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Abstract. Searchable symmetric encryption (SSE) schemes provide users
with the ability to perform keyword searches on encrypted databases
without the need for decryption. While this functionality is advanta-
geous, it introduces the potential for inadvertent information disclosure,
thereby exposing SSE systems to various types of attacks. In this work,
we introduce a new inference attack aimed at enhancing the query re-
covery accuracy of RefScore (presented at USENIX 2021). The proposed
approach capitalizes on both similar data knowledge and an additional
volume leakage as auxiliary information, facilitating the extraction of
keyword matches from leaked data. Empirical evaluations conducted
on multiple real-world datasets demonstrate a notable enhancement in
query recovery accuracy, up to 19.5%. We also analyze the performance
of the proposed attack in the presence of diverse countermeasures.

Keywords: Searchable Symmetric Encryption · Inference Attack · Vol-
ume Pattern.

1 Introduction

Outsourcing data on cloud introduces a significant challenge: the loss of control
over data access. This challenge becomes particularly concerning when dealing
with sensitive personal information. Ensuring confidentiality becomes paramount
to safeguarding data from unauthorized access. Rather than storing data in plain
text, encryption is employed to obfuscate the data prior to its upload to the
cloud, thereby enhancing its security.

Encrypting all data is a fundamental strategy for ensuring the security of data
stored on the cloud, provided that encryption methodologies are appropriately
implemented. This approach inherently entails trade-offs. For instance, a fully
encryption over a database introduces complexities for data retrieval and access
- a naive approach involves downloading all encrypted data from the cloud server
and subsequently decrypting it locally to access the data. However, this proves
impractical, particularly when dealing with extensive data sizes, especially if the
client just would like to retrieve a small subset of documents.

Utilizing a Searchable Symmetric Encryption (SSE) is a practical approach
for facilitating search functionalities on encrypted data. SSE, as proposed by

https://orcid.org/0000-0001-9163-8023
https://orcid.org/0000-0003-0262-7678


2 Ho et al.

Song et al. [14], provides this capability by enabling clients to perform keyword
searches on encrypted data stored in cloud environments using a trapdoor, inter-
changeably referred to as a query. As a result, the server is able to retrieve and
return encrypted files containing the queried keyword to clients. This method-
ology upholds confidentiality but also empowers clients with the capacity to
search for specific documents within the encrypted dataset. While the design
of keyword search on encrypted data can conceal the underlying information of
keyword, the interactions of sending queries and retrieving data inadvertently
leaks useful information, e.g., frequency of keywords. For instance, observing
the encrypted files returned during a search allows attackers to discern valuable
insights related to say size of files. This type of leakage easily poses a potential
threat to SSE systems. We note that in this paper we mainly focus on an obser-
vation type of attack, i.e. passive attack, against the current SSE systems.

Related Work. The IKK attack [6] laid the groundwork in SSE, exploiting
full document knowledge and access pattern leakage to recover queries, and op-
timizing the query-keyword mapping through simulated annealing. Building on
this, the Count attack [2] included result length patterns, improving efficiency
and accuracy, but still requiring extensive document knowledge. In contrast,
the Search attack [8] utilized known search patterns for keyword assignment,
dependent on a large number of client queries for precision. The Graph Match-
ing attack [12] catered to EDESE schemes using co-occurrence and reduced the
challenge to weighted graph matching. Volume-centric attacks like Volan and
its advancement, SelVolan [1], harnessed volumetric leakage and result length
patterns but necessitated almost complete document knowledge. The Subgraph
attack [1] introduced atomic patterns and delivered better accuracy even with
low known data rates. LEAP [11] employed partial document knowledge and
matrix mappings for accurate keyword recovery without false positives. Lastly,
Score and RefScore attacks [4] employed co-occurrence patterns, with RefScore
enhancing precision through ongoing knowledge updates. The effectiveness of
each attack is a balance between knowledge requirements, leakage exploitation,
and practical applicability. We note that RefScore [4] abuses the similar data
knowledge but does not fully exploit its matching techniques. Surprisingly, we
also find out that a combination of volume pattern enables attackers to match
more queries. Please note that there have been various interesting works con-
cerning SSE attacks and the countermeasures proposed in the literature, such as
[9,10,17,16]. As they are not closely connected to this work, we refer interested
readers to them.

Table 1 shows an overview of SOTA and the proposed attacks. They have
different auxiliary knowledge requirements and exploited patterns. Full or par-
tial document knowledge is a common requirement for known data attacks, and
many attacks utilize the co-occurrence pattern. We focus on the state-of-art
inference attacks: Score and RefScore [4]. We note that inference attacks only
require the information of similar documents instead of partial documents from
the real dataset; therefore, they are more practical than other types of attacks.
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Table 1: Overview of SSE Attacks
SSE Attacks Type Document Knowledge Query Knowledge Exploited Patterns

IKK[6] Known data Full None Co-occ

Count[2] Known data Partial None Co-occ, rlen

Search[8] Inference Keywords Query search patterns Search

Graph matching[12] Inference Similar None Co-occ

Volan[1] Known data Partial None Tvol

SelVolan[1] Known data Partial None Tvol, rlen

Subgraph[1] Known data Partial None Rid or Vol

Score[4] Inference Similar Partial Co-occ

RefScore[4] Inference Similar Partial Co-occ

VolScore [Sect. 2.2] Inference Similar Partial Co-occ, vol

RefVolScore [Sect. 2.3] Inference Similar Partial Co-occ, vol

ClusterVolScore [Sect. 2.4] Inference Similar Partial Co-occ, vol

We therefore propose three new attacks in Section 2, which are highlighted in
green in Table 1. The main idea in the proposed attacks is to utilize a technique
from an existing attack and to explore combining an additional exploited pattern
to improve the accuracy. The intuition is that an additional exploited pattern
would increase the query recovery accuracy since the attacker has more informa-
tion. We consider improving the co-occurrence pattern attacks with additional
leakages in the volume pattern. A similar technique can be seen from the work of
Lambregts et al. [7], which improves the accuracy of assess pattern with volume
pattern.

Revisit. We revisit both Score and Refined Score (RefScore) attacks [4] to
discuss ways of improvement.

The Score attack employs known queries and similar documents to extract the
keyword vocabulary set Ksim from the similar document Dsim, and then com-
pute the keyword co-occurrence submatrix Cs

kw. The trapdoor co-occurrence
submatrices Cs

td are generated from observed trapdoors. Central to this ap-
proach is the scoring mechanism. It involves comparing co-occurrence vectors
Cs

kw[kw] for keywords from Ksim and Cs
td[td] for trapdoors from comprising ob-

served queries Q. Their similarity indicates potential matches. Damie et al. [4]
introduced a scoring method that employs the Euclidean norm and a negative
logarithm to simplify small distances into more interpretable scores. The algo-
rithm, therefore, selects the highest-scoring keyword for each trapdoor, iterating
through all trapdoors.

Building on the Score Attack, RefScore introduces an additional parame-
ter: RefSpeed (refinement speed), which balances accuracy and runtime. The
algorithm’s first phase involves identifying unknown queries for each refinement
cycle. Unlike the Score Attack, it employs certainty — the score gap between the
top two candidates — to guide predictions, with low certainty indicating closely
scored top candidates. Subsequently, the algorithm decides whether to continue
refining or stop, based on the number of unknown queries and RefSpeed. Dur-
ing refinement, only predictions with the highest certainty are added as known
queries, followed by updating the co-occurrence submatrices for the next itera-



4 Ho et al.

tion. Note that [4] demonstrates that RefScore significantly surpasses the base
Score Attack in performance, given the same amount of known queries.

Refine. To enhance the RefScore attack, we leverage the followings:
- Clustering. Instead of using a static RefSpeed parameter, we consider dynamic
adjustments based on certainty levels within clusters. Larger, high-certainty clus-
ters would have a higher RefSpeed, while low certainty would reduce RefSpeed,
limiting wrong predictions. This idea became central to the new attack strategy.
- Volume Pattern. The intuition is that providing the co-occurrence pattern
with more knowledge by merging the volume pattern, therefore improving the
accuracy.

In summary, we delve into the effects of integrating supplementary leakage
information into SSE attacks. The main contributions are as follows.

• This work expands upon the inference attack by incorporating the volume
pattern, achieving significant improvements over the existing attack method-
ology [4] to enhance query recovery rate, particularly in scenarios where the
attacker has access to a limited number of known queries, and to improve sta-
bility in result spread due to the utilization of the additional volume leakage
pattern.

• We conduct a comprehensive evaluation of the proposed attack approach,
comparing its performance against the original attack across various datasets.
We also investigate the effectiveness of countermeasures in mitigating the
impact of the enhanced attack strategy.

2 The Proposed Attacks

We outline the novel inference attacks on SSE. The approach rests on several
key assumptions typical in SSE attacks. First, post-query, both the co-occurrence
and volume patterns are leaked to the server. Second, we presume two types of
leakages: co-occurrence (access pattern) and volume pattern, each revealing spe-
cific document identifiers and their volumes for every query. Third, the attacker
is assumed to have access to a dataset similar to the server’s, including a shared
keyword distribution and the same keyword extraction method, with a focus on
the most frequent keywords. Finally, the attacker possesses known queries, com-
prising keywords from both their and the client’s vocabularies. The commonly
used notions are shown in Table 4.

2.1 Intuition

The main intuition behind the design is that an attacker has more attack power
with more knowledge. In detail, we increase the knowledge of the adversary by
utilizing the volume pattern and designed the VolScore attack while keeping
many elements and the core matching technique the same as RefScore from
Damie et al. [4]. The goal of this initial attack is not to achieve better results
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than RefScore, instead, it is a way to obtain additional knowledge and initial
query to keyword predictions. We combine the results obtained via the volume

pattern and co-occurrence pattern by utilizing VolScore, with results via
the co-occurrence pattern that are obtained from RefScore.

RefScore itself creates query-to-keyword predictions by using a number of
known queries, but the adversary does not know which predictions are assigned
correctly, and which are assigned incorrectly. By using the additional predictions
that are obtained from VolScore, and intersecting with the predictions from
RefScore, the attacker becomes more certain about some of the predictions, or
in other words the attacker has acquired more knowledge. The attacker can now
start a fresh new attack, but with an increased amount of known queries, and
with more known queries, the accuracy of the attack is improved.

In Figure 1 we visualized this concept. The chain of attacks that consists of
running VolScore, RefScore and another RefScore with increased knowledge is
called RefVolScore. We can also replace the last RefScore attack with a modified
version that utilizes clustering, and that chain is called ClusterVolScore. We
explain each of these attacks in more detail in the following sections.

RefScore VolScore

Intersect
Predictions

Increased
Known Queries

RefScore Clustering

RefVolScore = 

ClusterVolScore =

Known Queries + Known Queries+

+
+

PredictionsPredictions

Fig. 1: Volscore Overview

2.2 VolScore

The first attack VolScore is shown below as Algorithm 1, which works by utiliz-
ing the volume pattern in the RefScore algorithm. Compared to RefScore, the
main difference is that we apply this technique to a covolume matrix, which is
created by volume pattern, instead of a co-occurrence matrix. This change has
consequences for the accuracy. The prediction accuracy is much lower compared
to RefScore, but it does contain a small portion of useful predictions. As men-
tioned before, our goal here is not to achieve higher accuracy than RefScore;
instead, we aim to acquire additional knowledge with this small part of useful
predictions.

The algorithm has three important phases. In the first phase, we need to have
covolume submatrices prepared and extract the remaining unknown queries for
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Algorithm 1 VolScore

1: Input: Ksim, V s
kw, Q, V s

td, KnownQ, RefSpeed
2: Output: final pred
3:
4: final pred← []
5: unknownQ ← Q
6: while unknown Q ̸= ∅ do
7: // Extract the remaining unknown queries
8: unknownQ ← {td : (td ∈ Q) ∧ (̸ ∃kw ∈ Ksim : (td, kw) ∈ KnownQ)}
9: temp pred← []
10:
11: // Propose a prediction for each unknown query
12: for all td ∈ unknownQ do
13: cand← [] ▷ The candidates for trapdoor td
14: for all kw ∈ Ksim do
15: s = − ln(||V s

kw[kw]− V s
td[td]||)

16: append {“kw”: kw, “score”:s} to cand
17: end for
18: Sort cand in descending order according to the score.
19: certainty ← score(cand[0]) - score(cand[1])
20: append (td, kw(cand[0]), certainty) to temp pred
21: end for
22:
23: // Either stop the algorithm or keep refining.
24: if | unknownQ | < RefSpeed then
25: final pred← KnownQ ∪ temp pred
26: unknownQ ← ∅
27: else
28: Append the RefSpeed most certain predictions from temp pred to KnownQ
29: Add the columns corresponding to the new known queries to V s

kw and V s
td

30: end if
31: end while
32: return final pred

which a prediction needs to be made. In the second phase, the scoring mecha-
nism is applied and we make a prediction for each unknown query. And in the
last phase, the algorithm either stops and returns its predictions, or expands the
new knowledge into the covolume submatrices for the next iteration. We will
discuss each phase in the following sections.

Preparing Covolume Matrices. In the RefScore attack, the access pattern is
leaked. The co-occurrence pattern is the backbone of this attack. The attacker
is able to learn which document identifiers are accessed on single keywords. And
when more queries/trapdoors are issued, the attacker is able to learn information
about documents that contain both keywords. The co-occurrence is calculated
and utilized for the attack.

In the VolScore attack, we use a similar approach but with an additional vol-
ume pattern. From each query that is issued, we learn the document identifiers
(access pattern/co-occurrence pattern) as well as the volume of each returned
document (volume pattern). From each pair of queries, the attacker learns about
document identifiers that contain both keywords, as well as the volume of those
documents. The sum of the returned document volumes that contain both key-
words (or queries) divided by the number of documents is the covolume. The
details to compute the covolume are shown below in Algorithm 2.
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Algorithm 2 Compute covolume

1: Input: kq set, inv index, vol array, nr docs
2: Output: results
3:
4: results ← []
5: for all kwi ∈ kq set do
6: kwi docs ← inv index[kwi]
7: for all kwj ∈ kq set do
8: kwj docs ← inv index[kwj ]
9: co docs ← intersect(kwi docs, kwj docs)
10: if length(co docs) > 0 then
11: tvol ← 0
12: for all doc ∈ co docs do
13: tvol ← tvol + vol array[doc]
14: end for
15: co vol result ← tvol / nr docs
16: else
17: co vol result ← 0
18: end if
19: append(co vol result) to results
20: end for
21: end for
22: return results

The parameter kq set is a set of keywords or queries. This is because the
covolume needs to be calculated for each keyword pair, as well as each trap-
door pair. The inv index is the inverted index that contains a mapping from
keyword to documents, or from query to document identifiers. The volume of
each document is stored in vol array. The parameter nr docs is the amount
of documents from the similar auxiliary document knowledge when computing
for keywords, or the predicted amount of documents stored on the server when
computing for queries.

We predict this number by using known queries in the input for RefScore.
A known query is a pair (tdi, kwi) with a known trapdoor and keyword by
the attacker. Due to the access pattern leakage, the amount of documents that
contain trapdoor tdi is known and can be divided by the amount of documents
that contain kwi from the auxiliary dataset. If we repeat this calculation for
every known query and compute the mean, we obtain an estimated ratio of real
documents stored on the server.

In the algorithm, we compute co docs that are documents that contain both
kwi and kwj in line 8. And then, the covolume is computed by dividing the total
volume of documents that contains both keywords by nr docs in line 15.

In Figure 2 we show an example of two covolume matrices Vkw and Vtd that
are covolume matrices for keyword and trapdoors respectively. The diagonal
consists of zeroes since we are not interested in covolumes that consist of the
same keywords.

From the covol matrices that we created, we need to use known queries to
create two submatrices. Let’s assume that the attacker has two known queries
(tdl, kw1) and (td2, kw2). To create the keyword covol submatrix, we extract
columns that consist of keywords from the known queries from the original covol
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Covol matrix Vkw =


kw1 kw2 ··· kwn

kw1 0 20 · · · 80
kw2 20 0 · · · 40
...

...
...

. . .
...

kwn 80 40 · · · 0

 Covol matrix Vtd =


td1 td2 ··· tdl

td1 0 40 · · · 80
td2 40 0 · · · 20
...

...
...

. . .
...

tdl 80 20 · · · 0


Fig. 2: Covolume matrix example

submatrix Vkw, in this case, it is kw1 and kw2. In Figure 3 the column extraction
is shown, and the new covol submatrix V s

kw is created.

Covol matrix Vkw =



kw1 kw2 ··· kwn

kw1 0 20 · · · 80

kw2 20 0 · · · 40

...
...

...
. . .

...

kwn 80 40 · · · 0

 Extract columns−−−−−−−−−−−−−−−−→ Covol submatrix V s
kw =



kw1 kw2

kw1 0 20

kw2 20 0

...
...

...

kwn 80 40



Fig. 3: Covolume submatrix for keywords

We create another covol submatrix V s
td for the trapdoors as shown in Figure 4

but now we extract columns based on the known trapdoors instead of keywords.
We also have to reorder the columns in the same order as V s

kw such that the
submatrices can be compared.

Covol matrix Vtd =



td1 td2 ··· tdl

td1 0 40 · · · 80

td2 40 0 · · · 20

...
...

...
. . .

...

tdl 80 20 · · · 0

 Extract columns + reorder−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Covol submatrix V s
td =



tdl td2

td1 80 40

td2 20 0

...
...

...

tdl 0 20



Fig. 4: Covolume submatrix for trapdoors

Scoring Mechanism. In the second phase of the algorithm, we need to make
a prediction for each unknown query and apply a scoring mechanism. For all
keywords that are in the similar dataset a score number is assigned for the current
unknown trapdoor. From the previous example td1 is an unknown trapdoor, and
the trapdoor vector from covol submatrix V s

td is row td1. This trapdoor vector
is compared with each possible keyword vector that comes from each row from
covol submatrix V s

kw by calculating the Euclidean distance between the two
vectors, followed by applying the negative natural logarithm on the result. This
transforms the score numbers so that the focus is on the order of magnitude and
readability, especially when score numbers could be very small and close to zero.

In Figure 5 trapdoor vector [80, 40] from V s
td is compared with each row

vector: [0, 20], [20, 0], ..., [80, 40] from V s
kw. The last row for keyword kwn has
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Covol submatrix V s
td =


tdl td2

td1 80 40
td2 20 0
...

...
...

tdl 0 20

 Compare row vectors
←−−−−−−−−−−−−−−−−−−−−→ Covol submatrix V s

kw =


kw1 kw2

kw1 0 20
kw2 20 0
...

...
...

kwn 80 40



Fig. 5: Computing the score

an Euclidean distance of exactly zero and is the closest to td1. Usually, this does
not occur and we omitted this check in Algorithm 1, but in the implementation
the score is set to infinite. In the end, all scores from each keyword are calculated
and sorted in descending order. The certainty is the score between the highest
and the second highest candidate keyword. In this example, kwn has the highest
score of infinite, so the certainty will also be very high. So this candidate key-
word, together with the current trapdoor td1 and its certainty will be added to a
list of temporary predictions temp pred. The algorithm proceeds to do the same
process but now with the remaining unknown trapdoors and fills the temporary
predictions list, where each entry contains a trapdoor, a candidate keyword, and
a certainty. The actual decision is made in the last phase of the algorithm which
we discuss next.

Decision Making. In the last phase of the algorithm, the algorithm either
stops or keeps refining. If the algorithm keeps refining, a RefSpeed amount of
predictions from temp pred is added to the list of known queries. These are
the predictions with the highest certainties. The algorithm has acquired more
known queries now, so the covolume submatrices V s

kw and V s
td can expand its

columns with new known queries. So for the next refinement, a larger portion of
the original covolume matrices will be used as submatrices.

In the previous examples, we originally had two known queries (tdl, kw1)
and (td2, kw2). For simplicity, let’s assume that we have only one new known
query: (td1, kwn). In Figure 6 the old covol submatrices are expanded by a
green column, which reflects the newly added known query. After expansion,
the algorithm repeats itself and uses the new covol submatrices until the stop
condition is met. The algorithm stops if the number of unknown queries is less
than the refinement speed. If so, the stopping criteria are set and the known
queries with the current temp pred are returned as the final prediction.

New covol submatrix V s
td =



tdl td2 td1

td1 80 40 0

td2 20 0 40

...
...

...
...

tdl 0 20 80

 New covol submatrix V s
kw =



kw1 kw2 kwn

kw1 0 20 80

kw2 20 0 40

...
...

...
...

kwn 80 40 0



Fig. 6: Covol submatrices expansion
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2.3 RefVolScore

Previously, we discussed the RefScore and VolScore attacks. We combined both
attacks and call this the RefVolScore attack as shown in Algorithm 4. The idea
behind this attack is that the algorithm first runs the VolScore attack which uses
the volume pattern with co-occurrence pattern to obtain results, as well as
running the RefScore attack to obtain another result. From both results, we
find predictions that are found in both results and are not already known. This
means by using two different methods we have found the same new trapdoor to
keyword assignments. Whereas if we only run VolScore or RefScore, the attacker
does not know which prediction is correct. Since the same predictions are made
with two different methods, it is highly likely that this is a correct prediction.
These new known queries are then appended to the original known queries list.
Then a fresh run of RefScore is run using these updated known queries to obtain
a higher accuracy than was previously possible with RefScore by itself.

2.4 ClusterVolScore

We then introduce ClusterVolScore, an enhanced attack strategy in the sequence
of attacks after RefScore and VolScore. This method incorporates clustering to
dynamically adjust refinement speed based on certainty levels, rather than a
fixed speed. High refinement speeds can lead to inaccurate predictions due to
adding multiple low-certainty predictions simultaneously. On the other hand, a
slow refinement speed might delay the process and risk accuracy when adding
only a few predictions, which might be incorrect.

ClusterVolScore’s approach is exemplified in Figure 7. Here, temporary pre-
dictions with associated certainties are shown. These certainties reflect the confi-
dence in trapdoor-to-keyword assignments. Unlike RefScore, which adds a fixed
number of elements (e.g., 10) to known queries, ClusterVolScore computes can-
didate clusters from sizes 1 to a maximum (Max Ref Speed, 10 in this case).
It selects the cluster size with the largest difference between the cluster’s last
element and the next external element, thereby adding only those high-certainty
elements to known queries.

Temp pred with certainties =
[
8.2 8 7.9 3 2.5 2.4 2.3 2 1.9 1.5 1.4 · · ·

]
Max Ref Speed = 10

Best candidate clustering:
Cluster size 1 = [8.2], diff = 8.2 - 8 = 0.2
Cluster size 2 = [8.2, 8], diff = 8 - 7.9 = 0.1
Cluster size 3 = [8.2, 8, 7.9], diff = 7.9 - 3 = 4.9
...
Cluster size Max RefSpeed = [8.2, 8, · · · , 1.5], diff = 0.1

Fig. 7: A clustering example. Chosen elements are highlighted.
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In Algorithm 3, we detail the process of calculating the index with the largest
certainty difference. In the given example, if indexing starts at zero, the index
with the largest certainty difference is 2. Therefore, we add elements from index 0
to 2 as known queries. This approach differs from the one in [4]. While they focus
on identifying the best candidate cluster from a score set linked to a trapdoor, the
method centers on finding the best index from a list of certainties representing
all trapdoor to keyword assignments. The design goal is to pinpoint the index
marking the cluster with the greatest certainty difference. This index helps us
adjust the refinement speed, adding only those predictions associated with a
single keyword to trapdoor assignment.

The clustering algorithm is presented in Algorithm 5. Unlike static refine-
ment speeds, we employ a maximum refinement speed, updated dynamically to
the index with the largest certainty difference from Algorithm 3. We omit the
detailed ClusterVolScore algorithm as it’s a minor variation of RefVolScore (Al-
gorithm 4). The key difference is on line 33, where instead of initiating RefScore,
we call the clustering algorithm with a predefined maximum refinement speed.

Algorithm 3 index max diff

1: Input: sorted tuples, max ref speed
2: Output: ind max diff
3:
4: // Take a subset of all sorted tuples.
5: // We add 1 element so that we can make a comparison for the last element.
6: sub tuples ← sorted tuples[:(max ref speed + 1)]
7: diff list ← []
8: current index ← 0
9: // Loop through tuples but without the additional element we added before.
10: for all tuple ∈ sub tuples[:-1] do
11: // Calculates difference of certainties for current index
12: append (current index, tuple[2] - sub tuples[current index + 1][2]) to diff list
13: current index ← current index + 1
14: end for
15: // Get max diff and its index
16: ind max diff ← 0
17: if len(diff list) > 0 then
18: // Max based on diff value and retrieve index
19: ind max diff ← get index(max(diff list))
20: else
21: // Only 1 element, so index is zero.
22: ind max diff ← 0
23: end if
24: // Returns the index that has the largest difference of certainties
25: return ind max diff

3 Experimental Evaluation

We evaluate the performance of the new attacks over different datasets, which
are listed as follows.
- Enron dataset [3]: It contains approximately 500,000 real emails and repre-
sents a realistic scenario of encrypted email storage and retrieval. We use 30,109
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Table 2: Dataset Comparison After Pre-processing.
Enron Apache Wikipedia

Total amount of documents 30.109 50.564 30.000
Total number of unique keywords 63.029 92.402 162.074

Number of unique volumes 4940 7094 4811
Avg. amount of keywords/document 57,37 77,99 65,0

emails from the sent mail folder of each user for the presented experiments.
- Apache Lucene [5]: We used the “java-user” mailing list from Apache Lucene
[5] between 2002 and 2011, following the setup from the Score attack [4]. The
dataset consists of .mbox files for each month and year, and we extracted emails
using a self-made script.
- Wikipedia [15]: The simplified Wikipedia dataset from October 1st, 2023 [15],
was processed using PlainTextWikipedia [13] into plaintext files. A more detailed
comparison of datasets is shown in Table 2.

3.1 Methodology

We conducted experiments on the previously mentioned datasets, repeating each
experiment 20 times for statistical significance. Each experiment involved adjust-
ing specific parameters and comparing the outcomes with the baseline results
from RefScore. We initially divided the dataset into two parts: a ‘similar’ dataset
(40%) representing auxiliary knowledge for the attacker and a ‘real’ dataset
(60%) stored on the server. Keywords were extracted from datasets using NLTK
in Python, excluding common words and email-specific terms like ‘from’, ‘to’,
etc. The most frequent keywords formed the vocabulary for both datasets.
-Keyword Extraction. NLTK’s PorterStemmer was used to extract keywords.
The process includes parsing documents, extracting, and then stemming key-
words, followed by matching them with a stopword list to exclude common words.
The keyword selection is based on their frequency of occurrence.
- Query Selection. Queries are assumed to be uniformly distributed. For each
experiment, a random sample from the server’s keyword space is selected, with
each keyword having an equal chance of being chosen.
- Adversary’s Knowledge. The attacker, possessing a similar dataset, can ob-
serve client-server communication. We assume leakage of both access and volume
patterns, along with some known queries randomly selected from the keywords.
- Metrics. Attack performance is measured by query recovery accuracy, follow-

ing the definition in Damie et al. [4]. That is: QRacc = |correctPred(UnknownQ)|
|Q|−|KnownQ| .

We compare the average attack accuracy of RefScore and various VolScore at-
tacks across different scenarios and parameter changes.
- Testbed. Experiments were run on an Arch Linux laptop with an AMD Ryzen
7 5800H CPU and 16GB RAM, using Python 3.11.



Enhancing Inference Attacks on SSE with Volume Leakages 13

3.2 Results

RefScore and VolScore. We evaluate the attacks using 5, 10, and 20 known
queries across three datasets. Figure 8a demonstrates that VolScore’s accuracy
is consistently lower for all query sets. This is attributed to covolume’s higher
variability and lower uniqueness compared to co-occurrence, making RefScore
more likely to correctly predict despite similar query-keyword distances. For 20
queries, RefScore, RefVolScore, and ClusterVolScore exhibit comparable per-
formance. However, with 10 queries, RefVolScore and ClusterVolScore slightly
surpass RefScore. Notably, with 5 queries, RefVolScore and ClusterVolScore sig-
nificantly outperform RefScore, averaging 0.76 and 0.79 against RefScore’s 0.64.
This indicates that with fewer queries, the additional information from VolScore
in RefVolScore and ClusterVolScore is beneficial.

Similar patterns are observed in the Apache and Wikipedia datasets (refer
to Figure 8b and Figure 8c). High query counts yield similar attack efficiencies
across methods, barring VolScore, suggesting a threshold beyond which addi-
tional queries do not significantly enhance accuracy. Conversely, at lower query
counts, leveraging volume patterns in RefVolScore and ClusterVolScore yields
more precise results than RefScore alone.

Apache exhibits the highest query recovery accuracy, while Wikipedia is the
least accurate. This discrepancy is likely due to dataset characteristics (see Ta-
ble 2). Wikipedia’s challenge stems from its high keyword count balanced by a
similar document count as Enron, complicating accurate predictions. Conversely,
Apache’s superior performance can be credited to its higher average keywords
per document, greater document availability, and unique volume count.
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Fig. 8: Accuracy comparison between RefScore and VolScore. (a) Enron with
|Dsim| = 12K, |Dreal| = 18K. (b) Apache with |Dsim| = 20K, |Dreal| = 30K. (c)
Wiki with |Dsim| = 12K, |Dreal| = 18K. msim = 1.2K,mreal = 1K, |Q| = 150,
RefSpeed = 10 = MaxRefSpeed.

Low Known Queries Comparison. In experiments with numerous known
queries, accuracy differences between attacks are minimal. Consequently, subse-
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quent experiments focus on fewer known queries to evaluate performance against
RefScore. Figure 9a presents results for 2, 3, and 4 known queries in Enron.

We note that RefVolScore and ClusterVolScore outshine RefScore with fewer
known queries. This indicates that more known queries generally enhance per-
formance up to a point. With fewer queries, RefVolScore and ClusterVolScore
exploit additional queries sourced through VolScore, achieving greater accuracy
than RefScore. Despite VolScore’s lower standalone accuracy, its contribution of
at least one extra known query noticeably boosts query recovery accuracy. This
is evident as RefScore’s mean accuracy with 3 known queries is comparable to
RefVolScore’s with 2. Similar patterns emerge in Apache and Wikipedia (Fig-
ures 9b and 9c). While Apache maintains higher overall accuracy, Wikipedia
displays the lowest, yet RefVolScore and ClusterVolScore still surpass RefScore.
Across all datasets, accuracy variability is pronounced with fewer known queries,
indicating greater error potential and difficulty in stabilizing accuracy.

Table 3 consolidates these findings, linking VolScore accuracy to the dis-
covery of new known queries. Higher VolScore accuracy correlates with iden-
tifying more known queries. The ‘Total KnownQ Accuracy’ metric reflects the
proportion of accurately identified total known queries, including original and
additional ones identified through VolScore. Key factors affecting accuracy and
its stabilization include the number of available known queries, the discovery
of new known queries through VolScore, the overall correctness of these known
queries, and VolScore’s accuracy. The Apache dataset, particularly with 4 known
queries, exhibits the most stable accuracy spread. This stability is attributed to
Apache’s inherent positive attributes, leading to high VolScore accuracy and the
identification of numerous new known queries with high overall accuracy.
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Fig. 9: Low known queries comparison. (a) Enron with |Dsim| = 12K, |Dreal| =
18K. (b) Apache with |Dsim| = 20K, |Dreal| = 30K. (c) Wiki with |Dsim| =
12K, |Dreal| = 18K. msim = 1.2K,mreal = 1K, |Q| = 150, RefSpeed = 10 =
MaxRefSpeed.

RefSpeed Comparison. We explore how RefSpeed affects attack accuracy,
particularly focusing on ClusterVolScore. RefSpeed inversely affects accuracy
and speed: lower speeds increase precision but are slower, while higher speeds
are faster but less accurate. This experiment used four known queries.
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Figure 10a and Figure 10b reveal that lower RefSpeeds improve RefScore’s
accuracy due to cautious knowledge integration, despite slower performance. In
contrast, Wikipedia’s RefScore accuracy remains low and less impacted by Ref-
Speed (Figure 10c). RefVolScore and ClusterVolScore exhibit similar accuracy
trends within datasets. In Enron, RefSpeed 2 outperforms RefSpeed 8, but in
Apache, the performances are similar due to VolScore’s high accuracy. Wikipedia
shows negligible differences between RefSpeeds 2 and 8 (Figure 10c).

The impact of RefSpeed varies depending on the attack and dataset. For
RefScore, lower speeds ensure precision. For RefVolScore and ClusterVolScore,
the effect is dependent on dataset characteristics. Apache’s ample documents
and high keyword count minimize RefSpeed’s impact, similar to Wikipedia’s
fewer documents and large keyword pool. Enron, with its lower unique keyword
count, is more sensitive to RefSpeed changes.

Despite similarities in RefVolScore and ClusterVolScore performance, Table 5
shows ClusterVolScore underperforms. Its runtime is longer and mean dynamic
RefSpeed lower, making it less efficient than RefVolScore. The dynamic Ref-
Speed based on certainty differences is less effective than expected, as it often
leads to adding fewer, not more, predictions. Thus, RefVolScore emerges as a
more effective attack method due to its better accuracy and efficiency.
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Fig. 10: RefSpeed comparison. (a) Enron with |Dsim| = 12K, |Dreal| = 18K.
(b) Apache with |Dsim| = 20K, |Dreal| = 30K. (c) Wiki with |Dsim| =
12K, |Dreal| = 18K. msim = 1.2K,mreal = 1K, |Q| = 150,KnownQ =
4,MaxRefSpeed = 10.

Against Countermeasures. This experiment assesses the impact of counter-
measures on RefScore and RefVolScore. We focus solely on these attacks, omit-
ting other VolScore variants, and test under a worst-case scenario with more
known queries available to the attacker than in previous experiments. Addition-
ally, we vary the vocabulary size, a deviation from previous fixed-size approaches,
and set parameters as per the original authors’ countermeasure setup.

In Enron (Figure 11a), increasing vocabulary size challenges query recovery.
With 2000 vocabulary size and no countermeasures, RefScore remains effective.
Volume hiding does not affect RefScore, as it does not rely on volume patterns.
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Padding, particularly with large vocabulary sizes, effectively counters RefScore.
For RefVolScore (Figure 11d), volume hiding is again minimally impactful. Al-
though it targets volume pattern leakage, RefVolScore’s reliance is not solely
on this pattern. Padding significantly impairs RefVolScore, given its dependence
on RefScore. A vocabulary size of 2000 with padding successfully neutralizes
the attack. In Apache (Figure 11b and Figure 11e), attackers can recover most
queries without countermeasures or with volume hiding, regardless of vocabulary
size. This indicates that merely increasing vocabulary size is ineffective without
countermeasures. Padding’s effectiveness is also evident in Apache. A vocabulary
size of 1000 with padding is not sufficient against both attacks, but 2000 with
padding is. Results for Wikipedia (Figure 11c and Figure 11f) mirror those of
Enron due to similar document counts, contrasting with Apache’s higher count.

Conclusively, an attack’s success varies with dataset characteristics. Datasets
with many documents and high average keywords per document, like Apache,
are more vulnerable to attacks. In contrast, datasets with fewer documents and
lower average keywords, like Enron and Wikipedia, still face considerable query
recovery rates at lower vocabulary sizes. An effective defense involves padding
coupled with increased vocabulary size.

While the effectiveness of padding and increasing vocabulary size as coun-
termeasures against RefScore and RefVolScore attacks is evident, it’s critical
to understand their broader implications. Padding increases the data volume,
which can result in higher storage requirements and potentially longer query
processing times, affecting user experience. On the other hand, increasing vocab-
ulary size requires a more sophisticated index and can increase the complexity
of query processing, impacting both computational and memory requirements.
This trade-off between security and system performance necessitates a careful
consideration of the operational context. For environments where query latency
is critical, the added overhead may be significant. Conversely, in systems where
security is paramount, these costs may be justified. Future work should aim to
optimize these countermeasures, perhaps through adaptive techniques that ad-
just padding based on the sensitivity of the query or by employing more efficient
data structures for larger vocabularies.

4 Conclusion

We explore the impact of additional leakage knowledge on SSE attacks, partic-
ularly focusing on combining the co-occurrence and volume patterns to create
the Refined Score Attack, yielding improved query recovery accuracy. Regarding
countermeasures, padding can decrease query recovery accuracy of the proposed
attacks, while volume hiding alone is insufficient. We conclude that an improved
inference attack can be designed by integrating more knowledge and patterns,
and it can be mitigated using padding and large keyword vocabularies. Dataset
properties play a crucial role in attack performance and should be considered
during evaluation. This research contributes to understanding and improving
SSE attack methods and defense mechanisms.
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(d) Enron - RefVolScore
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Fig. 11: Countermeasures comparison. |Dsim| = 12K, |Dreal| = 18K,msim =
mreal, |Q| = 0.15 ∗mreal, KnownQ = 15, RefSpeed = 0.05 ∗ |Q|, npad = 500.

Table 3: Comparison on Low Known Queries

Dataset
No.

KnownQ

KnownQ
Accuracy

(%)

Newly Found
KnownQ

Total KnownQ
Accuracy

(%)

RefScore
Accuracy

(%)

VolScore
Accuracy

(%)

RefVolScore
Accuracy

(%)

ClusterVolScore
Accuracy

(%)

Enron
2 100 2.15 73.85 11.39 1.55 21.39 20.07
3 100 4.4 74.31 21.77 2.55 34.73 39.52
4 100 5.1 87.77 35.21 5.45 54.76 57.84

Apache
2 100 2.75 81.44 27.47 3.34 52.64 61.59
3 100 13.1 86.4 58.78 10.48 70.75 79.29
4 100 23.2 92.95 75.55 16.82 89.97 90.07

Wikipedia
2 100 2.15 74.04 7.47 1.99 19.83 27.06
3 100 2.75 80.51 28.81 2.14 33.98 37.11
4 100 3.4 85.36 26.54 2.88 40.07 47.67

https://eprint.iacr.org/2024/515
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Table 4: Summary of Notations
Notation Description
D Document collection D = (d1, d2, ..., dn)
ED Encrypted documents ED = (ed1, ed2, ..., edn)
Dsim Similar document set, available to attacker
|Dsim| Amount of similar documents
Ksim Keyword vocabulary, extracted from Dsim

msim Amount of keywords in similar vocabulary
Dreal Real document set, stored on server
|Dreal| Amount of real documents
Kreal Real keyword set which are usable by the client
mreal Amount of keywords in real vocabulary
Q Queries that are sent by the client and observed by attacker
|Q| Amount of queries
KnownQ Known queries (td, kw) pairs
|KnownQ| Amount of known queries
UnknownQ The unknown queries for the attacker, i.e. Q - KnownQ
Cs

kw Co-occurrence submatrix for keywords
Cs

td Co-occurrence submatrix for trapdoors
V s
kw Covolume submatrix for keywords

V s
td Covolume submatrix for trapdoors

K Abbreviation for 1000, for example 1.2K = 1200
td Abbreviation for trapdoor
kw Abbreviation for keyword
kq set Set of keywords or queries
inv index Mapping from keywords to documents or query to document identifiers
vol array An array that consists of the volume of each document
nr docs Count of locally stored or server-estimated documents
RefSpeed The refinement speed
MaxRefSpeed The maximum refinement speed

Table 5: Comparison on RefSpeed

Dataset Attacks RefSpeed
Mean Dynamic

RefSpeed
Runtime (s) Accuracy (%)

Enron

RefVolScore 2 N/A 40.93 81.03
ClusterVolScore 2 3.18 25.35 80.89
RefVolScore 4 N/A 20.97 84.08

ClusterVolScore 4 3.07 25.62 83.42
RefVolScore 8 N/A 11.39 66.88

ClusterVolScore 8 3.18 25.93 75.14

Apache

RefVolScore 2 N/A 22.82 94.52
ClusterVolScore 2 3.94 11.39 94.59
RefVolScore 4 N/A 11.61 91.51

ClusterVolScore 4 3.9 11.06 91.82
RefVolScore 8 N/A 7.35 95.1

ClusterVolScore 8 3.77 13.74 95.38

Wikipedia

RefVolScore 2 N/A 37.98 62.12
ClusterVolScore 2 2.76 26.68 56.44
RefVolScore 4 N/A 19.19 55.65

ClusterVolScore 4 2.85 25.59 57.95
RefVolScore 8 N/A 10.28 59.42

ClusterVolScore 8 2.86 26.37 58.63
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Algorithm 4 RefVolScore

1: Input: requirements V olScore, requirements RefScore
2: Output: results ref vol score
3:
4: // Runs VolScore attack
5: results vol score ← V olScore
6: // Runs Refined Score attack
7: results ref score ← RefScore
8: // Retrieves the list of trapdoors from the {td : kw} predictions
9: tds1 ← get keys from results vol score
10: tds2 ← get keys from results ref score
11: // Intersecting trapdoors between the two results
12: intersect tds ← intersect(tds1, tds2)
13: // Initialize new known queries
14: new known queries ← { }
15: // Find new known queries
16: for all td ∈ intersect tds do
17: // Check if same keyword assigned and not used before
18: if results ref score[td] == results vol score[td] and
19: results ref score[td] not in new known queries and
20: not in KnownQ then
21: append (td : results ref score[td]) to new known queries
22: end if
23: end for
24: // Add the new known queries to the original known queries list
25: update(KnownQ, new known queries)
26: // Run fresh run of RefScore, but with new known queries
27: results ref vol score ← RefScore
28: return results ref vol score

Algorithm 5 Clustering

1: Input: requirements RefScore, max ref speed
2: Output: final pred
3:
4: final pred← []
5: unknownQ ← Q
6: while unknown Q ̸= ∅ do
7: // Extract the remaining unknown queries
8: unknownQ ← {td : (td ∈ Q) ∧ (̸ ∃kw ∈ Ksim : (td, kw) ∈ KnownQ)}
9: temp pred← []
10: // Propose a prediction for each unknown query
11: for all td ∈ unknownQ do
12: cand← [] ▷ The candidates for trapdoor td
13: for all kw ∈ Ksim do
14: s = − ln(||Cs

kw[kw]− Cs
td[td]||)

15: append {”kw”: kw, “score”:s} to cand
16: end for
17: Sort cand in descending order according to the score.
18: certainty ← score(cand[0]) - score(cand[1])
19: append (td, kw(cand[0]), certainty) to temp pred
20: end for
21: // Sort temp pred on certainties in descending order, and call index max diff algorithm.
22: // We add 1 for correct array splicing, and if index is 0 means new ref speed becomes 1.
23: new ref speed ← index max diff(temp pred, max ref speed) + 1
24: // Either stop the algorithm or keep refining.
25: if | unknownQ | < max ref speed then
26: final pred← KnownQ ∪ temp pred
27: unknownQ ← ∅
28: else
29: Append the new ref speed most certain predictions from temp pred to KnownQ
30: Add the columns corresponding to the new known queries to Cs

kw and Cs
td

31: end if
32: end while
33: return final pred
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