PA,0, QA,0} is a basis of Es,0[ℓ

a
A], {PB,0, QB,0} is

a basis of Es,0[ℓ
b
B ], and RC,0 is of order ℓcC . Let E0,0 be E0 (the curve of

j-invariant 1728).
Step 3i− 2 (1 ≤ i ≤ L): Compute two ℓbB-isogenies ϕB,i and ϕ′B,i from Es,i

and E0,i satisfying kerϕ′B,i = ϕ1,i(kerϕB,i) at random without backtracking.
Denote the codomain of ϕB,i (resp. ϕ

′
B,i) by Es,i (resp. by E0,i). Notice that

there is an isogeny ϕ1,i of degree ℓ
2a
A − n2 between Es,i and E0,i.

Step 3i− 1 (1 ≤ i ≤ L): Compute the images of PA,i−1, QA,i−1, RC,i−1 under
ϕB,i. Put

PA,i := ϕB,i(PA,i−1), QA,i := ϕB,i(QA,i−1), RC,i := ϕB,i(RC,i−1).

Compute ϕ1,i(PA,i), ϕ1,i(QA,i), and ϕ1,i(RC,i) by computing the images of
ϕ1,i−1(PA,i−1), ϕ1,i−1(QA,i−1), and ϕ1,i−1(RC,i−1) under ϕ

′
B,i.

Step 3i (1 ≤ i ≤ L): Generate a random basis {PB,i, QB,i} of Es,i[ℓ
b
B ] and

compute the images of PB,i, QB,i under ϕB,i as the decryption process of
LIT-SiGamal using {PA,i, QA,i} and {ϕ1,i(PA,i), ϕ1,i(QA,i)}.

Step 3L+ 1: Mask the auxiliary points appropriately and output Es,L, E0,L

and the masked auxiliary points as the public key.

Here, the integer L is the number of the iteration.

Remark 2. It seems that we cannot take two random elliptic curves using the
above method because it takes one random elliptic curve and another curve de-
pending on the first curve. However, [2, Theorem 7.3] and [3, Theorem 3] showed
that the supersingular ℓ-isogeny graph with a level-(ℓ2aA − n2) Borel structure
is connected and satisfies a Ramanujan property. Therefore, we can obtain a
random supersingular elliptic curve and its random cyclic subgroup of order
(ℓ2aA −n2) by a random walk on the graph. That is, if L is sufficiently large, then
we can construct a random pair of (ℓ2aA − n2)-isogenous supersingular elliptic
curves by the above method. The mixing rate of the graph is 1/

√
ℓB from [1,

Theorem 1.1]. I.e., it holds that

1√
ℓB

= lim sup
l→∞

max
u,v∈G

∣∣∣∣P (l)
u,v −

1

#G

∣∣∣∣ 1l ,
where G is the set of the vertices of the graph, and P

(l)
u,v is a probability that an

l-length non-backtracking random walk in the graph from u reaches v. Therefore,
we suggest the number L to satisfy (1/

√
ℓB)

bL ≤ 1/2λ and ℓbLB ≥ #G ≈ 212λ.
That is, we set L ≈ (logℓB 212λ)/b = 12λ/ log2 ℓ

b
B ≈ 6.

4.4 Compressed LIT-SiGamal

In this subsection, we introduce the compressed version of LIT-SiGamal. As the
same as other isogeny-based schemes, the main idea of the compression is based
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on the compression of SIDH [9]. That is, we define a canonical basis of an N -
torsion subgroup of E and represent a basis of E[N ] by a matrix in GL2(Z/NZ)
using the Pohlig-Hellman algorithm.

We explain the detail of the compression. Recall that the public key of LIT-
SiGamal is

(Es, PA, QA, PB , QB , R), (E1, P1, Q1, ϕ(PB), ϕ(QB), R1),

which is represented as an element in F12
p2 . We assume that there is a deterministic

algorithm A that outputs a basis of E[N ] from an elliptic curve E and an integer
N . We define

{PA, QA} := A(Es, ℓ
a
A), {PB , QB} := A(Es, ℓ

b
B).

Then, we do not need to include {PA, QA} and {PB , QB} in the public key of
LIT-SiGamal. Let {PC , QC} be a basis of Es[ℓ

c
C ] that is output of A(Es, ℓ

c
C).

Then, we can define R := PC + rQC , and R can be represented by r ∈ Z/ℓcCZ.
We define

{PA,1, QA,1} := A(E1, ℓ
a
A), {PB,1, QB,1} := A(E1, ℓ

b
B).

Then, we can represent {P1, Q1} and {ϕ(PB), ϕ(QB)} by matrices as(
P1

Q1

)
=

(
a00 a01
a10 a11

)(
PA,1

QA,1

)
,

(
ϕ(PB)
ϕ(QB)

)
=

(
b00 b01
b10 b11

)(
PB,1

QB,1

)
.

Note that we can ignore the constant factors of the representations. For example,
we can represent {P1, Q1} by (1, a01/a00, a10/a00, a11/a00) if a00 ̸≡ 0 (mod ℓA)
and by (a00/a10, 1, a10/a01, a11/a01) if a00 ≡ 0 (mod ℓA). Therefore, we can
represent {P1, Q1} by an element in {0, 1} × (Z/ℓaAZ)3 and {ϕ(PB), ϕ(QB)} by
that in {0, 1} × (Z/ℓbBZ)3. We define

{PC,1, QC,1} := A(E1, ℓ
c
C).

Then, we can represent R1 by (r1, r
′
1) ∈ (Z/ℓcCZ)2 with R1 = r1PC,1 + r′1QC,1.

Because we can also ignore the constant factor in this case, the point R1 can be
represented by an element in {0, 1} × Z/ℓcCZ as {P1, Q1}. Therefore, the public
key of LIT-SiGamal can be represented by an element in

F2
p2 × (Z/ℓaAZ)3 × (Z/ℓbBZ)3 × (Z/ℓcCZ)2 × {0, 1}3.

The ciphertext of LIT-SiGamal can also be compressed in a similar way.
Recall that the ciphertext of LIT-SiGamal is

(E′
s, P2, Q2, R

′), (E′
1, P3, Q3, R

′
1),

which is represented by an element in F8
p2 . The basis {P2, Q2} can be represented

by an element in {0, 1} × (Z/ℓaAZ)3. However, it is not clear that {P3, Q3} can
be represented as the same as {P2, Q2} because the constant factors of {P2, Q2}
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Original Compressed

Public key F12
p2 F2

p2 × (Z/ℓaAZ)3 × (Z/ℓbBZ)3 × (Z/ℓcCZ)2 × {0, 1}3

Cipertext F8
p2 F2

p2 × (Z/ℓaAZ)6 × (Z/ℓcCZ)3 × {0, 1}3

Table 1. Original and compressed LIT-SiGamal

and of {P3, Q3} should be compatible. In other words, it is because it should
hold that A−1 · t(P3, Q3) =

t(ϕ′1(P2), ϕ
′
1(Q2)). Actually, we can solve this issue.

If (P3, Q3) is multiplied by a constant, we can detect this constant by using the
Weil pairing and deg ϕ′1 = ℓ2aA − n2. Consequently, both {P2, Q2} and {P3, Q3}
can be represented by elements in {0, 1}×(Z/ℓaAZ)3. On the contrary, the points
R′ and R′

1 cannot be represented by elements in {0, 1} × Z/ℓcCZ at the same
time because we cannot obtain information from the Weil pairing. Therefore,
the points (R′, R′

1) cannot be represented by an element in {0, 1}2 × (Z/ℓcCZ)2
but in {0, 1} × (Z/ℓcCZ)3. Consequently, the ciphertext of LIT-SiGamal can be
represented by an element in

F2
p2 × (Z/ℓaAZ)6 × (Z/ℓcCZ)3 × {0, 1}3.

Table 1 summarizes the representation sets of the public key and ciphertext
of the original and compressed LIT-SiGamal.

5 Security analysis of LIT-SiGamal

We provide security analysis of LIT-SiGamal in this section.

5.1 Security assumptions

In this subsection, we provide some security assumptions associated with LIT-
SiGamal and prove that LIT-SiGamal is IND-CPA secure. In particular, we show
that if the LIT-DDH assumption, which is analogous to the DDH assumption in
a LIT diagram, holds, then LIT-SiGamal is IND-CPA secure.

Let p be a prime of the form p = ℓaAℓ
b
Bℓ

c
Cf − 1, where ℓA, ℓB , and ℓC are

distinct small primes, and f is a small integer. Let n be a small integer. Let
Ma be the subgroup of diagonal matrices in GL2(Z/ℓaAZ), and letMa,c be the
subgroup of diagonal matrices in GL2(Z/ℓaAℓcCZ).

We first introduce the Computational and Decisional LIT-SiGamal assump-
tions (Definition 5 and 6), which are basic assumptions for considering the se-
curity of LIT-SiGamal.

Definition 5 (Computational LIT-SiGamal assumption). Let Es and E1 be
supersingular elliptic curves with an isogeny ϕ1 : Es → E1 of degree ℓ2aA − n2.
Let {PA, QA} be a basis of Es[ℓ

a
A], let {PB , QB} be a basis of Es[ℓ

b
B ], and let R

be a point of Es of order ℓcC . Define(
P1,A

Q1,A

)
:= A

(
ϕ1(PA)
ϕ1(QA)

)
,

(
P1,B

Q1,B

)
:=

(
ϕ1(PB)
ϕ1(QB)

)
, R1 := αϕ1(R),
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whereA is a matrix inMa and α is an element in (Z/ℓcCZ)×. Let s be an element
in (Z/ℓbBZ)×, let ϕ2 : Es → E′

s be a separable isogeny with kerϕ2 = ⟨PB+sQB⟩,
and let ϕ′2 : E1 → E′

1 be a separable isogeny with kerϕ′2 = ⟨P1,B+sQ1,B⟩. Define(
P ′
A

Q′
A

)
:= B

(
ϕ2(PA)
ϕ2(QA)

)
,

(
P ′
1,A

Q′
1,A

)
:= B

(
ϕ′2(P1,A)
ϕ′2(Q1,A)

)
, R′ := βϕ2(R), R′

1 := βϕ′2(R1),

where B is a matrix in Ma and β is an element in (Z/ℓcCZ)×. We denote the
tuple

(Es, PA, QA, PB , QB , R,E1, P1,A, Q1,A, PB,1, Q1,B , R1, E
′
s, P

′
A, Q

′
A, R

′, E′
1, P

′
1,A, Q

′
1,A, R

′
1)

by TLIT-SiGamal and denote the set of the tuples by SLIT-SiGamal. We also denote
by TLIT-SiGamal(µ) the tuple that is defined by replacing R′

1 in TLIT-SiGamal with
µR′

1 for µ ∈ Z/ℓcCZ.
We call the following assumption the Computational LIT-SiGamal assump-

tion:

Any probabilistic polynomial time (PPT) algorithm A satisfies

Pr

[
µ = µ∗

∣∣∣∣∣ µ $←− (Z/ℓcCZ)×, TLIT-SiGamal
$←− SLIT-SiGamal,

µ∗ ← A (TLIT-SiGamal(µ))

]
< negl(λ),

where the notation X
$←− Y means that X is sampled uniformly at random

from Y and negl(·) is a negligible function.

We have the following proposition immediately from the construction of LIT-
SiGamal.

Proposition 2. LIT-SiGamal is OW-CPA secure if the Computational LIT-
SiGamal assumption holds.

Definition 6 (Decisional LIT-SiGamal assumption). We call the following as-
sumption the Decisional LIT-SiGamal assumption:

Any PPT algorithm A satisfies∣∣∣∣∣∣∣ Pr
 i = i∗

∣∣∣∣∣∣∣
i

$←− {0, 1}, µ0 = 1, µ1
$←− (Z/ℓcCZ)×,

TLIT-SiGamal
$←− SLIT-SiGamal,

i∗ ← A (TLIT-SiGamal(µi))

− 1

2

∣∣∣∣∣∣∣ < negl(λ).

We also have the following proposition.

Proposition 3. LIT-SiGamal is IND-CPA secure if the Decisional LIT-SiGamal
assumption holds.
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Proof. Suppose that LIT-SiGamal is not IND-CPA secure. That is, we suppose
that there is a PPT algorithm A′ satisfying the value

ε :=

∣∣∣∣∣∣∣ Pr
 i = i∗

∣∣∣∣∣∣∣
TLIT-SiGamal

$←− SLIT-SiGamal,

i
$←− {0, 1}, µ′

0, µ
′
1 ← A′(pk),

i∗ ← A′(TLIT-SiGamal(µ
′
i))

− 1

2

∣∣∣∣∣∣∣
is not negligible, where pk is the tuple

(Es, PA, QA, PB , QB , R,E1, P1,A, Q1,A, PB,1, Q1,B , R1).

We define a PPT algorithm A for an input TLIT-SiGamal(µ) by the following
procedure:

1. Define pk appropriately and compute µ′
0, µ

′
1 ← A′(pk).

2. Take i from {0, 1} uniformly at random.
3. Compute TLIT-SiGamal(µ

′
iµ).

4. Compute i∗ ← A′(TLIT-SiGamal(µ
′
iµ)).

5. If i = i∗, output 0, and if i ̸= i∗ output 1.

If µ is a random element in Z/ℓcCZ, we cannot distinguish TLIT-SiGamal(µ
′
0µ) and

TLIT-SiGamal(µ
′
1µ); therefore, we have, for a random µ ∈ Z/ℓcCZ,

Pr[1← A(TLIT-SiGamal(µ))] =
1

2
.

Therefore, it holds that

Pr

 i = i∗

∣∣∣∣∣∣∣
i

$←− {0, 1}, µ0 = 1, µ1
$←− (Z/ℓcCZ)×,

TLIT-SiGamal
$←− SLIT-SiGamal,

i∗ ← A(TLIT-SiGamal(µi))


=

1

2
Pr[0← A(TLIT-SiGamal)] +

1

2
Pr[1← A(TLIT-SiGamal(µ1))]

=
1

2

(
1

2
Pr[0← A′(TLIT-SiGamal(µ

′
0))] +

1

2
Pr[1← A′(TLIT-SiGamal(µ

′
1))]

)
+

1

4

=
1

2

(
1

2
± ε
)
+

1

4
=

1

2
± ε

2
.

Hence, the algorithm A distinguishes TLIT-SiGamal(µ0) and TLIT-SiGamal(µ1), and
the Decisional LIT-SiGamal assumption does not hold. This completes the proof
of Proposition 3.

From Proposition 3, it is sufficient to analyze the correctness of the Decisional
LIT-SiGamal assumption for analysis of the security of LIT-SiGamal. To analyze
this assumption, we first define the LIT-DDH assumption, which is analogous
to the DDH assumption in a LIT diagram.
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Definition 7 (LIT-DDH assumption). Let Es and E1 be random supersingular
elliptic curves with an isogeny ϕ1 : Es → E1 of degree ℓ2aA −n2. Let {PB , QB} be
a random basis of Es[ℓ

b
B ], and let {PA,C , QA,C} be a random basis of Es[ℓ

a
Aℓ

c
C ].

Let A and B be random matrices inMa,c. Define(
P1,A,C

Q1,A,C

)
:= A

(
ϕ1(PA,C)
ϕ1(QA,C)

)
,

(
P1,B

Q1,B

)
:=

(
ϕ1(PB)
ϕ1(QB)

)
.

Let s be a random element in (Z/ℓbBZ)×, let ϕ2 : Es → E′
s be a separable isogeny

with kerϕ2 = ⟨PB + sQB⟩, and let ϕ′2 : E1 → E′
1 be a separable isogeny with

kerϕ′2 = ⟨P1,B + sQ1,B⟩. Define(
P ′
A,C

Q′
A,C

)
:= B

(
ϕ2(PA,C)
ϕ2(QA,C)

)
,

(
P ′
1,A,C

Q′
1,A,C

)
:= B

(
ϕ′2(P1,A,C)
ϕ′2(Q1,A,C)

)
.

We denote by TLIT-DDH,0 the tuple

(Es, PA,C , QA,C , PB , QB , E1, P1,A,C , Q1,A,C , P1,B , Q1,B , E
′
s, P

′
A,C , Q

′
A,C , E

′
1, P

′
1,A,C , Q

′
1,A,C),

and denote by SLIT-DDH the set of the above tuples. Let Er be a random super-
singular elliptic curve, and let {Pr, Qr} be a random basis of Er[ℓ

a
Aℓ

c
C ] satisfying

e(P,Q)ℓ
b
B = e(P1,A,C , Q1,A,C). We denote by TLIT-DDH,1 the tuple

(Es, PA,C , QA,C , PB , QB , E1, P1,A,C , Q1,A,C , P1,B , Q1,B , E
′
s, P

′
A,C , Q

′
A,C , Er, Pr, Qr),

and denote by SLIT-DDH′ the set of the above tuples.
We call the following assumption the LIT-DDH assumption:

Any PPT algorithm A satisfies∣∣∣∣∣∣∣ Pr
 i = i∗

∣∣∣∣∣∣∣
TLIT-DDH,0

$←− SLIT-DDH,

TLIT-DDH,1
$←− SLIT-DDH′ ,

i
$←− {0, 1}, i∗ ← A(TLIT-DDH,i)

− 1

2

∣∣∣∣∣∣∣ < negl(λ).

Then, we have the following theorem.

Theorem 2. If the LIT-DDH assumption holds, then the Decisional LIT-SiGamal
assumption also holds.

Proof. Suppose that the Decisional LIT-SiGamal assumption does not hold.
That is, there is a PPT algorithm A′ satisfying the value

ε :=

∣∣∣∣∣∣∣ Pr
 i = i∗

∣∣∣∣∣∣∣
i

$←− {0, 1}, µ0 = 1, µ1
$←− (Z/ℓcCZ)×,

TLIT-SiGamal
$←− SLIT-SiGamal,

i∗ ← A′ (TLIT-SiGamal(µi))

− 1

2

∣∣∣∣∣∣∣
is not negligible.
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Let the following tuple T be a tuple in SLIT-DDH ∪ SLIT-DDH’:

(Es, PA,C , QA,C , PB , QB , E1, P1,A,C , Q1,A,C , P1,B , Q1,B , E
′
s, P

′
A,C , Q

′
A,C , E2, P2, Q2).

From the Chinese remainder theorem, we have an isomorphism between E[ℓaAℓ
c
C ]

and E[ℓaA]×E[ℓcC ] for any supersingular elliptic curve E. By using these isomor-
phisms, a basis of E[ℓaAℓ

c
C ] is mapped to bases of E[ℓaA] and E[ℓcC ]. Additionally,

by removing one point of order ℓcC , a basis of E[ℓaAℓ
c
C ] is mapped to a basis of

E[ℓaA] and a point of order ℓcC . Therefore, we have a transformation from the
tuple T to a tuple

(Es, PA, QA, PB , QB , R,E1, P1,A, Q1,A, PB,1, Q1,B , R1, E
′
s, P

′
A, Q

′
A, R

′, E2, P2,A, Q2,A, R2),

where {PA, QA} (resp. {P1,A, Q1,A}, {P ′
A, Q

′
A}, {P2,A, Q2,A}) is a basis of Es[ℓ

a
A]

(resp. E1[ℓ
a
A], E

′
s[ℓ

a
A], E2[ℓ

a
A]), and R (resp. R1, R

′, R2) is a point in Es (resp.
E1, E

′
s, E2) of order ℓ

c
C derived from PA,C (resp. P1,A,C , P

′
A,C , P2). We denote

this map by FDDH→SiGamal.
We define a PPT algorithm A with an input T by the following procedure:

1. Take i from {0, 1} uniformly at random.
2. Set µ0 = 1 and take µ1 from (Z/ℓcCZ)× uniformly at random.
3. Compute T ′ = FDDH→SiGamal(T ).
4. Compute i∗ ← A′(T ′(µi)).
5. if i = i∗, output 0, and if i ̸= i∗, output 1.

Note that if T ∈ SLIT-DDH, then T
′ ∈ SLIT-SiGamal. Moreover, if T ∈ SLIT-DDH′ ,

then

Pr[1← A(T )] = 1

2

because we cannot distinguish T ′(µ0) and T
′(µ1). Therefore, it holds that

Pr

 i = i∗

∣∣∣∣∣∣∣
TLIT-DDH,0

$←− SLIT-DDH,

TLIT-DDH,1
$←− SLIT-DDH′ ,

i
$←− {0, 1}, i∗ ← A(TLIT-DDH,i)


=

1

2
Pr[0← A(TLIT-DDH,0)] +

1

2
Pr[1← A(TLIT-DDH,1)]

=
1

2

(
1

2
Pr[0← A′(TLIT-SiGamal)] +

1

2
Pr[1← A′(TLIT-SiGamal(µ1))]

)
+

1

4

=
1

2

(
1

2
± ε
)
+

1

4
=

1

2
+
ε

2
.

Hence, the algorithm A can distinguish TLIT-DDH,0 and TLIT-DDH,1, and the LIT-
DDH assumption does not hold. This completes the proof of Theorem 2.

From Proposition 3 and Theorem 2, we immediately have Corollary 1.

Corollary 1. If the LIT-DDH assumption holds, LIT-SiGamal is IND-CPA se-
cure.
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Remark 3. LIT-SiGamal is not IND-CCA secure for the same reason as the
original SiGamal (see [20, Section 3.3]). Namely, it is because, from the ciphertext

ct = (E′
s, P2, Q2, R

′, E′
1, P3, Q3, R

′
1),

we can compute a different ciphertext

(E′
s, P2, Q2, R

′, E′
1, P3, Q3, µ

′R′
1)

whose plaintext is µ′ times the plaintext of ct. Therefore, an appropriate trans-
formation is required to use LIT-SiGamal in practice (e.g., the Fujisaki-Okamoto
transform [14]).

5.2 Secure prime of LIT-SiGamal

In this subsection, we discuss the appropriate size of the prime p. Note that p is
represented by p = ℓaA · ℓbB · ℓcC · f − 1. Since f is a small integer, it is sufficient
to estimate the size of ℓaA, ℓ

b
B , and ℓ

c
C . We denote the security parameter by λ.

From Corollary 1, the security of LIT-SiGamal is based on the LIT-DDH
assumption. Therefore, for the security of LIT-SiGamal, it is necessary not to
be able to solve the LIT and CIST problems (Definition 4 and 3) in polynomial
time. Additionally, we need a sufficiently large plaintext space. We determine
the size of ℓaA, ℓ

b
B , and ℓ

c
C from these requirements.

The size of ℓcC . We first estimate the appropriate size of ℓcC . The size of ℓcC
corresponds to that of a plaintext space. From the definition of the plaintext
space P, we have #P ≈ ℓcC . Since the size of P is desired to be 2λ, we have
ℓcC ≈ 2λ.

The size of ℓbB. We now discuss the size of ℓbB . Bob computes ℓbB-isogenies and
needs to prevent revealing these isogenies.

The hardness of revealing Bob’s isogenies is associated with the hardness
of the CIST problem. By the statement of the CIST problem, information on
torsion points in the CIST problem is masked by appropriate matrices; therefore,
we expect any adversary cannot get valid torsion points information for revealing
isogenies. Hence, the size of ℓbB is determined by the hardness of the Isogeny
problem of degree ℓbB , and we set ℓbB ≈ 22λ.

The size of ℓaA. We finally estimate an appropriate size of ℓaA. Alice computes
an isogeny of degree ℓ2aA − n2 and needs to hide this isogeny.

The hardness of revealing Alice’s isogeny is associated with the hardness
of the LIT problem. Alice reveals the exact image of a basis of the ℓbB-torsion
subgroup under her isogeny. From the discussion in [18, Section 4.2], we are
suggested to take ℓaA such that (ℓ2aA − n2) > ℓ2bB · 22λ. Since n is a small integer,
it suffices to take ℓaA satisfying ℓ2aA ≈ ℓ2bB · 22λ. Note that we set ℓbB ≈ 22λ from
the previous discussion. Therefore, we set ℓaA ≈ ℓbB · 2λ ≈ 23λ.
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Consequently, we suggest to use a prime p about 2λ · 22λ · 23λ = 26λ for LIT-
SiGamal. We provide explicit primes for security parameter λ = 128, 192, 256 in
Section 6.1.

5.3 Adaptive attack

We claim that there is an adaptive attack for LIT-SiGamal in this subsection.
It is because LIT-SiGamal is based on the CIST problem and we can adapt a
similar attack for IS-CUBE to LIT-SiGamal.

Suppose that Bob tries to reveal Alice’s secret matrix A by sending incorrect
ciphertext. If Bob obtains A, he can decrypt any ciphertexts for Alice. Let

(E′
s, P

′, Q′, R′, E′
1, P

′
1, Q

′
1, R

′
1)

be a ciphertext of Bob. If Bob is honest, he uses a common matrix in Ma to
compute two pairs of torsion points (P ′, Q′) and (P ′

1, Q
′
1). We assume that Bob

uses different matrices B′ and B′′ not necessarily in Ma to mask these pairs
respectively. If AB′ = B′′A, it holds that, from Kani’s theorem,

(E′
s × E′

1)/⟨(nP ′, P ′
1), (nQ

′, Q′
1)⟩ ∼= (E′

s × E′
1)/⟨(nP ′,−P ′

1), (nQ
′,−Q′

1)⟩;

therefore, Alice succeeds in decrypting the incorrect ciphertext. Otherwise, the
above equation does not hold without a negligible probability, and Alice fails the
decryption. Hence, we have the following oracle:

O(B′,B′′) =

{
1 (if AB′ = B′′A)

0 (if AB′ ̸= B′′A)
.

This oracle is the same as in the adaptive attack proposed in [19]. Therefore, we
have an adaptive attack for LIT-SiGamal based on the attack in [19].

FESTA can prevent this attack because, in the decryption process, Alice ob-
tains the matrix B′ and B′′. Conversely, Alice cannot obtain these matrices in
the LIT-SiGamal setting. Therefore, to prevent this attack, we need an appro-
priate transform for LIT-SiGamal (see also Remark 3).

6 PoC implementation

In this section, we provide the results related to our proof-of-concept implemen-
tation of LIT-SiGamal. We implemented LIT-SiGamal via sagemath [12], and
our code is available at https://tomoriya.work/code.html.

6.1 Parameter selection and the size of the scheme

In this subsection, we suggest the primes for LIT-SiGamal for the security pa-
rameters 128, 192, and 256 based on Section 5.2. Moreover, we provide the sizes

https://tomoriya.work/code.html
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Public key Ciphertext
λ Original Compressed Original Compressed

128 2, 334 664 1, 556 728
192 3, 489 992 2, 326 1, 088
256 4, 653 1, 322 3, 102 1, 451

Table 2. The sizes of LIT-SiGamal (byte)

λ LIT-SiGamal FESTA [5] QFESTA [21] terSIDHhyb [4]

128 664 561 247 701
Public key 192 991 864 367 1, 089

256 1, 322 1, 246 487 1, 479

128 728 1, 122 494 459
Ciphertext 192 1, 088 1, 728 734 706

256 1, 451 2, 492 974 956
Table 3. Comparison of the sizes of isogeny-based PKEs (byte)

of the public keys and ciphertexts of LIT-SiGamal when using these primes, and
compare them with other isogeny-based PKE schemes.

We denote by pλ the prime for the security parameter λ. We define the primes
as follows:

p128 = 2128·3+2 · 3162 · 556 · 30− 1,

p192 = 2192·3+2 · 3243 · 583 · 118− 1,

p256 = 2256·3+2 · 3324 · 5111 · 436− 1.

The “+2”s appearing in the exponents are used for the computation of isogenies
between abelian varieties of dimension 2 via theta coordinates (see [10]). The bit
length of p128 is 778, that of p192 is 1163, and that of p256 is 1551.

Table 2 summarizes the sizes of the public keys and ciphertexts of LIT-
SiGamal using the above primes. Here, the compressed LIT-SiGamal is the vari-
ation of LIT-SiGamal provided in Section 4.4. Moreover, we summarize in Table
1 the sizes of the public keys and ciphertexts of the compressed LIT-SiGamal
and some other isogeny-based PKE schemes. Here, we assume that terSIDHhyb

is transformed into a PKE scheme by using the XOR operator and a hash func-
tion. As shown in Table 1, the public key of the compressed LIT-SiGamal is
larger than that of FESTA, and its ciphertext is smaller than that of FESTA.

6.2 Computational time

We provide the experimental result of our PoC implementation. We measured
the computational time of LIT-SiGamal and compared it with those of other
isogeny-based PKE schemes.

Table 4 shows the computational times of the original and compressed LIT-
SiGamal. We used p128, p192, and p256 provided in Section 6.1 for the primes.
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Public key gen. Encryption Decryption
λ Original Compressed Original Compressed Original Compressed

128 15.76 18.98 0.31 3.68 1.30 2.53
192 31.45 38.68 0.58 7.51 2.70 5.12
256 56.48 70.77 0.97 12.93 4.90 9.17

Table 4. Computational time of LIT-SiGamal (sec.)

λ LIT-SiGamal FESTA [5] QFESTA [21] terSIDHhyb [4]

128 18.98 8.11 2.86 6.33
Public key gen. 192 38.68 164.75 5.81 23.66

256 70.77 499.62 10.41 55.96

128 3.68 5.63 3.98 0.83
Encryption 192 7.51 34.32 8.49 2.11

256 12.93 100.28 15.57 4.15

128 2.53 17.83∗ 10.01 4.62
Decryption 192 5.12 43.07∗ 24.33 17.08

256 9.17 104.52∗ 48.95 39.83
Table 5. Comparison of the computational times of isogeny-based PKEs (sec.)

We measured the averages of 100 run times of each algorithm in LIT-SiGamal.
The version of sagemath that we used was 10.1, and the computer for measuring
the computational times was a MacBook Air with an Apple M1 CPU (3.2 GHz).

We also measured the averages of 100 run times of PoC implementations
of FESTA [5], QFESTA [21], and terSIDHhyb [4] under the same environment.
We summarized comparing these computational times in Table 5. As shown in
this table, the encryption of LIT-SiGamal is as efficient as that of QFESTA,
and the decryption of LIT-SiGamal is about 5x faster than that of QFESTA.
In particular, the total of the encryption and decryption of LIT-SiGamal is the
most efficient for λ = 192 and 256 in Table 5. On the other hand, the public key
generation of LIT-SiGamal is about 7x slower than that of QFESTA.

Remark 4. The decryption process of FESTA can be improved by using algo-
rithms provided in [10]; however, the PoC implementation of FESTA does not
use these algorithms, and it is less efficient than the theoretical state-of-the-art
implementation. Therefore, the times of the decryption process of FESTA shown
in Table 5 are just for reference.

Remark 5. terSIDHhyb is a key exchange scheme and not a PKE scheme; there-
fore, we considered a PKE scheme to which terSIDHhyb is transformed by a hash
function and the XOR operator. Because terSIDHhyb is an asymmetric scheme
(i.e., the difference of the times of two users is quite large), there are two ways
to construct a PKE scheme from terSIDHhyb. In Table 5, we selected the scheme
with the lowest total computational cost for encryption and decryption.
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7 Conclusion

We proposed a novel isogeny-based PKE scheme named LIT-SiGamal. LIT-
SiGamal is a SiGamal-based PKE scheme that uses a LIT diagram instead of a
CSIDH diagram. We also proposed a compressed version of LIT-SiGamal based
on the compression technique of SIDH.

We proved that LIT-SiGamal has IND-CPA security under the LIT-DDH as-
sumption, which is analogous to the DDH assumption in a LIT diagram. More-
over, we showed the existence of an adaptive attack for LIT-SiGamal.

We implemented LIT-SiGamal by using sagemath as a proof-of-concept. In
our experimentation, LIT-SiGamal realizes efficient encryption and decryption.
Compared with QFESTA, the encryption scheme of LIT-SiGamal is as efficient
as QFESTA, and the decryption scheme is about 5x faster than QFESTA. Addi-
tionally, the total time of the encryption and decryption of LIT-SiGamal is the
shortest among isogeny-based PKE schemes used in our experimentation for the
security parameters 192 and 256.
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Appendix A Computation of (2, 2)-isogenies via theta
coordinates

In the process of LIT-SiGamal, we need to compute isogenies of high-dimensional
varieties. In particular, we need to calculate (2, 2)-isogenies. There are two well-
known methods for the computation of (2, 2)-isogenies: the method of Richelot
isogenies and that of theta coordinates of level 2 structure. We choose the method
of theta coordinates for computing these isogenies.

Dartois, Maino, Pope and Robert provided a concrete method to compute
(2, 2)-isogenies by using theta coordinates in [10]. Their method is used in general
cases, and not optimized for LIT-SiGamal. In this section, we modify some of
their algorithms and introduce novel propositions to compute (2, 2)-isogenies for
LIT-SiGamal.

A.1 Introduction of theta coordinates

In this subsection, we introduce theta coordinates and their properties for com-
puting isogenies. See [23] and [10] for more details.

Let k be a field, let A be an abelian variety over k of dimension g, and let L be
a totally symmetric ample invertible sheaf of separable type over A. I.e., L is an
ample invertible sheaf over A such that there is an isomorphism φ : L ∼−→ [−1]∗L
satisfying φP = idLP

for any P ∈ A of order 2, and the dimension of the space
of the global sections Γ (A,L) is coprime to the characteristic of k. We define
H(L) as a subgroup {P ∈ A | T ∗

PL ∼= L}, where TP is the translation-by-P map
over A. Then, there is a sequence D = (d1, . . . , dg) with di+1|di (i = 1, . . . , g−1)
and d1 > 1 such that

H(L) ∼=
g⊕

i=1

Z/diZ⊕Hom

(
g⊕

i=1

Z/diZ, k
×
)
.

We say L is of type D. We denote ⊕g
i=1Z/diZ by K(D) and Hom(K(D), k

×
) by

K̂(D). We also define G(L) as

G(L) := {(P, ϕP ) | x ∈ H(L), ϕP : T ∗
PL

∼−→ L}.

Then, the G(L) also has a group structure, and there is an exact sequence:

0 −→ k
× −→ G(L) −→ H(L) −→ 0.

Define G(D) := k
× ⊕K(D)⊕ K̂(D). Then, the above sequence is isomorphic to

the following sequence:

0 −→ k
× −→ G(D) −→ K(D)⊕ K̂(D) −→ 0.

We call the isomorphism ΘL : G(D)
∼−→ G(L) a theta structure of type D. Let

V (D) be the space Hom(K(D), k). Then, the V (D) is the unique irreducible
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representation of G(D). Similarly, the space of global sections Γ (A,L) is the
irreducible representation of G(L). Therefore, there is an isomorphism between
V (D) and Γ (A,L) compatible with those group actions. The basis of Γ (A,L)
derived from the canonical basis of V (D) (i.e., the basis consisting of the Kro-
necher delta functions on K(D)) by the isomorphism is called theta coordinates.
If d1 = . . . = dg = n, we call them theta coordinates of level n.

Let (θA,i)i=0,...,2g−1 be theta coordinates of level 2 over A. Let S1, . . . , Sg be
points of A[2] derived from the canonical basis of K(2, . . . , 2), and let T1, . . . , Tg
be those from K̂(2, . . . , 2). Theta coordinates (θA,i)i can be determined by a
symplectic basis (S′

1, . . . , S
′
g, T

′
1, . . . , T

′
g) of A[4] with 2S′

i = Si and 2T ′
i = Ti for

i = 0, . . . , 2g − 1. By using theta coordinates, we can represent points in A by
elements in P2g−1 as follows:

P 7−→ (θA,0(P ) : θA,1(P ) : . . . : θA,2g−1(P )) ∈ P2g−1.

This map is an embedding of a Kummer variety A/{±1} to P2g−1. We call
(θA,i(0))i the theta-null point, which represents A. Let H be the Hadamard
matrix of order 2g. We call H((θA,i)i) the dual theta coordinates of (θA,i)i and

denote them by (θ̃A,i)i. The dual theta coordinates of (θA,i)i are also theta

coordinates of A. It is easy to see that (
˜̃
θA,i)i = (θA,i)i. There is a symplectic

basis (S̃′
1, . . . , S̃

′
g, T̃

′
1, . . . , T̃

′
g) associated to (θ̃A,i)i such that

(θ̃A,i(T̃
′
j))i = H((θA,i(S

′
j))i), (θ̃A,i(S̃

′
j))i = H((θA,i(T

′
j))i).

Define K1 := ⟨S1, . . . , Sg⟩ and K2 := ⟨T1, . . . , Tg⟩. Let f be a separable isogeny
f : A → B with ker f = K2. The following properties of theta coordinates are
important to construct algorithms for computing (2, 2)-isogenies:

– (θA,i(P ))i = (θA,i(−P ))i,
– (θA,i(P + Tj))i = ((−1)⟨i|j⟩θA,i(P ))i,
– (θA,i(P + Sj))i = (θA,i+j(P ))i,
– There are theta coordinates of B such that

(θA,i(P +Q) · θA,i(P −Q))i = H((θ̃B,i(f(P )) · θ̃B,i(f(Q)))i),

points derived from the canonical basis of K(2, . . . , 2) by the theta structure
associated to (θB,i)i are f(S1), . . . , f(Sg), and those from K̂(2, . . . , 2) are
f(T ′

1), . . . , f(T
′
g) (the duplication formula),

– θA,i(T
′
j) = 0 if ⟨i|j⟩ = 1,

– θA,i(S
′
j) = θA,i+j(S

′
j).

Here, we assume that the indices i and j belong to K(2, . . . , 2) by the bijection
map

K(2, . . . , 2) −→ {0, . . . , 2g − 1}
(a1, . . . , ag) 7−→

∑g
l=1 al2

l−1 ,

and ⟨· | ·⟩ : K(2, . . . , 2)2 → Z/2Z is the inner product over K(2, . . . , 2). By using
the above properties, we can construct algorithms to compute (2, 2)-isogenies
(see [10]).
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Algorithm 1 Change of a basis

Require: Montgomery curves E,E′, a basis {P,Q} of E[4], and a basis {P ′, Q′} of
E′[4] such that x(P ) = x(P ′) = 1

Ensure: The basis-change matrix N
1: H1 ← action by translation(Q) ([10, Algorithm 1])
2: H2 ← action by translation(Q’)
3: n00 ← h00|1 · h00|2 + h10|1 · h10|2 + 1
4: n01 ← h00|1 · h10|2 + h10|1 · h00|2
5: n02 ← h10|1 · h00|2 + h00|1 · h10|2
6: n03 ← n00

7: n10 ← h00|2 · n00 + h01|2 · n01

8: n11 ← h10|2 · n00 + h11|2 · n01

9: n12 ← h00|2 · n02 + h01|2 · n03

10: n13 ← h10|2 · n02 + h11|2 · n03

11:
(
n20 n21 n22 n23

)
←

(
n02 n03 n00 n01

)
12:

(
n30 n31 n32 n33

)
←

(
n12 n13 n10 n11

)
13: return N

A.2 Computing theta coordinates from a product of Montgomery
curves

In the LIT-SiGamal setting, we compute an isogeny from a product of two Mont-
gomery curves to an abelian variety of dimension 2. Therefore, to use the for-
mulas of theta coordinates, we first determine a theta structure of a product of
Montgomery curves. We find that [10, Algorithm 2] determines theta coordinates
of a product of two Montgomery curves E × E′ determined by T ′

1 = (P, P ′),
T ′
2 = (Q,Q′), S′

1 = (0, Q′), and S′
2 = (P, 0), where {P,Q} is a basis of E[4]

and {P ′, Q′} is that of E′[4]. Precisely speaking, [10, Algorithm 2] outputs a
basis-change matrix and we can easily compute the theta structure by using
this matrix. We can assume that x(P ) = x(P ′) = 1 in the LIT-SiGamal set-
ting; therefore, we can simplify [10, Algorithm 2] for LIT-SiGamal. Algorithm 1
shows our new algorithm to obtain a basis-change matrix N from a product of
two Montgomery curves.

A.3 Property of special codomain

Let (θE×E′,i)i be theta coordinates of E × E′ defined by the above method, let
K2 be a subgroup of E×E′ generated by T1 and T2, and let f : E×E′ → B be a
(2, 2)-isogeny with ker f = K2. Denote theta coordinates of B by (θB,i)i. Then,

it has been known that one of θ̃B,i(0)s may be zero. We prove in Proposition 4

that θ̃B,3(0) is always 0 in our construction of the theta coordinates of E × E′.

Proposition 4. Let E and E′ be elliptic curves, let {P,Q} be a basis of E[4],
and let {P ′, Q′} be a basis of E′[4]. Assume that (θE×E′,i)i are theta coordi-
nates of E × E′ determined by T ′

1 = (P, P ′), T ′
2 = (Q,Q′), S′

1 = (0, Q′), and
S′
2 = (P, 0). Denote a subgroup ⟨2T ′

1, 2T
′
2⟩ by K2, and (E × E′)/K2 by B. Let
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(θB,i)i=0,1,2,3 be theta coordinates of B satisfying the duplication formula. Then,

we have θ̃B,3(0) = 0.

Proof. Note that it follows from the construction of (θE×E′,i)i that

θE×E′,i((R,R
′)) = θE×E′,i((−R,R′)) = θE×E′,i((R,−R′))

for any (R,R′) ∈ E × E′. Since we have P = −3P , it holds that

(θE×E′,i(T
′
1))i = (θE×E′,i(T

′
1 + 2S′

2))i.

Recall that it holds that

(θE×E′,i(P + 2S′
2))i = (θE×E′,i+2(P ))i,

(θE×E′,i(T
′
1))i = (∗ : 0 : ∗ : 0).

Therefore, we have
(θE×E′,i(T

′
1))i = (1 : 0 : ±1 : 0).

It also holds that

(θE×E′,i(T
′
2))i = (θE×E′,i(T

′
2 + 2S′

1))i,

θE×E′,i(T
′
2) = (∗ : ∗ : 0 : 0).

Therefore, by the same discussion as above, we have

(θE×E′,i(T
′
2))i = (1 : ±1 : 0 : 0).

Denote by f the (2, 2)-isogeny E × E′ → B. It follows from the duplication
formula that

(θ̃B,i(f(T
′
1)) · θ̃B,i(0))i = H((θE×E′,i(T

′
1)

2)i) = (1 : ±1 : 0 : 0),

(θ̃B,i(f(T
′
2)) · θ̃B,i(0))i = H((θE×E′,i(T

′
2)

2)i) = (1 : 0 : ±1 : 0).

Denote (θ̃B,i(0))i by (α : β : γ : δ). Note that f(T ′
1) and f(T

′
2) are points derived

from the canonical basis of K(2, 2) by the theta structure related to (θ̃B,i)i.
Therefore, it holds that

(θ̃B,i(f(T
′
1)))i = (β : α : δ : γ),

(θ̃B,i(f(T
′
2)))i = (γ : δ : α : β),

and we have βδ = 0 and αβ ̸= 0. Hence, we conclude δ = 0.

A.4 Computation of (2, 2)-isogenies using the projective inversion

In [10], the authors proposed the algorithms using the batched inversion method
for computing inversions of multiple elements in Fp2 . Since theta coordinates
embed points to the projective space P3, we do not need to compute the exact
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Algorithm 2 Projective inversion (proj inv)

Require: (a0 : a1 : . . . : am) ∈ Pm

Ensure: (a−1
0 : a−1

1 : . . . : a−1
m ) ∈ Pm

1: if m = 0 then
2: return (1)
3: else if m = 1 then
4: return (a1 : a0)
5: else
6: (b0 : . . . : b⌊m/2⌋)← proj inv((a0 : . . . : a⌊m/2⌋))
7: (b⌊m/2⌋+1 : . . . : bm)← proj inv((a⌊m/2⌋+1 : . . . : am))
8: aleft ← b0 · a0

9: aright ← bm · am

10: for i = 0, . . . , ⌊m/2⌋ do
11: bi ← aright · bi
12: end for
13: for i = ⌊m/2⌋+ 1, . . . ,m do
14: bi ← aleft · bi
15: end for
16: return (b0 : b1 : . . . : bm)
17: end if

inversions of the given elements in some cases. Therefore, we can reduce the
computational cost of some of the algorithms for theta coordinates by using the
projective inversion (Algorithm 2) instead of the batched inversion.

Algorithms 3 and 4 are algorithms to compute the codomain variety of a
(2, 2)-isogeny using the projective inversion. These are respectively more efficient
than algorithms proposed in [10] (i.e., [10, Algorithm 6] and [10, Algorithm 7]).

Remark 6. The outputs of [10, Algorithms 6 and 7] are supposed to have α = 1,
while those of our novel algorithms are not. Therefore, there is a possibility that
the total computational cost to compute (2, 2)-isogenies using Algorithms 3 and
4 is less efficient than the original algorithm in [10] because extra computations
using α occur in the total computation. In particular, m extra multiplications
occur in evaluating m points.

In our implementation, the total algorithm becomes more efficient by replac-
ing all [10, Algorithms 6 and 7] to Algorithms 3 and 4. However, for the above rea-
son, it is thought that the most efficient algorithm for computing (2, 2)-isogenies
uses both [10, Algorithms 6 and 7] and Algorithms 3 and 4. The optimization is
our future work.

A.5 Computation of an isogenies between products of two elliptic
curves

Let E, E′, E1, E
′
1 be elliptic curves, and let Φ : E×E′ → E1×E′

1 be a (2a, 2a)-
isogeny with kerΦ = ⟨(P, P ′), (Q,Q′)⟩, where {P,Q} is a basis of E[2a] and
{P ′, Q′} is that of E′[2a]. In the LIT-SiGamal setting, we compute this isogeny
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Algorithm 3 Codomain

Require: Theta coordinates (xT ′′
1

: yT ′′
1

: zT ′′
1

: wT ′′
1
) and (xT ′′

2
: yT ′′

2
: zT ′′

2
: wT ′′

2
) of

eight torsion points T ′′
1 and T ′′

2 such that K2 = ⟨2T ′′
1 , 2T

′′
2 ⟩

Ensure: The dual theta-null point (α : β : γ : δ) of A/K2 and (α−1 : β−1 : γ−1 : δ−1)
and the theta-null point (a : b : c : d) of A/K2

1: (x1 : y1 : z1 : w1)← H ◦ S(xT ′′
1
: yT ′′

1
: zT ′′

1
: wT ′′

1
)

2: (x2 : y2 : z2 : w2)← H ◦ S(xT ′′
2
: yT ′′

2
: zT ′′

2
: wT ′′

2
)

3: (α0 : γ0 : δ0)← proj inv((x1 : x2 : y2))
4: α← x1 · α0

5: β ← y1 · α0

6: γ ← z2 · γ0 · α
7: δ ← w2 · δ0 · β
8: β ← β · α
9: α← α2

10: (a : b : c : d)← H(α : β : γ : δ)
11: return (α : β : γ : δ), proj inv((α : β : γ : δ)), (a : b : c : d)

Algorithm 4 Codomain if δ = 0

Require: Theta coordinates (xT ′′
1

: yT ′′
1

: zT ′′
1

: wT ′′
1
) and (xT ′′

2
: yT ′′

2
: zT ′′

2
: wT ′′

2
) of

eight torsion points T ′′
1 and T ′′

2 such that K2 = ⟨2T ′′
1 , 2T

′′
2 ⟩

Ensure: The dual theta-null point (α : β : γ : 0) of A/K2 and (α−1 : β−1 : γ−1 : 0)
and the theta-null point (a : b : c : d) of A/K2

1: (x1 : y1 : z1 : w1)← H ◦ S(xT ′′
1
: yT ′′

1
: zT ′′

1
: wT ′′

1
)

2: (x2 : y2 : z2 : w2)← H ◦ S(xT ′′
2
: yT ′′

2
: zT ′′

2
: wT ′′

2
)

3: (α0 : γ0)← proj inv((x1 : x2))
4: α← x1 · α0

5: β ← y1 · α0

6: γ ← z2 · γ0
7: (a : b : c : d)← H(α : β : γ : 0)
8: return (α : β : γ : 0), (proj inv((α : β : γ)) : 0), (a : b : c : d)

by computing two isogenies Φ0 : E × E′ → V and Φ1 : E1 × E′
1 → V such

that Φ = Φ̂1 ◦ Φ0. However, theta coordinates of V are not unique, and the
representation of the codomain of Φ0 and that of Φ1 are not the same if we use
the method proposed in [10]. Therefore, to compute Φ, we need to detect the
isomorphism between two representations.

We prove in Proposition 5 that the following matrix gives the isomorphism
between two representations in our construction:

H ·


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

By using this transformation, we can evaluate image points under Φ̂1 ◦ Φ0.
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Proposition 5. Let E, E′, E1, E
′
1 be elliptic curves. Assume that there is an

isogeny diamond as follows:

E1
ϕ //

ϕ1

��

E

ϕ′
1

��
E′

ϕ′
// E′

1

Here, we also assume that deg ϕ+deg ϕ1 = 2a and deg ϕ1 ≡ −1 (mod 4) for an
integer a ≥ 2. Let Φ : E × E′ → E1 × E′

1 be a (2a, 2a)-isogeny represented by

Φ =

(
ϕ̂ ϕ̂1
−ϕ′1 ϕ′

)
.

Let a1, a2 be integers with a = a1 + a2, let {P,Q} be a basis of E1[2
a], let Φ0 be

a separable isogeny from E × E′ with

kerΦ0 = ⟨(2a2ϕ(P ), 2a2ϕ1(P )), (2
a2ϕ(Q), 2a2ϕ1(Q))⟩,

and let Φ1 be a separable isogeny from E1 × E′
1 with

kerΦ1 = ⟨(2a1(deg ϕ1)P, 2
a1(ϕ′1 ◦ ϕ)(P )), (2a1(deg ϕ1)Q, 2

a1(ϕ′1 ◦ ϕ)(Q))⟩.

Note that Φ = Φ̂1 ◦Φ0. Denote by V the codomain abelian variety of Φ0 and Φ1.
Let (θV,i)i be theta coordinates of V determined by the symplectic basis

(Φ0((0, 2
a−2ϕ1(Q))), Φ0((2

a−2ϕ(P ), 0)),

Φ0((2
a2−2ϕ(P ), 2a2−2ϕ1(P ))), Φ0((2

a2−2ϕ(Q), 2a2−2ϕ1(Q)))),

and let (θ′V,i)i be theta coordinates of V determined by the symplectic basis

(Φ1((0, 2
a−2(ϕ′1 ◦ ϕ)(Q))), Φ1((2

a−2P, 0)),

Φ1((2
a2−2P,−2a2−2(ϕ′1 ◦ ϕ)(P ))), Φ1((−2a2−2Q, 2a2−2(ϕ′1 ◦ ϕ)(Q)))).

Then, for any R ∈ E × E′, it holds that

t(θ′V,i(Φ0(R)))i = H ·


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 · t(θV,i(Φ0(R)))i.

Proof. It suffices to find the isomorphism mapping the symplectic base associated
to (θV,i)i to that associated to (θ′V,i)i. We denote the basis associated to (θV,i)i
by

(S1, S2, T1, T2)

and that associated to (θ′V,i)i by

(S′
1, S

′
2, T

′
1, T

′
2).
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It is clear that S1 = 2a−2Φ0((0, ϕ1(Q))), and it follows from deg ϕ1 ≡ −1
(mod 4) that

T ′
2 = 2a1−2(Φ1 ◦ Φ)((0, ϕ1(Q))) = 2a−2Φ0((0, ϕ1(Q))).

Therefore, it holds that S1 = T ′
2. For a similar reason, we have S2 = T ′

1. Note
that Φ̂ can be represented by

Φ̂ =

(
ϕ −ϕ̂′1
ϕ1 ϕ̂′

)
.

We have

T2 = 2a2−2(Φ0 ◦ Φ̂)((0, (ϕ′1 ◦ ϕ)(Q))) = 2a−2Φ1((0, (ϕ
′
1 ◦ ϕ)(Q))) = S′

1.

For a similar reason, we also have T1 = S′
2. Therefore, the isomorphism mapping

(S1, S2, T1, T2) to (S′
1, S

′
2, T

′
1, T

′
2) is given by the composition of the following two

maps:

– The isomorphism mapping (S1, S2, T1, T2) to (S2, S1, T2, T1).
– The isomorphism mapping (S1, S2, T1, T2) to (T1, T2, S1, S2),

The first isomorphism is represented by the matrix
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,

and the second one is represented by H. This completes the proof of the propo-
sition.

A.6 Computation of a product of Montgomery curves from theta
coordinates

At the end of the computation of a (2a, 2a)-isogeny, we transform a point given
by theta coordinates to a point in a product of two Montgomery curves. The
basic method to obtain the representation of a point in Montgomery curves from
theta coordinates is found in [10, Section 4.1], and we can simplify this method
by using Proposition 4. However, this method may not be directly adapted to
LIT-SiGamal. It is because, in the LIT-SiGamal setting, we want to obtain a
representation in a fixed product of Montgomery curves E ×E′, while the basic
method may provide a representation in E1×E′

1 that is isomorphic to but does
not equal to E×E′. Therefore, we need to modify the method for LIT-SiGamal.

Let E and E′ be Montgomery curves, and (θE×E′,i)i be theta coordinates
determined by

((0, Q′), (P, 0), (P, P ′), (Q,Q′)),
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where {P,Q} and {P ′, Q′} are bases of E[4] and E′[4] respectively such that
x(P ) = x(P ′) = 1. The aim is to find the method to obtain x(R) and x(R′)
from (θE×E′,i((R,R

′)))i. Denote H((θE×E′,i((R,R
′)))i) by (a : b : c : d). From

the method in [10, Section 4.1] and Proposition 4, we can represent (R,R′)
by ((a :

√
−1b), (a :

√
−1c)). Here, ((a :

√
−1b), (a :

√
−1c)) is the pair of

(θE,i(R))i and (θE′,i(R
′))i, where (θE,i)i (resp. (θE′,i)i) are theta coordinates of

E (resp. E′) defined by an appropriate theta structure. We now discuss the way
to compute x(R) and x(R′) from (a :

√
−1b) and (a :

√
−1c). We first focus on

(2P, 0) and (P, 0). Denote the dual theta-null point of E × E′ by (α : β : γ : δ).
We have

(α : β : −γ : −δ) = H((θE×E′,i((2P, 0)))i),

(∗ : ∗ : 0 : 0) = H((θE×E′,i((P, 0)))i),

(α : β : γ : δ) = H((θE×E′,i((0, 0)))i).

Therefore, it holds that

{(θE,i(2P ))i, (θE′,i(0))i} = {(α :
√
−1β), (α : −

√
−1γ)},

{(θE,i(0))i, (θE′,i(0))i} = {(α :
√
−1β), (α :

√
−1γ)},

{(θE,i(P ))i, (θE′,i(0))i} ⊃ {(1 : 0)}.

Note that it follows from ±2P ̸= 0 that (θE,i(2P ))i ̸= (θE,i(0))i. We conclude
that

(θE′,i(0))i = (α :
√
−1β), (θE,i(2P ))i = (α : −

√
−1γ),

(θE,i(P ))i = (1 : 0), (θE,i(0))i = (α :
√
−1γ).

From the above observation, we also have

(θE′,i(R
′))i = (a :

√
−1b), (θE,i(R))i = (a :

√
−1c).

Recall that x(P ) = 1 and x(2P ) = 0. The transformation from (θE,i(R))i to
x(R) is given a 2× 2-matrix MT . This matrix needs to satisfy(

∗
0

)
=MT

(
α√
−1γ

)
,

(
0
∗

)
=MT

(
α

−
√
−1γ

)
, ∗

(
1
1

)
=MT

(
1
0

)
.

Therefore, we have

MT =

(√
−1γ α√
−1γ −α

)
.

We next focus on (2P, 2P ′) and (P, P ′). From a similar discussion as above, we
have

(θE′,i(2P
′))i = (β :

√
−1α), (θE′,i(P

′))i = (1 :
√
−1).

Therefore, from x(2P ′) = 0 and x(P ′) = 1, the representation matrix M ′
T of the

transformation from (θE′,i(R
′))i to x(R

′) satisfies(
∗
0

)
=M ′

T

(
α√
−1β

)
,

(
0
∗

)
=M ′

T

(
β√
−1α

)
, ∗

(
1
1

)
=M ′

T

(
1√
−1

)
.
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Algorithm 5 Theta coordinates to Montgomery curves

Require: Theta coordinates (θE×E′,i((R,R′)))i and theta-null point (θE×E′,i((0, 0)))i
of E × E′

Ensure: x(R) and x(R′)
1: (a : b : c : d) ← H((θE×E′,i((R,R′)))i)
2: (XR : ZR) ← (a :

√
−1c)

3: (XR′ : ZR′) ← (a :
√
−1b)

4: (α : β : γ : δ) ← H((θE×E′,i((0, 0)))i)

5: MT ←
(√
−1γ α√
−1γ −α

)
6:

(
XR

ZR

)
← MT ·

(
XR

ZR

)
7: M ′

T ←
(
−
√
−1α β√
−1β −α

)
8:

(
XR′

ZR′

)
← M ′

T ·
(
XR′

ZR′

)
9: return (XR : ZR) and (XR′ : ZR′)

We have

M ′
T =

(
−
√
−1α β√
−1β −α

)
.

From the above discussion, we can construct an algorithm to compute x(R)
and x(R′) from (θE×E′,i((R,R

′)))i (Algorithm 5).
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