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Abstract

Given that the tropical Stickel protocol and its variants are all vulnerable to the
generalized Kotov-Ushakov attack, we suggest employing the max-min semiring and,
more generally, max-T semiring where the multiplication is based on a T−norm, as a
framework to implement the Stickel protocol. While the Stickel protocol over max-min
semiring or max-T semiring remains susceptible to a form of Kotov-Ushakov attack,
we demonstrate that it exhibits significantly increased resistance against this attack
when compared to the tropical (max-plus) implementation.
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1 Introduction

A key exchange protocol is the process, in which two parties (commonly called Alice and
Bob) exchange messages in order to jointly compute a shared secret key that cannot be
directly intercepted by an eavesdropper (Eve). In public key cryptography, it is common to
use various structures in algebra and geometry (such as elliptic curves) to implement such
key exchange protocols. The most popular protocol is due to Diffie and Hellman [7], and
Stickel’s protocol [22] whose unusual implementation is discussed in our paper is, essentially
a two-sided variety of Diffie-Hellman.

Tropical cryptography was firstly proposed by Grigoriev and Shpilrain [10] as an alterna-
tive framework for cryptographic protocols such as Stickel’s since it enjoys several advantages
such as efficiency and resistance to some general attacks. In particular, Grigoriev and Shpil-
rain developed a tropical version of the original Stickel key exchange protocol, the original
version of which was vulnerable to common linear algebraic attacks. Their motivation came
from the non-invertible nature of matrices in tropical algebra, making the tropical imple-
mentation resistant to attacks resembling the ones faced by the original Stickel protocol. It
can be also observed that the tropical implementation of cryptographic protocols is faster
to execute (since the arithmetical operations can be executed faster). The tropical Stickel
protocol was then attacked by Kotov and Ushakov [16]. The Kotov-Ushakov attack was
generalized in [17] where it was shown how to apply the same idea to other implementations
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of Stickel protocol based on matrix commutativity. Also, Grigoriev and Shpilrain [11] pro-
posed two protocols based on tropical semi-direct product, but one of them was shown to
be invalid by Isaac and Kahrobaei [14] and the other was successfully attacked by the same
authors as well as in [18] and [21]. This highlights the challenges in implementing a secure
protocol in the tropical framework.

The main idea of the present paper is to consider implementations of Stickel protocol
over max-T semirings where T : [0, 1]2 7→ [0, 1] is an arbitrary T−norm and to evaluate its
resistance against the Kotov-Ushakov attack comparing it to the tropical version. Although
the Kotov-Ushakov attack can be formulated over a general enough class of max-T semir-
ings, we will present the numerical experiments only over the max-min semiring, leaving
experimentation with other max-T semiring to the future research.

We are using the term “max-T semiring” here following, e.g., [19] Section 7 and [9].
However, max-T semirings can be considered as a rather old concept as, in particular, the
systems A⊗ x = b over such semirings have been studied for many decades as (systems of)
fuzzy relation equations: see [6, 12, 15] (among many other works). The theory and practice
of solving these systems will be useful to us when implementing the Kotov-Ushakov attack.
Note that max-T semirings can be also considered as closely related (or part of) BL-algebras
and MV-algebras [5].

This paper is organized as follows: Section 2 begins with preliminaries and basic defini-
tions, particularly concerning the max-min semiring and, more generally, max-T semirings.
In Section 3, we introduce two implemetations of the Stickel protocol over arbitrary semir-
ing, assessing their applicability, validity, and the behavior of the shared key for the case of
max-min semiring. In Section 4, we analyze the security of this new implementation and its
resilience compared to tropical counterparts. Finally, in Section 5, we evaluate the resistance
of the proposed protocols through a series of numerical experiments. Our codes have been
uploaded to GitHub 1.

2 Preliminaries

In this section, we present the standard definitions for the matrix algebra over the max-min
semiring. We will use [n] and [m] to denote {1, . . . , n} and {1, . . . ,m} respectively.

Definition 2.1 (Max-Min Semiring and Associated Matrix Algebra). The max-min (fuzzy)
semiring is defined as Rmax,min = (R∪{−∞}∪{∞},⊕,⊗), with these two operations defined
by a ⊕ b := max{x, y} and a ⊗ b := min{x, y}. These operations can also be also extended
to vectors and matrices to form matrix algebra over the max-min semiring. In particular,
the operation A⊗α = α⊗A, where α ∈ Rmax,min, A ∈ Rm×n

max,min and (A)ij = aij for i ∈ [m]
and j ∈ [n], is defined by

(A⊗ α)ij = (α⊗ A)ij = α⊗ aij ∀i ∈ [m] and ∀j ∈ [n].

The max-min addition A⊕B of two matrices A ∈ Rm×n
max,min and B ∈ Rm×n

max,min, where (A)ij =

1https://github.com/suliman1n/On-implementation-of-Stickel-key-exchange-protocol-over-max-min-
and-max-T-semirings
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aij and (B)ij = bij for i ∈ [m] and j ∈ [n], is defined by

(A⊕B)ij = aij ⊕ bij ∀i ∈ [m] and ∀j ∈ [n].

The max-min multiplication of two matrices is also similar to the “traditional” algebra.
Namely, we define A⊗B for two matrices, where A ∈ Rm×p

max,min and B ∈ Rp×n
max,min, as follows:

(A⊗B)ij =

p⊕
k=1

aik ⊗ bkj = (ai1 ⊗ b1j ⊕ ai2 ⊗ b2j ⊕ . . .⊕ aip ⊗ bpj) ∀i ∈ [m] and ∀j ∈ [n].

Definition 2.2 (Max-min Matrix Powers). For A ∈ Rnxn
max,min, the n-th max-min power of A

is denoted by A⊗n, and is equal to

A⊗n = A⊗ A⊗ . . .⊗ A︸ ︷︷ ︸
n times

By definition, any max-min square matrix to the power 0 equals the max-min identity.

Definition 2.3 (Max-min Identity). The max-min identity matrix I ∈ Rn×n
max,min is of the

form (I)ij = δij where

δij =

{
∞ if i = j

−∞ otherwise

We subsequently define the matrix polynomials over the max-min semiring.

Definition 2.4. (Matrix Polynomials). Matrix polynomial is a function of the form

A 7→ p(A) =
d⊕

k=0

ak ⊗ A⊗k.

Here A is a square matrix of any dimension.

Notice that any two matrix polynomials of the same matrix commute in the max-min
algebra, as in the classical and tropical cases. Consequently, max-min polynomials can be
utilized to create a version of Stickel protocol, exploiting this commutativity property to
form a shared secret key.

We also present the modified s-circulants which also could be used as a commutativity
tool to construct another implementation of Stickel protocol.

Definition 2.5. (Upper s-Circulants [13], see also [2]). Let A ∈ Rn×n
max,min. We say that A is

an upper-s-circulant, or A ∈ Cs
n, if it is of the form

c0 cn−1 ⊗ s cn−2 ⊗ s · · · c1 ⊗ s
c1 c0 cn−1 ⊗ s · · · c2 ⊗ s
c2 c1 c0 · · · c3 ⊗ s
...

...
...

. . . · · ·
cn−1 cn−2 cn−3 · · · c0


where c0, c1, c2 . . . , cn−1, s ∈ Rmax,min.
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Definition 2.6 (Max-T Semiring). The max-T semiring is defined as the unit interval B =
[0, 1] equipped with the tropical addition a ⊕ b = max(a, b) and the T -norm multiplication
a⊗b = T (a, b) where T : B2 → B is a T -norm (see, e.g., [15] for definition). These arithmetics
are then naturally extended to matrices and vectors as in Definition 2.1.

Remark 2.1 (On max-T semirings). The max-min semiring introduced earlier is isomorphic
to the max-T semiring with T = min, but it is more natural for computations since one can
choose to work with integer numbers only. The identity matrix for any max-T semiring is the
same as the usual identity matrix (with all 1’s on the diagonal and all 0’s off the diagonal).
The definitions of matrix powers, matrix polynomials and modified circulants all naturally
extend to the matrix algebra over max-T semiring.

3 Stickel protocol over max-min and other semirings

In this section, we introduce the Stickel key exchange protocol over the max-min semiring
using polynomials (Protocol 1) and modified circulants (Protocol 2), and examine their
applicability.

Protocol 1 (Max-min Stickel protocol).

1. Alice and Bob agree on public matrices A,B,W ∈ Rn×n
max,min.

2. Alice chooses two random max-min polynomials p1(x) and p2(x) and sends U = p1(A)⊗
W ⊗ p2(B) to Bob.

3. Bob chooses two random max-min polynomials q1(x) and q2(x) and sends V = q1(A)⊗
W ⊗ q2(B) to Alice.

4. Alice computes her secret key using Bob’s message V , and she has Ka = p1(A) ⊗ V ⊗
p2(B).

5. Bob also computes his secret key using Alice’s message U , and he obtains Kb = q1(A)⊗
U ⊗ q2(B).

Note that Ka = p1(A) ⊗ V ⊗ p2(B) = p1(A) ⊗ q1(A) ⊗ W ⊗ q2(B) ⊗ p2(B) = q1(A) ⊗
p1(A) ⊗W ⊗ p2(B) ⊗ q2(B) = q1(A) ⊗ U ⊗ q2(B) = Kb, which means the two parties end
up with the same key due to the commutativity of polynomials of the same matrix in the
max-min semiring, resembling classical algebra.

Initially, one might assume that this protocol is vulnerable to exhaustive search attacks
because max-min operations do not generate new numbers, making the shared key seem-
ingly easy to guess. However, we argue otherwise. By considering a wide range for both
matrix entries and polynomial coefficients, along with a sufficiently large polynomial degree,
the protocol yields an extensive array of possibilities, thereby mitigating susceptibility to
brute-force attacks.
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Figure 1: Key randomness for Protocol 1

The following experiment (Figure 1) shows the average number of unique elements in
the shared key. The dimension of the matrices is 10 with entries and polynomial coefficients
chosen randomly from [−10000, 10000] and 100 trials were performed for each polynomial
degree. Note that for high polynomial degrees, there are on average 8 distinct elements in the
shared key. Considering the size of the matrix, there exists a large number of arrangements
for these elements within the matrix. Hence, exhaustive search for the key would not be
feasible.

Protocol 2 (Max-min Stickel protocol based on modified circulants).

1. Alice and Bob agree on s, t ∈ Rmax,min and a publicly known matrix M ∈ Rn×n
max,min\ (Cs

n ∪ Ct
n).

2. Alice generates two matrices A1 ∈ Cs
n and B1 ∈ Ct

n and sends U = A1 ⊗ M ⊗ B1 to
Bob .

3. Bob generates two matrices A2 ∈ Cs
n and B2 ∈ Ct

n and sends V = A2 ⊗ M ⊗ B2 to
Alice.

4. Alice calculates Ka = A1 ⊗ V ⊗B1.

5. Bob calculates Kb = A2 ⊗ U ⊗B2.

Similarly, note that Ka = A1⊗V ⊗B1 = A1⊗A2⊗M⊗B2⊗B1 = A2⊗A1⊗M⊗B1⊗B2 =
A2 ⊗U ⊗B2 = Kb, which means the two parties end up with the same key due the commu-
tative nature of modified circulants.

We also demonstrate the behavior of the shared key as the matrix dimension increases
(Figure 2), assessing whether there’s adequate variability to prevent brute-force attacks.
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Figure 2: Key randomness for Protocol 2

The average number of unique elements within the matrix increases with matrix dimen-
sion. This similarly results in a vast array of possible arrangements for these elements,
making simple exhaustive search attacks unfeasible.

Remark 3.1. Both matrix polynomials and upper s-circulants (for a fixed element s) form
a commutative semiring with (obvious) identity and zero. For lower s-circulants over the
tropical semiring a proof of this fact can be found in [2] and it can be modified to apply to
upper s-circulants over any semiring. For the reader’s convenience we include a self-contained
proof in Appendix. We acknowledge that this proof is based on the arguments from Collett’s
M.Sci. dissertation [3].

Due to the commutativity of matrix polynomials and modified circulants, both Protocol 1
and Protocol 2 can be implemented using matrix algebra over any semiring, including any
max-T semiring.

4 Security analysis of the proposed protocols

In this section, we introduce a max-min/max-T analogue of the Kotov-Ushakov attack over
the max-min semiring and its heuristic version (in the max-min case only), and demonstrate
the substantially greater difficulty in compromising the max-min protocols relative to their
tropical equivalents.

Similar to the original tropical Kotov-Ushakov attack [16] (or the tropical generalized
Kotov-Ushakov attack [17]),in order to attack Protocol 1 or Protocol 2, our objective is to
find the polynomial coefficients or the circulant parameters xα, yβ ∀α, β ∈ {0, . . . D} where
D is the maximum polynomial degree for the case of Protocol 1, or the matrix dimension
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(D = n− 1) for the case of Protocol 2. In particular, we define

X =
⊕

α∈{0,...D}

(xα ⊗ Aα) , Y =
⊕

β∈{0,...D}

(yβ ⊗Bβ) , (1)

where Aα and Bβ represent the powers of the public matrices A and B respectively in the
context of Protocol 1, or serve as generators of modified circulants for Protocol 2 which takes
the following form for Aα in the max-min case, and Bβ follows similarly

(Aα)ij =


∞ if α ≡ (i− j)(mod n) and i ≥ j

s if α ≡ (i− j)(mod n) and i < j

−∞ otherwise

Note that for max-T semiring we need to define

(Aα)ij =


1 if α ≡ (i− j)(mod n) and i ≥ j

s if α ≡ (i− j)(mod n) and i < j

0 otherwise

We know from the protocols that X ⊗M ⊗ Y = U , and if we substitute (1) for X and
Y we get

U =
⊕

α∈{0,...D}

(xα ⊗ Aα) ⊗M ⊗
⊕

β∈{0,...D}

(yβ ⊗Bβ) .

Then combining the two summations and rearranging the coefficients, we get

U =
⊕

α,β∈{0,...D}

xα ⊗ yβ ⊗ (Aα ⊗M ⊗Bβ) (2)

We then denote xα⊗yβ = zαβ and Rαβ = (Aα ⊗M ⊗Bβ) to rewrite Equation (2) as follows:

U =
⊕

α,β∈{0,...D}

zαβ ⊗Rαβ (3)

This is of the form of max-min/max-T linear system “A⊗ x = b” where the entries of Rαβ

are the coefficients of the system, and zαβ are the unknowns.
Thus, we need to scan all solutions to Equation (3) and pick a solution that satisfies zαβ =

xα ⊗ yβ for some xα, yβ ∀α, β ∈ {0, 1, . . . , D}. The next proposition for the complete set
of solutions of Equation (3) where we “forget” about this important constraint on variables
zαβ is very well-known in fuzzy relations theory.

Proposition 4.1 (e.g. [12],[15]). Over the max-min semiring, system (3) has a finite set of
minimal solutions and just one maximal solution, which is the greatest solution. With the
number of minimal solutions denoted by r, the whole solution set is represented as

S =
r⋃

i=1

{x : d(i) ≤ x ≤ c},

where d(i) denotes the ith minimal solution and c is the greatest solution of (3).
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According to Di Nola et al. [6], this Proposition also extends to max-T semirings where T
is a continuous T -norm. Note that, as shown by Di Nola et al. [6], the lower semi-continuity
of T -norm guarantees the existence of the greatest solution while in the case of upper semi-
continuity of T the set of minimal solutions can be fully described and it can be shown that
any solution is lower-bounded by a minimal solution. In particular, Proposition 4.1 holds
also for the tropical case where the T -norm is defined as the usual product, and in this case
the minimal solutions can be found by zeroing out some components of the greatest solution.

In order to break Stickel’s protocol over max-T semiring, assuming that Proposition 4.1
holds we need to compute the greatest solution c (for the max-min case using Lemma 3.2
in [8]) and all minimal solutions d(i)’s (for the max-min case using Section 3.3 in [23] or
Chapter 3 in [20]), and test the boxes {x : d(i) ≤ x ≤ c} for all i until we find a vector z that
satisfies zαβ = xα ⊗ yβ for some xα, yβ ∈ N ∀α, β ∈ {0, 1, . . . , D}. The following algorithm
captures these processes.

Attack 1 (Max-min/max-T generalized Kotov-Ushakov attack).

1. Compute the maximum solution c of Equation (3). In the max-min case:

cαβ = min
γ,δ∈[n]

(
Uγδ : Rαβ

γδ > Uγδ

)
∀α, β ∈ {0, . . . , D}

2. Compute all minimal solutions d(i) of Equation (3).

3. Find a minimal solution d(i) with components d
(i)
αβ for which the system

d
(i)
αβ ≤ xα ⊗ yβ ≤ cαβ ∀α, β ∈ {0, . . . , D} (4)

is solvable.

In the max-min case system (4) can be transformed into a problem of mixed-integer linear
programming, following an observation by [4]. In particular, min(xα, yβ) ≤ cαβ means either
xα, yβ or both are less than or equal to cαβ, which can be expressed as xα−(1−wαβ)M ≤ cαβ
and yβ − (1 − kαβ)M ≤ cαβ with M being a sufficiently large number, and wαβ + kαβ = 1

such that wαβ, kαβ ∈ {0, 1}. Obviously, min(xα, yβ) ≥ d
(i)
αβ can be equivalently written as

xα ≥ d
(i)
αβ, yβ ≥ d

(i)
αβ.

Thus, the system (4) can equivalently be written as

xα ≥ d
(i)
αβ, yβ ≥ d

(i)
αβ

xα − (1 − wαβ)M ≤ cαβ, yβ − (1 − kαβ)M ≤ cαβ,

wαβ + kαβ = 1,

wαβ, kαβ ∈ {0, 1}

(5)

We now prove that Attack 1 works, due to it producing X and Y that satisfy X⊗M⊗Y = U .
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Proposition 4.2. Let U be the message that Alice sent to Bob in Protocol 1 or Protocol 2.
Then Attack 1 yields

X =
⊕

α∈{0,...D}

(xα ⊗ Aα) , Y =
⊕

β∈{0,...D}

(yβ ⊗Bβ) ,

such that X and Y satisfy X ⊗M ⊗ Y = U .

Proof. Since U = X⊗M⊗Y , then there is a vector z that solves Equation (3) with zαβ = xα⊗
yβ for some xα and yβ such that X =

⊕
α∈{0,...D} (xα ⊗ Aα) and Y =

⊕
β∈{0,...D} (yβ ⊗Bβ).

We now need to show that the method described in Attack 1 does find such vector. Since
the attack, due to Proposition 4.1, searches for all possible solutions of Equation (3), it is
guaranteed that it finds a solution that solves system (4) (or equivalently system (5)) because
we know that there exist coefficients xα and yβ such that

⊕
α,β xα ⊗ yβ ⊗ Rαβ = U , and

these coefficients can be used to construct X and Y .

Since Attack 1 is very computationally heavy, it might not be practical, especially when
Alice and Bob use very high polynomial degrees or matrix dimensions (see in the numerical
experiments below). An attacker then would consider a heuristic version of the attack. One
possible heuristic, which we are presenting only for the max-min case, would be as shown
in Attack 2, where the attacker checks for a vector that solves system (4) (or equivalently
system (5)) in just one box, where the lowest corner of the box is the lower bound r suggested
by Gavalec in [8] Lemma 5.2. (i.e., r ≤ z for any solution z of Equation (3)) , and similarly
the highest corner of the box is the greatest solution of Equation (3). The attack succeeds
if a solution is found, and fails if otherwise.

Attack 2 (Heuristic version of Attack 1 in the max-min case).

1. Compute the greatest solution c of Equation (3).

2. Compute the lower bound r for solutions of Equation (3) suggested in [8] Lemma 5.2.

3. Solve the system

rαβ ≤ min(xα, yβ) ≤ cαβ ∀α, β ∈ {0, . . . , D}

5 Implementations and Numerical Experiments

We now implement the attacks on Protocol 1 and Protocol 2, analyzing their behaviour and
execution time. We also compare the resistance of the two proposed max-min protocols with
their tropical counterparts.

In our series of experiments we investigate the behavior of Attack 1 in which we count
the number of enumerated minimal solutions, and how many of them were tested to re-
cover the shared key. We also measure the time taken by this attack to break the protocol.
It appears that the numbers of enumerated and tested minimal solutions are much higher
than the tropical case (as reported by Kotov and Ushakov experiment in [16]). Further-
more, as the degree of polynomial or the matirx dimension grows, the number of minimal
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solutions skyrockets, leading to significantly prolonged attack times, often spanning several
hours already for low dimensions. Such instances tend to occur more frequently as the degree
increases, likely attributed to the high number of minimal solutions driven by the increase in
key randomness. We expect that the max-min protocols require significantly more time to
compromise compared to their tropical counterparts, primarily due to the increased number
of enumerated and tested minimal solutions, in addition to having to solve a harder opti-
mization problem (we have to solve a linear programming problem in the case of tropical
Stickel protocol, compared with mixed-integer linear programming for the max-min case).

We used a 10 dimensional matrix and a polynomial degree from 2 to 10 for the case of
Protocol 1, and a matrix dimension from 2 to 10 for the case of Protocol 2, and both matrix
entries and polynomial coefficients are in [−10000, 10000]. The results of this experiment
(the number of minimal solutions and the execution time are shown in Tables 1 and 2). The
code was executed on MATLAB R2023b running on Windows 11 64-bit, equipped with an
Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz and 16.0 GB RAM.

Degree 2 3 4 5 6 7 8 9 10
Number of Minimal
Solutions

5 11 54 664 439 3198 12493 20834 27342

Number of Tested
Minimal Solutions

1 1 54 1 43 1261 1 199 373

Time Taken (seconds) 0.01 0.04 0.34 2.9 52.4 986 1545 12204 14924

Table 1: The performance of Attack 1 on the protocol based on polynomials

Dimension 2 3 4 5 6 7 8 9 10
Number of Minimal
Solutions

4 6 16 3125 5040 6480 22400 32256 40000

Number of Tested
Minimal Solutions

1 4 12 31 1 1 709 5351 6321

Time Taken (seconds) 0.01 0.03 0.1 11.4 32.5 47.1 1121 10362 14073

Table 2: The performance of Attack 1 on the protocol based on circulants

To compare these results with the efficiency of Kotov-Ushakov attack in the tropical
case, we demonstrate here the results of our numerical experiments (Figure 3) presented
previously in [1].

Figures 4 show the success rate and time spent by Attack 2 on Protocol 1 (which is
a heuristic versio of the Kotov-Ushakov attack). Unfortunately, this attack performs very
poorly against Protocol 2, with success rate dropping to 0% already for very low dimensions.
Obviously, this heuristic is much faster that Attack 1 since it avoids enumerating all minimal
solutions.

Another advantage for max-min protocols over the tropical ones is that the max-min
protocols demonstrate greater resilience against the two-sided discrete logarithm attacks.
This is attributed to the rarity of a single monomial dominating in the polynomial, unlike
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Figure 3: Time taken for Kotov-Ushakov attack to break Tropical Stickel Protocol based on
polynomials (left) and modified circulants (right) [1].

the tropical version where such dominance is much more common. To assess the frequency
of single monomial dominance in both max-min and tropical cases, we conducted a simple
numerical experiment where we sampled the matrix entries and polynomial coefficients from
[−1000, 1000] and noticed that a single monomial represents a 10-th degree polynomial 83%
of the times, compared with 0% for the max-min case.

Figure 4: Success rate and time of Attack 2 on Protocol 1
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6 Conclusions

In this work we have suggested to implement Stickel protocol over max-T semirings, starting
with the most familiar max-min (fuzzy) semiring and considering two versions of it: based
on polynomials and based on modified circulants. We also formulated a max-min/max-
T analogue of Kotov-Ushakov attack which, like in the case of the original Kotov-Ushakov
attack, enumerates all minimal solutions and, among the solution set that a minimal solution
defines, tries to find a solution that has the required structure.

It may be concerning that the max-min semiring does not produce new numbers and
therefore the keys generated by Alice and Bob have only a small number of different entries.
While this tends to be the case (especially when compared with the tropical versions of the
same protocols), the number of different entries is significant and in general does not allow
for a quick brute force attack. Potentially, an implementation using a different T -norm can
improve it further.

The max-min implementation seems more resistant to the existing attacking techniques
such as the Kotov-Ushakov attack mostly because of the much bigger number of minimal
solutions, which skyrockets as the degree of polynomial or the dimension of the circulant
increases.

Our attempt to implement the Kotov-Ushakov attack heuristically is not very successful,
especially in the case of modified circulants. Even in the case of polynomials the success
rate is not overwhelming and the time taken is higher compared to the heuristic techniques
in the tropical case (see [1]).

The future research could focus on picking some interesting classes of T -norms to provide
more secure platforms for the Stickel (and possibly other) protocols or on further improve-
ment of the Kotov-Ushakov attack on this protocol over various semirings.
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A Appendices

A.1 Upper s-circulant matrices commute [3]

Let A be an upper s-circulant matrix with parameters c0, c1, c2 . . . , cn−1 and let B be an
upper-s-circulant matrix with parameters d0, d1, d2 . . . , dn−1, then we have

A =


c0 cn−1 ⊗ s cn−2 ⊗ s · · · c1 ⊗ s
c1 c0 cn−1 ⊗ s · · · c2 ⊗ s
c2 c1 c0 · · · c3 ⊗ s
...

...
...

. . .
...

cn−1 cn−2 cn−3 · · · c0

 B =


d0 dn−1 ⊗ s dn−2 ⊗ s · · · d1 ⊗ s
d1 d0 dn−1 ⊗ s · · · d2 ⊗ s
d2 d1 d0 · · · d3 ⊗ s
...

...
...

. . .
...

dn−1 dn−2 dn−3 · · · d0



and A⊗B =


e11 e12 e13 · · · e1n
e21 e22 e23 · · · e2n
e31 e32 e33 · · · e3n
...

...
...

. . .
...

en1 en2 en3 · · · enn

 ,

where
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e11 = (c0 ⊗ d0) ⊕ (cn−1 ⊗ s⊗ d1) ⊕ (cn−2 ⊗ s⊗ d2) ⊕ · · · ⊕ (c1 ⊗ s⊗ dn−1)

e21 = (c1 ⊗ d0) ⊕ (c0 ⊗ d1) ⊕ (cn−1 ⊗ s⊗ d2) ⊕ · · · ⊕ (c2 ⊗ s⊗ dn−1)

e31 = (c2 ⊗ d0) ⊕ (c1 ⊗ d1) ⊕ (c0 ⊗ d2) ⊕ · · · ⊕ (c3 ⊗ s⊗ dn−1)

...

en1 = (cn−1 ⊗ d0) ⊕ (cn−2 ⊗ d1) ⊕ (cn−3 ⊗ d2) ⊕ · · · ⊕ (c0 ⊗ dn−1)

e12 = (c0 ⊗ dn−1 ⊗ s) ⊕ (cn−1 ⊗ s⊗ d0) ⊕ (cn−2 ⊗ s⊗ d1) ⊕ · · · ⊕ (c1 ⊗ s⊗ dn−2)

e22 = (c1 ⊗ dn−1 ⊗ s) ⊕ (c0 ⊗ d0) ⊕ (cn−1 ⊗ s⊗ d1) ⊕ · · · ⊕ (c2 ⊗ s⊗ dn−2)

e32 = (c2 ⊗ dn−1 ⊗ s) ⊕ (c1 ⊗ d0) ⊕ (c0 ⊗ d1) ⊕ · · · ⊕ (c3 ⊗ s⊗ dn−2)

...

en2 = (cn−1 ⊗ dn−1 ⊗ s) ⊕ (cn−2 ⊗ d0) ⊕ (cn−3 ⊗ d1) ⊕ · · · ⊕ (c0 ⊗ dn−2)

e13 = (c0 ⊗ dn−2 ⊗ s) ⊕ (cn−1 ⊗ s⊗ dn−1 ⊗ s) ⊕ (cn−2 ⊗ s⊗ d0) ⊕ · · · ⊕ (c1 ⊗ s⊗ dn−3)

e23 = (c1 ⊗ dn−2 ⊗ s) ⊕ (c0 ⊗ dn−1 ⊗ s) ⊕ (cn−1 ⊗ s⊗ d0) ⊕ · · · ⊕ (c2 ⊗ s⊗ dn−3)

e33 = (c2 ⊗ dn−2 ⊗ s) ⊕ (c1 ⊗ dn−1 ⊗ s) ⊕ (c0 ⊗ d0) ⊕ · · · ⊕ (c3 ⊗ s⊗ dn−3)

...

en3 = (cn−1 ⊗ dn−2 ⊗ s) ⊕ (cn−2 ⊗ dn−1 ⊗ s) ⊕ (cn−3 ⊗ d0) ⊕ · · · ⊕ (c0 ⊗ dn−3)

e1n = (c0 ⊗ d1 ⊗ s) ⊕ (cn−1 ⊗ s⊗ d2 ⊗ s) ⊕ (cn−2 ⊗ s⊗ d3 ⊗ s) ⊕ · · · ⊕ (c1 ⊗ s⊗ d0)

e2n = (c1 ⊗ d1 ⊗ s) ⊕ (c0 ⊗ d2 ⊗ s) ⊕ (cn−1 ⊗ s⊗ d3 ⊗ s) ⊕ · · · ⊕ (c2 ⊗ s⊗ d0)

e3n = (c2 ⊗ d1 ⊗ s) ⊕ (c1 ⊗ d2 ⊗ s) ⊕ (c0 ⊗ d3 ⊗ s) ⊕ · · · ⊕ (c3 ⊗ s⊗ d0)

...

enn = (cn−1 ⊗ d1 ⊗ s) ⊕ (cn−2 ⊗ d2 ⊗ s) ⊕ (cn−3 ⊗ d3 ⊗ s) ⊕ · · · ⊕ (c0 ⊗ d0)

We can simplify these equations, remembering that the subscripts are always integers,
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therefore, if i, j ∈ Z and 0 ≤ i, j ≤ n− 1 we can rewrite these as

e11 =
⊕
i+j=0

(ci ⊗ dj) ⊕
⊕
i+j=n

(s⊗ ci ⊗ dj)

e21 =
⊕
i+j=1

(ci ⊗ dj) ⊕
⊕

i+j=n+1

(s⊗ ci ⊗ dj)

e31 =
⊕
i+j=2

(ci ⊗ dj) ⊕
⊕

i+j=n+2

(s⊗ ci ⊗ dj)

...

en1 =
⊕

i+j=n−1

(ci ⊗ dj)

e12 =
⊕

i+j=n−1

(s⊗ ci ⊗ dj)

e22 =
⊕
i+j=0

(ci ⊗ dj) ⊕
⊕
i+j=n

(s⊗ ci ⊗ dj)

e32 =
⊕
i+j=1

(ci ⊗ dj) ⊕
⊕

i+j=n+1

(s⊗ ci ⊗ dj)

...

en2 =
⊕

i+j=n−2

(ci ⊗ dj) ⊕
⊕

i+j=2n−2

(s⊗ ci ⊗ dj)

e13 =
⊕

i+j=n−2

(s⊗ ci ⊗ dj) ⊕
⊕

i+j=2n−2

(
s⊗2 ⊗ ci ⊗ dj

)
e23 =

⊕
i+j=n−1

(s⊗ ci ⊗ dj)

e33 =
⊕
i+j=0

(ci ⊗ dj) ⊕
⊕
i+j=n

(s⊗ ci ⊗ dj)

en3 =
⊕

(ci ⊗ dj) ⊕
⊕

i+j=2n−3

(ci ⊗ dj)

e1n =
⊕
i+j=1

(s⊗ ci ⊗ dj) ⊕
⊕

i+j=n+1

(
s⊗2 ⊗ ci ⊗ dj

)
e2n =

⊕
i+j=2

(s⊗ ci ⊗ dj) ⊕
⊕

i+j=n+2

(
s⊗2 ⊗ ci ⊗ dj

)
e3n =

⊕
i+j=3

(s⊗ ci ⊗ dj) ⊕
⊕

i+j=n+3

(
s⊗2 ⊗ ci ⊗ dj

)
...

enn =
⊕
i+j=0

(ci ⊗ dj) ⊕
⊕
i+j=n

(s⊗ ci ⊗ dj)
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Therefore, in general we have :

epq =
⊕

i+j=p−q

(ci ⊗ dj) ⊕
⊕

i+j=n+p−q

(s⊗ ci ⊗ dj) ⊕
⊕

i+j=2n+p−q

(
s⊗2 ⊗ ci ⊗ dj

)
, 1 ≤ p, q ≤ n.

Here and below we will assume 0 ≤ i, j ≤ n− 1. We now consider B ⊗ A

B ⊗ A =


f11 f12 f13 · · · f1n
f21 f22 f23 · · · f2n
f31 f32 f33 · · · f3n
...

...
...

. . . · · ·
fn1 fn2 fn3 · · · fnn


In a similar manner, we find a general formula for fpq as

fpq =
⊕

i+j=p−q

(di ⊗ cj) ⊕
⊕

i+j=n+p−q

(s⊗ di ⊗ cj) ⊕
⊕

i+j=2n+p−q

(
s⊗2 ⊗ di ⊗ cj

)
, 1 ≤ p, q ≤ n.

We notice the solutions to i + j = r for some r, where i, j are integers inclusively between 1
and n− 1 and r is an integer inclusively between 1 and 2n− 2, are symmetric. For example
i + j = 1 has solutions (1, 0) and (0, 1). This implies that

epq =
⊕

i+j=p−q

(ci ⊗ dj) ⊕
⊕

i+j=n+p−q

(s⊗ ci ⊗ dj) ⊕
⊕

i+j=2n+p−q

(
s⊗2 ⊗ ci ⊗ dj

)
=

⊕
i+j=p−q

(di ⊗ cj) ⊕
⊕

i+j=n+p−q

(s⊗ di ⊗ cj) ⊕
⊕

i+j=2n+p−q

(
s⊗2 ⊗ di ⊗ cj

)
= fpq 1 ≤ p, q ≤ n.

As epq = fpq for all p and q, we obtain

A⊗B =


e11 e12 e13 · · · e1n
e21 e22 e23 · · · e2n
e31 e32 e33 · · · e3n
...

...
...

. . . · · ·
en1 en2 en3 · · · enn

 =


f11 f12 f13 · · · f1n
f21 f22 f23 · · · f2n
f31 f32 f33 · · · f3n
...

...
...

. . . · · ·
fn1 fn2 fn3 · · · fnn

 = B ⊗ A.

Thus any two upper s-circulant matrices commute.

A.2 Upper s-circulant matrices are a semiring [3]

Recall that

epq =
⊕

i+j=p−q

(ci ⊗ dj) ⊕
⊕

i+j=n+p−q

(s⊗ ci ⊗ dj) ⊕
⊕

i+j=2n+p−q

(
s⊗2 ⊗ ci ⊗ dj

)
, 1 ≤ p, q ≤ n
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We observe that epq = e(p+1)(q+1) as

e(p+1)(q+1) =
⊕

i+j=(p+1)−(q+1)

(ci ⊗ dj) ⊕
⊕

i+j=n+(p+1)−(q+1)

(s⊗ ci ⊗ dj)⊕⊕
i+j=2n+(p+1)−(q+1)

(
s⊗2 ⊗ ci ⊗ dj

)

=
⊕

i+j=(p−q)

(ci ⊗ dj) ⊕
⊕

i+j=n+p−q

(s⊗ ci ⊗ dj) ⊕
⊕

i+j=2n+p−q

(
s⊗2 ⊗ ci ⊗ dj

)
= epq

So we have
epq = e(p+1)(q+1) for 1 ≤ p, q ≤ n.

As we have shown that all entries on the sme diagonal of A⊗ B are equal to each other, in
order to show that it is an upper s-circulant matrix, it remains to show that the first column
and the first row are as they should be in an upper s-circulant matrix. For example, we need
to show that e12 = en1 ⊗ s and e13 = e(n−1)1 ⊗ s. We do not need to consider e00. In general
we need to show that

e1q = s⊗ e(n+2−q)1 for 2 ≤ q ≤ n.

Using our general formula we see that

e1q =
⊕

i+j=1−q

(ci ⊗ dj) ⊕
⊕

i+j=n+1−q

(s⊗ ci ⊗ dj) ⊕
⊕

i+j=2n+1−q

(
s⊗2 ⊗ ci ⊗ dj

)
=

⊕
i+j=n+1−q

(s⊗ ci ⊗ dj) ⊕
⊕

i+j=2n+1−q

(
s⊗2 ⊗ ci ⊗ dj

)
= s⊗

( ⊕
i+j=n+1−q

(ci ⊗ dj) ⊕
⊕

i+j=2n+1−q

(s⊗ ci ⊗ dj)

)
, 2 ≤ q ≤ n.

We also have

s⊗ e(n−q+2)1 = s⊗

 ⊕
i+j=(n+2−q)−1

(ci ⊗ dj) ⊕
⊕

i+j=n+(n+2−q)−1

(s⊗ ci ⊗ dj)⊕

⊕
i+j=2n+(n+2−q)−1

(
s⊗2 ⊗ ci ⊗ dj

) , 2 ≤ q ≤ n.

= s⊗

( ⊕
i+j=n+1−q

(ci ⊗ dj) ⊕
⊕

i+j=2n+1−q

(s⊗ ci ⊗ dj) ⊕
⊕

i+j=3n−q+1

(
s⊗2ci ⊗ dj

))

= s⊗

( ⊕
i+j=n+1−q

(ci ⊗ dj) ⊕
⊕

i+j=2n−q−1

(s⊗ ci ⊗ dj)

)
= e1q for 2 ≤ q ≤ n
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Therefore, we have shown that

e1q = s⊗ e(n+2−q)1 for 2 ≤ q ≤ n

Using the above equations we can see that A ⊗ B = B ⊗ A is indeed an upper s-circulant.
We are left to show that A ⊕ B ∈ Cs

n to prove that the set of upper s-circulant matrices is
indeed a (commutative) semiring. This follows since

A⊕B =


c0 cn−1 ⊗ s cn−2 ⊗ s · · · c1 ⊗ s
c1 c0 cn−1 ⊗ s · · · c2 ⊗ s
c2 c1 c0 · · · c3 ⊗ s
...

...
...

. . . · · ·
cn−1 cn−2 cn−3 · · · c0



⊕


d0 dn−1 ⊗ s dn−2 ⊗ s · · · d1 ⊗ s
d1 d0 dn−1 ⊗ s · · · d2 ⊗ s
d2 d1 d0 · · · d3 ⊗ s
...

...
...

. . . · · ·
dn−1 dn−2 dn−3 · · · d0



=


c0 ⊕ d0 (cn−1 ⊕ dn−1) ⊗ s (cn−2 ⊕ dn−2) ⊗ s · · · (c1 ⊕ d1) ⊗ s
c1 ⊕ d1 c0 ⊕ d0 (cn−1 ⊕ dn−1) ⊗ s · · · (c2 ⊕ d2) ⊗ s
c2 ⊕ d2 c1 ⊕ d1 c0 ⊕ d0 · · · (c3 ⊕ d3) ⊗ s

...
...

...
. . . · · ·

cn−1 ⊕ dn−1 cn−2 ⊕ dn−2 cn−3 ⊕ dn−3 · · · c0 ⊕ d0


This is an upper s-circulant matrix with entries (c0 ⊕ d0) , (c1 ⊕ d1) , . . . , (cn−1 ⊕ dn−1). Hence
A ⊕ B ∈ Cs

n and due to the commutative property of ⊕, we also have that B ⊕ A ∈ Cs
n.

Hence Cs
n is indeed a commutative semiring.
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