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Abstract.
As the National Institute of Standards and Technology (NIST) concludes its post-
quantum cryptography (PQC) competition, the winning algorithm, Dilithium, enters
the deployment phase in 2024. This phase underscores the importance of conducting
thorough practical security evaluations. Our study offers an in-depth side-channel
analysis of Dilithium, showcasing the ability to recover the complete private key,
s1, within ten minutes using just two signatures and achieving a 60% success rate
with a single signature. We focus on analyzing the polynomial addition in Dilithium,
z = y + cs1, by breaking down the attack into two main phases: the recovery of y and
cs1 through side-channel attacks, followed by the resolution of a system of error-prone
equations related to cs1. Employing Linear Regression-based profiled attacks enables
the successful recovery of the full y value with a 40% success rate without the necessity
for initial filtering. The extraction of cs1 is further improved using a CNN model,
which boasts an average success rate of 75%. A significant innovation of our research
is the development of a constrained optimization-based residual analysis technique.
This method efficiently recovers s1 from a large set of error-containing equations
concerning cs1, proving effective even when only 10% of the equations are accurate.
We conduct a practical attack on the Dilithium2 implementation on an STM32F4
platform, demonstrating that typically two signatures are sufficient for complete
private key recovery, with a single signature sufficing in optimal conditions. Using a
general-purpose PC, the full private key can be reconstructed in ten minutes.
Keywords: Lattice-based Cryptography · CNN · Side-channel Attacks · Dilithium

1 Introduction
Rapid advancements in quantum computing present a significant threat to cryptographic
algorithms that rely on the computational difficulty of problems such as integer factorization
and discrete logarithms. Should a general-purpose quantum computer be successfully
developed, it is expected that the quantum algorithm proposed by Shor [Sho94] in 1994
would render these cryptographic algorithms vulnerable to being broken in polynomial
time. In response, the National Institute of Standards and Technology (NIST) has
initiated the PQC competition, which has led to the identification of CRYSTALS-Dilithium
(abbr.Dilithium) as a digital signature candidate.

Dilithium [DKL+18] is a digital signature scheme based on the hardness of lattice
problems, utilizing the Fiat-Shamir paradigm within the polynomial ring Zq[x]/(xn +1). Its
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recognition among experts is due to its comprehensive performance that marries operational
efficiency with theoretical safety. This balance positions Dilithium as a prominent candidate
in the field of post-quantum cryptography, selected for its capability to secure digital
communications against the quantum computing threat.

Despite the theoretical resilience of PQC algorithms against both quantum and classical
computational attacks, their real-world implementations remain vulnerable to side-channel
analysis. This form of attack exploits unintentional leakages from cryptographic operations,
such as power consumption [KJJ99], electromagnetic emissions [QS01], and execution timing
[Koc96], to extract sensitive information. Over nearly three decades, side-channel analysis
has matured significantly within the field of cryptanalysis, marking substantial achievements.
It has successfully facilitated the practical analysis of cryptographic algorithms, including
those targeting DES [KJJ99], AES [BCO04], RSA [BJL+14], and ECC [Ols04], among
others.

To date, numerous studies have been conducted to evaluate the security of Dilithium
implementations, yielding significant findings. In the realm of side-channel analysis,
particularly the non-template class exemplified by Correlation Power Analysis (CPA), such
investigations have predominantly focused on the polynomial multiplication operation cs1
for conducting attacks. Chen et al. [BCO04], building upon the methodology proposed by
Fournaris et al. [FDK20] for the Montgomery reduction operation, have demonstrated that
the CPA technique, aimed at the exhaustive recovery of the private key from 157 traces,
can achieve this in 6,357 seconds for one Number Theoretic Transform (NTT) domain
coefficient. Furthermore, the integration of a partitioning method has been shown to
accelerate the attack by a factor of 7.77. Qiao et al. have developed a CPA-based attack,
enhanced with the LLL algorithm, to accomplish full Dilithium private key recovery in
less than one minute. Additionally, Liu et al. [QLZ+23b] have introduced an innovative
random leakage attack strategy, leveraging public template attacks to extract lower-bit
polynomial coefficient information. This approach significantly streamlines the private key
recovery process, reducing it to a solvable integer LWE problem within polynomial time.

The exploration of profiling side-channel attacks, especially those integrating machine
learning methodologies, has provided significant advancements. Han et al. [HLK+21]
initiated the recovery of all Dilithium private keys by focusing on the NTT’s initial
butterfly operations during the signature generation phase, employing a machine learning-
based template attack. Following this, Marzougui et al. [MUTS22] devised an attack
targeting the sensitive random number y, correlating sensitive parameters with specific
values (e.g., y = 0) and constructing a system of linear equations about cs1 to resolve
the Dilithium private key s1. Berzati et al. [BVC+23] honed in on a narrower spectrum
of sensitive intermediate values, particularly w0, using a filtering algorithm specifically
designed for Dilithium’s parameter traits. Wang et al. [WNGD23] launched an attack on
the secret key unpacking phase of the signing algorithm, leveraging deep learning-assisted
profiled power analysis. This approach harbors a slim chance of completing the private key
recovery with a single trace, boasting a success rate nearing 100% after 74 signatures. A
common challenge among several of these works is the task of solving a system of equations
concerning the error-prone cs1, predominantly utilizing Integer Linear Programming (ILP)
for this purpose. Bronchain et al. [BAE+23] applied the Belief Propagation (BP) algorithm
to solve for polynomial multiplication cs1 and conducted simulation experiments to attack
y. Their optimal finding indicates that recovering the private key s1 can be achieved with
four signatures using the Hamming model at a signal-to-noise ratio (SNR) of 100.

In profiling attacks, particularly those aimed at values such as y and w0, the fundamental
strategy is to choose specific numbers to enhance the success rate of side-channel attacks.
This approach, however, requires a substantial number of power traces for both the
construction and matching of templates due to the large candidate space of the above
targets. Moreover, given that these target values are regenerated randomly with each
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signature, the attack typically hinges on a single trace, which frequently fails to secure
a high success rate. When faced with numerous errors, the application of lattice basis
reduction algorithms presents its own set of challenges, and alternative approaches, such
as ILP, demand considerable time. Bronchain et al. [BAE+23] suggested the use of BP
algorithm to resolve the system of error-prone equations in Dilithium related to cs1,
though their investigations were confined to simulation experiments. Furthermore, the
low accuracy of side-channel information necessitates an increased number of equations,
leading to an excessively large graph for the BP algorithm and significantly elevating the
risk of computational overflow. Due to the need to determine the probability distribution
of all candidate values for the target value, the feasibility of the BP algorithm in attacks
such as fault injection, where a probability distribution is not available, remains to be
determined.

This paper introduces a novel method for swiftly recovering the Dilithium private
key with a reduced number of signatures. We propose an approach for the side-channel
attack aspect that enables the complete recovery of the random number y with a high
success rate, eliminating the need for any filtering. Additionally, we explore an attack
on cs1 targeting a significantly narrowed value space. Moreover, we unveil a constrained
optimization-based residual analysis technique tailored for efficiently solving error-prone
linear equations associated with cs1. These methodologies were deployed in a practical
attack scenario against the open-source implementation of Dilithium2, conducted on
an STM32F4 platform, which substantiates the feasibility and efficacy of our proposed
techniques. The specific contributions of our research are as follows:

• Building upon Qiao et al.’s [QLZ+23a] discovery that higher bit information of
y can be deduced from the signature z, we introduce a Linear Regression-based
side-channel attack. This method effectively mitigates the influence of higher bits,
thereby enhancing the attack’s success rate. In practical experiments, this approach
achieves a 40% success rate in attacking y.

• We exploit the characteristic that cs1 operates within a limited value range, with
each coefficient being independently calculated. For Dilithium2, a single signature
unveils a minimum of 1024 data leaks, which are conducive to machine learning pre-
training. Employing a Convolutional Neural Networks (CNNs) model that accounts
for potential alignment discrepancies, we attain a 75% success rate in completely
recovering the value of cs1.

• Given that z is known in z = y + cs1, we utilize the relatively more precise HW
information from side-channel results for y to augment the success rate of cs1 recovery.
By amalgamating the attack outcomes on y with those on cs1, we elevate our recovery
success rate of cs1 to 92%, marking a significant leap in attack efficiency.

• To tackle the issue of erroneous equations in the recovery of cs1, we introduce a
constrained optimization-based residual analysis. This innovative approach rapidly
solves the system of integer linear equations laden with errors, leveraging the con-
straints inherent in the private key s1. Notably, this technique proves effective even
with only 10% accuracy in the system of equations, provided that a sufficient number
of equations are present. This substantially narrows down the private key value
space and expedites the ILP process.

• Our practical assault on the Dilithium2 reference implementation on an STM32F4
platform is demonstrated across three scenarios: access to only y, only cs1, and
both y and cs1. The outcomes in the worst-case scenarios illustrate that targeting
y enables private key recovery within 2 minutes using 8 signatures; attacking cs1
necessitates 3 signatures; and harnessing leaks from both y and cs1 facilitates private
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key recovery in 3 minutes with merely 2 signatures. In these tests, a 60% probability
of recovering the private key with a single signature was observed.

2 Preliminaries
2.1 Dilithium
Dilithium is a digital signature scheme based on the principles of the Module Learning with
Errors (MLWE) and Module Short Integer Solution (MSIS) problems. Its design allows
for different security levels, making it suitable for a wide range of uses. This adaptability
ensures that Dilithium can match the varied security and performance needs of different
devices. Tab.1 delineates the parameter configurations for each security level.

Table 1: Dilithium parameters at different NIST security levels
NIST Security Level 2 3 5

d [dropped bits from t] 13
τ [# of non-zero coefficients in c] 39 49 60

γ1 [cofficient range of y] 131,072 524,288
γ2 [low-order rounding range] 95,232 261,888

(m × n) [dimensions of A] (4,4) (6,5) (8,7)
η [private key range] 2 4 2

β [τ · η] 78 196 120

Dilithium operates within the cyclotomic ring Rn
q , where each coefficient is defined in

the finite field Zq. The constants q = 8380417 and n = 256 are fixed across all security
levels, ensuring a uniform foundation for operations. The algorithm consists of three basic
processes: key generation, signing process, and signature verification. Our work primarily
focuses on the signing process.

Algorithm 1 Dilithium Sign(sk,M )
Input: sk = (ρ, K, tr, s1, s2, t0), M
Output: signature

1: A ∈ Rm×n
q := ExpandA(ρ)

2: µ ∈ {0, 1}384 := CRH(tr||M)
3: κ := 0, (z, h) := ⊥
4: ρ′ ∈ {0, 1}384 := CRH(K||µ) (or ρ′ ← {0, 1}384)
5: Â = NTT(A), ŝ1 = NTT(s1)
6: y ∈ Sn

γ1−1 := ExpandMask(ρ′, κ)
7: w := NTT−1(Â ◦NTT(y))
8: w1 := HighBitsq(w, 2γ2)
9: c̃ ∈ {0, 1}256 := H(µ||w1)

10: ĉ := NTT(SampleInBall(c̃))
11: z := y + NTT−1(ĉ ◦ ŝ1)
12: r0 := LowBitsq(w− cs2, 2γ2)
13: if ||z||∞ ⩾ γ1 − β or ||r0||∞ ⩾ γ2 − β

then κ := κ + l, goto 6
14: else
15: h := MakeHintq(−ct0, w− cs2 + ct0, 2γ2)
16: if ||ct0||∞ ⩾ γ2 or the # of 1′s in h is greater than ω

then κ := κ + l, goto 6
17: return signature = (z, h, c̃)
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The signature process of Dilithium, as outlined in Alg.1, commences with the input
of a secret key sk and a message M . Initially, the algorithm expands the secret key ρ to
construct a structured matrix A within Rm×n

q using the ExpandA function, followed by
generating a 384-bit string µ from tr and message M through the Cryptographic Hash
Function (CRH). It initializes κ and sets (z, h) to null, then creates a 384-bit string ρ
either by hashing κ concatenated with µ or by selecting randomly depend on deterministic
or randomised schemes. Subsequently, the NTT is applied to both A and the secret s1,
generating Â and ŝ1. A masking vectory is derived from ρ′ and κ, within the set Sγ1−1.
The algorithm computes w by multiplying Â with the NTT of y and applying the Inverse
NTT (INTT), then extracts high-order bits from w to form a challenge vector c̃, integral
to the signature’s validity. The algorithm features a rejection sampling loop to ensure the
generated vectors z and r0 meet specific security criteria. If the criteria are not met, the
algorithm recalibrates y and iterates again, ensuring compliance with Dilithium’s security
standards. Upon meeting these standards, the algorithm produces a signature comprising
z, a hint vector h for verification, and c̃.

2.2 Linear Regression-based Profiled Attacks
Schindler et al. [SLP05] introduced Linear Regression-based (LR) profiled attacks, marking
a significant shift from the Hamming Weight (HW) leakage model in traditional template
attacks [CRR02]. They take into account that different bits might have different leakage
weights, a nuance that linear regression can accurately identify.

The power consumption model, established using linear regression, is formulated as:

m(y) =
ly∑

i=0
aiρ(yi) + aly+1 (1)

Here, y represents the targeted data, with yi being the i-th bit from least to most significant,
and ly denotes the length of y in bits. The coefficients ai indicate the leakage weight of
each bit, while ρ(yi) is a mapping function that ensures the influence of yi = 0 is considered
in the model. This mapping is specifically chosen to accurately reflect the contribution of
each bit value to the model.

ρ(yi) =
{

1 if yi = 1
−1 if yi = 0

(2)

In the phase of building templates, real power leakages, L, are used to calculate the
coefficients ai through the linear least squares approach. The model m(y) then serves as
the mean in traditional template attacks, but with an additional step required to compute
the covariance matrix Σ for generating the templates. During the attack phase, for any
observed power leakage L, the probability density function is outlined as:

f [L|Y = y] = 1√
(2π)k|Σ|

exp
(
−1

2(L−m(y))T Σ−1(L−m(y))
)

(3)

where k is the dimension of L. Utilizing Bayes’ theorem, this is reformulated into the
desired probability f [Y = y|L], illustrated as:

f [Y = y|L] = f(L|y)p(y)∑
y′ f(L|y′)p(y′) (4)
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assuming equal probability for each y, simplifying the expression to:

f [Y = y|L] = f(L|y)∑
y′ f(L|y′) (5)

2.3 CNN-based Template Attacks

In the rapidly evolving domain of side-channel attacks, the adoption of deep learning
approaches, particularly CNNs, has demonstrated excellent technical effectiveness [MPP16,
ZBHV20,WAGP20]. The deployment of CNN in SCA is predicated on the assembly of a
comprehensive training dataset, comprising leakage traces, plaintext-ciphertext pairings,
and corresponding cryptographic keys. Each trace is meticulously labeled with sensitive
intermediate values, thus categorizing the data and furnishing the CNN with supervisory
signals for the duration of the training phase.

CNNs are characterized by their intricate structure, which includes convolutional
operations, setting them apart in the realm of side-channel analysis. Their effectiveness is
attributed to a hierarchical architecture that begins with convolutional layers responsible
for initial feature extraction. This is followed by pooling layers that reduce the feature
set’s dimensionality, and fully connected layers that undertake the task of classification.
Convolutional layers employ a set of filters—each with unique weights and biases—to
conduct convolution operations on the input data. This process effectively captures and
highlights essential patterns. Pooling layers simplify the feature set by summarizing data
within specific input regions, applying max and average pooling techniques to preserve vital
information efficiently. Fully connected layers integrate these refined features to produce
the final output classifications. The strategic placement of batch normalization layers
between select convolutional and pooling stages significantly boosts the network’s efficiency
and stability during training by standardizing the inputs to each layer. Its mathematical
formulation can be succinctly represented as [ZBHV20]:

g(x) = f ◦ [λ]n1 ◦ [δ ◦ [α ◦ γ]n2 ]n3 = ŷ. (6)

Here γ, α, δ, λ, and f represent convolutional layers, activation functions, pooling layers,
fully connected layers, and the activation function of the output layer, respectively. The
variables n1, n2, and n3 indicate the respective counts of these computational components,
illustrating the CNN’s structural depth and complexity.

The training phase is crucial for the CNN , equipping the model with the ability to
accurately identify patterns within power traces. Once trained, the CNN can effectively
predict sensitive intermediate values from previously unseen traces and ultimately recover
sensitive information.

3 Side-channel Attacks Against Dilithium
In addressing the polynomial addition process, represented as z = y + cs1, the known
signature z offers an indirect pathway to deduce cs1 by initially recovering y through a
side-channel attack. Alternatively, cs1 can be directly recovered via side-channel analysis.
By merging insights gained from the side-channel attack on y with those from the attack
on cs1, we expect a significant boost in the effectiveness of our cryptographic analysis.
The methodologies for conducting side-channel attacks on both y and cs1 will be detailed
in this section.
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3.1 Attacking y with LR-Based Side-channel Attack
For the mask polynomial y, operating within the value range of q = 8380417, and
considering that each signature y is randomly generated, we are restricted to utilizing
only one trace for y’s recovery in a practical attack scenario. The direct implementation
of a conventional template attack, using the identity model, is theoretically possible but
practically challenging due to the need for a large dataset for accurate templates building
and the associated low success rate during template matching.

In practical scenarios, particularly for the polynomial addition z = y + cs1, where cs1
ranges within (−β, β) and follows a Gaussian distribution, the value of β depends on the
chosen security level, as outlined in Tab.1. Notably, for Dilithium3, β’s largest allowable
value—β remains below 198. This fact makes it unnecessary to enumerate all possible y
values when executing a template attack aimed at recovering y. Given the known signature
z, it is clear that viable y values, which are relevant to the trace targeted in the attack, are
effectively limited to the interval (z − ||cs1||∞, z + ||cs1||∞). This restriction significantly
improves the efficiency of the attack.

Liu et al. [LZS+21, QLZ+23a] have highlighted the methodology for inferring the
high-bit information of y when access to z is available, especially when cs1 is significantly
smaller than y. In the Dilithium signature process, both the signature z and the random
number y can take on one of 218 possible values, whereas the intermediate value cs1 is
typically much smaller than both z and y. This disparity allows for the deduction of partial
information about the random number y by exploiting the arithmetic operation of adding
a larger number to a smaller one. Fig.1 illustrates this principle. Assuming ||cs1||∞ < 24,
and when z[i−1:τ ] = 10 . . . 002 or z[i−1:τ ] = 01 . . . 112, we identify three scenarios enabling
the attacker to derive a segment of y (specifically y[ly :i]) through its addition with cs1 to
result in z[i−1=6:τ=4] = 1002 or 0112. These scenarios include instances of addition that
involve carrying, borrowing, or neither. Crucially, none of these instances affect y7 or
higher bits, leading to the inference that y[ly :i] = z[ly :i]. This analysis demonstrates that
in many instances, the high-bit information leakage of y can largely be ignored during a
template attack, significantly enhancing the attack’s success rate.

(a) z[i−1=6:τ=4] = 1002 (b) z[i−1=6:τ=4] = 0112

Figure 1: Example of y[ly :i] = z[ly :i](i = 7, τ = 4)

LR-based profiled attacks offer a more streamlined method for creating models, neces-
sitating fewer training samples to discern the complete target value, not just its HW. This
method enhances template precision by delineating leakage features for every bit of the
target value. In the template matching phase, the methodology involves iterating over all
conceivable yi values, comparing the theoretical leakage predicted by the LR model against
actual trace observations. Crucially, bits within varying yi values that stay unchanged
don’t affect the matching process, rendering this strategy particularly suited for instances
involving polynomial addition z = y + cs1 in the context of the Dilithium cryptographic
algorithm.

The detailed steps for conducting an attack on y within the Dilithium cryptographic
scheme are as follows:
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(1) Templates building: Utilize the captured traces along with their respective labels
to identify the leakage for each bit of y. Subsequently, a LR model is then developed to
represent this leakage data accurately.

(2) Trace capturing: Capture traces associated to y from the target device.
(3) Template Matching: For each captured trace, iterate over all possible cs1 values.

By combining with the known signature z, deduce all possible y values. The exact y value
is determined by comparing the theoretical leakage, as predicted by the LR model, with
the actual observed leakage, thus identifying the precise match through template matching.

The Gaussian-like distribution of cs1 plays a crucial role in enhancing the success rate
of attacks by allowing for the exclusion of less probable cases. This approach is effective
across different security levels of Dilithium, where the range of cs1 is detailed in Tab.2.

Table 2: Probability of ||cs1||∞ < 2τ in Dilithium.
Security Level τ=3 τ=4 τ=5 τ=6 τ=7

Dilithium2 0.57 0.95 0.99 1 1
Dilithium3 0.36 0.64 0.93 0.99 1
Dilithium5 0.65 0.86 0.99 1 1

Using Dilithium2 as an example, we find that about 95% of the data falls within
||cs1||∞ < 24, with the remainder 5%, as detailed in Tab.2, covering a broader value range
of (±16,±78). These outliers encompass a significantly larger value space but occur with
much less frequency. Including all these potential values in the attack might paradoxically
decrease the success rate due to the dilution of focus on the most probable scenarios. By
intentionally excluding these less likely outliers from the analysis, the success rate and
efficiency of the attack can be significantly enhanced, focusing efforts where they are most
likely to yield results.

3.2 Attacking cs1 with CNN-Based Side-channel Attack
In addition to focusing on the random number y in side-channel attacks, directly targeting
the cs1 value emerges as a viable alternative. Due to its inherently smaller value space, cs1
naturally presents more advantageous conditions for successful exploitation. The attack
scenario is similar to y in that only where only one cs1 component can be recovered from
a single trace. This highlights the crucial importance of template quality in influencing
the success rate of the attack.

Lattice-based cryptographic schemes, such as Dilithium, are characterized by a high-
dimensional environment filled with numerous repetitive and independent operations
throughout the polynomial processing stages. Specifically, for Dilithium2, the creation of a
valid signature requires, on average, four instances of rejection sampling. This translates to
approximately 256× 4× 5 relevant operations for cs1. When accounting for cs2, a single
legitimate signature, in a deterministic implementation, can produce an average of 10,240
samples. Even in randomised implementations, it’s possible to gather a substantial 2048
samples. This wealth of data is particularly suitable for the demands of deep learning,
which requires a large dataset for pre-training in order to effectively develop a distinguisher.

During the model selection phase, it is crucial to consider that numerous samples from
each signature are produced at different times. This necessitates alignment operations to
pinpoint leakage features, introducing offsets as an inevitable byproduct. Deep learning
approaches, particularly CNN, have demonstrated exceptional proficiency in handling data
marked by such offsets. This efficiency largely stems from the CNN architecture, which
integrates convolutional layers and pooling layers. These layers are tailored to extract and
refine features from data, even in cases of alignment variability. As a result, CNN-based
methods for side-channel analysis are distinguished by their ability to conduct effective
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feature extraction from datasets with inherent offsets, showcasing their robustness in
extracting relevant information for analysis.

In our research, we adopt a CNN model inspired by the methodology of Zaid et
al. [ZBHV20]as described in their study, which utilizes a three-layer convolutional setup.
This model is particularly effective in processing complex side-channel datasets like ASCAD,
which includes countermeasures such as Random Delay and first-order masking. It achieves
a Guessing Entropy (GE) of 1 with a relatively small number of traces—244 for N [0] = 50
and 270 for N [0] = 100.

Drawing inspiration from Zaid et al.’s methodology, our implementation utilizes a
comparable three-layer CNN architecture. This structure is composed of convolutional
layers interspersed with pooling and batch normalization operations. The design facilitates
the gradual recognition of features, ranging from simple to intricate, and culminates in a
dense layer equipped with a softmax activation function for precise classification of the
processed inputs. Details of our CNN architecture are delineated in Tab.3 below.

Table 3: CNN Hyperparameters
Hyperparameter Configuration

Optimizer Adam
Convolution Layers 3
Convolution Filters [12, 24, 48]
Convolution Kernel [64, 128, 256]
Convolution Stride [1, 6, 1]

Pooling Type avgPooling
Pooling Size [2, 4, 4]

Pooling Stride [2, 4, 4]
Batch Normalization After each pooling

Dense Layers 1
Neurons Number of classes (variable)

Activation Function ReLU
Learning Rate 0.0004

Batch-Size 1600
Epochs 150

Loss Function categorical_crossentropy
Metric Accuracy

Leveraging a similar approach, our model excels in identifying and learning intricate
patterns present in collected traces. Its architectural design facilitates a progressive
extraction and condensation of features, ensuring an efficient representation of pertinent
information. This capability not only enhances robust classification performance but also
preserves computational efficiency.

3.3 Enhancing Success Rates through Integrated Results of y and cs1

In side-channel analysis, directly recovering the complete value of a target on the ARM
platform from a single power trace presents notable difficulties. Nevertheless, it’s more
practical to determine the HW of variables such as y and cs1. Crucially, having exclusive
access to the HW information of y and cs1, alongside the signature z = y − cs1, enables
the deduction of cs1 under certain conditions. Merging the outcomes from attacks that
target these essential intermediate values can significantly improve the success rate of the
analyses. Bronchain et al. [BAE+23] applied this concept in simulation experiments within
the HW model for cs1, though this approach may lead to scenarios with multiple potential
candidate values.
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P (Y = yi|L(y)) yi ∈ (z − β, z + β)
P (X = xi|L(x)) xi ∈ (−β, β)
P (X = xi|L) = P (X = z − yi|L(y))× P (X = xi|L(x)) (7)

Our side-channel attacks aim to directly recover the full value of the target, rather
than its HW. Typically, even if the direct attack does not succeed outright, the probability
distribution vectors related to the attack target often highlight a higher likelihood for
candidate values matching the correct result’s HW. Assuming cs1 = x, Eq.7 detailing our
computational procedure. In practical analysis, particularly when examining targets y
and cs1 , we preprocess by normalizing the set of probability vectors derived from the
side-channel analysis before computing the final probability. This strategy leads to a
uniquely deterministic solution, theoretically surpassing the effectiveness of focusing on a
single target in isolation.

In contrast to traditional cryptographic algorithms like ECC and RSA, Dilithium
features a more complex computational framework. This complexity introduces a variety
of sensitive values during the computation, which can be leveraged through side-channel
analysis, thus amplifying the security risks. By consolidating attack outcomes across
different sensitive values, it becomes possible to break the algorithm’s security with
minimal expenditure, possibly even leading to the recovery of the private key.

4 Resolving Equations with Errors in cs1 for Dilithium
Extracting cs1 via side-channel or fault attacks precedes solving for s1 using the known
challenge ciphertext c. Achieving perfect accuracy in determining cs1 is inherently
challenging, regardless of the technique. Traditionally, the Big-M method has been used
to convert these challenges into ILP problem. However, this method’s efficiency drops as
errors increase. To counter this, we propose a constrained optimization-based residual
analysis to efficiently solve error-laden integer linear equations in Dilithium.

4.1 Constrained Optimization-Based Residual Analysis
This section delineates the computational methodology for deriving cs1 from the given
challenge vector c, which is a 256-dimensional vector consisting mainly of zeros, and includes
-1, 0, and 1 as its elements. The computation of cs1 The computation of c = (c0, c1, . . . , c255)
into the coefficient matrix C is achieved through cyclotomic transformations, executed
within the confines of a finite field. The detailed computational steps are as follows::

c0 −cn−1 −cn−2 · · · −c2 −c1
c1 c0 −cn−1 · · · −c3 −c2
c2 c1 c0 · · · −c4 −c3
...

...
... . . . ...

...
cn−2 cn−3 cn−4 · · · c0 −cn−1
cn−1 cn−2 cn−3 · · · c1 c0




s0
s1
...

sn−2
sn−1

 = Cs

The challenge ciphertext c is characterized by specific values that negate the need for
modular operations in its computation. This characteristic permits the use of methods
within the normal domain to address the problem effectively.

Consider the linear system As = b, with A as an m×n matrix derived from the c, s as
an n-vector representing the unknown integer-valued private keys (s1 or s2), and b as an
m-dimensional vector obtained from side-channel analysis. Assuming an attacker achieves
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a 30% success rate in acquiring b, the collection of ten signatures yields 2560 equations for
s, with 768 being accurate. The goal is to identify an integer solution for s ∈ {−η, . . . , η}n

that maximizes the count of accurately fulfilled equations. Direct optimization of this
count is complex. Nevertheless, isolating 256 correct equations from the accurate subset
facilitates the recovery of the actual private key by solving a simplified equation set. This
scenario translates into a continuous optimization problem, focusing on minimizing the
residuals between predicted and observed values.

The process of eliminating erroneous equations is divided into two main phases. The
first consists of transforming the problem into a continuous optimization framework. Here,
the attacker aims to reduce the overall sum of squared residuals for all equations, while
temporarily disregarding the integer constraints on s. This objective is mathematically
expressed as:

min
s

1
2 ∥As− b∥2

2 s.t.− η ≤ si ≤ η (8)

The initial phase of filtering erroneous equations is reformulated as a large-scale bound-
constrained minimization challenge. In tackling such problems, Branch et al. [BCL99]
have introduced a technique by adapting the Coleman-Li trust region and interior method
specifically for such challenges. For computational efficiency, this technique may employ
sparse Cholesky factorization or the conjugate gradient method.

Following the derivation of an approximate solution, denoted as s∗, from the optimiza-
tion procedure, the subsequent phase entails the evaluation of residuals for each equation
within the system. This evaluation aims to measure how well each equation aligns with
the obtained solution. The residual for the i-th equation is calculated as ri = |Ais∗ − bi|,
where Ai represents the i-th row of A, and bi is the i-th element of b. Equations with
the highest residuals are presumed to be inaccurate and are identified as candidates for
removal in further iterations. The rationale behind this exclusion process is that removing
equations with significant discrepancies from the current solution can lead to a more
accurate approximation of the true solution by reducing the influence of potential errors.

The iterative refinement process recalculates the solution s(k+1) at each iteration k,
using the updated equation set A(k+1) and b(k+1) that omit previously identified incorrect
equations. This refinement is mathematically formulated as follows:

s(k+1) = min
s

1
2

∥∥∥A(k+1)s− b(k+1)
∥∥∥2

2
s.t.− η ≤ si ≤ η (9)

Iteration proceeds until the solution reaches a satisfactory level of accuracy, marked by
minimal residual differences between the estimated solution and the actual data represented
by b in the updated equation set.

To finalize the iterative optimization, the continuous solution s∗ evaluated for its
closeness to the nearest integers within the bounds {−η, . . . , η}n. The conversion to an
integer solution, sint,i,involves rounding each element of s∗ to its closest integer value:

sint,i = round(s∗
i ), ∀i = 0, . . . , n− 1 (10)

This step assumes the proximity of the continuous solution to the actual, integer-valued
solution allows for effective rounding, achieving a solution that fulfills most, if not all,
equations from the original set. Subsequent verification of the integer solution is advised
to confirm its adequacy in satisfying the linear system to an acceptable degree.

Based on this principle, we introduce the Constrained Optimization-Based Residual
Analysis (COBRA) method. This approach efficiently isolates correct equations from a
dataset significantly contaminated with inaccuracies, thereby facilitating the accurate
derivation of the private key. The process, outlined in the pseudo-code of Alg.2, operates
with inputs such as the coefficient matrix C derived from the challenge c, results from



12 Efficient Side-channel Attack on Dilithium

Algorithm 2 Constrained Optimization-Based Residual Analysis
Input: C, scar, bounds, eth, dnum, rnum, snum

Output: s
1: available_ind← InitializeIndices(C)
2: err_weights← zeros(|C|)
3: while |available_ind| > rnum do
4: s_ind← RandomSample(available_ind, snum)
5: s← SolveLSQ(C[s_ind], scar[s_ind], bounds)
6: residuals← CalculateResiduals(C[s_ind], scar[s_ind], s1)
7: err_weights← UpdateWeights(residuals, err_weights, dnum)
8: available_ind← UpdateIndices(err_weights, eth)
9: end while

10: if C[available_ind]s == scar[available_ind] then
11: return s
12: end if
the side-channel attack denoted as scar, solution bounds, error threshold eth, a delta
for incrementing error weights each iteration dnum, a retention threshold for the least
erroneous equations rnum, and a selection parameter for equations each iteration snum.
The algorithm begins by assigning an error weight of zero to all equations and initializing
the index for the set of equations.

The core of the algorithm is an iterative process. At each iteration, it randomly selects
a subset of equations and uses their coefficients along with the outcomes of the side-channel
attack to compute an approximate solution through constrained optimization. After finding
this solution, the algorithm calculates residuals and updates the error weights for each
equation based on the magnitude of these residuals. Higher weights suggest a greater
probability of errors in the equations, making them candidates for removal in subsequent
iterations. This process continues until the number of equations that remain falls below
a certain threshold. A solution is considered accurate when the refined set of equations
aligns perfectly with the solution, evidenced by zero residuals, thus indicating successful
error mitigation and recovery of the correct solution.

Critical to the algorithm’s success are parameters like the error threshold eth and the
iterative incrementation of error weights dnum, which play pivotal roles in optimizing the
balance between the efficiency and stability of the attack. The randomness introduced in
each iteration through the selection count of equations snum is essential for handling cases
where correct recovery might otherwise be infeasible. When the equation set contains a
sufficient number of correct equations, the COBRA algorithm is capable of rapidly and
accurately recovering the complete private key.

Typically, resolving a system of equations with 256 unknowns necessitates an equivalent
number of equations to uniquely determine the solution. However, the distinct distribution
of the coefficient matrix combined with constraints on s1 coefficients uniquely positions us
to recover the complete private key by accurately identifying a subset of correct equations.
This observation enables the application of ILP to a reduced set of 200 equations for
Dilithium2. Armed with this knowledge, an attacker could feasibly achieve full private key
recovery utilizing merely a single signature.

4.2 Big-M with Constrained Optimization-Based Residual Analysis
The challenge at hand is to identify a solution, s∗, that maximizes the number of correct
equations within a system of cs1. Marzougui et al. [MUTS22] propose addressing this by
transforming it into an ILP problem through the Big-M method.

In practice, when the equation system contains a relatively small number of correct
equations, the constrained optimization-based residual analysis algorithm might not recover
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the complete private key. However, the coefficients it retrieves often include values that
are nearly correct, with many incorrect coefficients deviating by only ±1. If attackers
can determine which coefficients are correct—perhaps through methods like majority
voting—they can significantly reduce the key space. Applying the Big-M method could
then enable full private key recovery.

The algorithm, referred to as Alg.2, introduces randomness by selecting indices randomly
in each iteration, which results in varied outcomes. If a single run of Alg.2 does not recover
the complete private key, repeating its core computational module might yield alternative
solutions. For Dilithium2, by statistically analyzing each coefficient’s occurrences for ±2,
±1, and 0—resulting in five possible outcomes—and setting threshold criteria, the solution
space CRFj (Coefficient Recovery Field) for each coefficient sj is defined. When a larger
set of original equations is available, typically only 2-3 values stand out within each CRFj .
Notably, with a single signature, which equals merely 256 equations, a more cautious
strategy preserves the outcomes of each analysis as potential candidate values.

maximize
|I|−1∑
i=0

xi

subject to xi −Cis∗ ≤ K · (1− xi), ∀i ∈ {0, . . . , |I| − 1} (1)
xi −Cis∗ ≥ −K · (1− xi), ∀i ∈ {0, . . . , |I| − 1} (2)
xi ∈ {0, 1}, ∀i ∈ {0, . . . , |I| − 1} (3)
s∗

j ∈ CRFj , ∀j ∈ {0, . . . , n− 1} (4)

Figure 2: Optimized ILP formulation used for recovering noisy equation system of cs.

Fig.2 depicts the optimized Big-M method used in this paper. In comparison to
previous studies [MUTS22,BVC+23], we refine constraint (4), previously allowing s∗

j to
range within(−η, . . . , η), necessitating the assessment of each coefficient against 5 potential
outcomes for Dilithium2 and 9 for Dilithium3. Our methodology effectively reduces the
range of possible values, thus increasing the algorithm’s efficiency.

4.3 Alternative Attack Strategies
Solving Equations using BP. Soft Analytical Side-Channel Attacks (SASCA) is designed
to decrease guessing entropy by leveraging side-channel leakages at various points during
the execution of an algorithm. It has been successfully applied in attacks on conventional
cryptographic systems [VGS14, GGSB20, LWL+22]. A key strategy of this approach
involves the use of the BP algorithm, which simplifies global marginalization to local
marginalization and employs message passing until convergence, revealing the marginal
probability of the targeted value. The BP algorithm is notably effective in post-quantum
cryptography attacks, such as those on Kyber [PPM17,PP19,HHP+21].

Bronchain et al. [BAE+23] suggested the BP algorithm’s application in resolving
integer linear equations related to cs1,drawing from side-channel attack outcomes. The BP
algorithm iteratively refines solution estimates by updating and circulating local marginal
probabilities within a factor graph, with side-channel data integration enhancing solution
precision. The algorithm benefits from the trait that c comprises only τ nonzero coefficients
(either 1 or -1), which simplifies the factor graph and boosts efficiency, while s spans a
uniform distribution over {−η, . . . , η}n.

The BP algorithm needs to rely on more equations when the success rate of the side
channel attack is low. As the dimension increases, the size of the factor graph expands,
and the propagation process is more prone to computational overflow problems. We have
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temporarily failed to complete the solution when the number of equations is excessive.
The algorithm also depends on integrating probability distributions of potential values at
leakage points into the factor graph, which may poses limitations for attack techniques
that don’t provide such distributions, like fault and cache attacks. The BP algorithm,
being probabilistic in nature, cannot guarantee a solution in every instance. For the system
of equations under consideration, determining the conditions under which the algorithm
can stabilize and converge to the correct result requires further in-depth study.

Reduction to a LWE Problem. One natural strategy for recovering the entire
private key with known partial coefficients is reducing it to a special LWE problem. When
the positions of recovered coefficients are known, it can be regarded as a form of leaky LWE
problem and is resolved utilizing the leaky LWE estimator proposed by Dachman-Soled
et al. [DDGR20]. In this case, known coefficients are integrated into the lattice basis as
perfect hints, following which the remaining coefficients are retrieved using lattice reduction
techniques such as BKZ. According to the results in [MN23], merely 45% of coefficients are
sufficient to break Dilithium2 within 7 days. However, since we cannot determine which
coefficients are recovered after solving the erroneous equations cs1 = b, this method fails
in this context.

When the positions are unknown, the problem of recovering the entire private key
with known partial coefficients can be reduced to a ternary LWE problem. Let s∗

1 be the
estimator solved by the erroneous equations cs1 = b and substituting it into the public
key t = As1 + s2, we can obtain a new LWE problem t′ = As′

1 + s2 where t′ = t−As∗
1,

s′
1 = s1 − s∗

1. If most equations in cs1 = b are correct, the new problem is likely to be a
sparse, ternary LWE problem sharing the same dimension as the original one. According
to results in [May21,GM23], the heuristic time/memory complexities is O(20.345N ). For
Dilithium2, where N = 1024, this method appears impractical. We will explore the
possibility of combining this method with ILP techniques in the future work.

5 Experiments and Results
5.1 Set Up
Our experiments are conducted on the ChipWhisperer UFO target platform, chosen for its
flexibility in supporting various microprocessor modules. We select the STM32F405RGTx
microprocessor for its implementation of the Dilithium algorithm, as per the NIST reference
[ACD+22]. To capture leakage signals, our setup includes a BLP-1.9+ 50M low-pass filter,
a PA303 preamplifier, and a WR610Zi oscilloscope, all synchronized to a sampling rate of
100 MSa/s. Although filters like the 1.9+ 5M model, which may offer a higher SNR, are
available, we prefer the 1.9+ 50M model to demonstrate the effectiveness of our approach
in noisy environments.

We execute the attacks on a desktop computer equipped with an Intel i5-13600KF
processor and 32GB of DDR5 RAM. For the machine learning experiments, we utilize 4
TITAN Xp GPUs. This setup ensures sufficient computational power for our analyses.
The experimental results we report are the averages from 10 iterations of each experiment,
demonstrating the robustness and consistency of our findings across multiple runs.

5.2 LR-SCA for Recovering y

Qiao et al. [QLZ+23a]conducted a comparative analysis on power leakages associated with
the operation of generating random numbers y in the Dilithium. Their research identifies

Here we assume that the public is not compressed or it is reconstructed from a small number of
signatures. If it is compressed as done in Dilithium, the new ternary LWE problem is t′ = As′

1 + e where
e = s2 − t0, t0 denotes the low order bits of t.
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the "polyz_unpack(a, buf)" function as exhibiting the most substantial leakage related to
y, thereby designating this function as the target of our attack. The function, as detailed in
Fig.3, is responsible for extracting an 18-bit value from a predefined random array, denoted
as r, and converting it into y via the operation GAMMA1-r, where GAMMA1 = 217. This
conversion is executed over 64 cycles, yielding four instances of y per cycle.

1 void polyz_unpack (poly *r, const uint8_t *a) {
2 unsigned int i;
3

4 #if GAMMA1 == (1 << 17)
5 for(i = 0; i < N/4; ++i) {
6 r-> coeffs [4*i+0] = ( uint32_t )a[9*i+0] << 8;
7 r-> coeffs [4*i+0] |= ( uint32_t )a[9*i+1];
8 r-> coeffs [4*i+0] &= 0 x3FFFF ;
9

10 r-> coeffs [4*i+1] = a[9*i+1] >> 2;
11 r-> coeffs [4*i+1] |= ( uint32_t )a[9*i+2] << 6;
12 r-> coeffs [4*i+1] |= ( uint32_t )a[9*i+3] << 14;
13 r-> coeffs [4*i+1] &= 0 x3FFFF ;
14

15 r-> coeffs [4*i+2] = a[9*i+3] >> 4;
16 r-> coeffs [4*i+2] |= ( uint32_t )a[9*i+4] << 4;
17 r-> coeffs [4*i+2] |= ( uint32_t )a[9*i+5] << 12;
18 r-> coeffs [4*i+2] &= 0 x3FFFF ;
19

20 r-> coeffs [4*i+3] = a[9*i+5] >> 6;
21 r-> coeffs [4*i+3] |= ( uint32_t )a[9*i+6] << 2;
22 r-> coeffs [4*i+3] |= ( uint32_t )a[9*i+7] << 10;
23 r-> coeffs [4*i+3] &= 0 x3FFFF ;
24

25 r-> coeffs [4*i+0] = GAMMA1 - r-> coeffs [4*i+0];
26 r-> coeffs [4*i+1] = GAMMA1 - r-> coeffs [4*i+1];
27 r-> coeffs [4*i+2] = GAMMA1 - r-> coeffs [4*i+2];
28 r-> coeffs [4*i+3] = GAMMA1 - r-> coeffs [4*i+3];
29 }
30 # endif }

Figure 3: Polyz_unpack(a, buf) reference implementation.

Our goal is to recover y through side-channel analysis, emphasizing the leakage of its
lower bits as outlined in 3.1. However, our correlation analysis of 1,000 traces using the
HW model, as shown in Fig.4, indicates that focusing on r, especially its lower 8 bits,
results in more significant leakage. This finding is attributed to the direct computational
correlation between r and y, as well as the additional operations on r. Therefore, attacking
the operation corresponding to r will have better results significantly higher than attacking
y directly.

For the Dilithium2 scheme, we employ 50,000 traces and apply a low-pass filter
using FFT to improve signal quality. Subsequently, we identify continuous points of
interests(POIs) that exhibit significant leakage for modeling through a LR model. This
approach ensures that y is modeled independently for each coefficient position, which helps
to mitigate potential biases arising from trace misalignment. After building the templates,
the attack is carried out on traces corresponding to the new signature under analysis.

In our experiments, we methodically investigate how varying the number of POIs of
our attack, focusing two scenarios based on distribution of cs1: either ||cs1||∞ < 24 or
||cs1||∞ < 25. The findings, detailed in Tab.4 for 256 coefficients profiled and attacked,
reveal the relationship among the number of POIs, the profiling time, and the attack’s
success rate (SR). Notably, with 20 POIs, the profiling time amounts to 134.2 seconds,
leading a 14.2% SR under the 4-bit assumption within 7.2 seconds, and an 8.8% SR under
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(a) PCC of r (b) PCC of y

Figure 4: PCC of r and y with 1,000 traces
the 5-bit assumption in 15.89 seconds. When the POIs increase to 300, the profiling time
rises to 952.3 seconds, but this also significantly enhances the SR to 39.6% for the 4-bit
assumption at 240.6 seconds, and to 33.4% for the 5-bit assumption at 461.3 seconds.

Table 4: Results for Recovering 256 Coefficients of y
#POI Profiling Time (s) Time1 (s) SR1 (%) Time2 (s) SR2 (%)

20 134.2 7.2 14.2 15.89 8.8
50 170.0 21.4 16.4 36.7 10.8
100 321.4 56.4 24.1 121.6 17.3
300 952.3 240.6 39.6 461.3 33.4

1 assumption for ||cs1||∞ < 24.
2 assumption for ||cs1||∞ < 25.

The observed variations in the success rates of our attacks are significantly influenced
by the value range and distribution characteristics of cs1 within the Dilithium2 framework.
The distribution of cs1 closely approximates a Gaussian curve, with approximately 95% of
the data falling within a 4-bit range. This Gaussian-like distribution indicates that under
the 4-bit assumption, the attack already encompasses the vast majority of possibilities,
thereby reducing the enumeration likelihood and consequently enhancing the attack’s
success rate. On the other hand, extending the assumption to a 5-bit range increases the
value space, capturing only an additional 5% of possible values but at the cost of doubling
the value space. Although it might appear that this extension allows for the recovery of
a broader range of values, it actually diminishes the attack’s effectiveness. This paradox
underscores the pivotal role of cs1’s Gaussian-like distribution in dictating the attack’s
success rates.

Our method demonstrates the capability to fully recover the value of y with success
rates nearing 40% using single trace, representing a significant advancement in efficiency
compared to previous approaches.This improvement in efficiency is primarily attributed to
the reduced need for multiple traces to build templates and a smaller enumeration space
during template matching. Importantly, our attack strategy obviates the requirement for
selecting or filtering y values, thereby enhancing its efficiency further. Additionally, the
independence of y’s coefficient positions enables the concurrent execution of attacks on
these coefficients. This approach not only expedites the attack process but also underscores
the versatility and practical applicability of our technique in the realm of side-channel
attacks.
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5.3 DL-SCA for Recovering cs1

Chen et al. [CKA+21] identified significant leakage in the Montgomery reduction operation,
a pivotal element of the Dilithium algorithm’s reference implementation submitted to
NIST. This operation, crucial to the entire INTT process, facilitates the conversion of
results from the NTT domain back to the normal domain for further calculations. The
specific implementation of the Montgomery reduction is illustrated in Fig.5. Notably, the
reduction process, particularly the shifting and storage operations in its final stages, is
identified as a likely primary source of significant cs1 leakage. Our targeted experimental
attacks on these operations revealed a maximum SNR of 2.5 for the leakage related to cs1.

1 int32_t montgomery_reduce ( int64_t a) {
2 int32_t t;
3

4 t = ( int32_t )a*QINV;
5 t = (a - ( int64_t )t*Q) >> 32;
6

7 return t;}

Figure 5: Montgomery_reduce reference implementation.

Dilithium has deterministic and randomised schemes. The deterministic scheme enables
the recovery of all discarded challenge c values when the private key is known, which is
not possible with the randomized scheme. In our analysis, we specifically focus on the
leakages stemming from the final round of legitimate signatures. For Dilithium2, our data
collection is concentrated on capturing the complete round of cs1 leakage. While it’s
theoretically feasible to collect a broader dataset by including cs2 leakage, our current
discussion remains focused solely on cs1, excluding cs2 from our scope.

For Dilithium2, each signature provided 1,024 actionable training samples. We statically
align and segment these samples into blocks of 400 for training the CNN model, as detailed
in Sec.3.2. The training strategy addresses the distribution skewness of cs1, by focusing
on data within ||cs1||∞ < 24 and ||cs1||∞ < 25, as well as considering the full data range.
This comprehensive approach involves 250,000 samples and is completed about 40 minutes.

Fig.6 illustrates the guess entropy and success rates for side-channel attacks under
various strategies. With consistent model hyperparameters, expanding the training set
enables the creation of more accurate classifiers. Utilizing 10,240 samples (equivalent to 10
signatures) leads to a stabilization in both the classifier’s success rate and guess entropy.
Generally, when cs1 is assumed to be 5 bits, the outcomes marginally surpass those for
the 4-bit assumption, with success rates improving from 70% to 74%. For guess entropy,
the assumption of cs1 as 5 bits approaches 1. The primary reason for similar success rates
yet significant differences in guess entropy is due to the fact that, under the assumption of
cs1 being 4 bits, certain actual values fall outside our hypothesized space, and these cases
are ranked last in our analysis. These findings underscore the potential of CNN-based
techniques, suggesting that further optimization of network hyperparameters might lead
to enhanced success rates.

Furthermore, we compared our method with traditional TAs for a comprehensive
analysis. In the TAs, POIs were identified based on the top 20, 50, and 100 PCCs, in
addition to attempts at using all available points. The success rates, as detailed in Tab.5,
demonstrate a trend where an increased number of POIs generally boosts the attack’s
effectiveness. Notably, when employing all feature points, TAs achieved success rates of
54.6% and 57.7% under the assumptions of ||cs1||∞ < 24 and ||cs1||∞ < 25, respectively.

Despite the incremental gains observed in TAs with an expanded selection of POIs,
CNN-based attacks have consistently surpassed TAs in terms of both success rates and
computational efficiency. This highlights the advantages of CNNs in improving the success
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Figure 6: Guess entropy and success rates of cs1

Table 5: Success Rates of CNN and TA
Approach SR of ||cs1||∞ < 24 SR of ||cs1||∞ < 25 SR of ||cs1||∞ < β
CNN 70.5 74.3 70.6
TA (PoI 20) 25.9 23.1 22.9
TA (PoI 50) 28.7 22.6 22.6
TA (PoI 100) 40.5 40.4 31.2
TA (PoI ALL) 54.6 57.7 57.5

and efficiency of side-channel attacks, especially when utilizing all feature points. Therefore,
CNNs emerge as the preferred method for analyzing and exploiting cs1 leakage in the
Montgomery reduction process.

It should also be noted that for the private key s2, the computation cs2, which is
involved, undergoes the same operation as cs1. Therefore, it is entirely feasible to apply
the same method to conduct an actual attack on cs2 if required.

Moreover, we employed the method described in Sec.3.3 to develop a more potent attack
by combining the results for y with those for cs1. Tab.6 presents the success rates achieved,
showcasing the impact of altering the PoIs for y. With the assumption that ||cs1||∞ < 24,
we achieve an optimal success rate of 86%. This rate further increases to an average
of 92.8% when the model presupposes that ||cs1||∞ < 25. These results compellingly
demonstrate the enhanced efficiency of the combined attack strategy, significantly improving
its effectiveness.

5.4 Constrained Optimization-Based Residual Analysis Result
In our empirical investigation, we found that when the set of 256 equations includes more
than 8 inaccuracies, retrieving the private key becomes impractical within an hour using
the Big-M method on our computational setup. We utilized simulation data to assess the
effectiveness of constrained optimization-based residual analysis across different success
rates, with the goal of setting benchmarks for future practical attacks.
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Table 6: Success Rates for Combined y and cs1 Results
Range of cs1 cs1 SR (%) #PoI of y y SR (%) Merged SR (%)
||cs1||∞ < 24 70.5 20 14.2 80.9

50 16.4 82.3
100 24.1 83.1
300 39.6 86.7

||cs1||∞ < 25 74.3 20 8.8 84.9
50 10.8 86.5
100 17.3 88.7
300 33.4 92.8

Table 7: Performance of Constrained Optimization-Based Residual Analysis
Correct Eq. Ratio Eq. Count dnum eth SR (%) Time (s)

10% 65× 256 50 0 100 189.5
30% 9× 256 50 10 100 53
50% 4× 256 50 5 100 10.0
70% 3× 256 40 0 100 1.63
90% 2× 256 30 0 100 0.8
95% 1× 256 2 2 83 4.1

Tab.7 presents the necessary equations and specific parameter adjustments for successful
private key recovery, given varying percentages of correct equations. It shows that achieving
private key recovery is feasible across different success rates, provided a certain threshold
number of equations is met. Generally, the need for equations decreases as the success rate
increases. This parameterization is heuristic, designed for flexibility rather than pushing
theoretical limits, allowing for real-time adjustments to improve practical implementation
efficiency. As the proportion of incorrect equations increases within the set, it becomes
imperative to increment dnum to expedite the removal of these inaccuracies. While a
minimum of 230 correct equations, denoted as rnum , can potentially facilitate private key
recovery in specific scenarios, adjusting parameters based on real-world conditions can
enhance the speed of the attack.

Particularly in scenarios where only 10% of the equations are correct, successful attacks
have been executed with fewer than 60× 256 equations (corresponding to 60 signatures),
albeit at the cost of significant time overhead due to increased eth. If attackers have
access to a large set of equations, increasing the number of equations is recommended to
quicken the resolution process. However, setting dnum too high should be avoided, as it
may mistakenly eliminate a significant number of correct equations early on.

Our approach has shown the ability to quickly find solutions even when the set of 256
equations contains inaccuracies. In our experiments, we randomly generated 100 sets of
equations with a 95% accuracy rate. After applying our algorithm 10 times on each set,
approximately 83% of these equation sets successfully led to the recovery of the complete
private key s1. This approach has been more efficient than conventional ILP solutions.

Moreover, if attackers are dealing with a lower number of equations, our technique
still significantly reduces the entropy of the private key and decreases the time complexity
associated with solving ILP. This benefit aids in the execution of the actual attack,
highlighting our method’s utility and efficiency in the field of cryptographic analysis.

5.5 Practical SCAs of Dilithium
The practical attack on Dilithium2 provided enlightening findings. Considering that
attackers in real-world scenarios may only access leakage from y and cs1 separately, we
outline the detailed attack results for three different scenarios: targeting y, cs1, and a
combined approach where leakage from both y and cs1 is utilized simultaneously.
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Table 8: Signatures Required for Private Key Recovery
Range of cs1 Side-Channel Strategy #Signatures
||cs1||∞ < 24 Attack on y (#POI=300) 8(6)

Attack on cs1 3(3)
Hybrid 2(2)

||cs1||∞ < 25 Attack on y (#POI=300) 9(7)
Attack on cs1 3(2)

Hybrid 2(1)
() corresponds to the optimal case that occurs in the attack.

Tab.8 documents the number of signatures needed for private key recovery under
different scenarios, showcasing both the highest and lowest number of signatures required
in successful attempts among a series of 10 experiments. Interestingly, the efficiency of
the attack shows minimal fluctuation with different assumptions about the bit range of
cs1. Targeting the leakage of y alone requires around 10 signatures to recover s1. In
contrast, focusing solely on the leakage from cs1 allows for completing the attack with
just 3 signatures, thanks to the high success rates achieved by the CNN model, and in
cases assuming ||cs1||∞ < 25, often only 2 signatures are needed. Exploiting leakage from
both y and cs1 require at most 2 signatures to recover s1. Notably, our empirical analysis
revealed that about 15% of cases could succeed with leakage from a single signature, usually
requiring the recovery of 240 out of 256 coefficients through the side-channel attack.

These outcomes underscore the robustness of our approach, demonstrating that even
when attacking solely on y at a modest success rate, the attack can be executed with fewer
than 10 signatures—an advancement over preceding efforts by Marzougui et al. [MUTS22]
and Berzati et al. [BVC+23].

Furthermore, our refined attack strategy, integrating a hybrid approach with the
voting technique and ILP as detailed in Sec.4.2, underwent 1,000 repetitions under the
Constrained Optimization-Based Residual Analysis algorithm to refine the potential values
for s1, typically concluding within 20 minutes. This preparatory phase was succeeded by
leveraging an optimized Big-M method for final solution derivation. Observations revealed
that when the side-channel attack successfully identifies more than 236 coefficients, the
ILP phase generally concludes within 30 minutes. Should the recovered coefficients fall
below this threshold, solution times often extend beyond one hour, vastly surpassing the
original scheme’s tolerance for up to 8 errors within a similar timeframe, hence marking a
considerable enhancement. In this experimental framework, approximately 60% of datasets
facilitated the recovery of the private key within an hour using a singular signature.

6 Conclusion and future work
In this study, we conducted a comprehensive side-channel analysis of Dilithium2, focusing
on the polynomial addition operation z = y + cs1. Utilizing LR-based profiled attacks,
we achieved a 40% success rate in recovering the complete value of y, and with the aid
of a CNN model, we succeeded in recovering the value of cs1 with a 75% success rate.
By integrating these findings, we enhanced the success rate for recovering cs1 through
side-channel analysis to 92%. Furthermore, we introduced a constrained optimization-based
residual analysis, enabling the swift recovery of the private key s1 from extensive sets of
cs1 equations, even those containing errors. The results from actual attacks on Dilithium2
indicate that our approach can efficiently recover the private key cs1 with minimal leakage
from generated signatures—in the optimal scenario, requiring only a single signature, with
comparatively low time overhead.

Given that cs2 also undergoes the Montgomery reduction operation, our method
theoretically extends to the recovery of s2, albeit necessitating approximately 2-3 signatures
due to the lack of y to bolster the attack’s efficacy.
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Despite the substantial success in recovering most of cs1, the challenge remains that
even with 230 coefficients recovered and after reducing the constraints with our constrained
optimization-based residual analysis, the computational expense of solving through ILP
remains significantly high. We posit that amalgamating our side-channel findings with the
BP algorithm could facilitate a more consistent realization of the 1-signature attack. In fu-
ture endeavors, we aim to explore more efficient mathematical methods to achieve Dilithium
attacks under single signatures with improved stability and efficiency. Furthermore, we
plan to investigate the effectiveness of our approach against protected implementations
of Dilithium, potentially offering insights into enhancing the security measures against
side-channel attacks.
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