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Abstract

We show how fixed-unitary quantum encryption schemes can be attacked in a
black-box setting. We use an efficient technique to invert a unitary transformation
on a quantum computer to retrieve an encrypted secret quantum state |ψ⟩. This
attack has a success rate of 100% and can be executed in constant time. We name
a vulnerable scheme and suggest how to improve it to invalidate this attack.
The proposed attack highlights the importance of carefully designing quantum
encryption schemes to ensure their security against quantum adversaries, even in
a black-box setting.

Keywords: quantum cryptography,black-box attack, quantum cryptanalysis, quantum
circuits

1 Introduction

The constant development of quantum computers has made encryption methods
increasingly relevant in this field. Particularly, quantum-based synergy effects are pre-
senting new security challenges to classical methods. In this paper, an attack on a
previously proposed quantum encryption scheme (QES) is carried out to demonstrate
the cryptographic insecurity of this scheme. Note that this is not quantum encryption
in the classical sense, e.g., Quantum Key Distribution (QKD), as the scheme is a new
approach by the authors of [1]. In [1], the authors proposed the problem of sending
a qubit in a secret state |ψ⟩ from one entity to another. The key point here is that
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no entity other than the desired receiver should have access to the qubit in the secret
state |ψ⟩. They propose a quantum public-key encryption scheme to accomplish this.
In our attack, we abuse the deterministic part of the QES protocol to create an ora-
cle for the private key application performed by the receiver (Alice). We apply the
method of [2] to invert Alice’s transformation and retrieve the qubit |ψ⟩. The attack
has a constant runtime and a success probability of 100%.

The paper is structured as follows: First, we explain the encryption scheme pro-
posed by [1]. In Section 3, a technique described in [2] to invert a black-box unitary
is proposed. In Section 4, we use the technique to attack the QES scheme. Finally, we
mention how the protocol could be improved to prevent this attack.

2 Encryption Scheme

This chapter introduces the QES proposed in [1]. The scheme’s aim is to secretly
transmit a single qubit in an arbitrary state |ψ⟩ = α |0⟩+β |1⟩ from the sender (Bob) to
the receiver (Alice). To accomplish this, Alice implements the public-key cryptosystem
QES.

Alice

Public {U1, ..., Un}Private U0

Bob

Secret |ψ⟩

R := {r1, ..., rk}
$←− [n]

UR =
∏k

i=1 Uri

|ϕ1⟩ = UR |ψ⟩
|ϕ1⟩

|ϕ2⟩ = U0 |ϕ1⟩
|ϕ2⟩

|ϕ3⟩ = U†
R |ϕ2⟩

|ϕ3⟩

|ψ⟩ = U†
0 |ϕ3⟩

Eve

|ϕ̃1⟩

U0 |ϕ̃1⟩

Fig. 1 The quantum encryption scheme. In red, we denoted the dangerous part.

The scheme starts with Alice generating her public and private keys. To build the
private key, Alice chooses the random numbers a, b ∈ C, φ ∈ R with |a|2 + |b|2 = 1.

She uses those numbers to build a unitary matrix U0 =

(
a b

−eiφb∗ eiφa∗
)
[1]. She then

generates n-many t-bit numbers p1, ..., pn and computes:

Ui = Upi

0 ∀1 ≤ i ≤ n.

2



The authors of [1] consider n and t as security parameters. The exponentiated matrices
build the public key PubK := {U1, ..., Un}, while the secret key PrivK := U0 is the
original matrix. The protocol is presented as follows:
1. Bob begins by generating an arbitrary valid single qubit state

|ψ⟩ = α |0⟩+ β |1⟩ ,

with α, β ∈ C and |α|2+|β|2 = 1 which he wants to send to Alice. He then chooses
a subset R ⊂ [n], and uses Alice’s PubK to construct the first transformation:

UR =
∏
i∈R

Ui.

He applies UR to |ψ⟩ to get the encrypted state, |ϕ1⟩ = UR |ψ⟩ which he then
transmits to Alice.

2. Alice applies U0 to |ϕ1⟩ to obtain |ϕ2⟩. In the original work ([1]), the authors
suggest that Alice applies UT =

∏n
i=0 Ui instead. However, we want to emphasize

that there is no benefit in using UT over U0. For all i ̸= 0, Ui is public knowledge,
and an attacker can easily build the inverse U†

i . Alice then sends |ϕ2⟩ back to Bob.
3. Bob uncomputes his transformation UR to get the state |ϕ3⟩. He can produce the

inverse transformation by simply combining the inverses of the partial matrices
U†
R =

∏
i∈R U

†
i . Based on the fact that all Ui’s are multiples of U0, we know that

Ui’s commute. This allows the following:

|ϕ3⟩ = U†
R · U0 · UR |ψ⟩ = U†

R · UR · U0 |ψ⟩ = U0 |ψ⟩

The state |ϕ3⟩ is then sent to Alice.

4. Alice can uncompute U0 by simply applying U†
0 :

U†
0 |ϕ3⟩ = U†

0 · U0 |ψ⟩ = |ψ⟩

With this, Alice recovered the original secret quantum state |ψ⟩.

3 Inverting Black-box Unitaries

A matrix U is called unitary iff:

U · U† = U† · U = Id,

where U† is the conjugate transpose of the matrix U . Thus, in a white-box setting,
finding the inverse of the matrix U is trivial, and the runtime of the inversion depends
only on the size of U . Also, in a classical black-box setting, with access to a chosen
plaintext U -oracle, determining the matrix U (and therefore also U†) is rather sim-
ple. For an N × N matrix, one can just query N -many unit vectors (ei)i=1,...,N and
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reconstruct U as:

U =

 | | |
U(e1) U(e2) · · · U(eN )
| | |


The problem becomes more challenging in the quantum setting. Assuming U was

applied to a quantum state |ψ⟩, we cannot determine the amplitudes of U |ψ⟩. In fact,
we cannot even differentiate between the states |0⟩ and i |0⟩ since the global amplitude
has no impact on the result of the measurement (cf. [3, p. 87]). With this in mind, the
problem of finding a pre-image of a quantum state under a matrix U comes into play:
Problem 1. Given a quantum state |ψ̃⟩ and a black-box access to a unitary matrix
U , find |ψ⟩ such that:

U |ψ⟩ = |ψ̃⟩

In other words, we want to find the state U† |ψ̃⟩. It is important to differentiate between
two very close cases. To solve Problem 1, we do not expect the attacker to determine
the amplitudes of the quantum states. Rather, he has to have access to a qubit in
state |ψ⟩. To achieve this, [4] proposed an exact protocol, with runtime dependent on
the matrix’s size. Another approach is to perform process tomography [5].

In this paper, we are not interested in inverting arbitrary unitaries. Instead, we
focus on 2×2 matrices as present in Section 2. One general expression for 2×2 unitary
matrices is the form already mentioned above:

U =

(
a b

−eiφb∗ eiφa∗
)
,

with a, b ∈ C, φ ∈ R and |a|2 + |b|2 = 1. In [2], the authors describe how to reverse
an arbitrary single-qubit gate in constant time. The procedure calls the oracle U four
times and applies two unitary operations V 1 and V 2. V 1 and V 2 are constructed using
Clebsch-Gordan transforms (for detail, see [6]). The circuit can be seen in Figure 2 and
it outputs the state U−1 |ψ̃⟩ for an arbitrary 2× 2 unitary U and an arbitrary initial
state |ψ̃⟩. Additionally, [2] provides an implementation of the method for a random
unitary matrix and a random initial single qubit state |ψ̃⟩ in Qiskit1 code.

4 Black-box Attack

In this Section, we will explain how to attack the QES described in Section 2 with
the technique from Section 3. The QES protocol’s aim is to secretly transfer a qubit
|ψ⟩ from Bob to Alice. We assume the attack is successful whenever the attacker can
obtain the qubit |ψ⟩.

The attack begins with Eve intercepting the qubit |ϕ3⟩ = U0 |ψ⟩ being transmitted
from Bob to Alice. This takes place within step 3 of the QES protocol. At this point,
the UR transformation of Bob has already been uncomputed (cf. Figure 1).

1https://qiskit.org/
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|ψ̃⟩

V 1 V 2 V 1 V 2

|ΨU ⟩

|Ψ−⟩
U U U U

U−1 |ψ̃⟩

|0⟩ |0⟩

Fig. 2 The algorithm to revert an arbitrary unitary, as proposed in [2]. The state |Ψ−⟩ := 1√
2
(|01⟩−

|10⟩) and |ΨU ⟩ is defined as |ΨU ⟩ := U ⊗ Id |Ψ−⟩ and can be further reused.

Next, we use |Φ⟩ = |ϕ3⟩ |Ψ−⟩ |0⟩⊗4
as input to the algorithm described in Figure 2.

At this point, we need to specify how Eve will achieve access to the unitary U . We
observe that Alice, when being sent a qubit |ϕ1⟩, in step 1 of the QES protocol, is not
able to differentiate between a valid qubit of form UR |ψ⟩, and a qubit in an arbitrary
state |ϕ̃1⟩. This means she will apply U to any qubit that is being sent to her. We will
abuse this fact and use Alice as an oracle for the function U . Whenever the algorithm
from Figure 2 needs to apply U , we send the second qubit of |Φ⟩ to Alice, pretending
it is a valid initial message of the QES protocol (cf. Eve message in Figure 1).

Finally, the transformations V 1 and V 2 are fixed, therefore, not dependent on U ,
and can be easily implemented in the quantum framework (cf. [2] for Qiskit code).
The whole attack consists of a fixed amount of steps (four protocol calls to Alice and
four applications of fixed unitary matrices V 1 and V 2). The success rate is 100%. The
desired secret state |ψ⟩ is now the third qubit of |Φ⟩.

5 Design Criteria for Quantum Encryption Schemes

In this Section, we want to investigate which part of the QES protocol leads to the
faulty security properties. A well-established property of security protocols, in general,
is the need for randomness. Here, [1] incorporates randomness in the process of Bob
selecting the UR. This approach is similar to classical schemes such as OAEP or
PKCS#1, where the party which encrypts the message has to include the randomness
in the encryption process to get a probabilistic encryption scheme.

In the case of QES, there is, however, the second part of the encryption process,
which Alice performs. This is the step which is vulnerable to the attack mentioned
in this paper. The deterministic nature of Alice’s encryption is the property which
we use to attack and break the scheme. We point to the fact that the attacker needs
to restart the protocol four times after he obtains the state |ϕ3⟩. If there would be
randomness used on Alice’s side, the transformation she performs would differ in each
protocol call. One suggestion to prevent this vulnerability is to alter the map which
Alice applies. Instead of just applying U0, similar to Bob, Alice also picks a random
subset of PubK and applies it to the qubit. In the last step, she remembers the used
randomness and can uncompute each rotation. The randomness guarantees that the
oracle can perform only a single operation before it becomes unusable. Here, we want
to highlight an essential result from [7]. They mention a no-go theorem which states,
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Alice

Public {U1, ...Un}Private U0

T := {t1, ...tk}
$←− [n]

Bob

Secret |ψ⟩

UT =
∏k

i=1 Uti

R := {r1, ...rk}
$←− [n]

UR =
∏k

i=1 Uri

|ϕ1⟩ = UR |ψ⟩
|ϕ1⟩

|ϕ2⟩ = UT · U0 |ϕ1⟩
|ϕ2⟩

|ϕ3⟩ = U†
R |ϕ2⟩

|ϕ3⟩

|ψ⟩ = U†
T · U

†
0 |ϕ3⟩

Fig. 3 The adjusted quantum encryption scheme.

that it is not possible to implement the inverse operation U−1 deterministically and
exactly with a single call of the U -oracle, invalidating this attack. The updated scheme
is presented in Figure 3.
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